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The Casa Matemática Oaxaca (Online)

August 2, 2021

1 / 24



NC Monodromy Theorem & Applications

1 One-Variable Motivation

2 Noncommutative Free Setup

3 A Noncommutative Free Monodromy Theorem

4 Main Application: Pluriharmonic Conjugates

2 / 24



Analytic Extensions

Let D,Ω ⊆ C be domains with D strictly contained in Ω.

Question: If f is analytic on D, under what conditions
does f extend to be analytic on Ω?
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Analytic Continuation Along Curves

Let γ : [0, 1]→ C be a curve and f an analytic function defined on an open disk
D containing γ(0)

An analytic continuation of (f ,D) along γ is a collection of pairs (ft ,Dt) for
t ∈ (0, 1) such that

f0 = f and D0 = D

Each Dt is an open disk centered at γ(t) and ft is analytic on Dt

For each t, there is an ε > 0 such that if |t − t ′| < ε, γ(t ′) ∈ Dt and ft = ft′
on Dt ∩ Dt′ .

4 / 24



Example

Ex. Let f (z) = Log(z) = log |z |+ iArg(z), near z = 1 where Arg(z) ∈ [−π, π)

γ1(t) = e iπt , for t ∈ [0, 1]

f1(z) := log |z |+ iarg(z) with arg(z) ∈ [−π/2, 3π/2).

γ2(t) = e−iπt , for t ∈ [0, 1]

f2(z) := log |z |+ iarg(z) with arg(z) ∈ [−3π/2, π/2)
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Monodromy Theorem

Two curves γ0, γ1 : [0, 1]→ Ω are fixed endpoint homotopic if

γ0(0) = a = γ1(0) and γ0(1) = b = γ1(1)

and if there is a continuous function Γ(t, s) : [0, 1]× [0, 1]→ Ω such that

Γ(t, 0) = γ0(t), Γ(t, 1) = γ1(t), Γ(0, s) = a, Γ(1, s) = b.

Monodromy Theorem #1

Let f be analytic on D ⊆ Ω and assume that f analytically continues along each
curve γ ⊆ Ω that begins in D.

If γ0, γ1 : [0, 1]→ Ω are fixed endpoint homotopic curves starting in D, then the
analytic continuations of f along γ0, γ1 agree in a neighborhood of γj(1).
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Monodromy Theorem #2

Let Ω be simply connected, let f be analytic on D ⊆ Ω, and assume that f
analytically continues along each curve γ ⊆ Ω that begins in D.

Then there is an analytic function F : Ω→ C that agrees with f on D.

Simply Connected is Required Here

Ex. Let f (z) = Log(z) = log |z |+ iArg(z), in a neighborhood of z = 1 where
Arg(z) ∈ [−π, π)

f analytically continues along each curve in C \ {0}.

f does not extend to a globally analytic function F on C \ {0}.

The analytic continuations of f along different curves do not have to agree.
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Free Sets

For fixed d ∈ N, the matrix universe Md (for this talk) is the collection of all
d-tuples of matrices of the same size:

Md :=
∞⋃
n=1

Mn(C)d .

A free set D ⊆Md is set that satisfies the following

X ,Y ∈ D implies X ⊕ Y ∈ D

X ∈ D and V unitary implies VXV ∗ ∈ D.

Examples:

D =Md

A = {X ∈M1 : ‖X‖, ‖X−1‖ < 2}
Free sets can be built from polynomial inequalities:

S = {(X1,X2) ∈M2 : ‖X 2
1 + 2X2X1 − X2X1‖ < 1}

A free set D ⊆Md is a noncommutative domain if for each n,
Dn := D ∩Mn(C)d is both open and connected.
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Free Functions

f : D →Md̃ is a free function if f

X ∈ Dn implies f (X ) ∈ Mn(C)d̃ .

If X ,Y ∈ D, then f (X ⊕ Y ) = f (X )⊕ f (Y ).

If X ,S−1XS ∈ D, then f (S−1XS) = S−1f (X )S .

Examples

Non-commutative polynomials p ∈ C[X1, . . . ,Xd ],

p(X1,X2,X3) = X1X2 − X2X1 + 2X2X3X1.

Noncommutative rational functions,

f (X1,X2) =
(
I − X2(X 2

1 − X2X1)−1
)−1

.

Analyticity

A free function f is analytic if each fn := f |Dn is analytic.

f is analytic if each fn is continuous (if each fn is locally bounded), e.g.
Helton-Klep-Mccullough, 2011.
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Monodromy Theorem

Let D,Ω be noncommutative domains in Md with D ( Ω.

