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Stability in Gagliardo-Nirenberg-Sobolev inequalities

Lecture 1 [Bruno] A variational point of view
Variational methods provide good stability results. The deficit functional is
estimated by a relative entropy, or a relative Fisher information. However,
as in the Bianchi-Egnell method, estimates are non-constructive.

Lecture 2 [Nikita] Convergence in relative error for the FDE
The fast diffusion equation (FDE) has great regularization properties. These
quantities are constructive.

Lecture 3: Entropy methods and stability
Gagliardo-Nirenberg-Sobolev inequalities can be reformulated as entropy –
entropy production inequalities. Entropy methods are fully constructive.
Using the FDE as a tool, we obtained improved inequalities that can be
reinterpreted as constructive stability estimates.
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From the carré du champ method to stability results

Carré du champ method (adapted from D. Bakry and M. Emery)

∂u

∂t
=∆um ,

dF

dt
=−I ,

dI

dt
≤−ΛI

deduce that I − ΛF is monotone non-increasing with limit 0

I [u]≥ ΛF [u]

B Improved constant means stability
Under some restrictions on the functions, there is some Λ? ≥Λ such that

I −ΛF ≥ (Λ?−Λ)F

B Improved entropy – entropy production inequality (weaker form)

I ≥ Λψ(F )

for some ψ such that ψ(0)= 0, ψ′(0)= 1 and ψ′′ > 0

I −ΛF ≥ Λ(ψ(F )−F )≥ 0
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The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

Fast diffusion equation and entropy
methods

∂u

∂t
=∆um (FDE)

The Rényi entropy powers and the Gagliardo-Nirenberg inequalities

Self-similar solutions and the entropy – entropy production method

Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)

Initial time layer: improved entropy – entropy production estimates
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The fast diffusion equation in original variables

Consider the fast diffusion equation in Rd , d ≥ 1, m ∈ (0,1)

∂u

∂t
=∆um

with initial datum u(t = 0,x)= u0(x)≥ 0 such that∫
Rd

u0 dx =M > 0 and
∫
Rd

|x |2u0 dx <+∞

The large time behavior is governed by the self-similar Barenblatt
solutions

B(t,x) := 1(
κt1/µ

)d B

(
x

κt1/µ

)
where µ := 2+d (m−1) and B is the Barenblatt profile

B(x) := (
C +|x |2)− 1

1−m
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Rényi entropy powers
and

Gagliardo-Nirenberg-Sobolev
inequalities

[Toscani, Savaré, 2014]
[JD, Toscani, 2016]
[JD, Esteban, Loss, 2016]
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Mass, moment, entropy and Fisher information

(i) Mass conservation. With m≥mc := (d −2)/d and u0 ∈ L1
+(R

d )

d

dt

∫
Rd

u(t,x)dx = 0

(ii) Second moment. With m> d/(d +2) and u0 ∈ L1
+
(
Rd ,(1+|x |2) dx

)
d

dt

∫
Rd

|x |2u(t,x)dx = 2d
∫
Rd

um(t,x)dx

(iii) Entropy estimate. With m≥m1 := (d −1)/d , um0 ∈ L1(Rd ) and

u0 ∈ L1
+
(
Rd ,(1+|x |2) dx

)
d

dt

∫
Rd

um(t,x)dx = m2

1−m

∫
Rd

u |∇um−1|2 dx

Entropy functional and Fisher information functional

E[u] :=
∫
Rd

um dx and I[u] := m2

(1−m)2

∫
Rd

u |∇um−1|2 dx

J. Dolbeault Entropy methods and stability
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Entropy growth rate

Gagliardo-Nirenberg-Sobolev inequalities

‖∇f ‖θ2 ‖f ‖1−θp+1 ≥CGNS(p) ‖f ‖2p (GNS)

p = 1
2m−1 ⇐⇒ m= p+1

2p ∈ [m1,1)

u = f 2p so that um = f p+1 and u |∇um−1|2 = (p−1)2 |∇f |2

M = ‖f ‖2p2p , E[u]= ‖f ‖p+1
p+1 , I[u]= (p+1)2 ‖∇f ‖22

If u solves (FDE) ∂u
∂t =∆um

E′ ≥ p−1
2p

(p+1)2
(
CGNS(p)

