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What I will talk about, more or less

I The connections between real algebraic geometry and operator theory are
manifold.

I I will concentrate on those areas I know best, and then only briefly mention
others.

I In particular, I’ll talk a bit about Toeplitz and Hankel operators.

I I will also look at restrictions (via Schur complements) and extensions.

I Another important tool is the use of GNS type constructions and Hahn-Banach
separation.

I Various techniques from non-commutative analysis will also be discussed.
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Factorization of trigonometric polynomials

We begin with a result that can be handled in a purely analytic fashion.

Theorem 1 ((Scalar) Fejér-Riesz Theorem).

Let Q(θ) =
∑n
−nQk e

ikθ with coefficients in C such that Q(θ) ≥ 0 for θ ∈ [0, 2π).

Then Q(θ) = F (eiθ)∗F (eiθ) for all θ, where F (z) =
∑n

0 Fkz
k is an outer function

on the unit disk with coefficients in C.

Recall that a bounded analytic function F is outer if the closure of the range of F
maps H2(D) is H2(D). (This is one of several equivalent characterizations.)

For a proof, see Riesz and Sz.-Nagy. There were various generalizations to matrix
valued polynomials in the 60s, culminating in an operator version due to Marvin
Rosenblum.



Factorization of trigonometric polynomials

We begin with a result that can be handled in a purely analytic fashion.

Theorem 1 ((Scalar) Fejér-Riesz Theorem).

Let Q(θ) =
∑n
−nQk e

ikθ with coefficients in C such that Q(θ) ≥ 0 for θ ∈ [0, 2π).

Then Q(θ) = F (eiθ)∗F (eiθ) for all θ, where F (z) =
∑n

0 Fkz
k is an outer function

on the unit disk with coefficients in C.

Recall that a bounded analytic function F is outer if the closure of the range of F
maps H2(D) is H2(D). (This is one of several equivalent characterizations.)

For a proof, see Riesz and Sz.-Nagy. There were various generalizations to matrix
valued polynomials in the 60s, culminating in an operator version due to Marvin
Rosenblum.



Factorization of trigonometric polynomials

We begin with a result that can be handled in a purely analytic fashion.

Theorem 1 ((Scalar) Fejér-Riesz Theorem).

Let Q(θ) =
∑n
−nQk e

ikθ with coefficients in C such that Q(θ) ≥ 0 for θ ∈ [0, 2π).

Then Q(θ) = F (eiθ)∗F (eiθ) for all θ, where F (z) =
∑n

0 Fkz
k is an outer function

on the unit disk with coefficients in C.

Recall that a bounded analytic function F is outer if the closure of the range of F
maps H2(D) is H2(D). (This is one of several equivalent characterizations.)

For a proof, see Riesz and Sz.-Nagy. There were various generalizations to matrix
valued polynomials in the 60s, culminating in an operator version due to Marvin
Rosenblum.



Factorization of trigonometric polynomials, operator case

Theorem 2 (Operator Fejér-Riesz Theorem).

Let Q(θ) =
∑n
−nQk e

ikθ with coefficients in L(H) such that Q(θ) ≥ 0 for

θ ∈ [0, 2π). Then Q(θ) = F (eiθ)∗F (eiθ) for all θ, where F (z) =
∑n

0 Fkz
k is an

operator-valued outer function on the unit disk with coefficients in L(H).

Here, a bounded analytic function F is outer if the closure of the range of F as a
multiplication operator on H2

H(D) is H2
L(D) for some subspace L of H.



Trigonometric polynomials and Toeplitz operators

To the trigonometric polynomial

Q(eiθ) =
n∑
−n

Ake
ikθ

associate the Toeplitz operator

T =


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
.

The polynomial Q is (strictly) positive if and only if the associated Toeplitz
operator is (strictly) positive.
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An elementary proof of Rosenblum’s theorem

Let Q ≥ 0, T the associated Toeplitz operator. Choose any factorization
T = F ∗F . Since T is Toeplitz, T = S∗TS; that is, F ∗F = (FS)∗(FS). So there is
an isometry W such that FS = WF .

