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1 Introduction
G2 Geometry is a vibrant and rapidly growing field which interacts with numerous areas in differential and
algebraic geometry, as well as with other mathematical research areas such as topology and analysis, and even
beyond mathematics to aspects of modern theoretical physics. One of the primary drivers for this expansion of
G2 Geometry is the large number of PhD students, postdoctoral researchers and other early career researchers
who have joined the field in recent years. As a consequence, we deliberately made the meeting a forum for
researchers at an early career stage: the vast majority of the speakers and participants were PhD students,
with the rest of the speakers either postdocs or researchers who had recently been postdocs. This gave the
meeting a vigorous energy which led to lively discussions, especially since most of the work presented was in
progress and was explained at a level that was understandable to the PhD students present. To facilitate these
discussions, as well as to provide plenty of opportunities for informal meetings, we ran a successful Open
Problem session early in the workshop, and an invaluable Review session towards the end of the workshop.
It was clearly evident that there was a great level of interaction between the PhD students and the more senior
attendees at the workshop, which was markedly more than at a typical workshop.

2 Overview of the Field
The holonomy group associated to a Riemannian metric is generated by the parallel transport maps around
loops in the manifold. The holonomy group is generically the special orthogonal group SO(n) if the mani-
fold is n-dimensional, and reductions in the holonomy group are equivalent to various special structures on
Riemannian manifolds. For example, on 2m-dimensional manifolds, a reduction of the holonomy group to
the unitary group U(m) corresponds to the metric being Kähler, and a reduction of the holonomy group to
SU(m) corresponds to the metric being Calabi–Yau, which implies that the metric is Ricci-flat and Kähler.

The modern study of G2 Geometry began with Berger’s celebrated result in 1955 which classified the
possible non-trivial holonomy groups which can occur for a Riemannian n-manifold:

SO(n) (any n);
U(m) (n = 2m);
SU(m) (n = 2m);
Sp(k) (n = 4k);
Sp(k)Sp(1) (n = 4k);
G2 (n = 7);
Spin(7) (n = 8).
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We see immediately that the only non-trivial possibility for a reduction of the holonomy group in odd dimen-
sions occurs in dimension 7 and the holonomy group in this case must be the exceptional Lie group G2. A
Riemannian metric with holonomy G2 is necessarily Ricci-flat, and so finding holonomy G2 metrics gives
the only currently known method to construct non-trivial examples of Ricci-flat metrics in odd dimensions.

However, a key point is that Berger’s list of holonomy groups does not say that these groups actually
occur as holonomy groups, but only that they can occur. In fact, Berger’s original list contained the additional
possibility of Spin(9) as a holonomy group, but it was shown that this in fact only ever arises in a trivial way:
more accurately, any Riemannian manifold with Spin(9) holonomy must be a (locally) symmetric space.
Therefore the first challenge in the field, which continues to drive research in the area, is to find examples of
holonomy G2 metrics.

2.1 G2-manifolds
After Bryant first proved the local existence of metrics with holonomy G2 in 1985, Bryant and Salamon
soon constructed the first examples of complete metrics with holonomy G2: these metrics are asymptotically
conical and play a crucial role in the field. These examples justified the notion of G2-manifold: a manifold
endowed with a Riemannian metric whose holonomy is contained in G2.

Then in 1996, Joyce constructed the first compact examples of holonomy G2-manifolds, which was a fun-
damental breakthrough in the field, and the analytic theory developed by Joyce underpins all known methods
to construct compact G2-manifolds. In 2003 Kovalev gave a new construction for compact holonomy G2-
manifolds, based on a idea of Donaldson; this construction was later extended by Corti–Haskins–Nordström–
Pacini. Based on these constructions, there are now known to be many examples of compact G2-manifolds.

2.2 G2-structures
The key to understanding and constructing G2-manifolds goes via G2-structures: 3-forms on 7-manifolds sat-
isfying a certain positivity condition. A G2-structure determines a metric and an orientation on a 7-manifold,
and the condition for the G2-structure to define a metric with holonomy contained in G2 is the so-called
torsion-free condition: namely that the 3-form is parallel for the Levi-Civita connection of the metric it de-
fines or, equivalently, that it is closed and co-closed (again, using the metric and orientation that it defines).
This is a nonlinear differential equation for the 3-form.