) 2
θ ‖f ‖

2
θ

2p ‖f ‖−
2(1−θ)

θ

p+1 =C0E1− m−mc
1−m

∫
Rd

um(t,x)dx ≥
(∫
Rd

um0 dx + (1−m)C0
m−mc

t

) 1−m
m−mc ∀t ≥ 0

Equality case: u(t,x)= c1
R(t)d

B
(
c2 x
R(t)

)
, B(x) := (

1+|x |2) 1
m−1

J. Dolbeault Entropy methods and stability



Fast diffusion equation and entropy methods
Stability in (subcritical) Gagliardo-Nirenberg inequalities

Stability in Sobolev’s inequality (critical case)

Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

Pressure variable and decay of the Fisher information

The t-derivative of the Rényi entropy power E
2
d

1
1−m−1 is

IθE2 1−θ
p+1

The nonlinear carré du champ method can be used to prove (GNS) :

B Pressure variable
P := m

1−m
um−1

B Fisher information

I[u]=
∫
Rd

u |∇P|2 dx

If u solves (FDE), then

I′ =
∫
Rd
∆(um) |∇P|2 dx + 2

∫
Rd

u∇P ·∇
(
(m−1)P∆P+|∇P|2

)
dx

=−2
∫
Rd

um
(
‖D2P‖2− (1−m)(∆P)2

)
dx

J. Dolbeault Entropy methods and stability
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Rényi entropy powers and interpolation inequalities

B Integrations by parts and completion of squares

− I
2θ

d

dt
log

(
IθE2 1−θ

p+1
)

=
∫
Rd

um
∥∥∥∥D2P− 1

d
∆P Id

∥∥∥∥2
dx + (m−m1)

∫
Rd

um
∣∣∣∣∆P+ I

E

∣∣∣∣2 dx

B Analysis of the asymptotic regime

lim
t→+∞

I[u(t, ·)]θE[u(t, ·)]2
1−θ
p+1

M
2θ
p

= I[B]θE[B]2
1−θ
p+1

‖B‖
2θ
p

1

= (p+1)2θ (CGNS(p))
2θ

We recover the (GNS) Gagliardo-Nirenberg-Sobolev inequalities

I[u]θE[u]2
1−θ
p+1 ≥ (p+1)2θ

(
CGNS(p)

)2θ
M

2θ
p

J. Dolbeault Entropy methods and stability
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The fast diffusion equation
in self-similar variables

B Rescaling and self-similar variables

B Relative entropy and the entropy – entropy production inequality

B Large time asymptotics and spectral gaps
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Entropy – entropy production inequality

With a time-dependent rescaling based on self-similar variables

u(t,x)= 1
κd Rd

v
(
τ,

x

κR

)
where

dR

dt
=R1−µ , τ(t) := 1

2 logR(t)

∂u
∂t =∆um is changed into a Fokker-Planck type equation

∂v

∂τ
+∇·

[
v

(
∇um−1− 2x

)]
= 0 (r FDE)

Generalized entropy (free energy) and Fisher information

F [v ] :=− 1
m

∫
Rd

(
vm−Bm−mBm−1 (v −B)

)
dx

I [v ] :=
∫
Rd

v
∣∣∣∇vm−1+ 2x

∣∣∣2 dx

are such that I [v ]≥ 4F [v ] by (GNS) [del Pino, JD, 2002] so that

F [v(t, ·)]≤F [v0]e
−4t

J. Dolbeault Entropy methods and stability



Fast diffusion equation and entropy methods
Stability in (subcritical) Gagliardo-Nirenberg inequalities

Stability in Sobolev’s inequality (critical case)

Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vázquez, 2009]

(
C0+|x |2)− 1

1−m ≤ v0 ≤ (
C1+|x |2)− 1

1−m (H)