W = V ⊕ U , V a shift on L̃ =
⊕∞

0 L, U unitary on N , ranF = L̃ ⊕ N (Wold
decomposition). Now an easy argument using the fact that TSn is analytic (so
commutes with S) and that UN = N allows one to conclude that N = {0}, and so
W = V .

Another elementary argument also shows that dimL ≤ dimH, and that we may
take F to be analytic on H with dense range in H2(L) ⊆ H2(H), and that
degF = n; that is, Q has an outer factorization.
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Schur complements

Definition 3.
Suppose

Ã =

(
A B∗

B C

)
≥ 0 in L(H⊕K)

The Schur complement supported at H in Ã (write M) is the largest positive
operator X such that (

A−X B∗

B C

)
≥ 0

in the sense that if Y is any other operator such that(
A− Y B∗

B C

)
≥ 0,

then M ≥ Y .



Schur complements, cont.

There are various ways to calculate the Schur complement X.

For example, if C is invertible, then X = A−B∗C−1B.

Then (
A B∗

B C

)
=

(
1 0

B∗C−1/2 C1/2

)(
X 0
0 1

)(
1 C−1/2B

0 C1/2

)
.

This relates to the realizations that Mike Jury spoke about.
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In several variables. . .

I In the single variable case, Schur complements can also be used to get the outer
factorization of a non-negative trigonometric polynomial.

I In two or more variables, trigonometric polynomials are associated to Toeplitz
matrices of Toeplitz matrices.

I These Schur complement techniques can be extended to (approximately) factor
trigonometric polynomials in several variables, with bounds on the number and
degrees of the polynomials in the factorization.

I In particular, it can be shown that every strictly positive polynomial can be
factored.

I Using a Cayley transform, it is possible to say something about rational
factorization of operator valued polynomials which are positive over Rn.

I In the scalar case, this is just a special case of either Schmüdgen’s theorem or
Putinar’s theorem.
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Schmüdgen’s theorem and Putinar’s theorem

I A semialgebraic set KS is one described by a finite collection S of polynomial
inequalities, pj(x) ≥ 0.

I The quadratic module MS associated to KS consists of the finite sums∑
j

∑
` f
∗
j,`(x)p(x)fj,`(x), where the fj,`s are polynomials.

I For the preordering TS associated to KS , replace pjs by products of pjs.
Obviously, all preorderings are quadratic modules.

I MS is archimedean if for some N > 0, N −
∑
i |xi|

2 ∈MS .

Theorem 4 (Schmüdgen’s theorem).

Let KS be a compact semialgebraic set over Rd. Any polynomial which is strictly
positive over KS is in the preordering TS .

Theorem 5 (Putinar’s theorem).

Let KS be a semialgebraic set over Rd and suppose that MS is archimedian. Then
any polynomial which is strictly positive over KS is in the quadratic module MS .
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Krivine’s theorem

The last two theorems rely at a crucial step on Krivine’s theorem, which has no
known analytic proof.

Theorem 6 (Krivine’s Striktpositivstellensatz).

For every f ∈ R[X], the following are equivalent:

1. f(x) > 0 for every x ∈ KS , and

2. there exist t, u ∈ TS such that (1 + t)f = 1 + u.
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Cimprič’s matrix version of Krivine’s theorem

Define Mr(R[X]) = Mr(R)⊗ R[X]; that is r × r matrices with entries in R[X],
equivalently, polynomials with coefficients in Mr(R). Set Mr(R[X])2 =

∑
F tjFj , a

finite sum with Fj ∈Mr(R[X]).

Analogously, we take

Mr
S = {

∑
j

Pjgj : Pj ∈Mr(R[X])2}

and T rS = Mr
Ŝ

.

Theorem 7 (Cimprič’s Striktpositivstellensatz).

For every F = F t ∈Mr(R[X]), the following are equivalent:

1. F (x) > 0 for every x ∈ KS , and

2. there exist t ∈ TS , U ∈ T rS such that (1 + t)F = 1r + U .

The difficult direction is (2) implies (1). This is done by induction on r and relies
on the scalar version of Krivine’s theorem (hence there is a non-analytic component).



