Proof of the GM-MDS conjecture

Shachar Lovett UC San Diego

Analytic Techniques in Theoretical Computer Science

Proof of the GM-MDS conjecture

Shachar Lovett UC San Diego

Algebraic
Analytic Techniques in Theoretical Computer Science

Overview

- MDS matrices
- MDS matrices with specific zeros
- GM-MDS conjecture
- Algebraic GM-MDS conjecture
- Proof (very briefly)
- General family of problems

MDS matrices

MDS matrices

- A $k \times n$ matrix is an MDS matrix if any k columns are linearly independent

- The name comes from coding theory, as their rows generate MDS (Maximum Distance Separable) codes
- Arise in many other contexts, for example k-wise independence

Construction of MDS matrices

- Standard construction: Vandermonde matrix (aka Reed-Solomon code)
- Let a_{1}, \ldots, a_{n} be distinct field elements

$$
\mathrm{V}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
a_{1} & a_{2} & \cdots & a_{n} \\
\vdots & \vdots & & \vdots \\
a_{1}^{k-1} & a_{2}^{k-1} & \cdots & a_{n}^{k-1}
\end{array}\right)
$$

- Requires field of size $|\mathbb{F}| \geq n$
- Known: if $n \geq k+2$ then any $k \times n$ MDS matrix requires $|\mathbb{F}| \geq \mathrm{n} / 2$ (closing this gap is the "MDS conjecture")

MDS matrices with zeros

MDS matrices with zeros

- Goal: MDS matrices with a specific zero pattern
- Question: What are necessary / sufficient conditions on the locations of zeros?
- For example, can the following matrix be completed to an MDS matrix?

$$
\left(\begin{array}{lllll}
0 & * & 0 & * & * \\
0 & 0 & * & * & * \\
* & * & * & 0 & 0
\end{array}\right)
$$

- Motivation: coding theory
- Multiple access networks
- Secure data exchange
- Distributed Reed-Solomon codes

Application: distributed Reed-Solomon codes [Halbawi-Yao-Duursma 2014]

- 3 sources send information to single receiver via 5 relay nodes

- Goal: Code which protects against 2 malicious relay nodes
- Solution: MDS matrix with the following zero pattern

$$
\left(\begin{array}{lllll}
0 & * & 0 & * & * \\
0 & 0 & * & * & * \\
* & * & * & 0 & 0
\end{array}\right)
$$

Matrix completion problem

$$
\left(\begin{array}{lllll}
0 & * & 0 & * & * \\
0 & 0 & * & * & * \\
* & * & * & 0 & 0
\end{array}\right)
$$

- Goal: replace * with field elements so that any k columns are linearly independent
- Equivalently: all $k \times k$ minor should be nonsingular

Necessary condition

- Consider the zero locations in a $k \times n$ MDS matrix

$$
\left(\begin{array}{lllll}
0 & * & 0 & * & * \\
0 & 0 & * & * & * \\
* & * & * & 0 & 0
\end{array}\right)
$$

- Any row can have $\leq k-1$ zeros
- Any 2 rows can have $\leq k-2$ common zeros
- Any 3 rows can have $\leq k-3$ common zeros
- Rectangle condition / MDS condition:
there are no $a \times b$ combinatorial rectangles of zeros with $a+b>k$

Necessary condition

- Rectangle condition:
there are no $a \times b$ combinatorial rectangles of zeros with $a+b>k$
- Satisfied in this example ($k=3, n=5$)

$$
\left(\begin{array}{lllll}
0 & * & 0 & * & * \\
0 & 0 & * & * & * \\
* & * & * & 0 & 0
\end{array}\right)
$$

Necessary condition

- Rectangle condition:
there are no $a \times b$ combinatorial rectangles of zeros with $a+b>k$
- Satisfied in this example ($k=3, n=5$)

$$
a=1, b=2
$$

$$
\left(\begin{array}{lllll}
0 & * & 0 & * & * \\
0 & 0 & * & * & * \\
* & * & * & 0 & 0
\end{array}\right)
$$

Necessary condition

- Rectangle condition:
there are no $a \times b$ combinatorial rectangles of zeros with $a+b>k$
- Satisfied in this example ($k=3, n=5$)

$$
\mathrm{a}=2, \mathrm{~b}=1 \quad\left(\begin{array}{lllll}
0 & * & 0 & * & * \\
0 & 0 & * & * & * \\
* & * & * & 0 & 0
\end{array}\right)
$$

