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Diffusion-degenerate traveling
fronts



Reaction diffusion-degenerate equations

Simplest model: scalar reaction-diffusion equation with degenerate
diffusion coefficient:

up = (D(u)uy)x + f(u),

u=u(x,t)eER, xR, t>0.

e D = D(u) - density-dependent, degenerate, nonlinear diffusion
coefficient;

e f =1f(u) - nonlinear reaction function



Reaction functions (i)

e Fisher-KPP, monostable, logistic type, f € C2([0,1];R) has one
stable (u=1) and one unstable (u = 0) equilibrium points in [0,1],
£(0) = f(1) =0, £(0) > 0, f/(1) <0,

f(u) >0, forall ue(0,1).

Typical example:
e Logistic function (dynamics of a population with limited resources):

f(u)=u(l—u)



Reaction functions (ii)

e Nagumo (a.k.a. Bistable, Allen-Cahn, Chafee-Infante) type:
f € C?([0,1];R) has two stable equilibria (u = 1,0) and one unstable
(u = o) equilibrium point in [0,1]

f(0)=f(a) =1(1)=0, f'(0),f'(1) <0, f'(a)>0,
f(u)>0forall ve(a,l), f(u) <0 for all ue(0,a),

for some a € (0,1).
Typical example:

e Cubic reaction (dynamics of a population with limited resources and
cooperation, Allee effect):

flu)=u(l-—uv)(u—a)



Density-dependent degenerate diffusions (i)

In physics and engineering:

e Mullins diffusion for thermal grooving (surface groove profiles on a
heated polycrystal by the mechanism of evaporation-condensation);
Mullins (1957), Broabridge (1989) (non-degenerate).

e Matano boundary methods in the Allen-Cahn equation for metal
binary alloys; Wagner (1952), Allen, Cahn (1972)
(non-degenerate).

e Porous medium equation, uy = A(u™) (with D(u) = mu™1)
Vazquez (2007) (degenerate)

e Anisotropic diffusivities in binary alloys; Elliot, Garcke (1996),
Taylor, Cahn (1994) (degenerate).



Density-dependent degenerate diffusions

In biology:

e Populations’ dynamics models, ‘motility" depends on density:
e mammals, Myers, Krebs (1974), Shigesada et al. (1979).
e ecology, Gurtin, McCamy (1977)
e eukaryotic cell biology, Sengers et al. (2007)

e Degenerate diffusions (D = 0 in some regions) appear in bacterial
aggregation models; Kawasaki et al. (1997), Leyva et al. (2013)

e Degenerate diffusions to model sharp tumor invasion fronts:
McGillen et al. (2014).



Degenerate diffusion

Density-dependent and degenerate diffusion coefficient:

.DeCz([O 1;R)
D(0) =
oD( )>0fora|l ue(0,1],
o D'(u) >0forallue[0,1] ()

Examples:

e D(u)=u?+bu, b>0; Shigesada et al. (1979). Models
dispersive effects of mutual interference between individuals of a
population.

e Porous medium type of diffusion, D(u) = mu™!



Mathematical features

Rich mathematical consequences:

e Degenerate diffusion equations may possess finite speed of
propagation of initial disturbances; Gilding, Kersner (1996).

e Existence of traveling fronts of sharp type; Sanchez-Garduno,
Maini (1995, 1997).
e |oss of hyperbolicity of the associated ODE at degenerate point.



Traveling fronts

Traveling wave solution:
ulx,t)=@(x—ct), @ R—-R,
¢ € R - wave speed. Upon substitution:

(D(@)@e)e +coe +f(9) =0,

where & = x — ct denotes the translation (Galilean) variable. Asymptotic
limits:
uy = @(+e0) = lim @(&), o =&y, o0

E—tw

uy is an equilibrium point of the reaction: uy € {0,1} (Fisher-KPP),
uy € {0,1,0} (bistable).
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Existence theory of degenerate traveling fronts

Some references:

Aronson (1980): Fisher-KPP with diffusion of porous medium type.
Sanchez-Garduiio, Maini, (1994, 1995): Fisher-KPP fronts.
Sanchez-Garduiio, Maini, (1997): Nagumo (bistable) fronts.

Sanchez-Garduiio, Maini, Kappos (1996), El-Adnani,
Talibi-Alaoui (2010) (Conley index techniques).

Gilding, Kersner (2005) (D(u) = au*).

Malaguti, Marcelli (2003) (doubly degenerate diffusions
D(u) = u(1l—u)).

(Abridged list...)

11



Examples (i)

In the Fisher-KPP case, the theory predicts the existence of sharp fronts
with critical speed ¢ = ¢,, and monotone smooth fronts for ¢ > c,.