Although the main interest is in torsion-free G2-structures, one can also consider splitting the torsion-free
condition into two sub-cases: those which are closed and those which are co-closed. In fact, the co-closed
condition is essentially vacuous: on any 7-manifold (compact or otherwise), a G2-structure can be deformed
to a co-closed one by the h-principle. By contrast, the closed condition is vital for all known constructions of
compact G2-manifolds, and is poorly understood.

2.3 Gauge theory and calibrated geometry
Donaldson–Thomas and Donaldson–Segal pioneered the notion of gauge theory in higher dimensions, and
in particular in the setting of G2 geometry. In particular, they defined G2-instantons, which are connec-
tions generalising the more familiar anti-self-dual instantons from 4-dimensional geometry. Specifically,
G2-instantons are connections whose curvature satisfies the condition that its 2-form part lies pointwise in
the Lie algebra g2 of G2, viewed as a subspace of the 2-forms. On G2-manifolds, G2-instantons are automat-
ically Yang–Mills connections. That is, they are critical points of the Yang–Mills functional. The proposal is
to try to build enumerative invariants for compact G2-manifolds by “counting” G2-instantons.

There is a close relationship between G2 gauge theory and a “dual” theory of certain submanifolds. On
a G2-manifold, the G2-structure and its Hodge dual are calibrations; that is, they are closed differential
forms with comass one. The submanifolds calibrated by these calibrations (those submanifolds on which the
forms restrict to be the volume form) are called associative and coassociative submanifolds, and they are
automatically homologically volume-minimizing. There are also conjectures suggesting that one can build
enumerative invariants using calibrated submanifolds.
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2.4 Related geometries
There are two close cousins to G2 geometry: SU(3) geometry in 6 dimensions and Spin(7) geometry in 8
dimensions.

Of particular relevance in 6 dimensions are Calabi–Yau 3-folds which have metrics with holonomy SU(3),
and nearly Kähler 6-manifolds which have the property that the Riemannian cone on them has a torsion-free
G2-structure. In these contexts one has associated problems in gauge theory (namely (pseudo-)Hermitian–
Yang–Mills connections) and in calibrated geometry (namely (pseudo-)holomorphic curves and special La-
grangian submanifolds).

In 8 dimensions the most important geometry comes from metrics with holonomy Spin(7), giving Spin(7)
manifolds: these include Calabi–Yau 4-folds and hyperkähler 8-folds as special cases. This yields some
corresponding geometries in 7 dimensions: for example, nearly G2-manifolds, which have a co-closed
G2-structure (called a nearly parallel G2-structure) with the property that the Riemannian cone on them
has holonomy contained in Spin(7); and Sasaki–Einstein 7-manifolds, where the Riemannian cone on it is
Calabi–Yau. More generally, one can try to understand classes of Spin(7)-structures, which are defined a cer-
tain type of very restrictive nondegenerate 4-form on an 8-manifold. In particular, closed Spin(7)-structures
are necessarily torsion-free and so define a metric with holonomy contained in Spin(7).

2.5 Physics
Another key direction of interest in G2 geometry comes from theoretical physics. Compact G2-manifolds,
and compact 7-manifolds with other types of G2-structures, appear when compactifying String Theory and
M-Theory, as well as in the study of anomaly cancellation in heterotic String Theory. In this context, G2-
instantons on compact G2-manifolds are important because they minimize the Yang–Mills action, and cali-
brated submanifolds play a crucial role because they minimize volume.

There are several groups of researchers in theoretical physics actively pursuing G2 geometry, and the
physics perspective motivates multiple research directions in G2 geometry for pure mathematics. In particu-
lar, the physics viewpoint leads to various predictions which remain conjectural mathematically.

3 Recent Developments and Open Problems

3.1 G2-manifolds
Recently, there have been various successful generalisations of the known constructions of compact G2-
manifolds which could lead to further examples, including by Joyce–Karigiannis (who extend the Joyce
construction) and Nordström (who extends the Kovalev construction).

In another direction, there has been progress in the rigorous construction of complete non-compact G2-
manifolds which had been predicted by physicists. This work by Foscolo–Haskins–Nordström produces
infinitely many cohomogeneity one examples which are asymptotically conical and asymptotically locally
conical: the latter are asymptotic to a circle bundle over a Calabi–Yau cone. Foscolo–Haskins–Nordström
have also produced infinitely many asymptotically locally conical G2-manifolds which have at most an S1-
symmetry. In general, this is contrary to predictions from physics.

