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1. Introduction
toward the unified theory 

string     open string closed string

Superstring theory ： the promising candidate for 
the unified theory of our world,  that is, 

all of interactions including gravity
and matter such as quarks and leptons, higgs,
and all of cosmological aspects.

Theory of Everything



Introduction   
We have already obtained lots of   
heterotic string compactifications 
and D-brane models,  which lead to  
SM gauge groups SU(3)xSU(2)xU(1) 

as well as its extensions
and three generations of quarks and leptons.

We have already lots of realistic massless spectra
through string compactifcations.



Introduction   
We have already lots of realistic massless spectra

through string compactifcations.

What we need are 
realistic Yukawa couplings  ⇒ quark, lepton  

masses, mixing, CP

other terms in Lagrangian of low-energy effective 
field theory

symmetries to control LEEFT



2. Couplings in LEEFT   
string (massless) modes 

CFT operators

OPE

3-point coupling   
Yukawa coupling



2. Couplings    
4-point coupling  

higher order couplings



2. Couplings    
explicit computations  

mode m may correspond to massless
or massive modes

intersecting D-brane models
Abel, Owen ‘04

heterotic string theory on orbifolds
Choi, T.K.  ‘08



2. Couplings    
explicit computations  

mode m may correspond to massless
or massive modes

This structure has been well-known for a long time, 
and many people have known already

Anyway, this structure is a typical character 
in string-derived low-energy effective field theory.

We would like to (re)study its implications.



2. Couplings    
Structure in couplings  

Another derivation from field thoery



2. Couplings    
string modes  ⇒ fields in 4+6 dimensions 

field theory in 4 + 6 dimensions 
KK decomposition

For example, 
massless modes on magnetized D-brane 

with torus, orbifold background



2. Couplings    
several magnetized D-branes  

two types of modes with different magnetic fluxes 
w.f. product expansion

Their product can be expanded by other modes
because 



2. couplings
3-point couplings   
The 3-point couplings are obtained by 
overlap integral of three zero-mode w.f.’s.

Yukawa couplings= expansion coefficients
See for explicit form,  

Cremades, Ibanez, Marchesano, ‘04
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Magnetized D-brane models
4-point coupling       Abe, Choi,T.K.,Ohki, 0903.3800

w.f. product expansions



Magnetized D-brane models
4-point coupling

w.f product expansions



Magnetized D-brane models
4-point coupling
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Magnetized D-brane models
Similar computation for higher order couplings

possibility for compact space 
other than torus orbifold
Honda, T.K.,Otsuka, arXiv:1812.03357



2. Couplings    
Many string compactifications lead to the 

following structure 

4-point coupling 
higher order couplings

symmetries of 3-point couplings 
⇒ symmetries of all higher order couplings 



2. Couplings    
Many string compactifications lead to the 

following structure 
4-point coupling 
higher order couplings

This structure appears for string perturbation.
What about non-perturbative effects ?
We have examples to satisfy this rule 

in D-brane instanton effects for unbroken symmetries.
We need more studies on non-perturbative effects.



2. Couplings    
Many string compactifications lead to the 

following structure 
4-point coupling 
higher order couplings
This structure has been well-known for a long time.

Although many people have known this, 
this is a typical character in string-derived LEEFT.
Maybe it is important to (re)study 

the implications of this structure among couplings.
I would like discuss them, and please tell me 
if you have any opinions about its implications.
One example is as follows.



2. Couplings    
T.K.,Otsuka, 2108.02700

4-point coupling 

phenomenological implications  

can be obtained by

Cf. minimal flavor violation scenario in SMEFT
D’Ambrosio,Giudice,Isidori,Strumia, ‘02



Standar Model Effective Field Theory
(SMEFT)   
Renomalizable SM Lagrangian

+ higher  dimensional operators                         

SM-gauge group invariant



Minimal flavor violation 
hypothesis in SMEFT    

D’Ambrosio, Giudice, Ishidori, Strumia, ‘02
In the limit that all of yukawa couplings vanish,
there are flavor symmetries

Higgs field is singlet
Yukawa couplings are spurions



MFV  hypothesis in SMEFT    
D’Ambrosio, Giudice, Ishidori, Strumia, ‘02

Ordinary Yukawa couplings are written in 
terms of these spurions.

Also higher order couplings are GF-invariant 
and can be written in terms of these spurions. 



