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Stability in Gagliardo-Nirenberg-Sobolev inequalities

@_ Lecture 1 [Bruno] A variational point of view

Variational methods provide good stability results. The deficit functional is
estimated by a relative entropy, or a relative Fisher information. However,
as in the Bianchi-Egnell method, estimates are non-constructive.

@ Lecture 2 [Nikita] Convergence in relative error for the FDE
The fast diffusion equation (FDE) has great regularization properties. These
quantities are constructive.

@_ Lecture 3: Entropy methods and stability
Gagliardo-Nirenberg-Sobolev inequalities can be reformulated as entropy —
entropy production inequalities. Entropy methods are fully constructive.
Using the FDE as a tool, we obtained improved inequalities that can be
reinterpreted as constructive stability estimates.

Joint work with Matteo Bonforte, Bruno Nazaret, Nikita Simonov
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Fast diffusion equation and entropy methods
Stability in (subcritical) Gagliardo-Nirenberg inequalities
Stability in Sobolev’s inequality (critical case)

Joint work on Stability in Gagliardo-Nirenberg-Sobolev inequalities:
Flows, regularity and the entropy method arXiv:2007.03674 (Apr. 29,
2021) with
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Outline

@_ Chapter 2: Inequalities, entropies, flows
> Rényi entropy powers, Gagliardo-Nirenberg-Sobolev inequalities and
fast diffusion
> The fast diffusion equation in self-similar variables:
relative entropy and the entropy — entropy production inequality
> Large time asymptotics and increased spectral gaps
> Initial time layer and improved entropy — entropy production estimates

@_ Chapter 5: Stability in (subcritical) Gagliardo-Nirenberg inequalities
> The threshold time based on regularity results

> Gluing the initial and asymptotic time layer estimates

> Form an improved entropy — entropy production inequality to stability

@_ Chapter 6: Stability in Sobolev’s inequality (critical case)
D> A constructive stability result
> The main ingredient of the proof
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From the carré du champ method to stability results

Carré du champ method (adapted from D. Bakry and M. Emery)
ou Aym d7 ds

—=A", S =—g, T <A
or Y e ol

deduce that .# — A % is monotone non-increasing with limit 0

> Improved constant means stability
Under some restrictions on the functions, there is some A4 = A such that

I-ANF=(A—N)F
> Improved entropy — entropy production inequality (weaker form)
I = Ay(F)
for some v such that w(0) =0, ¢'(0)=1and v >0
I-ANF=ANy(F)-F)=0
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Fast diffusion equation and entropy methods Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

Fast diffusion equation and entropy
methods

ou
— = Auy™ FDE
3 = A (FDE)
@ The Rényi entropy powers and the Gagliardo-Nirenberg inequalities

@ Self-similar solutions and the entropy - entropy production method

@ Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)

@ Initial time layer: improved entropy — entropy production estimates
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The fast diffusion equation in original variables

Consider the fast diffusion equation in R, d > 1, me (0,1)

ou
— =Auy™
ar
with initial datum u(t = 0,x) = ug(x) = 0 such that
f updx=.4>0 and f |x|2uodx<+oo
R4 R4

The large time behavior is governed by the self-similar Barenblatt
solutions

1 X
B(t,x):= 98( )
(1) (xt1/m)? i el/m
where p:=2+d(m-1) and 4 is the Barenblatt profile

B(x):=(C+ |X|2)_ﬁ

J. Dolbeault Entropy methods and stability



Fast diffusion equation and entropy methods Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Stability in (subcritical) Gagliardo-Nirenberg inequalities The fast diffusion equation in self-similar variables
Stability in Sobolev’s inequality (critical case) Initial and asymptotic time layers

Rényi entropy powers
and

Gagliardo-Nirenberg-Sobolev
inequalities

[Toscani, Savaré, 2014]
[JD, Toscani, 2016]
[JD, Esteban, Loss, 2016]