The key problem in the study of holonomy G2 metrics remains open:

• which compact 7-manifolds admit holonomy G2 metrics?

Our understanding of this problem is incredibly limited, but there has been some progress on defining topo-
logical and analytic invariants of G2 structures by Crowley–Goette–Nordström.

3.2 G2-Laplacian flow
One key problem with current technology for producing compact G2-manifolds is that one must start with a
closed G2-structure which is very close to torsion-free and then perturb using Joyce’s analytic technique. An
alternative approach to the problem of finding torsion-free G2-structures was suggested by Bryant in 1992:
a geometric flow of closed G2-structures called the G2-Laplacian flow. This flow provides the possibility
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of making large deformations of closed G2-structures to torsion-free ones. Moreover, it also allows the
opportunity to gain further insight into which 7-manifolds that admit closed G2-structures support torsion-
free G2-structures.

Despite the G2-Laplacian flow having been introduced almost 30 years ago, the analytic theory has only
been developed recently by Bryant–Xu and, most notably, by Lotay–Wei. This has provided the impetus for
a major increase in activity in geometric flows of G2-structures, and particularly the G2-Laplacian flow.

Of particular note is that one can obtain surprisingly strong analytic results for the G2-Laplacian flow,
which surpass, for example, those of Ricci flow in general dimension. Amongst the most impressive of these
results is by Fine–Yau: for a 7-manifold that is a product of a 3-torus and a 4-manifold, so that the 3-tori are
associative, the flow exists as long as the torsion (equivalently the scalar curvature) is bounded. Another set
of important results (now for a product of a 4-torus and 3-manifold so that the 4-tori are coassociative) by
Lambert–Lotay [6] was reported on in this meeting.

The key issue in this area is that one needs a closed G2-structure to start the flow and so a major open
problem is:

• which compact 7-manifolds admit closed G2-structures?

A related natural problem, which is central to the field, is:

• can a compact 7-manifold admit an exact G2-structure? For example, does the 7-sphere admit a closed
(and hence exact) G2-structure?

3.3 G2-instantons
An area where there has been a large amount of activity and recent progress is in the study and construction
of G2-instantons.

Building on the earlier gluing results of Walpuski, Sá Earp, and Sá Earp–Walpuski for G2-instantons
on the Joyce and Kovalev examples of compact G2-manifolds, there has been a great deal of study of the
relationship between G2-instantons and associative 3-folds, and the Seiberg–Witten equations with multiple
spinors on 3-manifolds. In particular, there have been significant results by Haydys, Walpuski, Haydys–
Walpuski, and Doan–Walpuski.

In another direction, Oliveira, Clarke, and Lotay–Oliveira have constructed new examples and have stud-
ied the moduli space of cohomogeneity one G2-instantons on cohomogeneity one G2-manifolds, including the
Bryant–Salamon G2-manifolds and asymptotically locally conical G2-manifolds. Moreover, Ball–Oliveira
have constructed homogeneous G2-instantons on Aloff–Wallach spaces (which are nearly G2-manifolds),
and have used them to distinguish between nearly parallel G2-structures on the same Aloff–Wallach space.

In general, the key open problem in the field of G2-instantons, aside from the many analytic issues, is:

• can G2-instantons be used to distinguish between compact G2-manifolds? For example, can they be so
used for the known compact G2-manifolds?

4 Presentation Highlights
The research presented at the meeting can be broadly be described using 5 main interrelated themes.

• Instantons

• Symmetries

• Special Structures

• Geometric Flows

• Calibrated Submanifolds

Many of the results discussed touched on more than one of these themes.
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4.1 Instantons
The presentations on gauge theory in higher dimensions focused on classification results, deformation theory
and construction methods for instantons.

4.1.1 DT-instantons on almost complex 6-manifolds

The first talk on instantons was by Goncalo Oliveira, who described joint work with Gavin Ball which focused
on the definition of a notion of DT-instantons on any almost complex 6-manifold. This definition generalised
the familiar Hermitian–Yang–Mills connections on Kähler manifolds.

The key result presented related to a study of these DT-instantons on the manifold F2 of flags in C3,
which can be viewed as the homogeneous space SU(3)/T 2. It is well-known, since F2 is the twistor space
of CP2, that it has two natural invariant almost complex structures: one which is integrable and one which
is not integrable (in fact the former is part of a Kähler structure and the latter is part of a nearly Kähler
structure). The main result was a classification theorem for invariant DT-instantons with respect to each of
the aforementioned almost complex structures.

