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1 Overview of the Field
Advances in technology and the ever-growing role of digital sensors and computers in science have led to
an exponential growth in the amount and complexity of data we collect. Uncertainty, scale, non-stationarity,
noise, and heterogeneity are fundamental issues impeding progress at all phases of the pipeline that creates
knowledge from data. This means that the amount of new mathematical challenges arising from the need of
data analysis and information processing is enormous, with their solution requiring fundamentally new ideas
and approaches, with significant consequences in the practical applications.

The analysis of massive, high-dimensional, noisy, time-varying data sets has become a critical issue for a
large number of scientists and engineers. Massive data sets have their own architecture. Each data source has
an inherent structure, which we should attempt to detect in order to utilize it for applications, such as denois-
ing, clustering, anomaly detection, knowledge extraction, recovery, etc. Harmonic analysis revolves around
creating new structures for decomposition, rearrangement and reconstruction of operators and functions—in
other words inventing and exploring new architectures for information and inference. Indeed, in the last three
decades Applied Harmonic Analysis has been at the center of many significant new ideas and methods crucial
in a wide range of signal and image processing applications, and in the analysis and processing of large data
sets. For example, compressive sensing, sparse approximations and models, geometric multiscale analysis
and diffusion geometry represent some quite recent important breakthroughs [4, 8, 6, 21, 1]. In particular
the novel paradigm of sparsity and sparse approximations has had a tremendous impact on various areas in
applied mathematics such as imaging sciences.

Several new directions have emerged on the heels of compressive sensing: Low-rank matrix recovery
aims at recovering a matrix with small rank from incomplete data. In particular, matrix completion recovers
the matrix from only a small fraction of its entries. Since low-rank structures arise in numerous applications,
one can expect an enormous impact. However, much of the theory so far deals with linear measurements,
while in practice we often also face non-linear measurements, for instance in situations where only signal
intensity can be obtained. Despite recent breakthroughs in the area of phase retrieval, many challenging
mathematical problems problems remain open in these areas. Moreover, developments in applied harmonic
analysis often have ignited research in other areas, such as the recent surge in rigorous studies of non-convex
optimization methods.
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Graph Laplacians and related nonlinear mappings into low dimensional spaces have been shown to be
powerful tools for organizing high dimensional data. Especially diffusion maps, which have their roots in
harmonic analysis, have been a useful tool in reducing the dimensionality of the data as well as providing a
measure for pattern recognition and feature extraction. They yield meaningful geometric descriptions of data
sets for efficient representation of complex geometric structures.

Deep learning is making major advances in solving problems that have resisted the best attempts of the
artificial intelligence community for many years. Yet, despite its success, so far we have very little theoretical
understanding of what makes this approach work (or fail). By introducing the rich collection of tools from
harmonic analysis into deep neural networks in a principled way, we should be able to gain some theoretical
insight into the deep learning “black box”, and thereby enhance the efficiency and performance of deep neural
networks.

The aforementioned exciting new developments have not only further strengthened the connections be-
tween applied harmonic analysis, machine learning, and data mining, but they also set the stage for new
disruptive ideas for analyzing and extracting knowledge from massive and complex data sets. The goal of
this workshop was to ignite this new wave of developments. In the last decade we have witnessed significant
advances in many individual core areas of data analysis, including machine learning, signal processing, statis-
tics, optimization, and of course harmonic analysis. It appears highly likely that the next major breakthroughs
will occur at the intersection of these disciplines. Hence, what is needed is a concerted effort to bring together
world leading experts from all these areas, which was one of the aims of this workshop.

This workshop has revolved around the following topics:
(i) Connections between harmonic analysis and deep learning;

(ii) Understanding the structure of high-dimensional and multimodal data and the construction of data-
adaptive efficient representations;

(iii) Inverse problems on complex data sets.