Let Λα,d > 0 be the best constant in the Hardy–Poincaré inequality

Λα,d

∫
Rd

f 2 dµα−1 ≤
∫
Rd

|∇f |2 dµα ∀ f ∈ H1(dµα) ,
∫
Rd

f dµα−1 = 0

with dµα := (1+|x |2)αdx , for α< 0

Lemma

Under assumption (H),

F [v(t, ·)]≤C e−2γ(m)t ∀ t ≥ 0 , γ(m) := (1−m)Λ1/(m−1),d

Moreover γ(m) := 2 if 1−1/d ≤m< 1

J. Dolbeault Entropy methods and stability



Fast diffusion equation and entropy methods
Stability in (subcritical) Gagliardo-Nirenberg inequalities

Stability in Sobolev’s inequality (critical case)

Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

Spectral gap

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

[Denzler, McCann, 2005]
[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]
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Initial and asymptotic time layers
B Asymptotic time layer: constraint, spectral gap and improved entropy –
entropy production inequality

B Initial time layer: the carré du champ inequality and a backward
estimate
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The asymptotic time layer improvement

Linearized free energy and linearized Fisher information

F[g ] := m

2

∫
Rd

g2 B2−m dx and I[g ] :=m(1−m)

∫
Rd

|∇g |2 B dx

Hardy-Poincaré inequality. Let d ≥ 1, m ∈ (m1,1) and g ∈ L2(Rd ,B2−m dx)
such that ∇g ∈ L2(Rd ,Bdx),

∫
Rd g B2−m dx = 0 and

∫
Rd x g B2−m dx = 0

I[g ]≥ 4αF[g ] where α= 2−d (1−m)

Proposition

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/3,1) if d = 1, η= 2(dm−d +1) and
χ=m/(266+56m). If

∫
Rd v dx =M ,

∫
Rd x v dx = 0 and

(1−ε)B ≤ v ≤ (1+ε)B

for some ε ∈ (0,χη), then
I [v ]≥ (4+η)F [v ]

J. Dolbeault Entropy methods and stability
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The initial time layer improvement: backward estimate

A hint: for some strictly convex function ψ with ψ(0)=ψ′(0)= 0, we have

I −4F ≥ 4(ψ(F )−F )≥ 0

Far from the equality case (i.e., close to an initial datum away from the
Barenblatt solutions) for (FDE), we expect some improvement

Rephrasing the carré du champ method, Q[v ] := I [v ]
F [v ]

is such that

dQ

dt
≤Q (Q−4)

Lemma

Assume that m>m1 and v is a solution to (r FDE) with nonnegative
initial datum v0. If for some η> 0 and T > 0, we have Q[v(T , ·)]≥ 4+η,
then

Q[v(t, ·)]≥ 4+ 4ηe−4T

4+η−ηe−4T ∀t ∈ [0,T ]

J. Dolbeault Entropy methods and stability
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Stability in (subcritical)
Gagliardo-Nirenberg inequalities

Our strategy

Regularity and stability

Our strategy

Choose "> 0, small enough

Get a threshold time t?(")

0 t?(") t
Backward estimate

by entropy methods

Forward estimate

based on a spectral gap

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

E
s

⇐
#↳

Initial time layer Asymptotic time layer
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The threshold time
and the uniform convergence

in relative error
B The regularity results (Lecture 2) allow us to glue the initial time layer
estimates with the asymptotic time layer estimates:

The improved entropy – entropy production inequality holds for any time
along the evolution along (r FDE)

(and in particular for the initial datum)

J. Dolbeault Entropy methods and stability
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If u is a solves (r FDE) for some nonnegative initial datum u0 ∈ L1(Rd )
satisfying

sup
r>0

r
d (m−mc )
(1−m)

∫
|x |>r

u0dx ≤A<∞ (HA)

then
(1−ε)B ≤ v(t, ·)≤ (1+ε)B ∀t ≥T

for some explicit T depending only on ε and A

More details in Nikita’s lecture

J. Dolbeault Entropy methods and stability
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Improved entropy – entropy
production inequality
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Theorem

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/2,1) if d = 1, A> 0 and G > 0. Then
there is a positive number ζ such that

I [v ]≥ (4+ζ)F [v ]

for any nonnegative function v ∈ L1(Rd ) such that F [v ]=G ,∫
Rd v dx =M ,

∫
Rd x v dx = 0 and v satisfies (HA)

We have the asymptotic time layer estimate

ε ∈ (0, 2ε?) , ε? :=
1
2

min
{
εm,d , χη

}
with T = 1

2
logR(T )

(1−ε)B ≤ v(t, ·)≤ (1+ε)B ∀t ≥T

and, as a consequence, the initial time layer estimate

I [v(t, .)]≥ (4+ζ)F [v(t, .)] ∀t ∈ [0,T ] , where ζ= 4ηe−4T

4+η−ηe−4T

J. Dolbeault Entropy methods and stability
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Two consequences

ζ=Z
(
A,F [u0]

)
, Z(A,G ) := ζ?