4.1.2 G2-instantons on nearly G2-manifolds and SU(3)-instantons on Sasaski–Einstein 7-manifolds

There are many examples of nearly G2-manifolds, and G2-instantons can exist on them. In fact, they are
always endowed with a G2-instanton known as the “canonical connection”. Thus it is natural to study these
instantons. Sasaki–Einstein 7-manifolds are particular examples of nearly G2-manifolds and Ragini Singhal
explained how one can naturally define a notion of SU(3)-instantons on Sasaki–Einstein 7-manifolds, which
can be compared to G2-instantons.

Singhal’s focus was on the deformation theory of the two types of instantons, and her main result was
progress towards understanding deformations of the canonical connection for homogeneous nearly G2 and
Sasaki–Einstein 7-manifolds.

4.1.3 Deformation theory of G2-instantons on asymptotically conical G2-manifolds

Given the recent progress made in constructing asymptotically conical G2-manifolds, and in constructing
G2-instantons on them, it is natural to continue to pursue the study of gauge theory on asymptotically conical
G2-manifolds. Of particular interest is the question of whether the known G2-instantons, which typically
have a large symmetry group (a key aspect of their construction), are unique in some appropriate sense.

Joe Driscoll considered the more general question of deforming asymptotically conical G2-instantons on
asymptotically conical G2-manifolds: these are the G2-instantons which converge to a dilation invariant G2-
instanton at infinity, which is equivalent to a pseudo-Hermitian–Yang–Mills connection (or SU(3)-instanton)
on the nearly Kähler link of the asymptotic cone. A simple but important example of such a G2-instanton is
the so-called “standard instanton” on R7, first constructed by Fairlie and Nuyts, which has gauge group G2

and SO(7)-symmetry.
Driscoll was able to give a local description of the moduli space of asymptotically conical G2-instantons,

and his main result was to use this deformation theory to show that the standard instanton on R7 is locally
unique.

4.1.4 G2-instantons on Joyce–Karigiannis G2-manifolds

After providing an overview of the Joyce and Joyce–Karigiannis constructions of compact G2-manifolds
and Walpuski’s construction technique for G2-instantons on Joyce’s compact G2-manifolds, Daniel Platt de-
scribed work in progress towards generalising Walpuski’s construction to provide examples of G2-instantons
on the Joyce–Karigiannis G2-manifolds.

Of particular interest is that, unlike in the original construction of Walpuski, one would expect to be able
to produce many examples of G2-instantons, thus providing a rich gauge theory. Platt explained how one
may be able to achieve these examples by considering the situation where the G2-manifold is a product of a
circle with a Calabi–Yau 3-fold, and relating G2-instantons to stable bundles on the Calabi–Yau 3-fold.
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4.2 Symmetries
The talks concerning symmetries focused on generalisations of toric geometry, closed G2-structures, and
cohomogeneity one methods.

4.2.1 Toric geometry of exceptional holonomy manifolds

Toric geometry has been a very useful tool in the study of Kähler manifolds. Thomas Madsen described his
joint work with Andrew Swann [7, 8] where they consider toric geometry of G2 and Spin(7)-manifolds: that
is, where the G2 or Spin(7)-manifold admits an action by a 3 or 4-dimensional torus preserving the ambient
structure, respectively.

In particular, Madsen explained the definition of a multi-moment map (generalising the standard notion
of moment map from symplectic geometry) and how one obtains a trivalent graph in the image of the multi-
moment map, which describes the singular orbits of the torus action.

4.2.2 Closed G2-structures with symmetry

Although holonomy G2 metrics on compact manifolds cannot admit continuous symmetries, it is natural to
study closed G2-structures with symmetry to see whether one can find interesting examples of compact 7-
manifolds with closed G2 structures, in particular to study the question of whether one can have an exact
G2-structure on a compact 7-manifold.

Alberto Raffero first described his joint work with Fabio Podestà [10], which gave strong restrictions on
the automorphism group of a closed G2-structure on a compact manifold. In particular, the main result is that
there are no non-trivial homogeneous or cohomogeneity one compact closed G2-structures.