Sufficient condition

- The rectangle condition is also sufficient, over large enough fields
- If we replace $*$ with variables, then the determinant of any $k \times k$ minor is not identically zero

$$
\left(\begin{array}{ccccc}
0 & * & 0 & * & * \\
0 & 0 & * & * & * \\
* & * & * & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
0 & x_{1} & 0 & x_{2} & x_{3} \\
0 & 0 & x_{4} & x_{5} & x_{6} \\
x_{7} & x_{8} & x_{9} & 0 & 0
\end{array}\right)
$$

Sufficient condition

$$
\left(\begin{array}{ccccc}
0 & x_{1} & 0 & x_{2} & x_{3} \\
0 & 0 & x_{4} & x_{5} & x_{6} \\
x_{7} & x_{8} & x_{9} & 0 & 0
\end{array}\right)
$$

- All $k \times k$ determinants are not identically zero
- Next step: replace variables by field elements
- Consider polynomial which is the product of all $k \times k$ determinants
- Apply Schwartz-Zippel lemma
- Problem: this requires huge field size
- As there are $\binom{n}{k}$ minors, individual degrees are $\binom{n}{k}$, so this requires $|\mathbb{F}| \geq\binom{ n}{k}$

Summary so far

- Goal: MDS matrices with specific zeros
- Rectangle condition:
there are no $a \times b$ combinatorial rectangles of zeros with $a+b>k$
- Necessary condition over any field
- Sufficient condition, but only over very large fields: $|\mathbb{F}| \geq\binom{ n}{k}$
- Question: can we decrease the field size?

Why should we hope for small field size?

- Consider the problem of constructing $k \times n$ MDS matrices (without any zero constraints)
- Probabilistic construction still requires field $|\mathbb{F}| \geq\binom{ n}{k}$
- Algebraic construction exists in any field with $|\mathbb{F}| \geq n$
- Question: can we hope for an algebraic construction even with the zero constraints?

The GM-MDS conjecture

GM-MDS conjecture

- GM-MDS Conjecture ([Dau-Song-Yuen '14]):

The rectangle condition is sufficient over fields of size $|\mathbb{F}| \geq n+k-1$

- Recall: naïve construction requires $|\mathbb{F}| \geq\binom{ n}{k}$, so this is a huge improvement.
- This was not a shot in the dark; Dau et al. gave an algebraic conjecture which implies the GM-MDS conjecture with these bounds
- We prove this algebraic conjecture, and hence the GM-MDS conjecture

Algebraic approach

- Recall: standard construction of MDS matrices is "algebraic", eg Vandermonde. We can also allow for a change of basis on the rows. This gives a family of "algebraic" constructions.
- Any $k \times n$ matrix $M=T V$ is a MDS matrix, where:
- T is $k \times k$ full rank matrix
- V is $k \times n$ Vandermonde matrix

$$
M=(\quad T
$$

- Algebraic GM-MDS conjecture (informal version 1): The GM-MDS conjecture can be solved by such "algebraic" constructions

Algebraic approach

- Let $\mathrm{M}=\mathrm{TV}$ with: $\quad \mathrm{T}=\left(\begin{array}{cccc}T_{1,1} & T_{1,2} & \cdots & T_{1, k} \\ T_{2,1} & T_{2,2} & \cdots & T_{2, k} \\ \vdots & \vdots & & \vdots \\ T_{k, 1} & T_{k, 2} & \cdots & T_{k, k}\end{array}\right), \mathrm{V}=\left(\begin{array}{cccc}1 & 1 & \cdots & 1 \\ a_{1} & a_{2} & \cdots & a_{n} \\ \vdots & \vdots & & \vdots \\ a_{1}^{k-1} & a_{2}^{k-1} & \cdots & a_{n}^{k-1}\end{array}\right)$
- View rows of T as coefficients of k univariate polynomials of degree $\leq k-1$:

$$
f_{i}(x)=T_{i, 1}+T_{i, 2} \cdot x+T_{i, 3} \cdot x^{2}+\cdots+T_{i, k} \cdot x^{k-1}, \quad i=1 \ldots k
$$

- The entries of $\mathrm{M}=\mathrm{TV}$ are then given by: $M_{i, j}=f_{i}\left(a_{j}\right)$

Algebraic approach

- We want:
- k univariate polynomials f_{1}, \ldots, f_{k} of degrees $\leq k-1$ (matrix T)
- n distinct field elements a_{1}, \ldots, a_{n} (matrix V)

Such that:
(1) The polynomials are linearly independent (三 T is full rank)
(2) If we need $M_{i, j}=0$ then $f_{i}\left(a_{j}\right)=0$

- Algebraic GM-MDS conjecture (informal version 2): under the rectangle condition on the locations of zeros, this is possible