Cimprič’s matrix version of Krivine’s theorem

Define Mr(R[X]) = Mr(R)⊗ R[X]; that is r × r matrices with entries in R[X],
equivalently, polynomials with coefficients in Mr(R). Set Mr(R[X])2 =

∑
F tjFj , a

finite sum with Fj ∈Mr(R[X]).
Analogously, we take

Mr
S = {

∑
j

Pjgj : Pj ∈Mr(R[X])2}

and T rS = Mr
Ŝ
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Cimprič’s matrix version of Krivine’s theorem

The idea is to write

0 < F =

(
f GT

G H

)
,

where f > 0 is scalar valued and H ∈Mr−1(R[X]). The Schur complement of H is
H̃ = H −G(1/f)G∗ and

F = KT

(
f 0

0 H̃

)
K,

where

K =

(
1 −(1/f)GT

0 1r−1

)
.

Clever algebraic manipulations then gets rid of the denominators.



A noncommutative Fejér-Riesz theorem

We assume G is a finitely generated discrete (hence locally compact) group G,
with generators {1 = g0, g1, . . . , gd}. Define an involution by g∗ = g−1 for g ∈ G.
We denote the algebraic group algebra generated by G by C, and write S for the
semigroup generated these generators.

A “trigonometric polynomial” in C ⊗ B(H) is formally a finite sum over G of the
form P =

∑
g g ⊗ Pg where Pg ∈ B(H) for all g. The “analytic polynomials” A are

those trigonometric polynomials where each g is in S.

A trigonometric polynomial P is selfadjoint if for all g, Pg∗ = P ∗g .

A selfadjoint polynomial P is positive / strictly positive if for every irreducible
unital ∗-representation π of G, the extension of π to the algebra C ⊗ B(H) by
tensoring with the identity representation on B(H) (again called π), satisfies
π(P ) ≥ 0 / π(P ) > 0; where π(P ) > 0 means there exists some ε > 0 independent
of π such that π(P − ε(1⊗ 1)) ≥ 0.

Letting Ω represent the set of such irreducible representations, define
P̂ (π) = π(P ), and in this way think of Ω as a sort of noncommutative space on
which our polynomial is defined. The Gel’fand-Răıkov theorem ensures the existence
of sufficiently many irreducible representations to separate G.
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of sufficiently many irreducible representations to separate G.



A noncommutative Fejér-Riesz theorem

Hereditary trigonometric polynomials H are defined as those polynomials of the
form P =

∑
j w
∗
j1wj2 ⊗ Pj , where wj1, wj2 ∈ S. Write Hh for the selfadjoint

elements of H.

Any real polynomial is the sum of terms of the form 1⊗A or
w∗2w1 ⊗B +w∗1w2 ⊗B∗, where w1, w2 ∈ S and A is selfadjoint. The first of these is
obviously the difference of squares. Using w∗w = 1 for any w ∈ G, we also have

w∗2w1 ⊗B +w∗1w2 ⊗B∗ = (w1 ⊗B +w2 ⊗ 1)∗(w1 ⊗B +w2 ⊗ 1)− 1⊗ (1 +B∗B).

Hence Hh = C − C.

The square of an analytic polynomial Q is the hereditary trigonometric polynomial
Q∗Q.

Sums of squares are obviously positive. In analogy with the multivariable
Fejér-Riesz theorem, that strictly positive trigonometric polynomials are sums of
squares.
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A noncommutative Fejér-Riesz theorem

For A,B ∈ B(H) and w1, w2 ∈ S,

0 ≤ (w1 ⊗A+ w2 ⊗B)∗(w1 ⊗A+ w2 ⊗B)

≤ (w1 ⊗A+ w2 ⊗B)∗(w1 ⊗A+ w2 ⊗B)

+ (w1 ⊗A− w2 ⊗B)∗(w1 ⊗A− w2 ⊗B)

= 2(1⊗A∗A+ 1⊗B∗B)

≤ (‖A‖2 + ‖B‖2)(1⊗ 1).

Applied iteratively this shows that the order is archimedean.

Theorem 8 (A noncommutative FR theorem).

Let G be a finitely generated discrete group, P a strictly positive trigonometric
polynomial in C ⊗ B(H). Then P is a sum of squares of analytic polynomials.
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A noncommutative Fejér-Riesz theorem

Some observations:

I H = A∗A, with positive cone C of sums of squares, and Hh = C − C (ie, C is
full in H).

