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Symmetrization for local problems
Let us consider the following homogeneous Dirichlet problem in an open bounded
set Ω ⊂ RN , N ≥ 2, 

−
(
aij uxi

)
xj

= f in Ω,

u = 0 on ∂Ω,

(1)

where the measurable coefficients aij = aij(x) satisfy the ellipticity condition

aij(x)ξiξj ≥ |ξ|2, ∀ξ ∈ RN , a.e. x ∈ Ω,

and the source term f = f (x) is assumed to belong to Lp(Ω) for suitable p ≥ 1.
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Symmetrization for local problems
A nowadays classical result states that if u ∈ H1

0 (Ω) is the weak solution to (1)
and v ∈ H1

0 (Ω∗) is the weak solution to the “symmetrized problem” −∆v = f ∗ in Ω∗,

v = 0 on ∂Ω∗,

then
u∗(x) ≤ v(x), x ∈ Ω∗. (2)

Here Ω∗ is the ball centered at the origin such that |Ω∗| = |Ω| and u∗ denotes the
Schwarz symmetrization of u:

u∗(x) = sup{t ≥ 0 : |{x : |u(x)| > t}| > ωN |x |N} (= u∗(|x |)),

where ωN is the measure of the unit ball in RN .

An immediate consequence of inequality (2) is, for example, that any norm of u
increases under Schwarz symmetrization.

[Weinberger, 1962], [Maz’ya, 1971], [Talenti, 1976]
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Symmetrization for local problems
The approach used in most of the papers concerning symmetrization techniques is
based on the fact that the use of a suitable test function allows to obtain, for a.e.
t ∈ (0, sup |u|), the inequality

− d
dt

∫
|u|>t

|Du|2dx ≤
∫
u∗>t

f ∗(x) dx . (3)

Schwarz inequality, Fleming-Rishel formula and isoperimetric inequality are then
used in order to obtain a first order differential inequality involving u∗ and its
radial derivative. Finally, a comparison principle gives

u∗(x) ≤ v(x), x ∈ Ω∗.

A slightly different approach has been used in [Lions, 1981], where the author
observes that in inequality (3) one can use the so-called Pólya-Szegö principle
which states that, if u ∈ H1

0 (Ω), then∫
Ω

|Du|2dx ≥
∫

Ω

|Du∗|2dx . (4)
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Symmetrization for local problems
The differential quotient used to compute the derivative

− d
dt

∫
|u|>t

|Du|2dx

is given by (h > 0)
1
h

∫
t+h≥|u|>t

|Du|2dx ,

that is, the Dirichlet integral of a truncation of u, which is a Sobolev function.

So Pólya-Szegö principle applies to give

− d
dt

∫
u∗>t

|Du∗|2dx ≤
∫
u∗>t

f ∗(x) dx .

At this point the integral on the left hand side concerns a radially symmetric
function and the quoted first order differential inequality involving u∗ follows
immediately, without the use of isoperimetric inequality.
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Symmetrization for local problems
Actually, for every r such that u∗(r) = t, co-area formula gives

− d
dt

∫
u∗>t

|Du∗|2dx =

∫
u∗=t

|Du∗|dσ = Per(Br )

Å
− d
dr

u∗(r)

ã

and finally

− d
dr

u∗(r) ≤ 1
NωN rN−1

∫
Br

f ∗(x) dx .

The solution v to the symmetrized problem satisfies

− d
dr

v∗(r) =
1

NωN rN−1

∫
Br

f ∗(x) dx

and the comparison follows immediately.
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Symmetrization for local problems
The literature about the possible extensions of the comparison result is wide

elliptic equations with lower order terms
p-Laplacian type equations
porous medium equation
parabolic equations
anisotropic equations
. . .
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Symmetrization for nonlocal problems
Let us consider the following Dirichlet fractional elliptic problem (−∆)s u = f in Ω,

u = 0 on RN \ Ω,
(5)

where Ω ⊂ RN (N ≥ 1) is a smooth bounded open set, the source term f = f (x)
is assumed to belong to Lp(Ω) for suitable p ≥ 1 and s ∈ (0, 1).

Actually, the effect of symmetrization on fractional elliptic problems like (5) has
already been exploited in various papers
[Di Blasio - Volzone, 2012], [Vázquez - Volzone, 2014], . . .

