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There are no global symmetries in string theory.
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All the global symmetries (of SCFTs) are in string theory.
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What are symmetries?
The traditional definition is that in the classical theory the
symmetries of a theory are the group of transformations of the
fields in the Lagrangian that leave the action invariant (with
suitable boundary conditions).

In the quantum theory we
additionally ask for invariance of the measure (anomaly invariance).

Complications have come into focus during the last few years:
There are anomaly constraints that only become visible in
non-trivial spacetime topologies, going beyond the usual
non-invariance of the path integral measure.
Symmetries need not act on fields, they might act on extended
operators.
Symmetries might not form a group. For instance, we can
have symmetry generators which do not have an inverse.
We might not have a Lagrangian!
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What are symmetries?

Symmetries are fundamental in physics, so we would like to have a
notion of symmetry that encompasses all these recent
developments.

So: what is a symmetry?

The right answer seems to be some version of:

Symmetries are categorical
The symmetries and anomalies of d-dimensional theories are
encoded in a (d+ 1)-dimensional topological field theory.

In this talk I would like to:
Motivate this answer.
Identify these TFTs in some simple M-theory examples.
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What are anomalies?

The textbook view on anomalies is that anomalies arise whenever
we have a symmetry of the classical Lagrangian that is not a
symmetry of the full quantum theory.

The problem is particularly serious whenever we are talking about
gauge transformations: if a gauge transformation is anomalous then
the theory is inconsistent.

The canonical example is the theory of a Weyl fermion in four
dimensions charged under a U(1) gauge symmetry

L =
1

2g
FµνFµν +

1

2
ψ†(i∂µ −Aµ)σµψ

which looks fine classically, but is inconsistent
quantum-mechanically.
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A new approach to anomalies

One concise way to state the problem is that it might not be
possible to define the phase of the partition function in a well
defined way, as a function of the background fields modulo gauge
invariance:

Z[Ag] = eiA(A,g)Z[A] .

Recent developments [Dai, Freed ’94], [Witten ’15] have shed new light
on this old topic.

These recent developments are geared towards condensed matter, but
there are also interesting consequences for high energy physics.
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The Dai-Freed viewpoint on anomalies

Consider the case that your space-time Xd is the boundary of some
manifold Yd+1, over which all the relevant structures on Xd extend.

We define the path integral of a fermion ψ on Xd as [Dai, Freed ’04]

Zψ = |Zψ|e−2πi η(DYd+1
)

with

η(DYd+1
) =

dim kerDYd+1
+
∑
λ6=0 sign(λ)

2
.

[*] For the experts, this is the same η that appears in the APS index theorem.
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Why is this prescription useful
The η invariant is, in general, very difficult to compute. We only
know expressions for it in a handful of examples.

Nevertheless, it has very nice properties: if we change the
orientation of the manifold the phase of the partition function
changes sign:

e2πi η(DA) = e−2πi η(DA)

and it is “local”, in the sense that η behaves nicely under gluing:

e2πiη(DA)e2πi η(DB) = e2πi η(DA+B)
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The Dai-Freed viewpoint on anomalies
Anomalies, in this language, come from situations in which the
phase of the partition function depends on the choice of Yd+1:

e−2πi η(DYd+1
) 6= e

−2πi η(DY ′
d+1

)
(1)

even if ∂Yd+1 = ∂Y ′d+1 = Xd.

Gluing Yd+1 and Y ′d+1 over Xd to form the closed manifold Wd+1,
we find that the partition function is well defined as a function of
the fields on Xd only if on every such Wd+1

e−2πi η(DWd+1
) = e−2πi η(DYd+1

)/e
−2πi η(DY ′

d+1
)

= 1 (2)
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The Dai-Freed viewpoint on anomalies

The theory with partition function

ZA(Yd+1, A) = e2πi η(DA)

is an example of a topological field theory in (d+ 1)-dimensions,
known in this context as the anomaly theory.

We say that a theory in d-dimensions is anomaly-free if its anomaly
theory (defined in (d+ 1)-dimensions) is trivial.

So when talking about anomalies, it is very natural to consider
topological theories in one dimension higher. Later on I will give
examples of anomaly theories for 1-form symmetries.
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Classifying N = 4 theories

Known N = 4 theories in four dimensions are classified by a choice
of gauge group G (with algebra g), and some discrete θ angles.
[Aharony, Seiberg, Tachikawa ’13]

A prototypical example is su(2)→ {SU(2), SO(3)± = (SU(2)/Z2)±}.
[Gaiotto, Moore, Neitzke ’10]

One can distinguish the different global forms by studying the partition
function on four-manifoldsM4 with H2(M4, C) 6= 0, or by studying the
properties and correlators of extended operators.
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Holography and global structure

What is the holographic interpretation of the possible variants for
the su(N) N = 4 theory in 4d?