Raffero then described joint work with Marisa Fernández and Anna Fino [5] which studied left-invariant
closed G2-structures on solvable Lie groups. The main result is that, in contrast to the symplectic setting,
they find unimodular examples admitting closed G2-structures, and give a classification result for such exam-
ples. As a consequence they find an example of an expanding G2-Laplacian soliton. Moreover, they find a
unimodular example whose Lie algebra has b3 = 0, so that it has exact left-invariant G2-structures, but they
prove it does not admit any compact quotient.

4.2.3 Cohomogeneity one manifolds with exceptional holonomy

Cohomogeneity one techniques have proved to be a powerful tool in geometry, and have been essential in
the construction of complete metrics with G2 and Spin(7) holonomy going back to the first examples of
such metrics by Bryant and Salamon. Fabian Lehmann provided a detailed overview of cohomogeneity one
methods and how they can be used to construct complete metrics with exceptional holonomy.

The main results Lehmann described were one of the constructions of asymptotically locally conical and
asymptotically conical G2 manifolds due to Foscolo–Haskins–Nordström, and his own work constructing
new examples of asymptotically locally conical and asymptotically conical Spin(7) manifolds.

4.2.4 Toric nearly Kähler manifolds

In a similar spirit to Thomas Madsen’s talk, Kael Dixon studied toric geometry of nearly Kähler 6-manifolds;
namely, nearly Kähler 6-manifolds admitting an action of the 3-torus preserving the ambient structure.

One main result was a complete description of the standard homogeneous nearly Kähler S3 ×S3 in toric
terms, which built on work of the speaker in [3]. The other key theorem Dixon presented was a local descrip-
tion of all toric nearly Kähler 6-manifolds in terms of a certain second order nonlinear partial differentiation
equation.

4.3 Special Structures
In the study of special structures in G2 geometry and related topics, the presentations focused on balanced
Spin(7)-structures and closed G2-structures.
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4.3.1 A spinorial approach to balanced Spin(7)-structures

Spin(7)-structures on 8-manifolds can be equivalently be described using nowhere vanishing spinors instead
of certain 4-forms. Lucı́a Martı́n-Merchán described her work in [9] which gave a spinorial classification
of Spin(7)-structures, and in particular identified so-called balanced Spin(7)-structures with harmonic unit
spinors.

Martı́n-Merchán then described her joint work with Giovanni Bazzoni and Vicente Muñoz in [2] which
studied 8-manifolds given as the product of a 5 or 6-dimensional nilmanifold with a 3 or 2-dimensional
torus, respectively. The main result here was a classification of left-invariant balanced Spin(7)-structures
when choosing a 5-dimensional nilmanifold, and examples and a partial classification for the 6-dimensional
nilmanifold case.

4.3.2 Quadratic closed G2-structures

Gavin Ball described his work on what are known as quadratic closed G2-structures: closed G2-structures
whose torsion (which can be identified with a 2-form) has the property that its exterior derivative is a 3-form
that is quadratic in the torsion itself. These generalise the torsion-free G2-structures (for which the torsion is
zero) and the extremally Ricci pinched closed G2-structures introduced by Bryant.

Ball’s main study was on quadratic closed G2-structures whose pointwise stabilizer can be identified with
one of the two conjugacy classes of U(2) in G2. This led to: new examples of extremally Ricci pinched
closed G2-structures; Weierstrass formulae which classify some quadratic closed G2-structures; another clas-
sification result involving links to semi-flat T 4-fibrations and maximal spacelike submanifolds contained in
a certain quadric in R3,3; and new examples of G2-Laplacian solitons including new examples of gradient
solitons.

4.4 Geometric Flows
The talks on geometric flows focused on two different areas: the G2-Laplacian flow with symmetries and a
flow of isometric G2-structures.

4.4.1 G2-Laplacian flow and spacelike mean curvature flow

Given the recent important on the G2-Laplacian flow, both in general and in special cases, one is strongly
motivated to other situations beyond the general setting where one can get potentially stronger results.

Ben Lambert described joint work with Jason Lotay [6] looking at a special case of the G2-Laplacian
flow, where the 7-manifold is the product of a 4-torus with a 3-manifold, and the closed G2-structure defines
a semi-flat coassociative fibration. In this case, the G2-Laplacian flow may be identified with the mean
curvature flow of spacelike 3-dimensional submanifolds in R3,3.