γ is a curve in an NC domain Ω if γ is a standard curve in Ωn := Ω|Ω∩Mn(C)d for
some n, i.e. γ : [0, 1]→ Ωn for some n.

Main Theorem (Pascoe 2020)

Let f be a free analytic function on D and assume that f analytically continues
along each curve γ ⊂ Ω that begins in D.

Then there is a free analytic function F on Ω that agrees with f on D.

Critical Point: Ω does not need to be simply connected!

Three Proofs

“Free” Proof

“Disk Bounding” Proof

“Sphere Embedding” Proof
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Preliminaries

Main Theorem (Pascoe 2020)

Let f be a free analytic function on D and assume that f analytically continues
along each curve γ ⊂ Ω that begins in D.

Then there is a free analytic function F on Ω that agrees with f on D.

Preliminary Observations

Let γ1, γ2 be curves in Ωn starting in Dn and γ̂ =

[
γ1

γ2

]
in Ω2n.

Let F1, F2, F̂ denote the analytic continuations of f along the curves γ1, γ2, γ̂.

F1

(
γ1(t)

)
∈ Mn(C)d̃

F̂ (γ̂(t)) =

[
F1(γ1(t))

F2(γ2(t))

]
If S ∈ GLn(C), then F1

(
Sγ1(t)S−1

)
= SF1

(
γ1(t)

)
S−1
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Basic Proof Idea

Summary. Analytic continuations are graded, respect direct sums, respect
similarities.

Vague Key Goal: Show that analytic continuations along different curves agree
with each other, so F can be globally defined on Ω.

Set-up for all proofs

Let γ1, γ2 : [0, 1]→ Ωn satisfy

γ1(0) = a = γ2(0) ∈ Dn

γ1(1) = b = γ2(1) ∈ Ωn

Let F1,F2 be the analytic continuations of f along γ1, γ2

Key Goal: Show that F1(b) = F2(b).
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“Free” Proof

Define the curve: γ̂(t) =

[
γ1(t)

γ2(t)

]
.

Let F denote the formula for the analytic continuation of f along γ̂.

Choose ε > 0, so that F also gives an analytic continuation of f along

γ(t) =

[
γ1(t) ε γ1(t)−γ2(t)

‖γ1(t)−γ2(t)‖1/2

γ2

]
=

[
1 ε

‖γ1(t)−γ2(t)‖1/2

0 1

]−1

γ̂(t)

[
1 ε

‖γ1(t)−γ2(t)‖1/2

0 1

]
.

Then

F (γ(t)) =

[
1 ε

‖γ1(t)−γ2(t)‖1/2

0 1

]−1

F (γ̂(t))

[
1 ε

‖γ1(t)−γ2(t)‖1/2

0 1

]

=

[
1 ε

‖γ1(t)−γ2(t)‖1/2

0 1

]−1 [
F1(γ1(t))

F2(γ2(t))

] [
1 ε

‖γ1(t)−γ2(t)‖1/2

0 1

]

=

[
F1(γ1(t)) εF1(γ1(t))−F2(γ2(t))

‖γ1(t)−γ2(t)‖1/2

F2(γ2(t))

]
.

Letting t → 1 shows F1(b) = F2(b) since otherwise, F (γ(1)) is undefined.
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“Disk Bounding Proof”

Define curves

γ̂(t) =

[
γ1(t)

γ2(t)

]
and γ(t) =

[
γ2(t)

γ1(t)

]
.

Define Γ : [0, 1]× [0, 1]→ Ω2n by

Γ(t, s) =

[
cos(sπ/2) sin(sπ/2)
− sin(sπ/2) cos(sπ/2)

] [
γ1(t)

γ2(t)

] [
cos(sπ/2) − sin(sπ/2)
sin(sπ/2) cos(sπ/2)

]
.

Then γ, γ̂ are fixed endpoint homotopic since:

Γ(t, 0) = γ̂(t), Γ(t, 1) = γ(t), Γ(0, s) = aI , Γ(1, s) = bI .

The standard (multivariable) Monodromy Theorem implies: the analytic
continuations of f along γ, γ̂ must agree near t = 1, so[

F1(γ1(1))
F2(γ2(1))

]
=

[
F2(γ2(1))

F1(γ1(1))

]
,

or equivalently, F1(b) = F2(b).
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Sphere Embedding

Define G ⊆ Ω2n by

G :=

{[
c d
−d c

] [
γ1(t)

γ2(t)

] [
c −d
d c

]
: c , d ∈ R, c2 + d2 = 1, t ∈ [0, 1]

}
.

