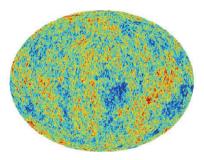
Discussion session: string phenomenology progress, challenges and prospects

I. Antoniadis


LPTHE, Sorbonne Université, CNRS, Paris

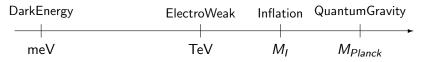
BIRS-CMO Workshop, Online, 7-12 November Strings: Geometry and Symmetries for Phenomenology

Connect string theory to the real world

- Is it a tool for strong coupling dynamics or a theory of fundamental forces?
- Can string theory describe both particle physics and cosmology?

- Compactification of extra dimensions geometric from 10/11 dim EFT or internal (S)CFT
- Moduli stabilisation

avoid experimental conflict from long range forces etc compute low-energy couplings


- Supersymmetry breaking at what scale and how (spontaneous vs. non-linear and explicit)
- Model building for particle physics and cosmology

Problem of scales

- describe high energy (SUSY?) extension of the Standard Model unification of all fundamental interactions
- incorporate Dark Energy

simplest case: infinitesimal (tuneable) +ve cosmological constant

- describe possible accelerated expanding phase of our universe models of inflation (approximate de Sitter)
 - \Rightarrow 3 very different scales besides M_{Planck} :

At what energies strings may be observed?

Very different answers depending mainly on the value of the string scale M_s

Before 1994: $M_s \simeq M_{\rm Planck} \sim 10^{18}~{\rm GeV}$ $I_s \simeq 10^{-32}~{\rm cm}$ After 1998:

- arbitrary parameter : Planck mass $M_P \longrightarrow {
 m TeV}$
- physical motivations \Rightarrow favored energy regions:

• High :
$$\left\{ \begin{array}{ll} M_P^* \simeq 10^{18} \ {\rm GeV} & {\rm Heterotic \ scale} \\ \\ M_{\rm GUT} \simeq 10^{16} \ {\rm GeV} & {\rm Unification \ scale} \end{array} \right.$$

• Intermediate : around 10^{11} GeV $(M_s^2/M_P \sim \text{TeV})$

SUSY breaking, strong CP axion, see-saw scale

• Low : (multi) TeV (hierarchy problem)

perturbative heterotic string : the most natural for SUSY and unification gravity and gauge interactions have same origin massless excitations of the closed string

But mismatch between string and GUT scales:

 $M_s = g \; M_P \simeq 50 \; M_{
m GUT} \qquad g^2 \simeq lpha_{
m GUT} \simeq 1/25$ [11]

in GUTs only one prediction from 3 gauge couplings unification: $\sin^2 \theta_W$ introduce large threshold corrections or strong coupling $\rightarrow M_s \simeq M_{GUT}$ but loose predictivity

Heterotic string: Spectrum

- maximum rank: 22
- (non-abelian) gauge coupling unification at M_H
- in SM $\sin^2 \theta_W = 3/8 \Rightarrow$ fractional electric charges
- allowed reps: fundamentals & 2-index antisym of unitary groups, spinors of orthogonal groups

simplest constructions: CY's, orbifolds, lattices, free fermions

- no adjoints to break GUT groups \Rightarrow
 - Orbifold GUTs

gauge group breaking by discrete Wilson lines

- GUT variations without adjoints

flipped $SU(5) \times U(1)$, Pati-Salam $SU(4) \times SU(2)_L \times SU(2)_R$, SM

gravity and gauge interactions have different origin

- gravity: closed strings propagating in 10 dims
- gauge interactions: open strings with their ends attached on D-branes

D-branes = hypersurfaces where open strings can end

D*p*-brane: parallel dimensions: X^1, \ldots, X^p (also time X^0) $\partial_{\sigma} X^{\mu} = 0$ at $\sigma = 0$ normal derivative vanishes Newmann boundary conditions \Rightarrow free propagation along the boundary

> transverse dimensions: X^{p+1}, \dots, X^9 $X^{\mu} = X_0^{\mu}$ at $\sigma = 0$ $(\partial_{\tau} X^{\mu} = 0 \text{ at } \sigma = 0)$

Dirichlet conditions: endpoint fixed at the boundary

D-brane spectrum

Generic spectrum: N coincident branes $\Rightarrow U(N)$

a-stack

```
endpoint transformation: N_a or \overline{N}_a U(1)_a charge: +1 or -1

\Rightarrow gauged 'baryon' number
```

- open strings from the same stack \Rightarrow adjoint gauge multiplets of $U(N_a)$
- stretched between two stacks \Rightarrow bifundamentals of $U(N_a) \times U(N_b)$

a-stack

non-oriented strings \Rightarrow also:

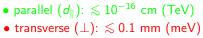
- orthogonal and symplectic groups SO(N), Sp(N)
- matter in antisymmetric + symmetric reps

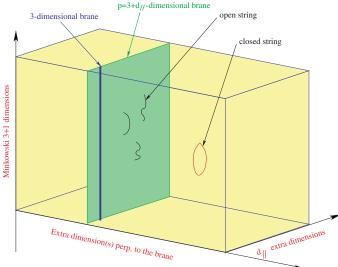
Intersecting branes: 'perfect' for SM embedding

product of unitary gauge groups (brane stacks) and bi-fundamental reps but no unification: no prediction for M_s , independent gauge couplings moreover GUTs are problematic:

- no perturbative SO(10) spinors
- no top-quark Yukawa coupling in SU(5): 10105_H
 SU(5) is part of U(5) ⇒ U(1) charges : 10 charge 2 ; 5_H charge ±1
 ⇒ cannot balance charges with SU(5) singlets
 can be generated by D-brane instantons but ...
- \rightarrow Non-perturbative M/F-theory models:

combine good properties of heterotic and intersecting branes but lack exact description for explicit computations gravity and gauge interactions have different origin


- gravity: closed strings propagating in 10 dims
- gauge interactions: open strings with their ends attached on D-branes [6]


$$\Rightarrow \quad M_P^2 = \frac{V_\perp}{g_s^2} M_s^{2+n} \qquad g_s \simeq g^2$$

 V_{\perp} can become large lowering the string scale

Braneworld

2 types of compact extra dimensions:

- Implement moduli stabilisation in explicit model building
- Combined models of particle physics and cosmology