2 Recent Developments and Open Problems

2.1 Emerging connections between deep learning and harmonic analysis
One of the most exciting developments in machine learning in the past decade is the advent of deep learning,
which is a special form of a neural network [12]. Deep neural networks build hierarchical invariant repre-
sentations by applying a succession of linear and non-linear operators which are learned from training data.
Deep neural networks, and in particular convolutional networks developed by LeCun [11, 13], have recently
achieved state-of-the-art results on several complex object recognition tasks. In addition to beating records
in image recognition, and speech recognition, it has beaten other machine-learning techniques at predicting
the activity of potential drug molecules, analyzing particle accelerator data, reconstructing brain circuits, and
predicting the effects of mutations in non-coding DNA on gene expression and disease.

Convolutional nets are currently among the most successful deep learning architectures in a variety of
tasks, in particular, in computer vision. A typical convolutional net used in computer vision applications
consists of multiple convolutional layers, passing the input image through a set of filters followed by point-
wise nonlinearity.

A major issue in deep learning is to understand the properties of these networks, what needs to be learned
and what is generic and common to most image classification problems. There are promising signs that this
theoretical framework could be derived with tools from harmonic analysis. A first breakthrough towards
this goal is the scattering transform, which has the structure of a convolutional network. Yet, rather than
being learnt, the scattering network is obtained from the invariance, stability and informative requirements.
A scattering transform builds invariant, stable and informative signal representations for classification. It is
computed by scattering the signal information along multiple paths, with a cascade of wavelet modulus oper-
ators implemented in a deep convolutional network. It is stable to deformations, which makes it particularly
effective for image, audio and texture discrimination [3].

While deep learning models have been particularly successful when dealing with signals such as speech,
images, or video, in which there is an underlying Euclidean structure, recently there has been a growing
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interest in trying to apply learning on non-Euclidean geometric data, for example, in computer graphics and
vision, natural language processing, and biology.

As Mallat points out in [17], supervised learning is a high-dimensional interpolation problem. We ap-
proximate a function f(x) from q training samples {xi, f(xi)}qi=1, where x is a data vector of very high
dimension d. In high dimension, x has a considerable number of parameters, which is a manifestation of the
curse of dimensionality. Sampling uniformly a volume of dimension d requires a number of samples which
grows exponentially with d. In most applications, the number q of training samples rather grows linearly
with d. It is possible to approximate f(x) with so few samples, only if f has some strong regularity proper-
ties allowing to ultimately reduce the dimension of the estimation. Any learning algorithm, including deep
convolutional networks, thus relies on an underlying assumption of regularity. Specifying the nature of this
regularity is one of the core mathematical problems.

One can try to circumvent the curse of dimensionality by reducing the variability or the dimension of x,
without sacrificing the ability to approximate f(x). This is done by defining a new variable Ψ(x) where Ψ
is a contractive operator which reduces the range of variations of x, while still separating different values
of f : Ψ(x) 6= Ψ(x0) if f(x) 6= f(x0). This separation-contraction trade-off needs to be adjusted to the
properties of f . Linearization is a strategy used in machine learning to reduce the dimension with a linear
projector. A low-dimensional linear projection of x can separate the values of f if this function remains
constant in the direction of a high-dimensional linear space. This is rarely the case, but one can try to
find Ψ(x) which linearizes high-dimensional domains where f(x) remains constant. The dimension is then
reduced by applying a low-dimensional linear projector on Ψ(x). Finding such a Ψ is the central goal of
kernel learning algorithms.

Theory needs to be developed for Deep Learning to guide the search of proper feature extraction models
at each layer. Until now deep learning acts very much like a black box, since algorithms are often based on
ad hoc rules without theoretical foundation, the learned representations lack intepretability, and we do not
know how to modify deep learning for those cases where it fails. How much training is really needed? And,
perhaps one of the most difficult questions, how can we achieve unsupervised deep learning?

2.2 Understanding the structure of high-dimensional data
The need to analyze massive data sets in Euclidean space has led to a proliferation of research activity,
including methods of dimension reduction and manifold learning. In general, understanding large data means
identifying intrinsic characteristics of the data and developing techniques to isolate them.