J. Dolbeault Entropy methods and stability



Fast diffusion equation and entropy methods Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

Mass, moment, entropy and Fisher information

(i) Mass conservation. With m = m := (d —2)/d and ug € L (R9)

d
a/[md u(t,x)dx=0

(i) Second moment. With m>d/(d +2) and ugp € L (R9, (1 +x|?) dx)

d

E[[Rgd Ix|? u(t,x)dx=2d/Rd u™(t,x)dx

(ili) Entropy estimate. With m=my :=(d-1)/d, uj’ € L'(R?) and
up € LY (RY, (1+1x1?) dx)

d m _ m2 m-1,2

Efwu (t,x)dx-l_mfRduIVu |<dx

Entropy functional and Fisher information functional

2
(lrn—)2fd u|vum—1|2dx
-m R
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Initial and asymptotic time layers
Entropy growth rate
Gagliardo-Nirenberg-Sobolev inequalities
IVFISIFIL = ans(p) IFll2p (GNS)

1
p=ris = m=F5em,1)

u=f2Pgothat u™ = fP*1 and u|Vu™ 12 = (p- 1)2|V1‘|2

M=IF155, E[u]=1f127], [u]=(p+1)? IVFI3

If u solves (FDE) 9% = Au™
p— 2(1-0)

L ooz
W(PﬂLl) (CgGNS(P)) Iy, Ifl,,,° = GoE

m-mc

E'=>

1-m
fRdum(t.X)dxz(fRdug’dx+%t)m " vt=z0

Equality case: u(t,x) = ﬁ@(%) , B(x) = (L+Ix2) ™1
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Pressure variable and decay of the Fisher information

The t-derivative of the Rényi entropy power EdTrlis
|9 E2 Fl)%g
The nonlinear carré du champ method can be used to prove (GNS) :

> Pressure variable

> Fisher information
I[u] :f u|VP|2 dx
RrRd
If u solves (FDE), then

I :fdA(um) VP2 dx + 2[ uVP-V((m=1)PAP+|VP2) dx
R

__2f (ID?PI2 - (1 - m) (aP)?) dx
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Rényi entropy powers and interpolation inequalities

> Integrations by parts and completion of squares

_$%|og(|952%{)

1 2 2
:fRdum ‘ D2P—5APIdH dx+(m—m1)fRdum‘AP+E‘ dx
> Analysis of the asymptotic regime
1-60 1-0
(e, )P Elu(s, )PP 1[0 E[) P
P ) =) i =0 Yy et

— 20
t—+oo M

181”

We recover the (GNS) Gagliardo-Nirenberg-Sobolev inequalities

I[u]? E[u]2 5% > (p+1)2° (Gans(p)>* M7
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The fast diffusion equation
in self-similar variables

> Rescaling and self-similar variables
> Relative entropy and the entropy — entropy production inequality

> Large time asymptotics and spectral gaps
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Entropy — entropy production inequality

With a time-dependent rescaling based on self-similar variables
1 X dR 1-
=— - - = 0 _1
u(t,x)—Kde V(T’KR) where 7 =R"7H, 1(t):=5 logR(t)

g—‘t’ = Au™ is changed into a Fokker-Planck type equation

%w-[v(wm—l—zx)]:o (r FDE)

Generalized entropy (free energy) and Fisher information
— 1 m m m-1
Ff[v].——;fﬂd(v -B"-mAB (v—@))dx
m-1 2
F[v] :=f V‘Vv + 2X‘ dx
RrRd

are such that .#[v] = 4 Z[v] by (GNS) [del Pino, JD, 2002] so that
Fv(t,)] s Fvole
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Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vazquez, 2009]

1 1

(Co+Ix12) T < vg< (Cp +Ix?) T (H)
Let Ag 4 > 0 be the best constant in the Hardy-Poincaré inequality