Answered in [Witten ’98]. The key insight is that we view the possible
4-dimensional theories as states in the Hilbert space of a 5-dimensional
topological “bulk” theory, taking the radial direction as “time”. [Friedan,
Shenker ’87], [Verlinde ’88], [Moore, Seiberg ’88], [Witten ’89], . . . ,
[Witten ’98], . . . , [Belov, Moore], . . .
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Quantization of the bulk TQFT
(Following [Witten ’98])

The reduction of IIB on S5 gives an effective action

LCS =
N

2πi

∫
X5

B2 ∧ dC2 . (3)

The equations of motion are

dB2 = dC2 = 0 (4)

and B2, C2 are canonically conjugate (B2 = C2 = 0 is disallowed!):

[Bij(x), Ckl(y)] = −2πi

N
εijklδ

4(x− y) . (5)

In order to specify the boundary conditions, in addition to specifying
the vevs of local gauge invariant operators, we need to specify

α =

∫
S
B2 ; β =

∫
S
C2 (6)

for any S ⊂M4 near the boundary, X5 ≈ R×M4.
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dB2 = dC2 = 0 (4)

and B2, C2 are canonically conjugate (B2 = C2 = 0 is disallowed!):

[Bij(x), Ckl(y)] = −2πi

N
εijklδ

4(x− y) . (5)

In order to specify the boundary conditions, in addition to specifying
the vevs of local gauge invariant operators, we need to specify

α =

∫
S
B2 ; β =

∫
S
C2 (6)

for any S ⊂M4 near the boundary, X5 ≈ R×M4.
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Quantization of the bulk TQFT
(Following [Witten ’98])

Define operators measuring the flux

ΦRR(S) = exp

(
i

∫
S
C2

)
; ΦNS(T ) = exp

(
i

∫
T
B2

)
. (7)

They do not commute:

ΦRR(S)ΦNS(T ) = ΦNS(T )ΦRR(S) exp

(
2πi

N
S · T

)
. (8)

(Note: Commutativity ≡ non-intersection mod N .)

The inequivalent operators are parameterized by classes in
H2(M4,ZN ), so the group of operators acting on the Hilbert space
is the finite Heisenberg group W in

0→ ZN →W → H2(M4,ZN )NS ×H2(M4,ZN )RR → 0 . (9)
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Quantization of the bulk TQFT
(Following [Witten ’98])

Up to redefinitions W has a single representation. It can be
constructed starting from a maximal isotropic subspace I, i.e. a
maximal commuting set of operators Φ(w).

Define a = (aNS, aRR) ∈ H := H2(M4,ZN )NS ×H2(M4,ZN )RR,
and similarly b = (bNS,bRR). Introduce

a · b = aNS · bRR − aRR · bNS . (10)

Define I to be a maximal subgroup of H such that

a · b = 0 ∀a, b ∈ I . (11)

The global form of the boundary theory follows from a choice of I:
there is a unique state invariant under all Φ(w) with w ∈ I.

I fixes the familiar notions, such as the gauge group, but the
choice of I is more fundamental: it applies to 6d and class-S too.
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Reproducing the AST classification

The classification of [Aharony, Seiberg, Tachikawa ’13] can be
reproduced from this viewpoint [Tachikawa ’13]:

Consider a choice IT 2 ⊗H2(M4,ZN ) of I, with IT 2 a maximal isotropic
subgroup of H1(T 2,ZN ) = ZN ⊕ ZN . The conditions of maximality and
Dirac quantization in AST map to maximality and isotropy of IT 2 . (I.e.
this class of polarizations agrees precisely with the AST classification.)

Examples:

IT 2 = {(1, 0), (2, 0), . . . , (N − 1, 0)} 7→ SU(N)

IT 2 = {(0, 1), (0, 2), . . . , (0, N − 1)} 7→ (SU(N)/ZN )0

IT 2 = {a(N, 0) + b(0, N)} 7→ (SU(N2)/ZN )0
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Higher form symmetries

We can understand these choices of global form as the choice of
1-form symmetry in the theory [Kapustin, Seiberg ’14], [Gaiotto,
Kapustin, Seiberg, Willett ’14]:

The SU(N) theory has a ZN electric 1-form symmetry, counting
Wilson lines in the fundamental.

In the SU(N)/ZN theory we gauge this electric 1-form symmetry,
and a magnetic 1-form symmetry counting ’t Hooft loops emerges.

So in the holographic picture we encode the choice of global symmetry
by the boundary conditions in a N

∫
B2 ∧ dC2 topological sector.