1+A(1−m) 2
α +G

, ζ? :=
4ηcα
4+η

(
εa?

2αc?

) 2
α

B Improved decay rate for the fast diffusion equation in rescaled variables

Corollary

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/2,1) if d = 1, A> 0 and G > 0. If v is a
solution of (r FDE) with nonnegative initial datum v0 ∈ L1(Rd ) such that
F [v0]=G ,

∫
Rd v0 dx =M ,

∫
Rd x v0 dx = 0 and v0 satisfies (HA), then

F [v(t, .)]≤F [v0]e
−(4+ζ)t ∀t ≥ 0

B The stability in the entropy - entropy production estimate
I [v ]−4F [v ]≥ ζF [v ] also holds in a stronger sense

I [v ]− 4F [v ]≥ ζ

4+ζI [v ]

J. Dolbeault Entropy methods and stability
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Stability results
B We rephrase the results obtained by entropy methods in the language of
stability à la Bianchi-Egnell (as in Lecture 1)

Subcritical range
p∗ =+∞ if d = 1 or 2, p∗ = d

d−2 if d ≥ 3

J. Dolbeault Entropy methods and stability
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λ[f ] :=
(
2d κ[f ]p−1

p2−1
‖f ‖p+1

p+1

‖∇f ‖22

) 2p
d−p (d−4)

, κ[f ] := M
1
2p

‖f ‖2p

A[f ] := M

λ[f ]
d−p (d−4)

p−1 ‖f ‖2p2p

supr>0 r
d−p (d−4)

p−1
∫
|x |>r |f (x +xf )|2p dx

E[f ] := 2p
1−p

∫
Rd

(
κ[f ]p+1

λ[f ]
d
p−1
2p

f p+1−gp+1− 1+p
2p g1−p

(
κ[f ]2p

λ[f ]2
f 2p −g2p

))
dx

S[f ] := M
p−1
2p

p2−1
1

C(p,d)
Z(A[f ], E[f ])

Theorem

Let d ≥ 1, p ∈ (1,p∗)

If f ∈Wp(R
d ) := {

f ∈ L2p(Rd ) : ∇f ∈ L2(Rd ) , |x | f p ∈ L2(Rd )
}
,(

‖∇f ‖θ2 ‖f ‖1−θp+1

)2pγ
− (CGN ‖f ‖2p)2pγ ≥S[f ] ‖f ‖2pγ2p E[f ]

J. Dolbeault Entropy methods and stability
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With KGNS =C (p,d)C 2pγ
GNS , γ= d+2−p (d−2)

d−p (d−4) , consider the deficit functional

δ[f ] := (p−1)2 ‖∇f ‖22+4
d −p (d −2)

p+1
‖f ‖p+1

p+1−KGNS ‖f ‖2pγ2p

Theorem

Let d ≥ 1 and p ∈ (1,p∗). There is an explicit C =C [f ] such that, for any
f ∈ L2p(

Rd ,(1+|x |2)dx)
such that ∇f ∈ L2(Rd ) and A

[
f 2p]<∞,

δ[f ]≥C [f ] inf
ϕ∈M

∫
Rd

∣∣∣(p−1)∇f + f p∇ϕ1−p
∣∣∣2 dx

B The dependence of C [f ] on A
[
f 2p]

and F
[
f 2p]

is explicit and does not
degenerate if f ∈M
B Can we remove the condition A

[
f 2p]<∞ ?