Aa,df f2d,ua_1s/ IVF2du, ¥ FfeHY (dug), /fdua_lzo
R R4 Rd

with dptg = (1 +|x]%)% dx, for & < 0

Under assumption (H),

Flv(t,")] = Ce 2r(mt yi>o, y(m):=(1-m)A1/(m-1),d

Moreover y(m):=2 if1-1/d<m<1
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Spectral gap

+(m)
4
my = %
_ e

2
Case 1
— Case 2
e Case 3

me = 422 ,

m
1

[Denzler, McCann, 2005]
[BBDGYV, 2009] [BDGV, 2010] [JD, Toscani, 2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]
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Initial and asymptotic time layers

> Asymptotic time layer: constraint, spectral gap and improved entropy —
entropy production inequality

o> Initial time layer: the carré du champ inequality and a backward
estimate
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The asymptotic time layer improvement

Linearized free energy and linearized Fisher information
F[g]::mf g’ B> ™dx and I[g]::m(l—m)f Vgl B dx
2 Jrd Rd

Hardy-Poincaré inequality. Let d =1, me (m1,1) and g € L?(R?, 8%~™ dx)
such that Vg € L2(R?, B dx), fpd g B> Mdx =0and [puxg B> Mdx=0

l[g] =4aF[g] where a=2-d(1-m)

Proposition

Let me(my,1) ifd=2, me(1/3,1) ifd=1,n=2(dm-d+1) and
x=m/(266+56m). If [pavdx =M, [gaxvdx=0 and

(1-e)B=vs(l+e)RB

for some € € (0, xn), then
G|z (4+n)F[v]

J. Dolbeault Entropy methods and stability



Fast diffusion equation and entropy methods Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

The initial time layer improvement: backward estimate

Ahint: for some strictly convex function ¥ with ¢(0) = ¢'(0) = 0, we have
I-4F =4 (y(F)-F)=0

Far from the equality case (i.e., close to an initial datum away from the
Barenblatt solutions) for (FDE), we expect some improvement

[ I

Rephrasing the carré du champ method, 2[v] := Fv] is such that
d2
—=2(2-4
7 =2(2-4)

Assume that m>mj and v is a solution to (r FDE) with nonnegative
initial datum vg. If for some >0 and T >0, we have 2[v(T,-)]=4+n,
then

4ne-4T
2[v(t, )] = 4+ —2° vtelo,T]

4+n-ne T
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Stability in (subcritical)
Gagliardo-Nirenberg inequalities

Our strategy

Choosde > 0, small enough

Get a threshold time t(€)

txl(€
| Backward estimate | Forward estimate

| - \ n
J. Dolbeault Entropy methods and stability
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Stability in (subcritical) Gagliardo-Nirenberg inequalities Improved entropy - entropy production inequality
First stability results

The threshold time

and the uniform convergence
in relative error

> The regularity results (Lecture 2) allow us to glue the initial time layer
estimates with the asymptotic time layer estimates:

The improved entropy — entropy production inequality holds for any time
along the evolution along (r FDE)

(and in particular for the initial datum)
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Fast diffusion equation and entropy methods The threshold time
Stability in (subcritical) Gagliardo-Nirenberg inequalities Improved entropy — entropy production inequality
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If u is a solves (r FDE) for some nonnegative initial datum ug € L* (R9)
satisfying
d(m-mc)
supr (1-m) f ugdx < A<oo (Ha)
|x|>r

r>0

then
(1-e)B<v(t,)<s(1+e)®B Vt=T

for some explicit T depending only on € and A

More details in Nikita’s lecture

J. Dolbeault Entropy methods and stability
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Improved entropy — entropy
production inequality

J. Dolbeault Entropy methods and stability



The threshold time
Stability in (subcritical) Gagliardo-Nirenberg inequalities Improved entropy - entropy production inequality
First stability results

Theorem

Let me(my,1) ifd=2, me(1/2,1) ifd=1, A>0 and G>0. Then
there is a positive number { such that