This picture generalises, see for instance [Aharony, Tachikawa ’16] for
applications to discrete 0-form symmetries of N = 3 S-folds in d = 4,
[Bergman, Tachikawa, Zafrir ’20] for applications to generalised
symmetries of ABJM (N = 6 in d = 3), and [Apruzzi, van Beest, Gould,
Schäfer-Nameki ’21] for non-conformal cases.
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(Non)-generalisations

In the holographic approach we start seeing how the structure of
generalised global symmetries is associated with a TQFT in one
dimension higher.

There are some limitations of this viewpoint, though:
Not every theory of interest admits a tractable large N limit.
For instance the E6 (2, 0) SCFT in d = 6 is unlikely to be
tractable in this way.
Even theories that do are subtle. For example, the case of
N = 4 with algebra so(N) has not been worked out. Because
of the orientifold projection the B2 and C2 supergravity fields
are projected out, so reformulating Witten’s argument
verbatim seems to require some version of differential real
K-theory. I don’t know what the right differential generalised
cohomology theory is for N = 3 S-folds.
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Back to geometric engineering

Consider, as an example of a theory that cannot be understood
holographically, M-theory on C2/Γ. This gives rise to 7d SYM with
gauge algebra gΓ. The 1-form symmetry group of GΓ (the simply
connected form) is its centre:

Γ ⊂ SU(2) gΓ GΓ Z(GΓ)

ZN su(N) SU(N) ZN
Binary dihedral Dic(2k−2) so(4k) Spin(4k) Z2 ⊕ Z2

Binary dihedral Dic(2k−1) so(4k + 2) Spin(4k + 2) Z4

Binary tetrahedral 2T e6 E6 Z3

Binary octahedral 2O e7 E7 Z2

Binary icosahedral 2I e8 E8 1

Other global forms are possible, for instance SU(N)/ZN , which
has a magnetic 4-form symmetry.
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Where is the data for the global form?

The form of the singularity does not fully fix the global form of the
gauge group, only the algebra. Either:

There is a preferred global form of the gauge group
(alternatively, a preferred set of higher form symmetries).

Or there is some extra data that we need to specify when
constructing the string theory model.

In [IGE, Heidenreich, Regalado ’19] we argued that (like in holography) it
is the second option that is realised: the choice of global form for the
gauge group is encoded in a choice of boundary conditions (at infinity)
for the supergravity fields, and all possible global forms can be obtained
in this way. (Related work: [Del Zotto, Heckman, Park, Rudelius ’15],
[Morrison, Schäfer-Nameki, Willett ’20], [Albertini, Del Zotto, IGE,
Hosseini ’20], [Closset, Schäfer-Nameki, Wang ’20], [Del Zotto, IGE,
Hosseini ’20], . . . )
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Non-commutativity of fluxes in M-theory
Let us put M-theory onM11 = N10×R. We will try to understand
the Hilbert space H(N10), or more precisely its grading by flux.
This was done in [Freed, Moore, Segal ’06].

M-theory contains 3-form gauge fields C3. The magnetic charge is
measured by the topological class of C3. To measure the electric charge,
recall that in the Hamiltonian formulation of the theory the canonical
momentum ΠC3

conjugate to C3 is ?G4. This is what we integrate to
measure the electric charge. If we express states in H(N10) in terms of
their wavefunctions ψ(C3), then a state of definite electric charge is an
eigenstate of momentum:

ψ(C3 + λ) = e
2πi

∫
N10

Qeλψ(C3)

for all flat λ. Here Qe ∈ H7(N10) is the electric charge.

So we cannot simultaneously measure electric and magnetic charges, if
there are flat topologically non-trivial λ. This is the case iff
TorH4(N10) 6= 0.



Introduction Anomalies AdS/CFT M-theory The symmetry theory Conclusions

Non-commutativity of fluxes in M-theory
Let us put M-theory onM11 = N10×R. We will try to understand
the Hilbert space H(N10), or more precisely its grading by flux.
This was done in [Freed, Moore, Segal ’06].

M-theory contains 3-form gauge fields C3. The magnetic charge is
measured by the topological class of C3.

To measure the electric charge,
recall that in the Hamiltonian formulation of the theory the canonical
momentum ΠC3

conjugate to C3 is ?G4. This is what we integrate to
measure the electric charge. If we express states in H(N10) in terms of
their wavefunctions ψ(C3), then a state of definite electric charge is an
eigenstate of momentum:

ψ(C3 + λ) = e
2πi

∫
N10

Qeλψ(C3)

for all flat λ. Here Qe ∈ H7(N10) is the electric charge.

So we cannot simultaneously measure electric and magnetic charges, if
there are flat topologically non-trivial λ. This is the case iff
TorH4(N10) 6= 0.