MFV  hypothesis in SMEFT    
D’Ambrosio, Giudice, Ishidori, Strumia, ‘02

Also higher order couplings are GF-invariant 
and can be written in terms of these spurions. 

Flavor and CP violations are controlled by 
Yukawa couplings.



Stringy Couplings    
4-point coupling  

higher order couplings

These behaviors looks like 
MFV hypothesis.

symmetries of 3-point couplings 
⇒ symmetries of all higher order couplings 



Below compatification scale     
4-point coupling  

higher order couplings

In stringy computation, 
the cutoff scale is the compactification scale.

Below the compactification, 
(i) some modes become massive 
(ii) some fields develop VEVs



Below compatification scale     
(i) some massive modes

we integrate such modes      
we still obtain the structure

The effective cutoff scale is written by 
masses of such massive modes, and 

would be different from the compactification scale.



Below compatification scale     
(ii) some fields develop VEVS

we integrate such modes      

for unbroken symmetries 
we still obtain the structure

The effective cutoff scale
would be different from the compactification scale.



Couplings in string theory
MFV 

Yukawa couplings are spurions

In string theory, couplings depend on moduli. 
In a sense, couplings are spurions
if we ignore dynamics of moduli.

The symmetries of moduli control SMEFT.



Couplings in string theory
MFV 

Yukawa couplings are spurions

The symmetries of moduli control SMEFT.
The symmetries of moduli, under which couplings 

transform non-trivially, would be important. 



3. Modular symmetry
The symmetries of moduli, under which 
couplings non-trivially transform, 
would be important.

One example is the modular symmetry.

Recently, lots of studies have been done 
in the top-down (stringy) approach  

bottom-up approach
field-theoretical model building 



3. Modular symmetry
torus compactification

modulus  

Lattice vectors

copyright by my student (Tatsuishi)  



Modular symmetry
change of 
lattice  vectors
(cycle basis)

copyright by my student (Tatsuishi) 



Modular symmetry
Change of lattice vectors 

of cycle basis
SL(2,Z)

(homogeneous) 
modular symmetry

Modulus



Modular symmetry
When 

we obtain 

(imhomogeneous) Modular symmetry 
= SL(2,Z)/{I,-I}

remark  tau is the ratio of two basis vectors



Modular symmetry
generators of modular group   S and T

for tau



Modular symmetry
Generator   S and T 

algebraic relations

infinite number of elements



Modular symmetry
Generator   S and T 
for SL(2,Z)                 

it is identified as I=-I in modular group
algebraic relations of modular group

in finite number of elements
SL(2,Z)    double covering of modular group



Congruence subgroup

Ｓ，Ｔ are not included
Generator   S and T 
TN is included



Quotients

ΓN = S3, A4, S4, A5 for N=2,3,4,5

Δ(96), Δ(384) are also included in Γn
N =8, 16



Modular forms

w: modular weight

Γ(N) modular form 
S3,A4,S4,A5,
Δ(96), Δ(384), …

weight w must be even



Modular forms

modular group 
weight w must be even

SL(2,Z)  double covering of modular group
weight can be inter including odd 

SL(2,Z)  transformation of basis vector
Double covering of SL(2,Z)  weight can be 

half-integer          spinor in the complex plane



Example: magnetized D-brane  
Wave function and Yukawa couplings 

on T2 

on  T2/Z2 

Both wave functions have weight 1/2



couplings
3-point couplings   
The 3-point couplings are obtained by 
overlap integral of three zero-mode w.f.’s.

Yukawa couplings= expansion coefficients
See for explicit form,  

Cremades, Ibanez, Marchesano, ‘04
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Orbifold models 
without SS phase(=WL)

Abe, T.K., Ohki, ‘08
The number of even and odd zero-modes

We can also embed Z2 into the gauge space.

Orbifolding projects out adjoint matter fields.



Orbifold models with SS phase(=WL)
Abe,Fujimoto, T.K.,Miura, Nishiwaki, ‘13

The number of even and odd zero-modes



Example: magnetized D-brane  
Wave functions and Yukawa couplings have  

the modular weight ½.

They transform each other under the 
modular symmetry. 
That is the flavor symmetry, which also 
transform Yukawa couplings non-trivially.

Flavor groups are covering groups of 
S3, A4, S4, A5, Δ(96), Δ(384), PSL(2,7)
with center extensions.   Kikuchi, T.K.Uchida, ‘21    



Example: magnetized D-brane  
Wave functions and Yukawa couplings have  

the modular weight ½.