While many of the currently existing tools (such as diffusion maps) show great promise, they rely on the
assumption that data are stationary and homogeneous. Yet in many cases, we are dealing with changing and
heterogeneous data. For instance, in medical diagnostics, we may want to infer a common phenomenon from
data as diverse as MRI, EEG, and ECG. How do we properly fuse and process heterogeneous data to extract
knowledge?

In a broad range of natural and real-world dynamical systems, measured signals are controlled by un-
derlying processes or drivers. As a result, these signals exhibit highly redundant representations, while their
temporal evolution can often be compactly described by dynamical processes on a low-dimensional mani-
fold. Recently, diffusion maps have been generalized to the setting of a dynamic data set, in which the graph
associated with it changes depending on some set of parameters. The associated global diffusion distance
allows measuring the evolution of the dynamic data set in its intrinsic geometry. However, this is just a first
step. One objective of this workshop was dedicated to mathematical tools that can detect and capture in an
automatic, unsupervised manner the inner architecture of large data sets.

Data are inherently heterogeneous, as they may come in different modalities, such as text, sound, pictures,
and geolocation. Yet this data needs to be processed and analyzed in an integrated manner to make optimal
use of the available information. Unlike traditional unimodal learning systems, multimodal systems can
carry complementary information about each other, which will only become evident when all modalities are
included in the learning process. While multimodal learning is a rather difficult topic, the task of generating
multimodal synthetic data poses even more challenges. Current methods in machine learning are often not
suitable to address multimodal data. Developing algorithms that can handle multimodal data was another
important topic in this workshop.
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2.3 Construction of data-adaptive efficient representations
Processing of signals on graphs is emerging as a fundamental problem in an increasing number of applica-
tions. Indeed, in addition to providing a direct representation of a variety of networks arising in practice,
graphs serve as an overarching abstraction for many other types of data.

The construction of data-adaptive dictionaries is crucial, even more so in light of the need to analyze data
that in past has not fallen within the boundary of signal processing, for example graphs or text documents. In
fact, the above may be considered as casting a bridge between classical signal processing and the new era of
processing of general data.

Convolutional neural networks have been successful in machine learning problems where the coordinates
of the underlying data representation have a grid structure, and the data to be studied in those coordinates
has translational equivariance/invariance with respect to this grid. However, e.g. data defined on 3-D meshes,
such as surface tension or temperature, measurements from a network of meteorological stations, or data
coming from social networks or collaborative filtering, are all examples of datasets on which one cannot apply
standard convolutional networks. Clearly, this is another area where a closer link between deep learning,
signal processing, and harmonic analysis would be highly beneficial.

2.4 Efficient algorithms for inverse problems on complex data sets
Inverse problems arising in connection with massive, complex data sets pose tremendous challenges and
require new mathematical tools. Consider for instance femtosecond X-ray protein nanocrystallography. There
the problem is to uncover the structure of (3-dimensional) proteins from multiple (2-dimensional) intensity
measurements [23]. In addition to the huge amount of data and the fact that phase information gets lost
during the measurement process, we also do not know the proteins’ rotation, which change from illumination
to illumination. Standard phase retrieval methods fail miserably in this case. Yet, recent advances at the
intersection of harmonic analysis, optimization, and signal processing show promise to solve such challenging
problems.

Other important inverse problems in this topic are tied to heterogenous data or to the idea of self-
calibration. Numerous deep questions arise. How can we utilize ideas of sparsity and minimal information
complexity in this context? Is there a unified view of such measures that would include sparsity, low-rankness,
and others (such as low-entropy), as special cases? This may lead to a new theory that considers an abstract
notion of simplicity in general inverse problems. Can we design efficient non-convex algorithms with prov-
able convergence? One objective of this workshop was the advancement of new theoretical and numerical
tools for such demanding inverse problems.