Introduction Anomalies AdS/CFT M-theory The symmetry theory Conclusions

Non-commutativity of fluxes in M-theory
Let us put M-theory onM11 = N10×R. We will try to understand
the Hilbert space H(N10), or more precisely its grading by flux.
This was done in [Freed, Moore, Segal ’06].

M-theory contains 3-form gauge fields C3. The magnetic charge is
measured by the topological class of C3. To measure the electric charge,
recall that in the Hamiltonian formulation of the theory the canonical
momentum ΠC3

conjugate to C3 is ?G4. This is what we integrate to
measure the electric charge.

If we express states in H(N10) in terms of
their wavefunctions ψ(C3), then a state of definite electric charge is an
eigenstate of momentum:

ψ(C3 + λ) = e
2πi

∫
N10

Qeλψ(C3)

for all flat λ. Here Qe ∈ H7(N10) is the electric charge.

So we cannot simultaneously measure electric and magnetic charges, if
there are flat topologically non-trivial λ. This is the case iff
TorH4(N10) 6= 0.



Introduction Anomalies AdS/CFT M-theory The symmetry theory Conclusions

Non-commutativity of fluxes in M-theory
Let us put M-theory onM11 = N10×R. We will try to understand
the Hilbert space H(N10), or more precisely its grading by flux.
This was done in [Freed, Moore, Segal ’06].

M-theory contains 3-form gauge fields C3. The magnetic charge is
measured by the topological class of C3. To measure the electric charge,
recall that in the Hamiltonian formulation of the theory the canonical
momentum ΠC3

conjugate to C3 is ?G4. This is what we integrate to
measure the electric charge. If we express states in H(N10) in terms of
their wavefunctions ψ(C3), then a state of definite electric charge is an
eigenstate of momentum:

ψ(C3 + λ) = e
2πi

∫
N10

Qeλψ(C3)

for all flat λ. Here Qe ∈ H7(N10) is the electric charge.

So we cannot simultaneously measure electric and magnetic charges, if
there are flat topologically non-trivial λ. This is the case iff
TorH4(N10) 6= 0.



Introduction Anomalies AdS/CFT M-theory The symmetry theory Conclusions

Non-commutativity of fluxes in M-theory
Let us put M-theory onM11 = N10×R. We will try to understand
the Hilbert space H(N10), or more precisely its grading by flux.
This was done in [Freed, Moore, Segal ’06].

M-theory contains 3-form gauge fields C3. The magnetic charge is
measured by the topological class of C3. To measure the electric charge,
recall that in the Hamiltonian formulation of the theory the canonical
momentum ΠC3

conjugate to C3 is ?G4. This is what we integrate to
measure the electric charge. If we express states in H(N10) in terms of
their wavefunctions ψ(C3), then a state of definite electric charge is an
eigenstate of momentum:

ψ(C3 + λ) = e
2πi

∫
N10

Qeλψ(C3)

for all flat λ. Here Qe ∈ H7(N10) is the electric charge.

So we cannot simultaneously measure electric and magnetic charges, if
there are flat topologically non-trivial λ. This is the case iff
TorH4(N10) 6= 0.



Introduction Anomalies AdS/CFT M-theory The symmetry theory Conclusions

Non-commutativity of fluxes in M-theory

This can be restated in terms of the flux operators, as follows: for
every σ ∈ TorH6(N10;Z) = TorH4(N10;Z) there is a unitary flux
operator Φσ. Similarly for any
σ′ ∈ Tor(H3(N10;Z)) = TorH7(N10;Z).

These operators in general do not commute:

ΦσΦσ′ = e2πi L(σ,σ′)Φσ′Φσ

where L(σ, σ′) is the linking pairing on N10: choose n ∈ Z such
that nσ = ∂D. Then

L(σ, σ′) =
1

n
D · σ′ mod 1 .
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Non-commutativity of fluxes in M-theory

The pairing L(·, ·) is perfect, which implies that if
Tor(H3(N10;Z)) = Tor(H6(N10;Z)) 6= 0, then for each σ 6= 0
there is some σ′ such that L(σ, σ′) 6= 0, and thus

ΦσΦσ′ = e2πi L(σ,σ′)Φσ′Φσ 6= Φσ′Φσ .

What this all implies, it that whenever Tor(H3(N10;Z)) 6= 0 it is
not possible to simultaneously diagonalize all Φσ. In particular, it is
not consistent to take the simple “fluxless” choice Φσ = 1 for all σ.
We need to turn on some flux at infinity!
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Maximal isotropic subspaces

Despite the perhaps unfamiliar setting, the final algebraic structure
is the same as in holography: we have a Hilbert space, and a set of
non-commuting operators acting on it.

