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nuisance variables that should be
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Generative model for gene expression data

Cell-type/composition
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General matrix decompositions applied to gene expression

» Low rank matrix approximations (such as ones given by PCA) are
effective because a limited number of upstream factors explain a large
fraction of measurement variance.

Given gene expression matrix Ygxs:

MINIMIZE || Ygcs — ZyuxBixs||?

» B contains the principal components (PCs) or more generally latent
variables (LVs). Z contains the “loadings” (effect of each LV on the
genes).

» We hope that the individual vectors B; (latent variables) are meaningful.
SVD (PCA) only guarantees minimum error—it doesn’t guarantee
anything about the interpretability of B.

» Other methods that constrain Z to be sparse or positive may recover
more meaningful structure.

MINIMIZE [|Y — ZB|2 + \[|Z||,
SUBJECTTO Z > 0.
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Can we recover the data generating process from general matrix
decompositions?

» We construct an example with 7
upstream factors; can we recover them?

» We can make this problem quite hard by composition variables
making some upstream factors have low . | Method
variance (very realistic: e.g., some P Fo :SCGZ'
_ -
cell-types have low abundance). S pam 0 Sparse positive
» PCA is very restrictive: each component T R
is orthogonal. g L
» If we constrain the decomposition to have fuz
e . m
sparse and positive loadings we can -
recover some, but not all, variables of
interest.
» These methods are data agnostic, they don’t make use of gene
identities!

» We want not just the most parsimonious but also the most biologically
meaningful decomposition.



PLIER: Pathway-Level Information ExtractoR

Idea: Make use of gene identities.

SUBJECTTO rank(Z) =k, rank(B)=k, U>0, Z>0.
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Prior knowledge matrix C is a binary geneset representation, where each
column is a potentially co-regulated set of genes. Number of genesets is
many times larger than k.
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Implementation Details

» Non-convex optimization problem is solved by block-coordinate
minimization

v

All constants are set automatically

v

Running time depends on the size of the data and size of C

v

We pre-compute the inverse of C and use it to find a set of active
genesets in each iteration to be optimized with the elastic-net penalty
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Recovering the pathway effects with PLIER
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Recovering the pathway effects with PLIER

» Performance across repeated
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How do we use PLIER?

Example on real human blood dataset (35 samples) with directly measured
by Cytof
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» How do we know the pathways are real? we zero-out a random 1/5 of the genes
for every pathway before optimization and check if we get them back in the
loading.
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» How do we know the pathways are real? we zero-out a random 1/5 of the genes
for every pathway before optimization and check if we get them back in the
loading.

» We can see many cell types.
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» How do we know the pathways are real? we zero-out a random 1/5 of the genes
for every pathway before optimization and check if we get them back in the

loading.

» We can see many cell types.
» 3 kinds of CD8 T cells.
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» How do we know the pathways are real? we zero-out a random 1/5 of the genes
for every pathway before optimization and check if we get them back in the
loading.

» We can see many cell types.

» 3 kinds of CD8 T cells.
» Naive and memory B-cells.



U matrix for a large dataset (DGN)
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» How do we know the pathways are real? we zero-out a random 1/5 of the genes
for every pathway before optimization and check if we get them back in the

loading.

» We can see many cell types.

» 3 kinds of CD8 T cells.
» Naive and memory B-cells.

» Very high frequency cell-types have multiple LVs.



How do we use PLIER?

PLIER latent variables can be plugged into any downstream analysis that
would normally be done at the gene level-for example eQTLs.

LV id LV name snps cis-Gene(s) corrected p-value

44 Mega/platelet 1 rs1354034 ARHGEF3 < 1.45e-10
133 Mega/platelet 2 rs1354034 ARHGEF3 0.01547
120 Histones rs1354034 ARHGEF3 0.01889

97 Zinc fingers, pseudogenes rs1471738 SENP7 < 1.45e-10
56 PLAGL1 associated, myeloid rs9321957 PLAGL1 3.6e-05
42* IKZF1 associated, myeloid rs10251980  IKZF1 < 1.45e-10
17 NEK®6 associated, myeloid rs16927294 NEK6 0.00360

67 Neutrophils rs13289095 PKN3,SET,ZDHHC12 0.01888
55* NFE2 associated, erythrocyte rs35979828 NFE2 < 1.45e-10
21 Interferon-gamma rs3184504 SH2B3 5.9e-05

40 NFKB/TNF rs12100841 PPP2R3C 0.00204

16 Myeloid/ILC rs1138358 BCL2A1,MTHFS,ST20 0.00025

Interferon-gamma LV21 uses 3 pathways:

» REACTOME_INTERFERON_GAMMA _SIGNALING
» GSE19182 Ifng
» SANA_RESPONSE_TO_IFNG_UP
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A single locus controls 2 pathway effects

LV eQTLs pathway associations
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LV eQTLs pathway associations
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A single locus controls 2 pathway effects

LV eQTLs pathway associations
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A single locus controls 2 pathway effects

LV eQTLs pathway associations Top genes for mega/pl
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LV133 (Mega/platelet LV early) genes are expression in megakaryocyte
precursors.