3 Presentation Highlights and Scientific Progress
In this section we discuss a few selected highlights among the many high caliber presentations. One of the
key events of the workshop was the opening talk by Marco Cuturi on Computational Optimal Transport/.
Optimal transport provides a powerful and flexible way to compare probability measures, of all shapes: ab-
solutely continuous, degenerate, or discrete. This includes of course point clouds, histograms of features,
and more generally datasets, parametric densities or generative models. Originally proposed by Monge in
the eighteenth century, this theory later led to Nobel Prizes for Koopmans and Kantorovich as well as Vil-
lani’s and Figalli’s Fields Medals in 2010 and 2018. After having attracted the interest of mathematicians for
several years, optimal transport has recently reached the machine learning community, because it can now
tackle (both in theory and numerically) challenging learning scenarios, including for instance dimensionality
reduction and structured prediction problems that involve histograms or point clouds, and estimation of para-
metric densities or generative models in highly degenerate / high-dimensional problems. In his talk, Cutiru
gave a short introduction to optimal transport theory and explained how these intuitive tools require some
adaptation before being used in high-dimensional settings. He presented computational strategies to cope
with the challenges of scale arising from the use of this theory on real-life problems.

An important focus of the workshop was emerging theory for deep learning. Stephane Mallat, in his talk,
was looking at the mathematical mysteries of deep networks. A major issue in harmonic analysis is to capture
the phase dependence of frequency representations, which carries important signal properties. It seems that
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convolutional neural networks have found away. Over time-series and images, convolutional networks often
learn a first layer of filters which are well localized in the frequency domain, with different phases. Mallat
showws that a rectifier then acts as a filter on the phase of the resulting coefficients. It computes signal de-
scriptors which are local in space, frequency and phase. The non-linear phase filter becomes a multiplicative
operator over phase harmonics computed with a Fourier transform along the phase. He proved that it defines
a bi-Lipschitz and invertible representation. The correlations of phase harmonics coefficients characterise co-
herent structures from their phase dependence across frequencies. Several impressive numerical simulations
complemented the talk.

Gitta Kutyniok’s presentation was concerned with The Approximation Power of Deep Neural Networks:
Theory and Applications. As mentioned before, despite the outstanding success of deep neural networks
in real-world applications, most of the related research is empirically driven and a mathematical foundation
is almost completely missing. The main goal of a neural network is to approximate a function, which for
instance encodes a classification task. Thus, one theoretical approach to derive a fundamental understanding
of deep neural networks focusses on their approximation abilities. In her talk Kutyniok discussed theoretical
results which prove that not only do (memory-optimal) neural networks have as much approximation power
as classical systems such as wavelets or shearlets, but they are also able to beat the curse of dimensionality.
On the numerical side, she will showed that superior performance can typically be achieved by combining
deep neural networks with classical approaches from approximation theory.

Staying with this theme, Helmut Bölcskei talked about Fundamental limits of deep neural network learn-
ing. He developed the fundamental limits of learning in deep neural networks by characterizing what is
possible if no constraints on the learning algorithm and the amount of training data are imposed. Concretely,
he considered Kolmogorov-optimal approximation through deep neural networks with the guiding theme be-
ing a relation between the complexity of the function (class) to be approximated and the complexity of the
approximating network in terms of connectivity and memory requirements for storing the network topology
and the associated quantized weights. The developed theory educes remarkable universality properties of
deep networks. Specifically, deep networks are optimal approximants for vastly different function classes
such as affine systems and Gabor systems. In addition, deep networks provide exponential approximation
accuracy of widely different functions including the multiplication operation, polynomials, sinusoidal func-
tions, general smooth functions, and even one-dimensional oscillatory textures and fractal functions such as
the Weierstrass function, both of which do not have any known methods achieving exponential approximation
accuracy.