We can specify a state in the Hilbert space as usual: by choosing a
maximal subspace I ⊂ Tor(H3(N10);Z) such that the
corresponding group of operators {Φx} for x ∈ I is abelian, and
imposing that

Φx |0;L〉 = |0;L〉 ∀x ∈ I
In our M-theory setting, this corresponds to setting to zero on the
boundary as many fluxes as possible.
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Back to M-theory on C2/Γ

We want to consider M-theory on a spaceM11 = C2/Γ×M7

with Γ a discrete subgroup of SU(2). Let us apply our methods to
classify the space of possible theories for a fixed g.

We have that C2/Γ is a cone over S3/Γ, so in order to understand
the boundary conditions at infinity we want to quantize the flux
sector of M-theory on R× S3/Γ×M7.
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Back to M-theory on C2/Γ
Γ acts freely on S3, so π1(S3/Γ) = Γ. By Hurewicz’s theorem

H1(S3/Γ) =
π1(S3/Γ)

[π1(S3/Γ), π1(S3/Γ)]
= Γab .

The group Γab is easy to determine:

Γ ⊂ SU(2) gΓ Γab

ZN AN−1 ZN
Binary dihedral Dic(2k−2) D2k Z2 ⊕ Z2

Binary dihedral Dic(2k−1) D2k+1 Z4

Binary tetrahedral 2T E6 Z3

Binary octahedral 2O E7 Z2

Binary icosahedral 2I E8 1

(Notice that Γab = Z(GΓ), with GΓ the simply connected Lie
group with algebra gΓ.)
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(Notice that Γab = Z(GΓ), with GΓ the simply connected Lie
group with algebra gΓ.)
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Back to M-theory on C2/Γ

From here
H∗(S

3/Γ) = {Z,Γab, 0,Z} .
To make my life easier I will assume thatM7 is closed and has no
torsion in homology. Then Künneth’s formula implies

Tor(H3(M7 × S3/Γ)) = H2(M7)⊗H1(S3/Γ) = H2(M7)⊗ Γab

= H2(M7; Γab) .

and similarly

Tor(H6(M7 × S3/Γ)) = H5(M7; Γab) .

Given elements σa = a⊗ `a, σb = b⊗ `b, we have the linking form

L(σa, σb) = (a · b) LS3/Γ(`a, `b) .
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Back to M-theory on C2/Γ

It is not difficult to compute the linking form on S3/Γ, we find:

Γ GΓ Γab LΓ

ZN SU(N) ZN 1
N

Dic(4N−2) Spin(8N) Z2 ⊕ Z2

(
0 1

1 0

)
Dic(4N−1) Spin(8N + 2) Z4

3
4

Dic(4N) Spin(8N + 4) Z2 ⊕ Z2

(
1 0

0 1

)
Dic(4N+1) Spin(8N + 6) Z4

1
4

2T E6 Z3
2
3

2O E7 Z2
1
2

2I E8 0 0
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Back to M-theory on C2/Γ

Classification
The possible global forms of the d = 7 theories onM7 are given by
maximal commuting subspaces of H2(M7; Γab)×H5(M7; Γab),
with commutators as above.

This result agrees with what one obtains from applying the ideas in
[Gaiotto, Moore, Neitzke ’10], [Aharony, Seiberg, Tachikawa ’13].

An alternative derivation of this result can be obtained by thinking about
screening of line operators, closely following [Aharony, Seiberg,
Tachikawa ’13]. This was done in geometric language in [Del Zotto,
Heckman, Park, Rudelius ’15], where they introduce the defect group,
which in this case is

D =
H2(C2/Γ, S3/Γ)

H2(C2/Γ)
× H2(C2/Γ, S3/Γ)

H2(C2/Γ)

It is easy to show that H2(C2/Γ, S3/Γ)/H2(C2/Γ) = H1(S3/Γ) = Γab.
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The symmetry theory
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An effective 8d TQFT

The previous derivation was really looking to a modified asymptotic
structure.
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An effective 8d TQFT

The previous derivation was really looking to a modified asymptotic
structure. This suggests a strategy for deriving the TQFT
associated to the field theory: dimensional reduction on the link of
the singularity:
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The BF theory

We have already obtained part of the structure of this TQFT: we
know that in the full theory on S3/Γ×X8 there are
non-commuting operators wrapping t× σ2 and t′ × σ5, with
t, t′ ∈ H1(S3/Γ) = Γab and σi ∈ Hi(X

8). Their commutation
relations (on a spatial sliceM7 of X8) are

Φ(t× σ2)Φ(t′ × σ5) = e2πiL(t,t′)σ2·σ5Φ(t′ × σ5)Φ(t× σ2) .
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The BF theory (continued)

Fix Γ = ZN for concreteness. Then from the point of view of X8

we have ZN 2-surface operators and 5-surface operators whose
relative phase goes with the intersection number divided by N .
This can be represented as a

Stop = N

∫
X8

B2 ∧ dC5

topological action (as in [Witten ’98]).

