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The Upshot

In this talk | discuss one of the recent Machine Learning approaches to
obtain numerical approximations to Ricci flat Calabi-Yau metrics.
Instead of approximating the Kahler potential, we approximate the metric
directly by an array neural networks. We apply this approach to the
quartic K3, the Dwork quintics and Tian-Yau manifold.
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Calabi-Yau manifolds

Calabi-Yau
manifold

In string compactifications one is

interested in obtaining low energy
effective field theories with some
remnant supersymmetry

Total Space-time (10D)

Our usual 4D
space-time




Calabi-Yau manifolds

The total parameter space of a CY threefold:
- hP1 (M) dimension of the Kahler moduli space.

- h2’1(/\/l) dimension of the Complex structure
moduli space.

- Calabi-Yau threefolds come in mirror pairs (M, M"),
satisfying

hl’l(./\/l) _ h2’1(./\/l/) h2’1(./\/l) _ hl,l(M/)

In simple terms, complex structure and Kahler
structure get interchanged. This is the basic idea
behind Mirror Symmetry.
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Calabi-Yau awesomeness!
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Calabi-Yau manifolds

A (compact) Calabi-Yau manifold of complex dimension 7 is a Kdhler manifold (M, g, J) satisfying any
of the following equivalent properties:

- The first Chern class of M is zero.
- M has a Kahler metric with vanishing Ricci curvature.
- M has a nowhere vanishing holomorphic n-form.

- M has a Kahler metric with local holonomy SU(n)



Calabi-Yau Manifolds

Some Examples: Calabi-Yaus constructed hypersufaces in projective
spaces

-K3 (Fermat Quartic): Zf T Zg T Zél T Zj =0C P’ ,

5 5 5 5 5 4
-Fermat Quintic Z] T2 tZ3t2Z3 +2Z5 = OCP

-Dwork 215 T 225 - 235 = ZE + 255 — Stpz1z0z32425 = 0 C P* | @ # 1
i IP)3 3 0 1 714, 23 C!t_iij,'ZjZk — 0 :
-Tian Yau P31l o 3 1 — BYk wiwjw, = 0,
_ - X:—18 ,yl_]ZI_VVj — O .
Pl o 0 0 o 1 1 ]%P
-Schoen - Pl 1 1 19 P2 1 1 0 0 1 0
P2l 3 0 ~ P2 1 1 0 0 1 O
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Machine Learning Calabi-Yau Metrics

Donaldson’s Algorithm

A valid Kahler potential can be obtained generalizing the Fubini-Study metric to polynomials of a higher
degree 1 i

KW®)(z,2) = Elog(haﬁsa%)
where the Sa form a basis for holomorphic polynomials over M up to degree k. The task is to find a
Hermitean matrix A% for every k, that gives the best approximation to the Ricci flat metric.

Take N} to be the dimension of {s,} and define

Nk SO‘EB _
H Q — dV 1 — —

Now take A%’ = (Hoég)_1 and proceed iteratively until the metric stabilizes. In this manner one obtains the
“balanced metric” at degree k.

As the polynomial degree increases the metric 9ab obtained from the Kahler potential with the balanced
metric approaches the desired Ricci flat metric.



Machine Learning Calabi-Yau Metrics

To date we do not have an analytic expression for a Ricci flat Calabi Yau metric.
With the exception of K3. Kachru, Tripathy, Zimmet’'20°21

-The metric can be accessed numerically.

Headrick, Wiseman’05 Anderson, Braun Karp, Ovrut’10
Headrick, Nassar’13, Cui, Gray’19

-More recently, Machine Learning techniques have been used for this

endeavour. Ashmore, Ovrut, He’19 Anderson, Gerdes, Gray, Krippendorf, Raghuram, Ruhle’20
Douglas, Lakshminarasimhan, Qui’20, Jejjala, DM, Mishra’20, Ashmore, Riuhle’21

Ashmore, Deen, He, Ovrut’21, Larfors, Lukas, Ruhle, Schneider’21

Being a Kéhler manifold, the Hermitian metric 9 can be derived from a Kahler potential

Gup = 0uOp K (2%, 2°)

Simplest case: The Fubini-Study

The Kahler form is given by: . metric in the ambient space
: _
J=—g,pdz" N 2" 1

The Ricci tensor is obtained as restricted to the hypersurface

R_ 5 = 0,05 log detg (CICY).