The main result Lambert described was when the 3-manifold is R3, where one obtains long-time existence
for spacelike mean curvature flow in R3,3 (and thus the G2-Laplacian flow) for any initial data. This is a
very surprising result since it is the first of its kind for the G2-Laplacian flow when it is a nonlinear partial
differential system which makes no smallness assumption for the initial data or curvature/torsion assumption
along the flow.

4.4.2 S1-invariant G2-Laplacian flow

In contrast to Ben Lambert’s talk, where one assumes a large amount of symmetry, here Udhav Fowdar de-
scribed work on the G2-Laplacian flow with the least amount of continuous symmetry, namely S1-symmetry.
Fowdar first showed that the S1-invariant G2-Laplacian flow is equivalent to a coupled system for SU(3)-
structures on a 6-manifold and connections on an S1-bundle over the 6-manifold. This generalised the well-
known work of Apostolov–Salamon on S1-quotients of G2-manifolds. The main results were then a study of
the S1-invariant G2-Laplacian flow and the coupled system on the quotient on two particular examples.

First, for a left-invariant closed G2-structure studied by Fernàndez and Bryant, which is on a T 4-bundle
over T 3, for which the G2-Laplacian flow exists for all time, Fowdar showed that the flow of SU(3)-structures
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on the S1-quotient has constant symplectic form but the almost complex structure degenerates as time goes
to infinity.

Second, Fowdar looked at closed G2-structures on the product of R+ with a 6-dimensional nilmanifold
(endowed with a 1-parameter family of left-invariant structures) which is a T 2-bundle over T 4. Here, the S1-
quotient turns out to be Kähler and the Kähler condition is preserved along the flow, leading to the question
of whether or not this is a general phenomenon.

4.4.3 A flow of isometric G2-structures

Shubham Dwivedi gave a comprehensive overview of his work with Panagiotis Gianniotis and Spiro Kari-
giannis in [4] on a flow of G2-structures which preserves the underlying metric that the G2-structures define,
hence the term isometric G2-structures. This flow is a gradient flow of the L2-norm of the torsion, restricted
to the class of isometric G2-structures.

The main results were Shi-type estimates, an ε-regularity theorem, a control on the size of the singular set
at a finite time singularity of the flow, and the fact that Type I singularities are modelled by self-shrinkers.

4.5 Calibrated Submanifolds
The talks on calibrated submanifolds covered a range of ambient geometries: nearly Kähler 6-manifolds,
hyperkähler 4-manifolds, and 7-manifolds equipped with G2-structures with torsion.

4.5.1 Pseudoholomorphic curves in nearly Kähler 6-manifolds

Holomorphic curves are an essential part of complex (and particularly Kähler) geometry and pseudoholo-
morphic curves play a crucial role in symplectic geometry. Nearly Kähler 6-manifolds are neither complex
nor symplectic, but their pseudoholomorphic curves are nonetheless important, particularly since the cone on
a pseudoholomorphic curve is associative in the G2 cone over the nearly Kähler 6-manifold. That said, the
general theory of pseudoholomorphic curves in nearly Kähler 6-manifolds has not previously been studied.

Benjamin Aslan described his study of this general theory, with a focus on twistor spaces, namely CP3

and the flag manifold F2. The main result was a classification of S1-invariant pseudoholomorphic curves in
the nearly Kähler CP3.

4.5.2 The minimal sphere in the Atiyah–Hitchin manifold

The (double cover of the) Atiyah–Hitchin manifold is a key example of a hyperkähler 4-manifold which is
topologically CP2 \RP2 and is closely related to monopoles on R3. In the Atiyah–Hitchin manifold there is
a central 2-sphere that is well-known to be minimal, but not complex for any of the hyperkähler structures.

Chung-Jun Tsai described his work with Mu-Tao Wang in [11] which proves that the minimal 2-sphere
is in fact area-minimizing by showing that it is a calibrated submanifold. Moreover, Tsai showed that the
minimal 2-sphere is the unique compact minimal submanifold of the Atiyah–Hitchin manifold of dimension
2 or 3, and that the minimal 2-sphere is stable under mean curvature flow.

4.5.3 Minimality and local non-existence of calibrated submanifolds

In the final talk of the meeting, Jesse Madnick described joint work with Gavin Ball in [1], which investigated
associative 3-folds and coassociative 4-folds in general 7-manifolds with G2-structures. Associative and
coassociative submanifolds are minimal (in fact, volume-minimizing) and have good local existence theory
in G2-manifolds, so it is interesting to ask when these properties persist in other G2-structures.