The choice of global structure is a choice of gapped boundary conditions
for this TFT at “infinity”.
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Mixed anomalies
(Work in progress with F. Apruzzi, F. Bonetti, S. Hosseini and S. Schäfer-Nameki)

The 7d theory, in addition to the 1-form and/or 4-form symmetries
acting on Wilson lines / ’t Hooft surfaces, has a U(1)I continuous
2-form symmetry acting on instanton surfaces.

There is a mixed ’t Hooft anomaly between the U(1)I symmetry
and the 1-form symmetry, of the form

Sanomaly =

∫
X8

dC
(3)
I ∧ rg

P(B2)

2

with rgP(B2)/2 the fractional instanton number in the presence of
a background for the 1-form symmetry, and C(3)

I the background
for the instanton 1-form symmetry.

This can be derived by “reducing”
∫
M11

C3G4G4 + C3X8 on S3/Γ,
keeping track of the torsion sector. (See also recent work by [Cvetič,
Dierigl, Lin, Zhang ’21] for a different approach.)
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Differential cohomology
KK reductions beyond de Rham

Mathematically, we want to extract a (discrete) cohomology
invariant on d+ 1 dimensions from

∫
Link10−d(C3G4G4 + C3X8).

Tricky:
The effective coupling is continuously varying.
In the cases of interest G4 = 0 and C3 is not globally defined.

We can make sense of this by using differential cohomology (aka
Cheeger-Simons cohomology or Deligne cohomology), a way of
packing differential forms and cohomology classes together.

By means of this formalism we can derive the 7d result in the
previous slide and (for example) the much more subtle anomaly
theory in 5d for SU(p)q [Gukov, Pei, Hsin ’20]

S
(5d)
anomaly =

∫
X6

dC
(1)
I ∧

p(p− 1)

2 gcd(p, q)
P(B2) +

qp(p− 1)(p− 2)

6 gcd(p, q)3
B3

2 .
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Conclusions

In recent years developments in condensed matter, high energy
physics and mathematics (category theory, representation theory
and algebraic topology) have started converging onto a new
understanding of what “symmetry” means:

The symmetries (and anomalies) of a d-dimensional theory
originate on a (d+ 1)-dimensional TFT, with the field theory as a

boundary state.

String theory provides a beautiful geometrisation of these
developments. In some simple examples in 7d and 5d we could
derive systematically the symmetry theory from doing dimensional
reduction of the M-theory Chern-Simons sector on the link of the
singularity. We did not need any Lagrangian information about the
theory, only the geometry!
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What is this good for?

We often hear that string theory has no global symmetries.

Likely true, but putting it on spaces with boundaries reveals
very rich symmetry theories within!

A probe of the deeper structure of string theory (where do the
fields in string theory really live?).

A change on perspective on strongly coupled SCFTs: they
become boundary states of TQFTs that are (potentially) much
easier to characterise from the geometry.

A good probe of the structure of the field theories, without
requiring any Lagrangian description (for example, for probing
duality proposals).
Perhaps even better: a generalised form of the Landau
paradigm.
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Anomalies: vintage view AST

Review of anomalies (I)
Consider a (Lagrangian) theory T with some global symmetry G.
We can introduce a background connection AG for G, and
compute the path integral

Z(AG) =

∫
[Dψ]e−S(AG,ψ) (12)

where ψ are some fundamental fields. (Only the fermionic fields,
and the connection they couple to, matter for my discussion.)

Denote byM the space of all AG. We have an anomaly whenever
Z(AG) is not well defined as a function on the manifoldM/G:

Non-invariance under small loops (curvature) inM/G: local
anomaly.
Non-invariance under parallel transport for non-trivial loops in
M/G: global anomalies.
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Review of anomalies (II)
Ungappable fields only

If a field can get a mass without breaking the symmetry G (it is
gappable), then it can be integrated out without breaking the
symmetry, and can be ignored for the purposes of determining
anomalies.

This means that for Lagrangian theories anomalies are at most
phases: for any field ψ in a representation R, we can include an
extra field ψ̃ in a rep R (and with an action which is the conjugate
of that for ψ), and then the full matter content can be made
massive without breaking any symmetries. So

Z(AG) = Zψ(AG)Zψ̃(AG) = Zψ(AG)Zψ(AG) =
∣∣Zψ(AG)

∣∣2 .
(13)

Since the ψ + ψ̃ theory is gappable, we have that
∣∣Zψ(AG)

∣∣ is a
well defined function onM.
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Review of anomalies (III)

In general, Z(AG) is a section of some bundle overM/G. If the
bundle is non-trivial the theory is still consistent; we say that we
have a ’t Hooft anomaly, which may be local or global.