One can show G ∼= S2, which is simply connected. As

γ̂(t) =

[
γ1(t)

γ2(t)

]
and γ(t) =

[
γ2(t)

γ1(t)

]

are curves in G, the classical Monodromy Theorem implies that the analytic
continuations of f along those curves must agree at the final endpoint and so,
F1(b) = F2(b).
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Pluriharmonic Functions

Commutative Case

If Ω is domain in Cd , then u : Ω→ R is pluriharmonic if for all a ∈ Ω, b ∈ Cd ,

∆zu(a + bz)
∣∣∣
z=0

=
((

∂2

∂x2 + ∂2

∂y2

)
u(a + bz)

) ∣∣∣
z=0

= 0.

If Ω is simply connected, u = Re(f ) for some f analytic on Ω.

Noncommutative Case

A self-adjoint valued u is free pluriharmonic on an NC domain Ω if

X ∈ Ωn implies u(X ) ∈ Mn(C).

X ,Y ∈ Ω, implies u(X ⊕ Y ) = u(X )⊕ u(Y ).

V unitary, X ∈ Ω implies u(V ∗XV ) = V ∗u(X )V .

for all A ∈ Ωn, B ∈ Mn(C)d ,

∆zu(A + Bz)
∣∣∣
z=0

=
((

∂2

∂x2 + ∂2

∂y2

)
u(A + Bz)

) ∣∣∣
z=0

= 0.
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Pluriharmonic Conjugates

Corollary, Pascoe 2020

If u is a pluriharmonic free function defined on a noncommutative domain Ω, then
there is a free analytic function F on Ω with u = Re(F ).

Proof Idea.

Solve the related PDE ( u = Re(f )) in a neighborhood of each point in Ω.

Patch the solutions together using the Monodromy theorem.

Critical Point: Ω does not need to be simply connected!

Question: What other PDEs are important in the non-commutative setting?
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Intuition Check

Annulus: A = {z ∈ C : 1
2 < |z | < 2}.

u(z) = log |z | is harmonic on A.

u is not the real part of an analytic function defined globally on A.

Noncommutative Annulus: A = {Z ∈M1 : ‖Z‖, ‖Z−1‖ < 2}.

u(Z ) := log |Z | = 1
2 log(Z∗Z ) is a well defined (real free) function on A.

u is not pluriharmonic:

∆zu

([
1 0
0 1

]
+ z

[
0 1
0 0

]) ∣∣∣
z=0

=

[
− 1

4 0
0 1

4

]
.

Note: F : A→M1 is free analytic iff on A, F (Z ) =
∞∑

n=−∞
cnZ

n.

Corollary, Pascoe 2020

The pluriharmonic free functions on A are of the form u(Z ) = Re

( ∞∑
n=−∞

cnZ
n

)
.
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( ∞∑
n=−∞

cnZ
n

)
.
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Plurisubharmonic Functions

If Ω is an NC domain in Md , a self-adjoint valued free u on Ω is
plurisubharmonic if

u is a real free function (satisfies the first 3 properties of a pluriharmonic
function)

for all A ∈ Ωn, B ∈ Mn(C)d ,

∆zu(A + Bz)
∣∣∣
z=0

=
((

∂2

∂x2 + ∂2

∂y2

)
u(A + Bz)

) ∣∣∣
z=0
≥ 0.

(Green, Helton, and Vinnikov (2011) and Green (2012)): Noncommutative
plurisubharmonic polynomials

(Dym, Klep, Helton, McCullough and Volcic, 2019): Plurisubharmonic free
rational functions

(Pascoe 2020): Realization formulas for general plurisubharmonic functions

Pascoe first proved a local version.

Then used Monodromy to obtain a global realization.
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Open Question

Existence of Logarithms

If Ω ⊆ C is simply connected and f : Ω→ C \ {0} is analytic, then there exist an
analytic g on Ω with f = eg .

Open Question: If F is a nonsingular free noncommutative function, when does
F possess a logarithm?

Related Example. Set F (X1,X2) = eX1eX2 . Then F is always nonsingular, but
standard results in Lie Theory show that F does not have a globally defined
logarithm.

Why can’t monodromy help? There are curves along which the logarithm solution
cannot be analytically continued.

Takeaway. The noncommutative situation is simpler in some respects but more
complicated in others.
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Thanks for listening!

Based on:

J.E. Pascoe. Noncommutative Free Universal Monodromy, Pluriharmonic
Conjugates, and Plurisubharmonicity. 2020. Available at
https://arxiv.org/abs/2002.07801.
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