LV44 (Mega/platelet LV late) genes are megakaryocyte specific.



A single locus controls 2 pathway effects

LV eQTLs pathway associations Top genes for mega/platelet LVs
- Z-score
WIERENGA_STATSA_TARGETS_DN La e
MEGA2 ITGBS.
SPARC
RAGHAVACHARI_PLATELET_SPECIFIC_GENES cL
m .— CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_2 g :Ig:i!
SEKI_INFLAMMATORY_RESPONSE_LPS_UP 2 ALOX12
LINDSTEDT_DENDRITIC_CELL_MATURATION_B g::r
GILMORE_CORE_NFKB_PATHWAY NRGN
KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS M
REACTOME_MEIOTIC_RECOMBINATION C21orf7
HISTIH3H
. REACTOME_RNA_POL_|_PROMOTER_OPENING ACRBP
SANA_RESPONSE_TO_IFNG_UP 3 TSC2201
- MEIS1
REACTOME_INTERFERON_GAMMA_SIGNALING > MYLK
'}
GSE19182_ling MFAP3L
TNFSF4
REACTOME_GENERIC_TRANSCRIPTION_PATHWAY ENKUR
NAKAYAMA_SOFT_TISSUE_TUMORS_PCA1_UP
NKAT rs1354034--ARGHEF associations
Lvaa Lv133
PID_PRLSIGNALINGEVENTSPATHWAY ho= tho= 0.1825
Comoctod pralue: < 1.456-10 Corrected p-value: 0.015474
. Neutrophil-Resting 10 08
MARTINELLI IMMATURE_NEUTROPHIL UP @ * °
T 05 T 04
NKeell-control £ £
7 0.0 Z 00
ERY2 2 2
= 3-05y | 3 0a
- :
2 R 3 8% 5 ¢ 38 -1.0
S 8 0 1 2
| Mega/platelet LV 133 151354034 rs1354034
Mega/platelet LV 44

LV133 (Mega/platelet LV early) genes are expression in megakaryocyte
precursors.
LV44 (Mega/platelet LV late) genes are megakaryocyte specific.



Pleitropy of the ARGEF3 locus

» rs1354034 is known to be pleitropic: it
affects both mean platelet volume
(MPV) and platelet counts (PLT).

Furman-Niedziejko A. et al. Relationship between abdominal obesity, platelet blood count and mean platelet volume in patients with
metabolic syndrome.
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» Hypothesis: LV133 (early) is
associated with platelet number and
LV44 (late) is associated with volume.
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Pleitropy of the ARGEF3 locus

» rs1354034 is known to be pleitropic: it
affects both mean platelet volume
(MPV) and platelet counts (PLT).

» MPV and PLT are negatively
correlated due to the tight control on
total platelet volume.

» Hypothesis: LV133 (early) is
associated with platelet number and
LV44 (late) is associated with volume.

We have data from large GWAS
studies of blood count variables that
show some loci regulate PLT and
MPYV independently. How are these
associated with our latent variables?

PLT [x10%)

=-0.325. p=0,0001)

phenotype reported SNP Close gene LV 133 p-value LV44 p-value proxy SNP
PLT rs2911132 ERAP2 2.4417e-05 0.13817361 rs2549803
MPV rs10876550 COPZ1 0.69933 1.1847e-05 rs10876550

Table: Raw p-values. 80 platelet related SNPs tested.

Furman-Niedziejko A. et al. Relationship between abdominal obesity, platelet blood count and mean platelet volume in patients with

metabolic syndrome.



PLIER models transfer across datasets

Two human whole blood datasets:

» DGN: RNAseq US cohort
» NESDA: Affy European cohort
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Correlation with phenotypes is more consistent in LV space
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Some fun results

» Dataset from a collaborator: melanoma RNAseq , immunotherapy
reponse (8 progressors, 11 responders).
» Very similart to the published Hugo et al. dataset * (13 progressors, 15
responders). How do they compare?
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Usoskin et al. dataset
scRNAseq of mouse sensory neurons.
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PLIER summary
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information.
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PLIER summary

» PLIER returns a set of latent variables that are both maximally
independent from each other and maximally aligned with prior
information.

» Minimally supervised method: selects relevant pathways and discards
thousands of irrelevant ones.

» Additional output matrix U provides the mapping between pathways and
LVs for quick interpretation.

» Pathway-level estimates can be used in any subsequent analysis
yielding mechanistic hypotheses.
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» Group-level regularization on samples: not every LV exists in every
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Questions and future directions

» Group-level regularization on samples: not every LV exists in every
sample.

» Looking for LVs that maximize objectives other than variance.

» When are positivity constraints on the loadings necessary?
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