For
example, the SU(4)R symmetry of N = 4 SU(N) SYM has such
an anomaly in 4d (Tr(F 3

R) 6= 0), but the theory is fine.

What an anomaly means is that the symmetry G cannot be
gauged, since gauging involves integration of Z(AG) overM/G.
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Review of anomalies (IV)
The local anomaly

Local anomalies are easy to describe: the object that encodes the
curvature of Z(A) onM/G is the “anomaly polynomial”

Id+2 = ch(F )Â(R)|d+2 (14)

We will consider the case in which there are no local anomalies, so
that

Id+2 = 0 . (15)

Geometrically, Z(A) is a section of a flat line bundle onM/G.
How do we detect a possible global anomaly?
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The “traditional” global anomaly
Consider a symmetry transformation g : Rd → G. We impose that
g → 1 at infinity, so if gauged it leads to a proper gauge
transformation. The resulting set of transformations are
topologically classified by maps Sd → G up to continuous
deformations, i.e. by πd(G).

Now, for any choice of [g] ∈ πd(G), pick a representative g and
consider the family of (not pure gauge) connections

AG(g; t) = f(t)g−1dg (16)

for some smooth f(t) such that f(0) = 0 and f(1) = 1. This
defines a loop in the space of connections (modulo gauge
transformations). So there is a global anomaly if

Z(AG(g; 1))

Z(AG(g; 0))
=
Z(0g)

Z(0)
= eiA 6= 1 . (17)
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The “traditional” global anomaly: example

Consider for example the case in which the fermions are real. This
means that the mass coupling

mψψ = 0 (18)

does not break G, but it identically vanishes.
We can add an extra copy of the fermions, and introduce a mass
coupling

mψ1ψ2 6= 0 (19)

This implies that Z(AG)2 is well defined, so the anomaly is
Z2-valued (i.e. eiA = ±1 at most).
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The “traditional” global anomaly: example

An example of real fermions are 4d Weyl fermion ψ1 in the
fundamental of SU(2). This is a real fermion (the mass term is
allowed, but it identically vanishes), since the fundamental of
SU(2) is pseudoreal, and the Weyl spinor of
Spin(4) = SU(2)× SU(2) is pseudoreal.

Famously [Witten ’82], this system has a global anomaly:

Z(0) = −Z(0g) (20)

for [g] the non-trivial generator of π4(SU(2)) = Z2. This implies that the
theory becomes ill-defined when we try to gauge the SU(2) group:∫
M

[DA]Z(A)e−Tr(F 2) =

∫
M/G

[DA]K(1 + (−1))Z(A)e−Tr(F 2) = 0 .

(21)
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The mapping torus

Z(AG(g; 1))

Z(AG(g; 0))
= ind(DTd+1

) mod 2 (22)
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Other groups, other spacetimes

Note that from this point of view, we are only looking to what
happens to Sd, or equivalently a neighbourhood of a point. (We
are looking to anomalies which are “local” in spacetime.)

There can only be such anomalies when πd(G) 6= 0, and for d = 4
this is only the case for G = USp(n).

Could we have new anomalies once we consider more general
spacetime topologies? (These would be anomalies which are
“global” in spacetime.)
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The Atiyah-Patodi-Singer index theorem
η is very hard to compute, so computing η for all Wd+1 seems
hopeless. . .

But η has another beautiful property: it can be
computed by the Atiyah-Patodi-Singer index theorem whenever
there is a manifold Zd+2 such that δZd+2 = Wd+1:

ind( /DZd+2
) = η(DWd+1

) +

∫
Zd+2

Â(R) ch(F ) . (23)

Since the index is an integer, this leads to

exp(−2πi η(DWd+1
)) = exp

(
2πi

∫
Zd+2

Â(R) ch(F )

)
. (24)

The expression on the right hand side is the local anomaly
polynomial, so in the absence of local anomalies (easily checked, I’ll
assume it) we have that

exp(2πi η(DWd+1
)) = 1 (25)

whenever Wd+1 is a boundary.
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Anomalies and bordism
What this means is that if we have some manifold Zd+2 such that

∂Zd+2 = W
(1)
d+1 −W

(2)
d+1 (26)

then
exp(2πi η(D

W
(1)
d+1

)) = exp(2πi η(D
W

(2)
d+1

)) (27)