(a) ¢ =c (sharp) (b) ¢ > ¢ (smooth)

Figure 1: Profile ¢ = ¢(&) for (a) c =c¢; (b) ¢ > c..
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Examples (ii)

In the Nagumo case, there are many fronts. Sharp fronts connecting to
degenerate equilibria with (unique) critical speed ¢ = ¢, € (0,¢()),
(o) :=24/D(a)f'(e); smooth monotone fronts for ¢ > ¢(a) or ¢ =0,
and even oscillatory profiles.
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(a) c=0 (b) ¢ > c(a) (smooth)
Figure 2: Profile ¢ = ¢(&) for (a) ¢ =0; (b) ¢ > c(a).
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Previous work (i)

Works on long-time behaviour of solutions to reaction-diffusion
degenerate equations:

e Sherratt-Marchant (1996): Fisher-KPP case, numerical study
with D(u) = u.
e Biré (2002), Medvedev et al. (2003): Fisher-KPP, diffusion

porous medium type, compactly supported initial data evolve
towards sharp front with ¢ = c,.

e Kamin, Rosenau (2004): Extension to f(u) = u(1—u™), same
porous medium type diff., fast decaying initial data.

o (Abridged list...)
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(a) t=0 (b) t—oo

Figure 3: (a) initial condition ug(x) € C5°(R); (b) v evolves into the sharp
front.
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(a) perturbation, t =0 (b) translated, t — oo

Figure 4: Perturbation of the smooth profile ¢ = ¢(x): (a) initial condition
up(x) = @(x) +vo(x); (b) u(x,t) = @(x+8(t) - ct).
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Previous work (ii)

Works on stability of diffusion-degenerate fronts:

e Hosono (1986): Nagumo reaction, diffusion of porous medium
type: D(u) = mu™~1. Comparison principle techniques: initial data
close to sharp front, then asymptotic convergence to a translated
(sharp) front.

¢ Dalibard, Lopez-Ruiz, Perrin (2021): Preprint, arXiv:2108.10563.
Porous medium with generalized Fisher-KPP reaction. Nonlinear
stability in L2 weighted energy spaces of smooth fronts.
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Spectral stability of reaction diffusion-degenerate fronts

References:
e Leyva, P. (2020), J. Dynam. Differ. Equ. 32. Fisher-KPP
reaction, smooth fronts.
e Leyva, Lépez-Rios, P. (2021), Indiana Univ. Math. J., in press.
Nagumo reaction, smooth fronts.

Features:

e Analysis focuses on spectral stability of smooth fronts.
e Techniques related to spectral theory of operators (Kato).

e Follows general program (a) spectral = (b) linear =. (c) non-linear
stability analyses. Main references: Alexander, Gardner, Jones
(1990), Sandstede (2002), Kapitula, Promislow (2013).

e Some ideas could be extrapolated to the case of systems.
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The spectral problem and main
results




Linearized operator around the front

Abuse of notation x — x — ct. Linearizing around the front yields,

ur = (D(@)u)xx + cux +f'(@)u.

Specialize to solutions of form e*tu(x), with 2 € C, u € X, Banach
space. Spectral problem:

Lu=Au,
L 9(ZL)C X=X,
Lu=(D(@)u)xx + cux +f'(@)u.

2(%) is dense in X; £ is the closed, densely defined, linearized operator
around the front. (e.g. X = L2, 9 = H?, localized perturbations)
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Resolvent and spectra

Definition

Let Z € €(X,Y) be a closed, densely defined operator from X to Y,
Banach. Its resolvent p(.%) is defined as the set of all complex numbers
A € C such that .2 — A is injective, Z(£ —A)=Y and (£ —-21)tis
bounded. lts spectrum is defined as o(.Z) = C\p(.Z).

Definition

We say the traveling front ¢ is X-spectrally stable if

o(Z)Cc{AeC:ReA <0}
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Partition of spectrum

Lemma

For any closed, densely defined linear operator & : 9 C X = Y,
0(ZL) =opn(L)Uos(ZL)Uor(L),
where
opi(L) :={A € C: £ — A is not injective},
05(L) :={A €C: L —A isinjective, Z(L — 1) is closed,
and Z(L — L) # Y},
ox(Z) ={A € C: L —A isinjective, and Z(L — )

is not closed}.
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Observations (i)

e In the theory of stability of waves, cf. Kapitula, Promislow
(2013), the standard partition is Weyl's partition:
Oess(ZL) .= {12 € C: £ — A is either not Fredholm,
or has index different from zero} .,
opt(Z) :={A € C: £ — A is Fredholm with index zero
and has a non-trivial kernel}.
Notice that Gpt C Opt. Opy is the set of isolated eigenvalues with
finite multiplicity.
o 0y (L) is called the extended point spectrum; its elements,
eigenvalues. A € op(Z) if and only if there exists u € (), u #0,

such that Zu=Au
e 1 =0 always belongs to the L? - 6y (-Z) (translation eigenvalue), as

L0 =0 ((D(@)9x)x +cox+ () =0

in view of the profile equation and @, € H*(R;C) (eigenfunction).
22



e 0:(%) is contained in the approximate spectrum, defined as

07(L) C 0app(Z) :={A € C : there exists u, € (L) with ||u,|| =1
such that (£ —2A)up, —0in Y as n— oo}.