The main result was to give necessary and sufficient conditions on a G2-structure for all associative, and
respectively all coassociative, submanifolds to be minimal, by providing a formula for the mean curvature
determined by the torsion of the G2-structure. In addition, Madnick described an obstruction to even the local
existence of coassociative 4-folds for certain G2-structures.
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5 Scientific Progress Made
We summarize the scientific progress made in each of the main themes highlighted in the previous section.

5.1 Instantons
There has clearly been a significant increase in our understanding of higher-dimensional gauge theory beyond
the established settings of compact Calabi–Yau, G2, and Spin(7)-manifolds. There have been extensions to
non-integrable structures, such as almost complex 6-manifolds, nearly G2-manifolds, and Sasaki–Einstein 7-
manifolds, and in the study of the non-compact setting of asymptotically conical G2-manifolds. In particular,
we have seen classification and deformation theory results.

In the compact G2-manifold setting, which holds the greatest interest in G2 geometry, there has been
exciting progress towards potentially constructing a large number of G2-instantons on the new examples of
G2-manifolds due to Joyce–Karigiannis.

5.2 Symmetries
The progress made in the use of symmetries to understand exceptional holonomy and related geometries
has yielded both positive and negative results. On the one hand, there is a better understanding of toric
geometry in this context and there are new examples of complete metrics with exceptional holonomy. On the
other hand, it is now clear that there are significant challenges to using symmetry techniques to understand
compact manifolds with closed G2 structures, now that the standard methods have been shown to not provide
any non-trivial examples.

5.3 Special Structures
Special structures have received relatively little detailed attention and are generally quite poorly understood.
The results presented in the meeting clearly show a marked improvement in our ability to study and under-
stand balanced Spin(7)-structures and closed G2-structures. In particular, the results provided new examples
of and classification results for such structures.

5.4 Geometric Flows
There were some interesting results concerning the G2-Laplacian flow with symmetries, building on the gen-
eral theory developed in recent years. Specifically there were some impressive long-time existence results
in the setting of trivial semi-flat coassociative torus fibrations, and some intriguing potential relations be-
tween S1-invariant G2-Laplacian flow and Kähler geometry. Both of these results certainly merit further
examination and reveal exciting future research avenues for investigation.

The analytic foundations were developed for a flow of isometric G2-structures which is a new research
topic that has links to several research groups in G2 geometry, and so will certainly continue to be studied.

5.5 Calibrated Submanifolds
There was notable progress made in the study of calibrated submanifolds outside of the setting of well-known
areas of manifolds with special holonomy equipped with their usual calibrations. In particular, the techniques
developed to study and classify pseudoholomorphic curves in nearly Kähler 6-manifolds, classify minimal
submanifolds in the Atiyah–Hitchin manifold, and analyse the properties of calibrated submanifolds in G2-
structures with torsion, are certainly to yield further results in related areas.

6 Outcome of the Meeting
The key outcome of the meeting was the increase in communication and collaboration between researchers
in G2 geometry, which has and will continue to lead to exciting new research directions and results. It
is particularly worth emphasizing the positive outcome of the meeting for early career researchers present,
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mainly for PhD students but also some postdocs and other participants, who unanimously expressed how
enjoyable and productive the meeting was for them. Senior researchers also remarked on how refreshing
it was to have so many early career researchers interacting significantly with them and each other, which
provided a unique opportunity to learn about and to offer input towards the research avenues pursued by the
next generation of researchers in the field.

More specifically, the Open Problem session identified several interesting research problems that the
participants considered worth pursuing, which we describe below.

6.1 Gauge theory
Benoit Charbonneau explained a result of Lewis that states that if a bundle E over a compact Calabi–
Yau 4-fold admits a Hermitian–Yang–Mills connection, then any Spin(7)-instanton on that bundle must be
Hermitian–Yang–Mills. He therefore posed the problem:

• find a Spin(7)-instanton which is not Hermitian–Yang–Mills on some bundle over a compact Calabi–
Yau 4-fold, or prove there are no such Spin(7)-instantons.

As a follow-up, he posed the related problem:

• find a G2-instanton on a bundle over a product of a circle with a compact Calabi–Yau 3-fold which is
not the pullback of a Hermitian–Yang–Mills connection, or prove that there are none.