I On Hn := H ⊗Mn(C), set Cn := C ⊗Mn(C)+. The same statements hold for
Hn and Cn. Also (1⊗ 1)⊗ 1n is the order unit, and for c ∈Mn,m(C),
c∗Cnc ⊆ Cm. That is, we have a matrix order on H.

I For each n and P ∈ Hn, we define a norm by

‖P‖n = inf

{
t ∈ R :

(
t(1⊗ 1)⊗ 1n P

P ∗ t(1⊗ 1)⊗ 1n

)
∈ C2n

}
.

Complete the Hns (write Hn) with respect to these norms and take each Cn to
be the closure of Cn in this norm.

I The Choi-Effros theorem then gives that H with this matrix order structure is an
operator space, and so is completely isometrically order isomorphic to a concrete
operator system (that is, a norm closed selfadjoint unital subspace of B(K) for
some Hilbert space K).



A noncommutative Fejér-Riesz theorem

I H therefore generates a ∗-algebra, which can be completed to a C∗-algebra,
denoted by C∗(H), identified with a subalgebra of B(K). This is a subalgebra of
C∗(G), which we can also then identify with a subalgebra of B(K).

I For any unital representation π of G extended to C ⊗ B(H), and any a ∈ G,
π(1⊗ a) is unitary. Also, the representation is automatically completely
contractive.

I Suppose H 3 P > 0. So P − ε1 ≥ 0. Assume P − ε1 /∈ C. There is a linear
functional λ 6= 0 on H such that λ(C) ≥ 0, λ(1) = 1 and λ(P ) < 0.

I λ extends to a positive linear functional on B(K) so is continuous (Krĕın’s
theorem = 1-d Arveson extension theorem). By the Stinespring representation
theorem, it is the compression of an essential, completely contractive unital
representation of B(K).

I Since π compresses to λ, π(P ) 6≥ 0.



A noncommutative Fejér-Riesz theorem

I As noted, restricting to C∗(G), π induces a unitary representation of G via
π(ai) = π(ai ⊗ 1).

I The (irreducible) representations of G are in bijective correspondence with the
essential unital ∗-representations of C∗(G), so there is an irreducible unitary
representation π′ of G such that the corresponding representation of C∗(G) has
the property that π′(P ) 6≥ 0, giving a contradiction.

I Taking G to be the commutative free semigroup on n generators gives the
multivariable Fejér-Riesz theorem mentioned earlier, since irreducible
representations of an abelian group are one dimensional.



McCullough’s free NC version of the FR theorem

The set-up is very much like before, but now G is a non-commutative free group
with d generators {g1, . . . , gd} and identity e, S the free semigroup with these
generators.

The hereditary words H are those of the form v−1w for v, w ∈ S. The set of all
words of length n in S are indicated by Sn, and Hn denotes the hereditary words
where v, w ∈ Sn.

Let U = (U1, . . . , Ud) be a d-tuple of unitary operators. For a word
w = gj1 · · · gjk , write Uw for Uj1 · · ·Ujk . If h = v−1w ∈ Hn, then Uh = (Uv)∗Uw.

As before, we write C for the algebraic group algebra. Trigonometric and analytic
polynomials in C ⊗ B(H) are defined as above, and such a polynomial
F =

∑
hk ⊗Ak is said to be positive if F (U) ≥ 0 for all d-tuples of unitaries U .
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McCullough’s free NC version of the FR theorem

Theorem 9 (McCullough’s NC FR theorem).

Let F ∈ C ⊗ B(H) be a positive trigonometric polynomial of degree n in d freely
noncommuting variables. Set r =

∑n
0 d

j . Then there are r or fewer analytic
polynomials Bj such that F =

∑
j B
∗
jBj .

When d = 1, the usual Fejér-Riesz theorem is recovered using Buerling’s theorem.
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McCullough’s free NC version of the FR theorem

Define L(Sn) to be the bounded operators on the Hilbert space with orthonormal
basis indexed by Sn. An operator T in this space is Toeplitz if Tv,w depends only on
v−1w. Note that Tgjv,gjw = Tv,w.