In those papers a symmetrization result in terms of mass concentration (i.e., an
integral comparison, as in the parabolic case) is obtained in a somewhat indirect
way.
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Symmetrization for nonlocal problems
Indeed, it has been used in an essential way the fact that the fractional problem
can be linked to a suitable, local extension problem, whose solution ψ(x , y), an
extension of u, is defined on the infinite cylinder CΩ = Ω× (0,+∞).

[Caffarelli - Silvestre, 2007], [Stinga - Torrea, 2010], . . .

Classical symmetrization techniques, with respect to the variable x ∈ Ω (Steiner
symmetrization), can be applied to such a problem, and an integral (or mass
concentration) comparison is naturally expected.

Being u the trace of ψ over Ω× {0}, the comparison result for ψ immediately
implies an estimate for u
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Symmetrization for nonlocal problems

Theorem ([F. -Volzone, 2021])
Let s ∈ (0, 1) and let f ∈ Lp(Ω), with p ≥ 2N/(N + 2s) when N ≥ 2 and any
p > 1 for N = 1. If u and v are the solutions to the following problems (−∆)s u = f in Ω

u = 0 on RN \ Ω

 (−∆)s v = f ∗ in Ω∗

v = 0 on RN \ Ω∗

we have
u(x) ≺ v(x)

and
[u]Hs ≤ [v ]Hs

u(x) ≺ v(x) (comparison of mass concentrations)

means that for all r > 0 it holds∫
Br (0)

u∗(x) dx ≤
∫
Br (0)

v∗(x) dx
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Symmetrization for nonlocal problems
The main novelty is that we give a new proof of the mass concentration
comparison which could be of interest because the arguments are completely new
and they seem to be very flexible with respect to those used in previous papers.

As we will see our method is based on a suitable Pólya-Szegö principle and,
because of the fact that such a principle holds true in more general situations, the
extension to various classes of nonlocal PDEs seems to be possible.

Possible examples in the elliptic framework are nonlocal semilinear equations,
equations involving elliptic integro-differential operators with general kernels,
fractional p-Laplacian operator.
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Optimality of the result
One could ask if the comparison in terms of mass concentration could be
improved to give a pointwise estimate. In order to understand if a result similar to
the one proved by Talenti we have considered, in the case N = 1, s ∈ (0, 1) ,
Ω = (−1, 1), the problem (−∆)s u = |x | in Ω

u = 0 on R \ Ω

Clearly we have

f (x) = |x |, f ∗(x) = 1− |x | = 1− f (x)

We denote by us the solution to the given problem and by vs the solution to the
corresponding symmetrized problem.
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Optimality of the result
us (blue line) vs (purple line)

s = 1/4 s = 1/2

s = 3/4 s = 1
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Sketch of the proof
Step 1: Deduce an inequality for u∗ via Riesz rearrangement inequality

For simplicity we will consider f nonnegative and regular.
In the weak formulation of the problem

γ(N, s)

2

∫
RN

∫
RN

(u(x)− u(y)) (ϕ(x)− ϕ(y))

|x − y |N+2s dx dy =

∫
Ω

f (x)ϕ(x) dx

for 0 ≤ t < umax and h > 0, we choose the following test function

ϕ(x) = Gt,h(u(x))

where Gt,h(θ) is the classical truncation

Gt,h(θ) =


h if θ > t + h

θ − t if t < θ ≤ t + h

0 if θ ≤ t.
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Sketch of the proof
Step 1: Deduce an inequality for u∗ via Riesz rearrangement inequality

Theorem (Riesz rearrangement inequality [Almgren - Lieb, 1989])
Let F : R+ × R+ → R+ be a continuous function such that F (0, 0) = 0 and

F (u2, v2) + F (u1, v1) ≥ F (u2, v1) + F (u1, v2)

whenever u2 ≥ u1 > 0 and v2 ≥ v1 > 0. Assume that f , g are nonnegative
measurable functions on RN , then we have the inequalities∫
RN

∫
RN

F (f (x), g(y))W (ax + by) dx dy ≤
∫
RN

∫
RN

F (f ∗(x), g∗(y))W ∗(ax + by) dx dy

and ∫
RN

F (f (x), g(x)) dx ≤
∫
RN

F (f ∗(x), g∗(x)) dx ,

for any nonnegative function W ∈ L1(RN) and any choice of nonzero numbers a
and b.
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Sketch of the proof
Step 1: Deduce an inequality for u∗ via Riesz rearrangement inequality

Our aim is to prove∫
RN

∫
RN

(u(x)− u(y)) (Gt,h(u(x))− Gt,h(u(y)))

|x − y |N+2s dx dy

≥
∫
RN

∫
RN

(u∗(x)− u∗(y)) (Gt,h(u∗(x))− Gt,h(u∗(y)))

|x − y |N+2s dx dy .