Mauro Maggioni, in his talk Learning Interaction laws in particle- and agent-based systems focused
on the following inference problem for a system of interacting particles or agents: given only observed
trajectories of the system, we are interested in estimating the interaction laws between the particles/agents.
Hr considered both the mean-field limit (i.e. the number of particles going to infinity) and the case of a finite
number of agents, with an increasing number of observations. It was shown that at least in the particular
setting where the interaction is governed by an (unknown) function of pairwise distances, under a suitable
coercivity condition that guarantees the well-posedness of the problem of recovering the interaction kernel,
statistically and computationally efficient, nonparametric, suitably-regularized least-squares estimators exist.
Furthermore, the audience learned that the high-dimensionality of the state space of the system does not affect
the learning rates, and our estimators achieve the optimal learning rate for one-dimensional (the variable
being pairwise distance) regression problems with noisy observations. Efficient algorithms for constructing
the estimator for the interaction kernels were presented, with statistical guarantees, and demonstrate them on
various simple examples, including extensions to agent systems with different types of agents, second-order
systems, and families of systems with parametric interaction kernels.

Tingran Gao gave an compelling presentation on Multi-Representation Manifold Learning on Fibre Bun-
dles. Spectral geometry has played an important role in modern geometric data analysis, where the technique
is widely known as Laplacian eigenmaps or diffusion maps. In his talk, he presented a geometric framework
that studies graph representations of complex datasets, where each edge of the graph is equipped with a non-
scalar transformation or correspondence. This new framework models such a dataset as a fibre bundle with
a connection, and interprets the collection of pairwise functional relations as defining a horizontal diffusion
process on the bundle driven by its projection on the base. The eigenstates of this horizontal diffusion pro-
cess encode the “consistency” among objects in the dataset, and provide a lens through which the geometry
of the dataset can be revealed. Gao demonstrated an application of this geometric framework on evolutionary
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anthropology.
Data visualization is a long-standing topic in data analysis, which has witnessed some exciting progress

in recent years. Guy Wolf, in his talk Geometry-based Data Exploration presented some of these devel-
opments. High-throughput data collection technologies are becoming increasingly common in many fields,
especially in biomedical applications involving single cell data (e.g., scRNA-seq and CyTOF). These intro-
duce a rising need for exploratory analysis to reveal and understand hidden structure in the collected (high-
dimensional) Big Data. A crucial aspect in such analysis is the separation of intrinsic data geometry from
data distribution, as (a) the latter is typically biased by collection artifacts and data availability, and (b) rare
subpopulations and sparse transitions between meta-stable states are often of great interest in biomedical data
analysis. Wolf showed several tools that leverage manifold learning, graph signal processing, and harmonic
analysis for biomedical (in particular, genomic/proteomic) data exploration, with emphasis on visualization,
data generation/augmentation, and nonlinear feature extraction. A common thread in the presented tools is
the construction of a data-driven diffusion geometry that both captures intrinsic structure in data and pro-
vides a generalization of Fourier harmonics on it. These, in turn, are used to process data features along
the data geometry for denoising and generative purposes. He related this approach to the recently-proposed
geometric scattering transform that generalizes Mallat’s scattering to non-Euclidean domains, and provides a
mathematical framework for theoretical understanding of the emerging field of geometric deep learning.

Stefan Steinerberger talked about “Dimensionality Reduction via tSNE – the mathematical theory and the
remaining challenges”. tSNE has become the standard method of dimensionality reduction in the medical
sciences (clustering cell types, gene expressions, etc.); amusingly (or maybe not amusingly), the mathemati-
cal theory did not exist until recently. Even a basic understanding of the mathematics immediately implies a
series of improvements. In his very entertaining talk, Steinerberger surveyed the existing arguments and dis-
cussed a number of interesting problems; given the prevalence of tSNE in medicine, even small improvements
can affect a lot of research within a very short period of time.

Data clustering is another workhorse in machine learning and data science. Dustin Mixon, in “SqueezeFit:
Label-aware dimensionality reduction by semidefinite programming” presented exciting progress in this area.
Given labeled points in a high-dimensional vector space, we seek a low-dimensional subspace such that
projecting onto this subspace maintains some prescribed distance between points of differing labels. Intended
applications include compressive classification. His talk introduced a semidefinite relaxation of this problem,
along with various performance guarantees.