Machine Learning Calabi-Yau metrics

» Output
'~Z-’3 "’ 0= O'(wkik + bk) L
-t} A paradigm in ML are Artificial Neural Networks: arrays of

artificial neurons that emulate the human brain.
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Machine Learning Calabi-Yau Metrics

A Hermitian metric can be written in the LDL decomposition.
g=LDL"

With [, a lower triangular matrix with 1s in the diagonal and D = diag(el, €9, ..., 6n) e;, > 0

Approximate the metric as a combination of neural networks

I1

ANNI1 1 Eigenvalues

ANN2 L entries

1
Since the eigenvalues have to be positive. we take exponentiate the outputs of ANN1 €; = EX],O(O,E )) and
use the outputs of ANN2 to construct L in K3 for example,

I _ 1 0
B 0%2) —I—iogz) 1



Machine Learning Calabi-Yau Metrics
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In all of the experiments

I1

Lp—1

three activation functions

Logistic

were used

Sigmoid, ReLU and Tanh.
The data was prepared in

Mathematica and the

neural networks were

lemented in PyTorch.

imp




Machine Learning Calabi-Yau Metrics

The loss function is constructed for the full network ensemble, and it is minimized for 9 approaching the Flat
metric. It is constructed based on three properties

1 VO|Q J"
-Local Flatness o = / dVolg : =
Volgo J m Vol; Q2 AQ
1/n
Vol
Kihlerity K= —— / dVoly |k|?, |k|* =) |kapel®,  kabec = Oa8bz — Opgac -
VOIQ M A bz

1
-Patch Matching Z Z / dVol,; [M(m',I'; m, 1)|?,
M

m’ I” m.I#£Am’, VOIQ

With the total Loss function being

Loss = a0 + axk + ot



Point Sampling

Braun, Brelidze, Douglas, Ovrut’07
Building Lines in " Anderson, Braun Karp, Ovrut'10

Ashmore, He, Ovrut’19

Start with selecting random pointsin [—1, 1]2(”+1)and use each

point to build a complex vector v € C™* Discard those vectors
with ‘U‘ > 1

Project v onto the surface of the unitary sphere §27+1

As points in [P} the rescaled s are uniformly distributed with
respect to the SU(n + 1)symmetry of the Fubini-Study metric in P

Use any two unitary ‘s to construct a line

Lij:{?}i—F)\?}j‘)\EC}

The sample points in the hypersurface of interest are obtained as

Lij N {p =0}



Point Sampling

Slight Modification for Tian-Yau Manifold

-Sample points in each Ps identically as before.

Lij:{vi—l—)\vj\)\EC}CIP’?

-Use the points to obtain a line and a plane
PO | | P Pijk:{vi—l—&vj—l—ﬁvkm,ﬁe(f}C]P";’

-Take the points in the Tian-Yau manifold as

|
-
—

L;i U Prim) N{p1 = D2 = p3
(plus P3 « P3)

N

Sampling points in the torus | 1) |

20 25+ 25 =0 C P? —

For the torus we have six patches ot| a2 :
fixed upon choice of the affine | |

Im( z1)
Im( z1)

coordinate and the dependent |
coordinate. For each point in the B
torus there is a preferred patch.

I
N




Point Sampling

Sampling points in the Fermat Quintic

Similarly as in the torus case the different patches (z, j) are labeled in terms of the affine
coordinate 2; = 1 and a dependent coordinate Z; obtained from P = 0

There are 20 patches, all equivalent up to permutations of coordinates.

3

Im(z4)

S, s :::'-I.-‘.' A
y TR R :‘-"-5 a3 1 ".P&",-




Point Sampling

Sampling points in the Dwork Quintic ¢ = —1/5
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Point Sampling

Sampling points in the Tian-Yau manifold

We considered the following equations defining the Tian-Yau manifold

1

pr=g(a0 + 2+ 25 + =)
1
P2 = 325 + 25 + 27 + %)

P3 = 2125 + 2226 + 2327 1+ 2428

For z; € IP’? 1 =1,...,4 and z; € IP’% 1 = 9, ..., 8 The patches for this case are given in terms of five
indices (¢, j;k,l,m) corresponding to two affine coordinates and three dependent ones that solve for

p1 =p2 =p3 =0

This leads us to 192 patches. Considering all symmetries leaving the defining equations invariant, we are
left with 4 inequivalent classes of patches. In general, the metrics in inequivalent patches do not agree up

to permutations.



Point Sampling

Numerical Integration

- Patches intersect over zero measure sets, hence numerical integration would be a sum over points
in different patches if these would be uniformly distributed with respect to the Calabi-Yau metric.

- The sampling method provides points uniformly distributed with respect to the Fubini-Study
metric restricted to the Calabi-Yau.

- Numerical integration requires to weight the sample points in order to obtain meaningful
quantities

dVOlQ
dVol 7) = dVol 2
/_/\/( Vo Q2 f(Z7 Z) /j\/l Vo FS (dV01F5> f(Z7 Z)

) = 3 ~ dVolg(pr)
/M dVolg f(2,z) = N ;w(pl)f(l?z) w(py) = dVolFQS(;l)



Calabi-Yau metrics (results)

The Torus

Predicted Flat Metric

True Flat Metric
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Calabi-Yau Metrics (Results)

The Quartic K3
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We reach sigma values after training of 0.18. Ignoring the kaehlericity loss and the mu loss this could be
compared k=6 in Donaldson’s algorithm.



K3 :

Calabi-Yau Metrics (Results)

K3: Test of Symmetry Learning

21+ 25+ 23+ 2 =0CP

Zy = wp zp; with pe{l1,2,3,4} and w, € Z4y

T . Z1 b= ’iZl,ZQH—ZQ,ZBH_Z.Zg.

