
Bayesian Generalized Biclustering Analysis via
Adaptive Structured Shrinkage1

Qi Long, Ph.D.

Department of Biostatistics, Epidemiology and Informatics

Perelman School of Medicine

University of Pennsylvania

November 7, 2018

1Joint work with Ziyi Li, Changgee Chang, Suprateek Kundu



Biclustering

I Biclustering, also called block clustering, co-clustering, or
two-mode clustering, is a data mining technique which cluster
the rows and columns of a data matrix simultaneously.

I The first biclustering method dates to 1972 by J.A.Hartigan.
The first application of biclustering method in gene expression
data was by Y. Cheng and G. M. Church in 2000.

I Biclustering identifys the
clusters of features in
different conditions, which
is useful for visualization,
pattern recognition,
clustering, and etc..



Biclustering: Existing Methods

I A large number of methods develdoped (Padilha et al. 2017).

I Loosely, the current biclustering methods can be grouped to
four groups.

I Distribution parameter identification algorithm: Plaid, Factor
analysis for bicluster acquisition (FABIA) etc.

I Greedy algorithm: CC, xMotifs, ISA, etc.

I Divide and conquer algorithm: Binary Inclusion-Maximal
Biclustering Algorithm (Bimax)

I Exhaustive enumeration algorithm: Statistical-Algorithmic
Method for Biclustering Analysis (SAMBA)



Gaps

I Although many biclustering approaches have been developed,
few of them can utilize the existing biological information
such as gene regulatory networks for identifying biclustering
patterns.

I Most existing methods focus on analyzing gene expression
microarray data which are of continuous data type.

I Our simulation results have shown the current methods
cannot identify biclusters with good accuracy on inputs of
discrete data types or mixed data types, for example,
continuous and binary data.



Our Goals

I To develop biclustering algorithm that can handle data of
multiple types, continuous and discrete.

I To enable feature selection guided by existing biological
information such as gene regulatory networks that can be
represented by a graph.



Notation

n number of subjects

H -omic platforms, such as microarray and next-generation
sequencing

Xh h = 1, · · · ,H, observed data from H -omic platforms, each
matrix has size ph × n

X the vertical concatenation of observed data matrices with size
p × n and p =

∑H
h=1 ph:

X =

 X1
...

XH

 .
I G = 〈P,E 〉: biological/network information from say KEGG,

where P denotes th set of p variables and
E = {(ι(h, j), ι(h, k)) : (j , k) ∈ Eh, 1 ≤ h ≤ H}



Bayesian Sparse Generalized Bi-Clustering (GBC)
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Mean Model

µ : mean of X is related to latent components through

µ = m + WZ

where m is the location vector.

W : p × L factor loading matrix

Z : L× n latent factor matrix

I Define biclusters: wk × zk forms the k-th bicluster, where wk

is column k of W and zk is row k of Z, k = 1, . . . , L.

I Our model induces sparsity in wk and zk , so the non-zero
elements in wk (zk) represent the subset of features (subjects)
belonging to the k-th bicluster.

I Allow overlapping biclusters.

I L is the maximum number of biclusters, noting that wk or zk
can be 0.



Defining Biclusters



Likelihood Functions in a Unified Form

Observed data likelihood: π(X|µ) =
∏

j

∏
i πj(xji |µji )

I For Gaussian data:

πj(xji |µji , ρj) =
ρ
1/2
j√
2π

e−ρj (xji−µji )
2/2.

I For Binomial data with logit link:

πj(xji |µji , nj) =

(
nj
xji

)
eµjixji

(1 + eµji )nj
, xji = 0, 1, . . . , nj .

I For Negative Binomial data with logit link:

πj(xji |µji , rj) =

(
rj + xji − 1

xji

)
eµjixji

(1 + eµji )rj+xji
, xji = 0, 1, 2, . . . .



Likelihood Functions in a Unified Form

All likelihood functions can be written in a unified form (Polson et

al. 2013): πj(xj |µj) ∝ e−
1
2

∑
i ρji (µji−ψji )

2+
∑

i κjiµjiπ∗j (ρj)

Advantages: closed-form M steps in EM algorithm; enable the use
of Gibbs sampling instead of Metropolis-Hasting in MCMC.