Shuyang Ling considered related problems in “Group synchronization on complex networks: nonconvex
optimization and Kuramoto model”. Information retrieval from graphs plays an increasingly important role in
data science and machine learning. His talk focused on two such examples. The first one concerns the graph
cuts problem: how to find the optimal k-way graph cuts given an adjacency matrix. Ling presented a convex
relaxation of ratio cut and normalized cut, which gives rise to a rigorous theoretical analysis of graph cuts.
He derived remarkable deterministic bounds of finding the optimal graph cuts via a spectral proximity con-
dition which naturally depends on the intra-cluster and inter-cluster connectivity. Moreover, his theory even
provides theoretic guarantees for spectral clustering and community detection under stochastic block model.
The second example is about the landscape of a nonconvex cost function arising from group synchronization
and matrix completion. This function also appears as the energy function of coupled oscillators on networks.
We study how the landscape of this function is related to the underlying network topologies. Ling proved that
the optimization landscape has no spurious local minima if the underlying network is a deterministic dense
graph or an Erdos-Renyi random graph. The results find applications in signal processing and dynamical
systems on networks.

Several exciting applications were at the center of several outstanding presentations. For example, Gal
Mishne talked about Multiway tensor analysis in neuroscience. Experimental advances in neuroscience en-
able the acquisition of increasingly large-scale, high-dimensional and high-resolution neuronal and behavioral
datasets, however addressing the full spatiotemporal complexity of these datasets poses significant challenges
for data analysis and modeling. She proposed to model such datasets as multiway tensors with an underlying
graph structure along each mode, learned from the data. Mishne presented three frameworks we have devel-
oped to model, analyze and organize tensor data that infer the coupled multi-scale structure of the data, reveal
latent variables and visualize short and long-term temporal dynamics with applications in calcium imaging
analysis, fMRI and artificial neural networks

Roy Lederman spoke about On the Continuum Between Models, Data-Driven Discovery and Machine
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Learning: Mapping the Continuum of Molecular Conformations Using Cryo-Electron Microscopy. Cryo-
Electron Microscopy (cryo-EM) is an imaging technology that is revolutionizing structural biology. Cryo-
electron microscopes produce a large number of very noisy two-dimensional projection images of individual
frozen molecules; unlike related methods, such as computed tomography (CT), the viewing direction of each
particle image is unknown. The unknown directions, together with extreme levels of noise and additional
technical factors, make the determination of the structure of molecules challenging. While other methods
for structure determination, such as x-ray crystallography and nuclear magnetic resonance (NMR), measure
ensembles of molecules, cryo-electron microscopes produce images of individual molecules. Therefore,
cryo-EM could potentially be used to study mixtures of different conformations of molecules. Indeed, cur-
rent algorithms have been very successful at analyzing homogeneous samples, and can recover some distinct
conformations mixed in solutions, but, the determination of multiple conformations, and in particular, con-
tinuums of similar conformations (continuous heterogeneity), remains one of the open problems in cryo-EM.
In practice, some of the key components in “molecular machines” are flexible and therefore appear as very
blurry regions in 3-D reconstructions of macro-molecular structures that are otherwise stunning in resolu-
tion and detail. Ledermann discussed “hyper-molecules,” the mathematical formulation of heterogenous 3-D
objects as higher dimensional objects, and the machinery that goes into recovering these “hyper-objects”
from data. He analyzed some of the statistical and computational challenges, and how they are addressed by
merging data-driven exploration, models and computational tools originally built for deep-learning.

4 Outcome of the meeting
Based on the quality of presentations, the intense scientific collaborations, and the enthusiastic feedback
from the participants, this workshop was hugely successful in bringing together world leading experts at
the intersection of applied harmonic analysis, large data sets, machine learning, and signal processing to
present recent developments, in fostering new cooperations, and in making significant progress, or at least
paving the way, towards solving some of the problems described in the previous sections. At the same time,
the passionate discussions and focused interactions during this workshop have perhaps produced as many
questions as they produced answers. On the other hand, articulating meaningful and precise questions is
often the most important step towards scientific breakthroughs.
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