—— Tanh RelLU

Extent of Symmetry Learnt (log scale)
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Calabi-Yau metrics (results

The Fermat Quintic

Training with 0 only -

Training with 1 only _

Training with K only .
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Calabi-Yau metrics (results)

The Fermat Quintic o ) K
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Calabi-Yau metrics (results)

The Dwork Quintic ) = —1/5 © U K
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Calabi-Yau metrics (results)

Tian-Yau

For this example we need to modify the architecture as we need to predict simultaneously the metric on
four different inequivalent patches. As a preliminary approach we consider the same architecture as
before and train on sigma only.
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Calabi-Yau metrics (results)

Tian-Yau

Issues:

-Need to train on full Loss, include other measures beyond one patch class. (Results coming soon)

-We do not know the Kahler class. As we approach zero net loss we are getting closer to a flat Kahler
metric but we do not know which one. (Possible issues with sampling)

Main Interest:

-Quotienting Tian-Yau by a freely acting Zs

(21, 22,23, 24) — (217062227062370424)

(Z57 26y <75 ZS) — (Z57 8243 CV2Z77 CVQZS)

With & a cubic root of 1, leads to a three generation heterotic model. Symmetry simplifies Yukawa
coupling computations (as well as field normalizations). This could be an interesting setting to check how

good the metric approximations must be in order to provide reliable Yukawa info. Greene, Kirklin, Miron. Ross’86

Candelas, Kalara’87



Comments on Ricci-Flow

Finding the Ricci-flat metric in the class of g amounts to solving the Monge-Ampere equation
(9 +00¢)" = e g"

For smooth and real ¢ and e/g" = QAQ

One can think of ¢ to have some parametric dependence ¢(\), in such a way that forsome \ = T
one obtains the desired Ricci flat metric. This can be thought of as a flow in the space of metrics
correlating suitably between g(A)and f(A).

This reminiscent of Ricci flow. Ricci flow is the gradient flow of the Einstein-Hilbert action and is
governed by
dg

6’>\__R

-Short term existence of solutions for real manifolds.

-Long term existence guaranteed for Kahler manifolds.

Ricci flow starting from an arbitrary Kéhler metric converges to the Ricci-flat metric in its class.

The Kahler class is preserved throughout the flow. N
ao



Comments on Ricci-Flow

-Solving Ricci flow implies obtaining a family of metrics, instead of just the desired Ricci-flat one.
-Numerical solutions usually involve iteration errors that propagate as \ evolves.

-One needs a (positive) representative of the Kahler class to start with.

curv

X2



Comments on Ricci-Flow

Instead of looking for a Ricci flow solution, one could instead for a “potential” that has the Ricci-flat metric as a
minimum.

Consider for example Perelman’s entropy functional
Flg.p)= | due™ (R+ISP) = [ dm (R+I91P).

Where physical speaking we have introduced the dilaton f. Here f is responsible for keeping the differential volume fixed.

The variation of the entropy functional gives the following modified Ricci flow

0
Together with — (due™1) =
ogether wi 8)\( pe ) =20

_f:—Af—R *k

At first glance one might solve * for an initial condition on the metric, but then, looking at the evolution of the dilaton,
one observes that it follows a backward heat Equation, with no solution guaranteed for an initial condition.



Comments on Ricci-Flow

The previous system can be recast back to the original Ricci flow with a decoupled equation for the dilaton

0 .
ﬁgaﬁ — _Rlcagv

0 . _ :
oo/ = ~Af VPR

This system has a solution for initial g(0) and final f(T') in the interval |0, T]

Along the flow, & grows monotonically

d
—F = 2/ dp e |Ric,; + Vo Vi f|?.
d\ M

Inspired by this we can think of loss functions that get minimized for the Ricci-flat metric. One possibility could be

Loss = / dp e 7 |Ric gz + Vo Vi f]°.
M

Having a neural network approximating 9 and keeping [ as obtained from the constraint on differential volumes.



Comments on Ricci-Flow

Consider the metric Ansatz
g(A) =g(0)+ (1 —e Mgnn

With gnn a neural network approximation metric, A\ proportional to the number of training epochs and g(0)
a Kahler metric. In addition to the new loss function that would replace the sigma loss one must include the
Kahler as well as the patch-matching losses.

i ( Drawbacks:
a:‘ 7
: ANN NN -Away from 0, the metrics are not strictly
, / Kahler. In fact we observe that as training
: evolves, f starts diverging at some points.

-Flow can be corrected adding an extra
penalty for increasing f.




Final Remarks

-A need for interpretability: Can we deduce analytic expressions for the Calabi-Yau metrics?

-As symmetry learning hints to the best architecture/activation function. Can we use symmetries for
architecture selection?

-The structure of our approach suggests that it can be extended to other Calabi-Yau manifolds, in

particular: CICYs, toric constructions.  g.. Fabian's talk
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