The Toeplitz operators in L(Sn) are denoted T n, and those with entries in Mk are
Mk ⊗ T n. T n is an operator space in L(Sn).

Suppose t : Hn →Mk. We get a Toeplitz operator T ∈Mk ⊗ T n with

〈T (x⊗ w), y ⊗ v〉 =
〈
t(v−1w)x, y

〉

A version of the Caratheodory interpolation theorem allows one to extend
T ∈Mk ⊗ T n to T ′ ∈Mk ⊗ T n+1 (so T ′v,w = Tv,w for all v, w ∈ Sn).

Continuing in this fashion, we get a positive kernel Q on a Hilbert space spanned
by the elements of S tensored with Ck.
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McCullough’s free NC version of the FR theorem

From here, the proof has a familiar GNS or Stinespring flavor to it.

Define an inner product〈∑
xw ⊗ w,

∑
yv ⊗ v

〉
=
∑
〈Qv,wxw, yv〉,

then mod out null vectors and complete to a Hilbert space M. The left regular
representation of the algebraic semigroup algebra maps the generators to isometries,
which can then be extended to unitaries.

Now define V : Ck → K by V x = x⊗ e. The map

(1k ⊗ ϕ)(T ) = (V ⊗ 1k)∗(
∑

Uh ⊗Ah)(V ⊗ 1k) ≥ 0

on T n is completely positive.

To finish the proof, the Arveson extension theorem is then used to extend ϕ to

ϕ̃ : Mr → L(H), r =
n∑
0

dj .
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The real version(s)

Theorem 10 (McCullough).

Suppose that for all d-tuples S of bounded selfadjoint operators,

A(S) =
∑
w∈S2d

Sw ⊗Aw ≥ 0.

Then there exists at most r =
∑n

0 d
j functions Bj =

∑
w w ⊗Bw, such that

A(S) = B(S)∗B(S).

The proof is very similar to the last, but now we work with (noncommutative)
Hankel operators. The Caratheodory extension theorem is replaced by an NC flat
extension theorem (∼ Curto and Fialkow), and the left regular representation sends
the generators to bounded selfadjoint operators.
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The real version(s)

Suppose now instead that {xj} are the generators of S and {yj} are formally the
adjoints of these. We consider words w which are mixtures of these letters. The
algebra A consists of finite sums of the form

∑
pww, with an obvious involution.

Let Ad be the subspace of all polynomials of degree at most d (so consisting of
words of length at most d), and let N(d) = dimAd. Given a d-tuple
X = (X1, . . . , Xd) of operators in B(CN(d)), we get a representation of the algebra
by sending xj to Xj and yj to X∗j . We say that p is positive if for all such d-tuples,
p(X) ≥ 0.

Theorem 11 (Helton’s theorem).

Given p ∈ Ad, p ≥ 0, there are at most N(d) elements rj ∈ A such that
p =

∑
j r
∗
j rj .

The proof also uses Caratheodory’s theorem to bound the number of terms in the
sum, and a Hahn-Banach separation argument.



The real version(s)

Suppose now instead that {xj} are the generators of S and {yj} are formally the
adjoints of these. We consider words w which are mixtures of these letters. The
algebra A consists of finite sums of the form

∑
pww, with an obvious involution.

Let Ad be the subspace of all polynomials of degree at most d (so consisting of
words of length at most d), and let N(d) = dimAd. Given a d-tuple
X = (X1, . . . , Xd) of operators in B(CN(d)), we get a representation of the algebra
by sending xj to Xj and yj to X∗j . We say that p is positive if for all such d-tuples,
p(X) ≥ 0.

Theorem 11 (Helton’s theorem).

Given p ∈ Ad, p ≥ 0, there are at most N(d) elements rj ∈ A such that
p =

∑
j r
∗
j rj .

The proof also uses Caratheodory’s theorem to bound the number of terms in the
sum, and a Hahn-Banach separation argument.



The real version(s)

Suppose now instead that {xj} are the generators of S and {yj} are formally the
adjoints of these. We consider words w which are mixtures of these letters. The
algebra A consists of finite sums of the form

∑
pww, with an obvious involution.