Flv]=(4+) F|v]

for any nonnegative function v € L1(R?) such that Z[v]=G,
Jpa vdx =M, [paxvdx=0 and v satisfies (Ha)

We have the asymptotic time layer estimate
1 . 1
€€(0,2¢&4), E*::Emm{em,d,xn} with T = 5 log R(T)

(1-e)%B=<v(t,)<s(1l+e)®B Vt=T
and, as a consequence, the initial time layer estimate

4ne‘4T

L6 )= (4+OF[(E)] VeelT], where (=

J. Dolbeault Entropy methods and stability



The threshold time
Stability in (subcritical) Gagliardo-Nirenberg inequalities Improved entropy - entropy production inequality
First stability results

Two consequences

(=Z(AFuw)), Z(AG):= {x __4nca( & )E

1+ A2 o 7" 4+ (2ac,

> Improved decay rate for the fast diffusion equation in rescaled variables

Let me (my,1) ifd=2, me(1/2,1) ifd=1, A>0and G>0. Ifv is a
solution of (r FDE) with nonnegative initial datum vy € L1(R?) such that
Fwl=G, [gdvodx =, [paxvodx=0 and vy satisfies (Ha), then

Flv(t,)] < Flwle Dt vi=0

> The stability in the entropy - entropy production estimate
F|v]-4F|v] = Z[v] also holds in a stronger sense

V] - 4F[v] = 4L+(f[v]
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Stability results

> We rephrase the results obtained by entropy methods in the language of
stability a la Bianchi-Egnell (as in Lecture 1)

Subcritical range
p* =+ooifd=1or2, p* =& ifd =3
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The threshold time
Stability in (subcritical) Gagliardo-Nirenberg inequalities Improved entropy - entropy production inequality
First stability results

2p
1\ 9 5(d-a) 1
(2dx[f]Pt 115 9PD) 3P
’I[f]"( L NE UL 112
d-p(d-4)
i M 2
Alf]:= FEICED) Sup,sgf P I flxl>r|f(x+Xf)| P dx

21 I T

E[f]:=12TI;fRd(—K[f] frrl_gptl_2gl P( ”] 2P - g2 ))d

;L[f]dpip P ALY
p-1
S[f]:= 525 ey Z (AL EIF])

Letd=1, pe(1,p*)
If f e Wp(RY):={f e L2P(RY) : VF e L2(RY), |x|FP e L2(RY)},

(nwu2 I£1 — (an Ifll2p)?PY = S[f] ||f||2”7 E[f]

p+1)
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The threshold time
Stability in (subcritical) Gagliardo-Nirenberg inequalities Improved entropy — entropy production inequality
First stability results

With #Zgns = C(p, d)%”zp Yoy= M, consider the deficit functional

GNs' '~ Td-p(d-4)

d—p(d-2
8[f]:=(p—1)? ||w||§+4% IFIPY] = Hans 11557

Let d=1 and pe(1,p*). There is an explicit € = €[f] such that, for any
f e L2P(RY, (1+1x1%) dx) such that Vf e L>(RY) and A[f?P] < oo,

2
5[f] = 6[f] inff |(p-1)vF + 2Vt P|"dx
YeM JRd

= The dependence of €[] on A[f?P] and % [£2P] is explicit and does not
degenerate if f € M

= Can we remove the condition A[f2P] < 0o ?
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Fast diffusion equation and entropy methods
Stability in (subcritical) Gagliardo-Nirenberg inequalities
Stability in Sobolev’s inequality (critical case)

A constructive stability result
The main ingredient of the proof

Stability in Sobolev’s inequality
(critical case)

> A constructive stability result

> The main ingredient of the proof
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A constructive stability result

el b Jerg Ine The main ingredient of the proof
Stability in Sobolev’s inequality (critical case) E !