Why the modular weight ½ ?

maybe spinor representation, 

but not sure.



Modular symmetry  
Application of modular symmetry
in SMEFT  would be interesting.

T.K., Otsuka, 2108.02700
T.K., Otsuka, Tanimoto, Yamamoto, 2111.XXXXX



Generic compact space  
Generic 6-D compact space has many moduli,  

e.g. Calabi-Yau

For example,  holomorphic three-form 
is expanded by symplectic basis



Generic compact space  
CY 

For example,  holomorphic three-form 
is expanded by symplectic basis

We can change the basis,    
Symplectic modular

symmetry
Strominger, ’90

Candelas, de la Ossa ‘91 



Generic compact space  
CY 

moduli are defined by 

XI projective coordinate on special geometry
ui inhomogeneous coordinates 

Strominger ‘90, Candelas, de la Ossa ‘91
Any way, the modular symmetry is 

quite rich.
Kahler moduli also have symplectic modular 
symmetry 



Simple example  
Generic symplectic modular symmetry is 

complicated. 
T6/ZN

3 diagonal Kahler moduli + dilaton

A1, A2, A3 : untwisted matter fields corresponding 
to Kahler moduli, T1, T2, T3



Simple example  
T6/ZN

3 diagonal Kahler moduli + dilaton

there are SL(2,Z)a  a=1,2,3 corresponding to 
each Ta       

superpotential

there is a permutation symmetry of Ta, Aa, i.e. S3



Simple example  
T6/ZN

3 diagonal Kahler moduli + dilaton

superpotential
there is a permutation symmetry of Ta, Aa, i.e. S3

Moreover, this system has the S4 symmetry, 
Ta, Aa are S4 triplet,  S: S4 singlet    for y = const

Ishiguro, T.K.,Otsuka, 2107.00487



Simple example  
T6/ZN

3 diagonal Kahler moduli + dilaton

superpotential
Moreover, this system has the S4 symmetry, 
T2, Aa is S4 triplet,  S: S4 singlet  for y=const

Ishiguro, T.K.,Otsuka, 2107.00487



Simple example  
T6/ZN

3 diagonal Kahler moduli + dilaton

superpotential
A1, A2, A3 S4 triplet 

10D N=1 SUSY   4D N=4 SUSY
SU(4) R symmetry   
4= 1+3     4D gauge multiplet + A1, A2, A3 

Ishiguro, T.K.,Otsuka, 2107.00487



Simple example  
T6/ZN

3 diagonal Kahler moduli + dilaton

there are SL(2,Z)a  a=1,2,3 
superpotential
Symmetry 

SL(2,Z)xSL(2,Z)xSL(2,Z)xS4  for Y = constant
Sp(8,Z) symmetry is broken by yukawa coupling 

intersection,
Yukawa is spurion -> Sp(8,Z) remains



Generic compactifictiaon
Full Sp modular symmetry
sub-symmetries G remain for y=constant.

Yukawa couplings are spurions under Sp/G, 
and transform non-trivially under Sp/G.

We would like to study its implications 

Generic symplectic modular symmetry is 
complicated and involves more rich structure.

That is interesting.



4. Comment on kinetic terms 
The simplest computation of kinetic terms 
for matter fields is the dimensional reduction 
from higher dimensional super YM theory.

For example, torus background wit magnetic fluxes

Kahler metric  for Ai



4. Comment on kinetic terms 
super YM theory.
DBI action describes the dynamics of open string 
on  the D-brane 

For example, torus background with magnetic fluxes

Corrections to Kahler metric

in the small flux expansion
Abe, Higaki, T.K., Takada, Takahashi, 2107.11961



4. Comment on kinetic terms 
DBI action  

Corrections to Kahler metric

in the small flux expansion
Abe, Higaki, T.K., Takada, Takahashi, 2107.11961

This result is not exact, we have more corrections 
including higher orders of M, O(M4), O(M6), ……

Full results can be written by a simple function
or not ?



Summary  
We have studied the low energy effective field theory 

derived from string compactification.
Many compactifications lead the rule 

This structure  would be important, 
e.g.  from the viewpoint of MFV scenario in SMEFT.

Yukawa couplings are spurions.
The symmetries, which transform non-trivially 

Yukawa couplings, would be important, 
e.g. modular symmetries including Sp symmetries.  
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