This is a huge simplification! For the purposes of anomalies any
two manifolds which can be connected via a third manifold are then
equivalent: W (1)

d+1 ∼W
(2)
d+1

This equivalence relation is known as bordism, and the resulting
equivalence class of manifolds is denoted Ωd+1.
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Some basic properties of bordism and η
The equivalence class Ωd+1 is an abelian group, under disjoint
union of manifolds:

We have that

e2πiη(DA)e2πi η(DB) = e2πi η(DA+B) (28)

so the global anomaly is a homomorphism

eeπiη : Ωd+1 → U(1) (29)

So, for example, if Ωd+1 = 0, the anomaly necessarily vanishes.
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Decorating bordism
In our applications we want to impose some extra structure on the
manifolds. For instance, if they must all carry a Spin structure the
bordism group is denoted by ΩSpin

d+1 .

We are interested in gauge theories. That is, in understanding the
partition function as a function of the connection on a principal
bundle PG on the manifold, for some Lie group G. This can be
probed by decorating the manifolds with maps Wd+1 → BG, with
BG the “classifying space of G”. Some examples

G BG

Z2 RP∞
Zn S∞/Zn
U(1) CP∞

In general, bordism groups of Spin manifolds Wd+1 decorated with
a map toM are denoted by

ΩSpin
d+1 (M) . (30)
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The strategy

The beauty of the Dai-Freed approach is that we can formulate
necessary and sufficient conditions for quantum consistency on any
manifold Xd for a theory with group G:

Construct all the bordism groups in one dimension higher with
the right structure. For instance ΩSpin

d+1 (BG).

The theory is anomaly free iff the e2πi η homomorphism gives 1
for every equivalence class in ΩSpin

d+1 (BG).

As mentioned before, a particularly important case is
ΩSpin
d+1 (BG) = 0. In this case the theory is automatically anomaly

free!

Otherwise, we need to find some generators of ΩSpin
d+1 (BG) on

which we can compute η. Not an easy task!
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Is this really an inconsistency?

What we really have if we have a “Dai-Freed anomaly” is that the
partition function depends on a choice of bulk.

Gauging amounts to summing over gauge-equivalent gauge
connections, which is hard to define if the phase depends on the
choice of bulk, but it is not an obvious inconsistency in itself.

It seems nevertheless natural to assume
that Dai-Freed anomaly-cancellation is
the right prescription once we couple to
gravity. Conjecturally:

Ωd(BG) = Ωd(BG) (31)

with Ω the bordism group generated by
generalised mapping tori.



Anomalies: vintage view AST

Is this really an inconsistency?

What we really have if we have a “Dai-Freed anomaly” is that the
partition function depends on a choice of bulk.

Gauging amounts to summing over gauge-equivalent gauge
connections, which is hard to define if the phase depends on the
choice of bulk, but it is not an obvious inconsistency in itself.

It seems nevertheless natural to assume
that Dai-Freed anomaly-cancellation is
the right prescription once we couple to
gravity. Conjecturally:

Ωd(BG) = Ωd(BG) (31)

with Ω the bordism group generated by
generalised mapping tori.



Anomalies: vintage view AST

Is this really an inconsistency?

What we really have if we have a “Dai-Freed anomaly” is that the
partition function depends on a choice of bulk.

Gauging amounts to summing over gauge-equivalent gauge
connections, which is hard to define if the phase depends on the
choice of bulk, but it is not an obvious inconsistency in itself.

It seems nevertheless natural to assume
that Dai-Freed anomaly-cancellation is
the right prescription once we couple to
gravity. Conjecturally:

Ωd(BG) = Ωd(BG) (31)

with Ω the bordism group generated by
generalised mapping tori.



Anomalies: vintage view AST

Generalised mapping tori and bordism

The following somewhat heuristic reasoning indicates that

Ωd(BG) = Ωd(BG) (32)

holds.

Note that in bordism

[X#Y ] = [X] + [Y ] (33)

so we can obtain generalised mapping tori by gluing arbitrary
generators to mapping tori.
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The (0, 2) viewpoint
It is straightforward to extend the previous discussion to the 6d
(0, 2) AN−1 theory. [Witten ’98] Holographically, the key term is

L = N

∫
AdS7

C3 ∧ dC3 + . . . (34)

which implies that C3 is the canonical momentum for itself:

[C3, C3] =
i

N
(35)

so quantum mechanically C3 = 0 is not a valid boundary condition.

The same arguments as before work basically unmodified. We end up
with the requirement of choosing a maximal isotropic subgroup of
H3(M6,ZN ).

WhenM6 =M4 × T 2 there is a trivial map to the previous discussion,
choosing one of the generators of H1(T 2,Z) as the “NS” direction and
one as the “RR” direction.
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