Let Ad be the subspace of all polynomials of degree at most d (so consisting of
words of length at most d), and let N(d) = dimAd. Given a d-tuple
X = (X1, . . . , Xd) of operators in B(CN(d)), we get a representation of the algebra
by sending xj to Xj and yj to X∗j . We say that p is positive if for all such d-tuples,
p(X) ≥ 0.

Theorem 11 (Helton’s theorem).

Given p ∈ Ad, p ≥ 0, there are at most N(d) elements rj ∈ A such that
p =

∑
j r
∗
j rj .

The proof also uses Caratheodory’s theorem to bound the number of terms in the
sum, and a Hahn-Banach separation argument.



Helton-McCullough convex free semi-algebraic sets

The setup is as in Helton’s theorem: we consider now matrix valued polynomials in
freely nc variables x1, . . . , xd with involution defined as above, and evaluations are on
d-tuples X of real symmetric n× n matrices for all n.

For p a free symmetric polynomial, assuming p(0) > 0, Dp(n) denotes the d-tuples
of n× n matrices X such that p(X) > 0, Dp the sequence of these. Say that Dp is
convex if each Dp(n) is convex.

The special case when p = L is linear and p(0) = I, L(X) > 0 is referred to as a
linear matrix inequality or LMI.

Theorem 12 (Helton-McCullough theorem).

For p fee symmetric and Dp convex, there is an ` and affine linear L with L(0) = I`
such that Dp = DL.

This has the feel of an nc Krĕın-Milman theorem. The main tool here is a version
of a matricial HB theorem of Effros and Winkler.
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A Striktpositivstellensatz for nc polynomials

Under the same conditions as on the last slide, say that Dp is bounded if there
exists C > 0 such that for each X ∈ Dp, C −X∗jXj ≥ 0.

In the last theorem, Helton and McCullough also assume boundedness of Dp, but
according to Kriel, this is not needed.

Theorem 13 (Helton-McCullough Striktpositivstellensatz).

For p free symmetric and Dp bounded, if a polynomial q > 0 on Dp, then there are
polynomials pj , sj , rk, tm,` such that

q =

N∑
1

s∗jpjsj +

M∑
1

r∗krk +
∑

t∗m,`(1− x2m)tm,`.

This is an analogue of Putinar’s theorem from the commutative setting. As
expected, a Hahn-Banach and a GNS construction is used. Convexity is not assumed
and strict positivity is essential in general.
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A Positivestellensatz for nc polynomials

If in addition, Dp is assumed to be convex, though not necessarily bounded, a
stronger result is possible.

Theorem 14 (Helton-Klep-McCullough Positivstellensatz).

For p free symmetric and Dp convex, if a polynomial q ≥ 0 is concave on Dp, then
there are polynomials sj , rk, such that

q =

N∑
1

s∗jpsj +

M∑
1

r∗krk.

The special case when p = 1 gives Helton’s theorem. limits on the numbers and
degrees of polynomials can be found in terms of the degree of q.

The polynomial q is concave if −q is convex; that is,

q(tX + (1− t)Y ) ≥ tq(X) + (1− t)q(Y ).

If q is scalar valued and q(0) = 1, the first Helton-McCullough theorem implies that
concave q has the form q(x) = 1− Λ(x)− s∗(x)s(x), Λ a homogeneous linear
polynomial and s a linear vector valued polynomial.
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Trace polynomials

A trace polynomial is a polynomial in symmetric, nc variables along with traces of
their products. For example,

f = x2x
2
1x2 − tr(x1x2)x31.

A pure trace polynomial is a trace polynomial is one that has only traces, and no
free variables. So for example, tr(f).

Observe that while tr(x1x2) = tr(x2x1), tr(x1x2x3x4) 6= tr(x1x2x4x3), so there
is still a level of noncommutativity even for pure trace polynomials.

Klep, Magron, and Volčič have proved various theorems related to those of Helton
and McCullough for trace and pure trace polynomials.

Klep and Schweighöfer found a connection between Positivstellensätze on classes
of trace polynomials and the Connes embedding conjecture, which was recently
proved to fail.
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Klep, Magron, and Volčič have proved various theorems related to those of Helton
and McCullough for trace and pure trace polynomials.
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