Prior Specification

µ = m + WZ

I Prior for Z

log π(Z|ξ) = C +
∑
l ,i

log ξli −
∑
l ,i

ξli |zli |,

Gamma prior on ξ:

log π(ξ) = Cν3,ν4 + (ν3 − 1)
∑

l ,i log ξil − 1
ν4

∑
l ,i ξli

where ν3 and ν4 are tuning parameters.

I Prior for W

log π(W|λ) = C +
∑
j ,l

log λjl −
∑
j ,l

λjl |wjl |

Prior for λ: Graph-Laplacian prior incorporating biological
information



Prior for λ Incorporating Biological Information

Adaptive Structured Shrinkage (Chang et al. 2018):

I Let αjl = log λjl

I Graph-Laplacian prior for αl = (α1l , . . . , αpl)
′ (1 ≤ l ≤ L)

log π(α|Ω) = Cν2 +
L

2
log |Ω| − 1

2ν2

∑
l

(αl − ν11
¯

)Ω(αl − ν11
¯

),

where ν1 and ν2 are tuning parameters.

I The precision matrix Ω imposes dependency among αjl ’s,
allowing us to incorporate the network information G.

I H graphs Gh = 〈Ph,Eh〉;

I G = 〈P,E〉 where P denotes th set of p variables and
E = {(ι(h, j), ι(h, k)) : (j , k) ∈ Eh, 1 ≤ h ≤ H}



Prior for λ Incorporating Biological Information

Ω =


1 +

∑
j 6=1 ω1j −ω12 · · · −ω1p

−ω21 1 +
∑

j 6=2 ω2j
. . . −ω2p

...
. . .

. . .
...

−ωp1 −ωp2 · · · 1 +
∑

j 6=p ωpj


I If Gjk = 0, ωjk = 0 and nodes j and k receive (partially)

independent shrinkage

I If Gjk = 1, ωjk > 0 and they tend to receive similar levels of
shrinkage

I Ω is symmetric and is diagonally dominant and thus positive
definite



Prior for λ Incorporating Biological Information

I Prior on ω = {ωjk : j < k}

π(ω) ∝ |Ω|−L/2
∏

(j ,k)∈E

ωaω−1
jk exp(−bωωjk)1(ωjk > 0)

∏
(j ,k) 6=E

δ0(ωjk).

δ0(·) is the Dirac delta function concentrated at 0 and 1(·) is
the indicator function.

I |Ω|−L/2 induces correlation among ω and ensures a
closed-form posterior density for ω.

I aω takes the role of the shape parameter and bω determines
the scale of ωjk .

I It has been shown that this prior is proper (Chang et al.
2018).



MAP Estimator

I MCMC is computationally expensive for high-dimensional
data.

I Consider the Maximum-A-Posteriori (MAP) estimator
(Ŵ , Ẑ , α̂, ξ̂) with ρ,Ω marginalized out.

(Ŵ , Ẑ , α̂, ξ̂) = arg max
W ,Z ,α,ξ

∫ ∫
π(W ,Z ,α, ξ,ρ,Ω|X )dρdΩ.

I We develop an EM algorithm for obtaining MAP

(W (t),Z (t),α(t), ξ(t)) = arg max
W ,Z ,α,ξ

Ẽt log π(W ,Z ,α, ξ,ρ,Ω,X ),

where the expectation Ẽt is taken with respect to
π̃t(ρ,Ω) = π(ρ,Ω|W (t−1),Z (t−1),α(t−1), ξ(t−1),X ).



EM Algorithm: Objective Function

The objective function to be optimized at the t-th EM iteration is:

Qt(Z,W,m, α, ξ) = −1

2

∑
i,j

ρ
(t)
ji (µji − ψji )

2 +
∑
i,j

κjiµji +
∑
j,l

αjl −
∑
j,l

λjl |wjl |

+ ν3
∑
l,i

log ξi,l −
∑
i,l

ξl,i (|zli |+
1

ν4
)

− 1

2ν2

∑
l

(αl − ν11)TΩ(t)(αl − ν11)

where µ = m + WZ ,

ρ(t) = E(ρij |X ,W (t−1),Z (t−1),m(t−1),α(t−1), ξ(t−1),Ω(t−1)),

and Ω(t) = E(Ω|X ,W (t−1),Z (t−1),m(t−1),α(t−1), ξ(t−1),ρ(t)).