J. Dolbeault Entropy methods and stability
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Stability in Sobolev’s inequality
(critical case)

B A constructive stability result

B The main ingredient of the proof
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A constructive stability result

Let 2p? = 2d/(d −2)= 2∗, d ≥ 3 and

Wp?(R
d )=

{
f ∈ Lp

?+1(Rd ) : ∇f ∈ L2(Rd ) , |x | f p? ∈ L2(Rd )
}

Theorem

Let d ≥ 3 and A> 0. Then for any nonnegative f ∈Wp?(R
d ) such that∫

Rd
(1,x , |x |2) f 2∗

dx =
∫
Rd

(1,x , |x |2)gdx and sup
r>0

rd
∫
|x |>r

f 2∗
dx ≤A

we have

δ[f ] := ‖∇f ‖22−S2
d ‖f ‖22∗ ≥

C?(A)

4+C?(A)

∫
Rd

∣∣∣∇f + d−2
2 f

d
d−2 ∇g−

2
d−2

∣∣∣2 dx

C?(A)=C?
(
1+A1/(2d))−1 and C? > 0 depends only on d
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Fast diffusion equation and entropy methods
Stability in (subcritical) Gagliardo-Nirenberg inequalities

Stability in Sobolev’s inequality (critical case)

A constructive stability result
The main ingredient of the proof

We can remove the normalization of f , use the r.h.s. to measure the
distance to the Aubin-Talenti manifold of optimal functions (in relative
Fisher information) and obtain for

A[f ] := sup
r>0

rd
∫
r>0

|f |2∗
(x +xf ) and Z [f ] :=

(
1+µ[f ]−d λ[f ]d A[f ]

)
the Bianchi-Egnell type result

δ[f ]≥ C?Z [f ]

4+Z [f ]
inf
g∈M

J [f |g ]

with xf , λ[f ] and µ[f ] as in the subcritical case
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Stability in Sobolev’s inequality (critical case)

A constructive stability result
The main ingredient of the proof

Extending the subcritical result in the critical case

To improve the spectral gap
for m = m1, we need to ad-
just the Barenblatt function

Bλ(x) = λ−d/2 B
(
x/

p
λ
)

in order

to match
∫
Rd |x |2 v dx where the

function v solves (r FDE) or to
further rescale v according to

v(t,x)= 1
R(t)d

w
(
t+τ(t), x

R(t)

)
,

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

dτ
dt =

(
1

K?

∫
Rd |x |2 v dx

)− d
2 (m−mc )−1 , τ(0)= 0 and R(t)= e2τ(t)

Lemma

t 7→ τ(t) is bounded on R+
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Lectures/
B Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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The main ingredient of the proof

Uniform convergence in relative error

Theorem

Assume that m ∈ (m1,1) if d ≥ 2, m ∈ (1/3,1) if d = 1 and let ε ∈ (0,1/2),
small enough, A> 0, and G > 0 be given. There exists an explicit
threshold time T ≥ 0 such that, if u is a solution of

∂u

∂t
=∆um (2)

with nonnegative initial datum u0 ∈ L1(Rd ) satisfying

sup
r>0

r
d (m−mc )
(1−m)

∫
|x |>r

u0dx ≤A<∞ (HA)

∫
Rd u0 dx = ∫

Rd B dx =M and F [u0]≤G , then

sup
x∈Rd

∣∣∣∣ u(t,x)

B(t,x)
−1

∣∣∣∣≤ ε ∀t ≥T

J. Dolbeault Entropy methods and stability



Fast diffusion equation and entropy methods
Stability in (subcritical) Gagliardo-Nirenberg inequalities
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A constructive stability result
The main ingredient of the proof

The threshold time

Proposition

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/3,1) if d = 1, ε ∈ (0,εm,d ), A> 0 and G > 0

T = c?
1+A1−m+G

α
2

εa

where a= α
ϑ

2−m
1−m , α= d (m−mc) and ϑ= ν/(d +ν)

c? = c?(m,d)= sup
ε∈(0,εm,d )

max
{
εκ1(ε,m), εaκ2(ε,m), εκ3(ε,m)

}

κ1(ε,m) :=max
{ 8c
(1+ε)1−m−1

,
23−mκ?

1− (1−ε)1−m
}

κ2(ε,m) := (4α)α−1 K
α
ϑ

ε
2−m
1−m

α
ϑ

and κ3(ε,m) := 8α−1

1− (1−ε)1−m
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