This holds because Z(.Z — ) not closed = there exists a \Weyl's
sequence: up € 2(£), ||un|| =1 such that (&£ —A)u, — 0, which
contains no convergent subsequence.

e 05(%) is clearly contained in what is often called the compression
spectrum:

05(Z) C Ocom(Z) :={A €C: L —A isinjective, and Z(L — 1) # Y}.
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Why this partition?

e Designed to overcome difficulties associated to degeneracy at ¢ = 0.
e Spectral problem recast as first order system, wy, = A(x,1)w,

w = (u,uy) (cf. Alexander, Gardner, Jones (1990)).

e In the strictly parabolic setting, D> 6 >0, and A € Q C C, large
connected set, AL (A) are strictly hyperbolic, their spectral equations
determine Fredholm curves that bound Weyl's essential spectrum. In
the degenerate case, hyperbolicity is lost.
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Example: constant diffusivity

Constant diffusion problem, D(u) = D > 0. Spectral problem reads
Au = Du + cux + f'()u.
Recast as a first order system:

W, = A(x, A)W,

W= <“> € H(R;C?)

Ux

0 1
AlA)= ((x— '(9))/D —c/D> |
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Asymptotic limits:

0 1
Ai(l)—XLImwA(X A)= ((l—f’(ui))/D —c/D>.

Fact of life: The Fredholm properties of .Z — A are the same as the
operators .7 (1) := d/dx — A(x,A). (There is a one-to-one and onto
correspondence between the kernels and Jordan chains, with same
srtucture and length.) (cf. Kapitula, Promislow (2013).)

How to locate Oess(-£)? The Fredholm curves A% = 1%(k), k €R
(solutions to det(A4 (L) — ikl) =0, dispersion relation) determine the
boundaries of the open regions in the complex plane on which the
operator .7 (1) (or .£ — ) is Fredholm.
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Idea: take a parabolic regularization (add £d?/dx?), compute Oess
and take the limit as € — 0.

As a consequence, we control some component of the essential
spectrum, oy, precluding the behaviour of approximate spectra.

The set o, is controlled with the use of \Weyl sequences.

The stability analysis of the point spectrum is based on weighted
energy estimates.
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Exponentially weighted spaces

Forany meZ, m>0, aeR,
HI'(R;C) ={v : e™v(x) € H"(R;C)},
Hilbert spaces with inner product and norm,
(U, V) rp = (€0, e™Vhm, VI = e VIEm = (v, V) pp-
Custom: L2(R;C) = H(R;C).
Facts of life: (cf. Kapitula, Promislow (2013))

e The spectrum of £ € €(L2;L2) is equivalent to the spectrum of a
conjugated operator, ., € € (L?; L2):

&Ly =e*Le . 9= H*(R;C) C [3(R;C) — L*(R;C),

e The point spectrum is invariant under conjugation
Gpt(ga)|L2 = Gpt(f)ug-
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Main results (i)

Theorem (Leyva, P. (2020))

For any monotone traveling front for Fisher-KPP reaction
diffusion-degenerate equations, under hypotheses for D = D(-) and f,
and traveling with speed c € R satisfying the condition

POV 3,
FI0)— F/(1)

)

c> max{c*7

there exists an exponentially weighted space L2(R), with a € R, such that
the front is [ 2-spectrally stable. ¢, > 0 is the minimum threshold speed
(the velocity of the sharp wave).
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Main results (ii)

Theorem (Leyva, Lépez-Rios, P. (2021))

Under our hypotheses, the family of all monotone diffusion-degenerate
Nagumo fronts connecting the equi/ibrium states u= o with u=0 and
traveling with speed ¢ > ¢(at) = 2/ D(a)f'(e) are spectrally stable in an
exponentially weighted energy space L2 {e"”xu € L2}. More precisely,
there exists a > 0 such that

o(L)2C{A€C: Red <0},

where £ : L2 — L2 denotes the linearized operator around the traveling
front and G($)| 12 denotes its spectrum computed with respect to the
energy space L2.
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Method of proof (overview)




Strategy of proof

(A) Calculation of oj (parabolic regularization technique; choice of the
weight a € R).