Tuning Parameters

I Fix aω = 4 and bω = 1 : large prior correlation and at the
same time relatively uninformative;

I Fix ν2 = ln 2 and ν3 = 1: the corresponding priors for α and ξ
have a unit coefficient of variation;

I ν1 and ν4 control sparsity of W and Z and are chosen by BIC:

BIC = −2 ln(L(X, µ̂)) + (||Ŵ||0 + ||Ẑ||0) ln(np)

where L(X, µ̂) is the observed likelihood of µ, ||Ŵ||0 and
||Ẑ||0 are the cardinalities of Ŵ and Ẑ;



Simulation: Methods

I Existing methods:
I CC (Cheng and Church’s Biclustering Algorithm)
I xMotifs (Conserved gene expression motifs)
I ISA (Iterative Signature Algorithm)
I Plaid
I FABIA (Factor Analysis for Biclustering Acquisition)

I GBC (Generalized Biclustering): specify Ω as identity matrix

I sGBC (Generalized Biclustering with incorporation of
biological information)



Simulation: Settings
I Four simulation settings: gaussian, binomial, negative binomial, and

mixed datatypes.

I 100 simulation datasets with p = 1000, n = 300, L = 5 underlying true
biclusters.

I presence or absence of overlapping clusters.

Figure: Work flow of the simualtion study.



Simulation: Evaluation Criteria

I Clustering error (CE) (Patrikainen and Meila, 2006) finds
the maximum overlapping proportions of two biclusters after
an optimal matching of clusters. CE considers the size of
biclusters.

I Consensus scores (CS) (Hochreiter et al., 2010). CS gives
the same weight to all biclsuters.

I Sensitivity, Specificity, and Matthews correlation
coefficient (MCC).

I All these metrics take values between 0 and 1 with higher
values indicating better performance.



Simulation Results: Gaussian



Simulation Results: Mixed Data Types



Real Data: AD proteomics dataset (continuous)

I The AMP-AD knowledge portal of the Synapse website
(www.synapse.org) with ID syn3607470.

I Proteomics dataset include 6533 protein levels from 20
Alzheimer’s Disease (AD) patients, 13 Asymptomatic
Alzheimer’s DIsease (AsymAD) patients, 14 controls.

I Ground truth: the status of each subject:
AD/AsymAD/control.

I Biological information extracted from KEGG Pathway using
Bioconductor package “KEGGgraph” and “KEGGREST”.



Real Data: AD RNAseq dataset (count)

I The AMP-AD knowledge portal of the Synapse website
(www.synapse.org) with ID syn5223705.

I Proteomics dataset include 64253 features from 82 AD
patients, 84 progressive supranuclear palsy(PSP) patients, 28
pathologic aging(PA) subjects, and 77 elder controls.

I These measurements are from cerebellum RNA samples
collected by the Mayo Clinic Brain Bank and Banner Sun
Health Research Institute.

I Ground truth: the status of each subject:
AD/PSP/PA/control.



Real Data: TCGA GBM Data (mixed)

I From the TCGA data portal, microarray gene expression data,
DNA methylation data, and DNA copy number data for 233
Glioblastoma multiforme patients.

I DNA copy number data are dichotomized to 0 (normal) and 1
(abnomal).

I 48 genes from three critical signaling pathways - RPK/PI3K,
p53, and Rb (migration, survival and apoptosis progression of
cell cycles).

I The total number of features is 48× 3 = 144.

I Ground truth: Kaplan-Meier imputed survival time, divided
into four groups.



Analyses of Real Data: Results



Discussions

I Bayesian Generalized Biclustering Method: 1, applicable to
data of multiple types; 2, incorporate existing biological
information represented by a graph G.

I Robust to mis-specification of biological information, G

I Choice of L

I Li, Ziyi, Changgee Chang, Suprateek Kundu, and Qi Long.
”Bayesian Generalized Biclustering Analysis via Adaptive
Structured Shrinkage.” in revision for Biostatistics.

R code available at https://github.com/ziyili20/GBC.
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