Based on the known relationship between stable bundles and Hermitian–Yang–Mills connections, Spiro
Karigiannis asked:

• is there potentially some analogue of the Donaldson–Uhlenbeck–Yau or Hitchin–Kobayashi correspon-
dence for instantons on compact G2/Spin(7)-manifolds?

Derek Harland remarked that while we now know much more about pseudoholomorphic curves on nearly
Kähler 6-manifolds, we know much less about instantons on nearly Kähler 6-manifolds. He therefore sug-
gested to try to:

• find more examples of instantons on nearly Kähler 6-manifolds;

• prove an analogue of Walpuski’s gluing result for G2-instantons in the setting of nearly Kähler 6-
manifolds;

• classify homogeneous instantons on nearly Kähler 6-manifolds, with all possible structure groups.

He also considered a 6-dimensional nearly Kähler twistor space, where one can take bundles E whose re-
striction to each twistor fibre is trivial, and asked:

• are there instantons on E which are not pulled back from the base of the twistor fibration?

Finally he asked:

• are there any smooth instantons on S6 with structure group SU(2)?

6.2 G2-manifolds
Considering the known examples of complete non-compact G2-manifolds, which are asymptotically cylin-
drical, asymptotically conical, or asymptotically locally conical and thus respectively have O(r), O(r6), or
O(r7) volume growth for geodesic balls of radius r as r →∞, Benoit Charbonneau asked:

• what are the possible volume growths for geodesic balls of radius r as r → ∞ for complete non-
compact G2-manifolds?

Spiro Karigiannis recalled the work of Madsen–Swann on toric G2-manifolds which produced incomplete
holonomy G2 metrics. He therefore asked:
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• can we construct compact holonomy G2-manifolds by gluing building blocks that have incomplete
holonomy G2 metrics?

Jason Lotay responded to this by pointing out the fundamental work by Gross–Wilson, which produced
hyperkähler metrics on K3 surfaces by gluing in the incomplete Ooguri–Vaga metric, and the recent work
by Hein–Sun–Viaclovsky–Zhang, which also produced metrics on K3 surfaces by gluing in an incomplete
hyperkähler metric, now on an interval times a 3-dimensional nilmanifold. He therefore suggested:

• find an incomplete holonomy G2 metric on an interval times a 6-dimensional nilmanifold which could
be used as a building block in a gluing construction for compact G2-manifolds.

6.3 Special Structures
Henrique Sá Earp posed the following problem:

• formulate the right definition of “extremally Ricci-pinched” for co-closed G2-structures.

Gavin Ball responded to this problem by suggesting the following analogy of his study of quadratic closed
G2-structures:

• study co-closed G2-structures such that the exterior derivatives of their torsion forms are quadratic in
the torsion.

Following on from this, Ball suggested the following problem:

• find a 1-parameter family of homogeneous co-closed G2-structures containing a nearly parallel G2-
structure (that is, a G2-structure whose exterior derivative is a constant multiple of its Hodge dual), but
so that all other members of the 1-parameter family are not nearly parallel.

A solution to this problem would show that there is unlikely to be a satisfactory answer to Sá Earp’s question.
Finally, Ball asked:

• can a co-closed G2-structure which is purely of “type τ3” (that is, such that its exterior derivative has
zero component in the direction of its Hodge dual), be Einstein?

Sá Earp explained that the condition to be a critical point for the flow of isometric G2-structures is equiva-
lent to a certain natural map associated to isometric G2-structures be harmonic. He explain how this harmonic
condition could be extended to other situations by analogy and in particular he suggested:

• study harmonic Spin(7)-structures.

6.4 Calibrated Submanifolds
Jesse Madnick asked the fundamental question:

• are there any topological obstructions for complete, embedded special Lagrangian 3-folds in C3, or can
every topological type occur?

Jason Lotay recalled that Harvey–Lawson proved that, given any real analytic surface in R7, there is a
(locally unique) associative containing that surface. He therefore posed the question:

• when is a real analytic surface in R7 the boundary of a compact associative 3-fold?

He also posed the related problem:

• given a map u from the boundary of a domain in R3 to R4, when does there exist a map on the domain
to R4, with u as its boundary value, so that the graph of the map is associative?

He suggested that there may be some relation to work of Harvey–Lawson on pluripotential theory for cali-
brated manifolds, and pointed to the fact that Haskins–Pacini have proved some obstructions for the special
Lagrangian boundary value problem.
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