(B) Control of o5 (use of Weyl sequences).

(C) Control of oy (weighted energy estimates; trick to overcome
degeneracy).
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(A) Parabolic regularization technique

e For any € >0, let
D%(¢p) .= D(¢) +e¢.
D#(¢@) >0 for all x e R.
e Regularized conjugated operator:
LEP=H CI2 > 12
LEui= ™ L0 = D(9)uec+ (2D°(9)x —2aD°(9) + ¢ )t
+ (22D%(9) ~ 23D (@)« — ac+ D* (@) + £/(9) ) u
a€c R is to be chosen.

e Region of consistent splitting:

Q(a, 8) :={A€C:Re A >max { D¢ (uy )2 —ac+f'(uy), D (u_)a®—ac+f'(u_)} }
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e Lemma 1: Foralle >0, ac€R, and for each A € Q(a,€), the
operator ££ — A is Fredholm with index zero.
(Note: hyperbolicity of end points is fundamental: Weyl's essential
spectrum theorem + exponential dichotomies).

e Lemma 2: For each fixed A € C, the operators ¢ — A converge in
generalized sense to £ — A as € — 07
(d(G(ZLF—-1),6(L—1))—0).

e Apply Kato's stability theorem (Kato, 1980) to locate 05(-%%).
Lemma 3: Suppose that £, — A is semi-Fredholm, for a € R,

A € C. Then for each 0 < & < 1 sufficiently small 5 — A is
semi-Fredholm and ind (Zf — 1) = ind (£, — ).
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Corollary: o5(.%,) C C\Q(a,0).
Choose a € R appropriately to stabilize o5: C\Q(a,0) C {Re A < 0}.

Example: in the Fisher-KPP case it suffices to set

0< @ <a<(2D(1)) ' (c++/c2—4D(1)f'(1)).

Consequence: 05(-%,)|2 = 05(-Z)) 2 C{A €C:Red <0}.
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(B) Location of o;: Weyl sequences

e Conjugated operator %, = by(x)d2 + b1(x)0x + bo(x)Id.

e Fix A € 07(Z5)|12- Then Z(Z£;— 1) is not closed and there exists a
singular sequence u, € (%) = H? with ||u,||;2 =1, for all n€ N,
such that (%, —2A)u, — 0 in L? as n — o and which has no
convergent subsequence.

e [?is a reflexive space = u, — 0 in L2,

e Lemma 4: There exists a subsequence, up, such that u, — 0 in L7,

as n — oo,
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e For each € > 0 we can choose R > 0 sufficiently large such that
|bo(x) — 20k b1(x) — (2 D(us) — ac + f'(us))| <&, for |x| > R.
e From by(x) = D(¢) > 0:

"R 5
Red < [{fyun) izl | (bolo) = 3acba(unP bt [ (bulo) = 30t () unP o

<L = A)unll 2 + Cillunlli2 g gy + Coellunllfzus gy + (8 Dlus) = ac + £ (ux)) | unll 2
= (£ =) unll 2 + Gllunll 2~ g r) + CoE + a*D(us) —ac+ f'(us).

—0,asn—oo
e Thus, ReA < a?D(uy)—ac+f'(uy), or

0x(Zs) 12 = 0x(L)) 2 C C\Q(a,0) C {Re A < 0}.
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(C) Point spectral stability

e For fixed A € 0p(Z%), there is solution u € 2(%;) = H? to
(& —A)u =0 (eigenfunction).

e Spectral transformation: w = ©(x)u, with

Sl = (g/X:D(((;?s)) —a(x—xo)> .

e Lemma 5: For the appropriate a € R and for any A € Q(a,0), if
u € H? solves (£, —A)u=0 then w € H? and solves

(D(@)?wi)x+D(9)G(x)w — AD(@)w = 0.
e Note: one needs detailed information about the decay structure of

eigenfunctions and of the traveling fronts.
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Lemma applies also to the translation eigenvalue,
A =0¢ ou(Z5)NQa.0): eigenfunction e® @y is transformed into
¥ = O(x)e? @y, which solves

(D(9)2Wx)x + D(9)G(x)y = 0.

Combine energy estimates on both equations and use monotonicity
of the front:

A{D(@)w,w) 2 = —[D()(w/W)x ¥l

If Aop(-Z5)NQ(a,0) then ReA <0. If A € o (Z5) and A ¢ Q(a,0)
the automatically Re A < 0. We conclude point spectral stability.

Note: the weighted L% norm ||u|| = ||»/D(@)u||,2 encodes the
degeneracy of the front (see also Dalibard et al. (2021)).
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Thanks...!
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