Algebraic approach

- Assume wlog that we have exactly $\mathrm{k}-1$ zeros in each row
- In this case, polynomials f_{1}, \ldots, f_{k} are uniquely defined by their zeros
- Let $S_{i}=\left\{j \in[n]: M_{i, j}=0\right\}$ denote the locations of zeros in the i-th row
- We require that $f_{i}\left(a_{j}\right)=0$ for $j \in S_{i}$
- f_{i} is a polynomial of degree $\leq k-1$, and $\left|S_{i}\right|=k-1$
- So we must have:

$$
f_{i}(x)=\prod_{j \in S_{i}}\left(x-a_{j}\right)
$$

The algebraic GM-MDS conjecture

- Let $S_{1}, \ldots, S_{k} \subset[n]$ be the required zero locations, where $\left|S_{i}\right|=k-1$
- Let a_{1}, \ldots, a_{n} be formal variables over \mathbb{F}
- Define $f_{i}(x)=\prod_{j \in S_{i}}\left(x-a_{j}\right)$
- Algebraic GM-MDS conjecture ([Dau-Song-Yuen '14]):
if S_{1}, \ldots, S_{k} satisfy the rectangle condition, then f_{1}, \ldots, f_{k} are linearly independent over $\mathbb{F}\left(a_{1}, \ldots, a_{n}\right)$
- Interpretation:
- If the rectangle condition is false, then f_{1}, \ldots, f_{k} are linearly dependent
- Conjecture: this is the only case (if a_{1}, \ldots, a_{n} are "generic")

Why field size $n+k-1$?

- Algebraic GM-MDS conjecture:

if S_{1}, \ldots, S_{k} satisfy the rectangle condition, then f_{1}, \ldots, f_{k} are linearly independent over $\mathbb{F}\left(a_{1}, \ldots, a_{n}\right)$

- Assume the conclusion holds. We need to replace a_{1}, \ldots, a_{n} with distinct field elements such that f_{1}, \ldots, f_{k} remain linearly independent
- Express as a nonzero polynomial in a_{1}, \ldots, a_{n} with individual degrees $n+k-2$:
- f_{1}, \ldots, f_{k} remain linearly independent \rightarrow individual degree $k-1$
- distinct field elements \rightarrow individual degree $n-1$
- By Schwartz-Zippel, has solution exists whenever $|\mathbb{F}| \geq n+k-1$

Proof of algebraic GM-MDS conjecture

Proof of algebraic GM-MDS conjecture (very briefly)

- Proof is by an induction on the structure of zeros
- Requires a generalized conjecture, which allows for multiple zeros at a special point
- Several previous works proved special cases of the conjecture
- Hassibi-Yildiz proved it independently at about the same time

General family of problems

General matrix completion problem

- Consider a matrix with $0 / *$ entries without any assumptions

$$
\left(\begin{array}{lllll}
0 & * & 0 & * & * \\
0 & 0 & * & * & * \\
* & * & 0 & 0 & 0
\end{array}\right)
$$

- Goal: replace * with field elements, so that every minor that can be nonsingular will be
- Solution over large fields $|\mathbb{F}| \geq\binom{ n}{k}$ always possible
- Question: are large fields necessary?

Known lower bounds

- Question arises in Maximally Recoverable (MR) codes, where the 0/* pattern depends on the code topology
- Meta conjecture: for any $0 / *$ pattern, either there are algebraic constructions, or exponential field size is needed
- GM-MDS conjecture: family of patterns where algebraic constructions exist
- Exponential lower bounds on field size are known in two specific topologies [Kane-L-Rao '17, Gopi-Guruswami-Yekhanin '17]
- However, proofs are ad-hoc to the specific topology being studied

Open problem

- Let M be a random $k \times n$ matrix with $0 / *$ entries, where

$$
\operatorname{Pr}\left[M_{i, j}=0\right]=\operatorname{Pr}\left[M_{i, j}=*\right]=\frac{1}{2}
$$

- Goal: replace * with field elements, so that every minor that can be nonsingular will be
- Intuition: random pattern should disallow algebraic solutions
- Conjecture: w.h.p an exponential field size is needed: $|\mathbb{F}| \geq\binom{ n}{k}^{\Omega(1)}$
- We currently have no proof techniques to show anything like that

Summary

- GM-MDS conjecture: MDS matrices with zero pattern that satisfies the rectangle condition exist over small fields
- Construction is algebraic: change of basis to a Vandermonde matrix
- More general problems (arising in MR codes) are wide open
- General phenomena: when algebraic constructions fail, sometime combinatorial / probabilistic constructions have much worse parameters
- Examples: local codes, Zarankiewicz problem, high dimensional expenders

Thank you