A constructive stability result

Let2p* =2d/(d-2)=2%d=3and

Wor (RY) = {F e LPL(RY) : VF e L2(RY), IxIFP" € L2(RY)}

Theorem

Let d =3 and A>0. Then for any nonnegative f € #,«(R?) such that

fd(l,x,|x|2)f2* dx:fd(l,x,lxlz)gdx and suprdf 2 dx<A
R R

r>0 [x|>r

we have

d 2 (2
8[f]:= IVFI3-S2 ||f||§*_4 — /Rd‘ + 952 fota v dx
*

Ex(A)=C, (1+A1/(2d))71 and €, >0 depends only on d
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A constructive stability result

Stability in Sobolev’s inequality (critical case) T Y Gl A e

We can remove the normalization of f, use the r.h.s. to measure the
distance to the Aubin-Talenti manifold of optimal functions (in relative
Fisher information) and obtain for

A[f];zsuprdf P (x+x7) and Z[f]:= (1+ a1 AF17 ALF])
r>0 r>0
the Bianchi-Egnell type result

¢, Z[f] .
inf Z[fle]

o122 7] o

with x¢, A[f] and p[f] as in the subcritical case
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A constructive stability result

Stability in Sobolev's inequality (critical case) fhenaiizedentotibap et

Extending the subcritical result in the critical case

To improve the spectral gap
for m = m;, we need to ad-
just the Barenblatt function

B)(x) =712 (x/\/I) in order
to match [pa Ix|2vdx where the

function v solves (rFDE) or to
further rescale v according to

v(t,x)= w W(t+‘[(t), m’(‘t)),

*mc)

_d
%z(%fwﬂxﬁvdx) 2(m -1, 7(0)=0 and R(t)=e2"(®)

t — 1(t) is bounded on R*
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A constructive stability result

Stability in Sobolev's inequality (critical case) fhenaiizedentotibap et

These slides can be found at

http://www.ceremade.dauphine.fr/ ~dolbeaul/Lectures/
> Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/ ~dolbeaul/Preprints/list/
> Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !

J. Dolbeault Entropy methods and stability


https://www.ceremade.dauphine.fr/~dolbeaul/Lectures/
https://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/
mailto:dolbeault@ceremade.dauphine.fr

A constructive stability result

Stability in Sobolev's inequality (critical case) Llesaiherdieatoltopoct

o Fast diffusion equation and entropy methods
@ Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
@ The fast diffusion equation in self-similar variables
@ Initial and asymptotic time layers

Q Stability in (subcritical) Gagliardo-Nirenberg inequalities
@ The threshold time
o Improved entropy — entropy production inequality
@ First stability results

© stability in Sobolev’s inequality (critical case)
@ A constructive stability result
@ The main ingredient of the proof
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A constructive stability result

Stability in Sobolev's inequality (critical case) Llesaiherdieatoltopoct

Uniform convergence in relative error

Theorem

Assume that me (my,1) ifd=2, me(1/3,1) ifd=1 and let €€ (0,1/2),
small enough, A>0, and G >0 be given. There exists an explicit
threshold time T =0 such that, if u is a solution of

ou
— =Au" 2
3t (2)
with nonnegative initial datum ug € LX(RY) satisfying

d(m-mc)

supr (=m) f updx < A<oo (Ha)
|x|>r

r>0

Jpd Uodx = fpa Bdx =M and F[ug] < G, then

sup —1l{<e Vt=T

xeRd
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A constructive stability result

Stability in Sobolev's inequality (critical case) Llesaiherdieatoltopoct

The threshold time

Let me (my,1) ifd=2, me(1/3,1) ifd=1, e€(0,emq), A>0and G>0
T:C*1+A1‘:’+G%
€
where a = %2:—? a=d(m-mc) and 9=v/(d+v)
cx=ci(md)= sup max{exi(e,m), e?xa(e, m), ex3(e, m)}
€€(0,6m,d)
8c 23-my
Kl(e’m)'_max{(ln)l—m-l’1—(1-g)l—m}
(421 Kd __ 8a’l
K2(£,m).—g%—$% and K3(8,m).—m
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