We use the representation∫
RN

∫
RN

(u(x)− u(y)) (Gt,h(u(x))− Gt,h(u(y)))

|x − y |N+2s dx dy =

=
1

Γ(N+2s
2 )

∫ ∞
0

Iα[u, t, h]α(N+2s)/2−1dα,

where

Iα[u, t, h] =

∫
RN

∫
RN

(u(x)− u(y)) (Gt,h(u(x))− Gt,h(u(y))) exp[−|x−y |2α]dx dy .
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Sketch of the proof
Step 1: Deduce an inequality for u∗ via Riesz rearrangement inequality

By virtue of this last representation, our claim is proved when we succeed to show
that

Iα[u, t, h] ≥ Iα[u∗, t, h],

for all α > 0. To this aim, we use Riesz’s general rearrangement inequality with
the choice Wα(x) = exp[−|x |2α], a = 1, b = −1 and

F (u, v) = u2 + v2 − (u − v)(Gt,h(u)− Gt,h(v))

for all u, v > 0, with Wα and F (u, v) which satisfy the required assumptions.

So we obtain
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2
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Sketch of the proof
Step 2: Pass to the limit as h→ 0

This step is quite technical and, writing u∗(x) = u∗(|x |), we get, for r > 0,

γ(N, s)

∫ r

0

Ç∫ +∞

r

(
u∗(τ)− u∗(ρ)

)
ΘN,s(τ, ρ)ρN−1dρ

å
τN−1dτ ≤

≤
∫ r

0
f ∗(ρ)ρN−1dρ,

where

ΘN,s(r , ρ) =
1

NωN

∫
|x′|=1

Ç∫
|y ′|=1

1
|r x ′ − ρ y ′|N+2s dH

N−1(y ′)

å
dHN−1(x ′)

that is,

ΘN,s(r , ρ) =


αN

ρN+2s 2F1

Å
N + 2s

2
, s + 1;

N

2
;
r2

ρ2

ã
if 0 ≤ r < ρ < +∞

αN

rN+2s 2F1

Å
N + 2s

2
, s + 1;

N

2
;
ρ2

r2

ã
if 0 ≤ ρ < r < +∞
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Sketch of the proof
Step 3: Rewriting the above inequality in terms of the spherical mean function

Let us define the following spherical mean function

U(x) = U(|x |) =
1
|x |N

∫ |x|
0

u∗(ρ)ρN−1dρ.

It turns out that

γ(N, s)

∫ r

0

Ç∫ +∞

r

(
u∗(τ)− u∗(ρ)

)
ΘN,s(τ, ρ)ρN−1dρ

å
τN−1dτ = rN(−∆)sRN+2U(r)

A formula for the fractional Laplacian computed on radial function contained in
[Ferrari - Verbitsky, 2012] has been used.
Then

(−∆)sRN+2U(r) ≤ 1
rN

∫ r

0
f ∗(ρ)ρN−1dρ
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Sketch of the proof
Step 3: Rewriting the above inequality in terms of the spherical mean function

Let us define the following spherical mean function

U(x) = U(|x |) =
1
|x |N

∫ |x|
0

u∗(ρ)ρN−1dρ.
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Sketch of the proof
Step 4: Comparison principle and end of the proof

For the solution v to the symmetrized problem all the above inequalities hold true
as equalities, so

(−∆)sRN+2V (r) =
1
rN

∫ r

0
f ∗(ρ)ρN−1dρ

where V (r) is the spherical mean of v ,

V (x) = V (|x |) =
1
|x |N

∫ |x|
0

v(ρ)ρN−1dρ.

A classical comparison result gives

U(r) ≤ V (r)

that is,
u ≺ v .
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A remark
A way to recover the pointwise comparison is to observe that, letting s → 1, we
obtain a comparison between local Laplacians in the form

(−∆)RN+2U(r) ≤ (−∆)RN+2V (r)

and a straightforward computation shows

(−∆)RN+2U(r) = −u∗′(r)

r
, (−∆)RN+2V (r) = −v ′(r)

r

from which the pointwise comparison follows.
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