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We consider generalizations of Euclidean resolvent estimates, in a
Fredholm framework... relevant for e.g. wave equation asymptotics.
Indeed, one motivation is understanding waves on Kerr spacetimes.

These are already interesting in explaining the Euclidean
phenomena: can one phrase the ‘limiting absorption principle’ as a
Fredholm problem?

Structure:
e Euclidean problems/geometric generalization
@ Microlocal Fredholm analysis

o Low energy limit

As an illustration, consider Kerr spacetime, which is an
asymptotically Minkowski Lorentzian spacetime.
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Kerr spacetime is a family, depending on two parameters (m, a), of
Lorentzian metrics on

R x (0,00), x S?

satisfying Einstein's equation with vanishing cosmological constant.
There is a black hole event horizon (cf. domain of dependence) at
r = r_ for a suitable r_ (concretely r_ =2m if a = 0), and one is

most interested in the behavior of waves in r > r_ — ¢, € > 0 fixed.
Also, t is a suitable modification of the standard ‘time’ function t

that is equal to the standard t for r large.

The basic stability question is what happens if one perturbs initial
data for the (nonlinear!) Einstein's equation around those of Kerr.
There is a subtlety as these need to satisfied compatibility
conditions, called the constraint equations.
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Figure: Part of the Penrose diagram of a Kerr spacetime: the event
horizon ™, null infinity .#7, timelike infinity i™ and spacelike infinity i°.
We show the domain {t > 0} inside of M° in gray, the Cauchy surface

o =171(0), and a level set of t,; t, = t — (r +2mlog(r — 2m)), r large.
In this picture r is an angular variable around i™; r = r_ is the horizon
HT, r=o00is T, r=r_ —cis the solid boundary near H*.
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While for positive cosmological constant A the analogous nonlinear
stability statement has been proved in joint work with Hintz in
2016, the strongest A = 0 nonlinear black hole result is the very
recent work of Klainerman and Szeftel under polarized axial
symmetry assumptions, plus the even more recent
Dafermos-Holzegel-Rodnianski-Taylor stability result when the
limiting spacetime is Schwarzschild.

Thus, in A = 0 in full generality (no additional symmetry
assumptions) only linearized results are available. These include
linearized Schwarzschild, plus Teukolsky in the slowly rotating case:
Dafermos, Holzegel and Rodnianski (2016, 2017), as well as the
linearized stability result of Andersson, Backdahl, Blue and Ma
(2019) also in the slowly rotating case, with also a more restricted
general result, under a strong asymptotic assumption.

Recall that at the linearized level pullbacks by diffeomorphisms
correspond to Lie derivatives along vector fields.
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Theorem (Linearized stability of the Kerr family for small a;

informal version, Hafner-Hintz-V., arXiv 2019, Inv. Math. 2021)

Let b= (m, a) be close to by = (my,0); let o € (0,1). Suppose

h, k € C=(Xg; S? T*X3) satisfy the linearized constraint
equations, and decay according to |h(r,w)| < Cr=1=2,

|k(r,w)| < Cr=2=%, together with their derivatives along rd, and
0w (spherical derivatives) up to order 8. Let g denote a solution of
the linearized Einstein vacuum equations on ) which attains the
initial data /1, k at Y o. Then there exist linearized black hole
parameters b = (m, a) € R x R? and a vector field V on Q, lying
in a 6-dimensional space, consisting of generators of spatial
translations and Lorentz boosts, such that

g =gu(b)+Lvegpr+ &,

where for bounded r the tail &' satisfies the bound
lg'| < Gt~ 1=9% for all n > 0.
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The key analytic ingredients in the proof of this theorem are the
main subject of this talk. The reduction is via a Fourier transform
along the orbits of the ‘time’ Killing vector field 0.

In fact, it is better to consider t, =t — (r + 2mlog(r — 2m)) for r
large as the input variable of the Fourier transform (rather than t);
this will be reflected in our discussion below.

While | shall discuss scalar problems, the extension to systems is
straghtforward. What is not straightforward is to deal with the
additional degeneracies caused by the highly nontrivial 0-energy
nullspace. Indeed, that is why this Kerr paper is much longer than
the sum of the two papers on which the main part of this talk is
based!



We consider H = Ag + V where
@ gy be the Euclidean metric,
o g metric on R” with g — gy € S7%, 6 > 0 (i.e.
gii — (80)ij € S7%), g positive definite,
o VeSS real (ImV € S™17% is OK for Fredholm.)
The space of symbols S™(R?), which is also used to capture
asymptotically Euclidean behavior in geometric problems is: Vo

IDga(z)| < Calz)™ 1 (z) = (14|22
Different way of writing it (away from origin): Vk
’Wl c. Wka(z)\ < Ck<2>m, Wg = ZiéDsz' (1)

If we compactify R” to a ball, via the polar identification of
R™\ {0} with (0,00)x x S"7, rw — (1/r,w), taking

R™ = (R"U[0,00)x x S"1)/ ~,

then this can be rephrased: for all W, € V(R") (vector fields
tangent to the boundary), (1) holds.
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Let
@ go be the Euclidean metric,
o g metric on R” with g — gy € S7%, 6 > 0 (i.e.
gi — ()i € S7%), g positive definite,
o VeSS real

Then

H=0g+V
is self-adjoint on L?(R"), so H — A\, A € C\ R is invertible, e.g. as
a map

H—X:H = H 72! s 1eR.

Moreover, the spectrum in (—oo,0) is discrete, with 0 a possible
accummulation point (e.g. Coulomb-like potentials); [0, c0) the
essential spectrum.

Here: H*! = (z)='HS, H® standard Sobolev space.
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While H — A will no longer be invertible between the weighted
Sobolev spaces when A > 0, the limiting absorption principle states
that
(H—(A£i0)™! = lim(H - (A% €))7t
e—0
exist e.g. as limits in L(HS2/ H=/"), 1> 1 1< —1 (so
[—1>1).

Under stronger assumptions (Coulomb!), V € $7279, § >0, 0 is
not an accummulation point of the spectrum, and under stronger
restrictions on /, I, in particular | — I' > 2, (H — (A £i0))71 is
uniformly bounded between the weighted Sobolev spaces as A — 0
if there are no O-energy bound states (L2 nullspace of H) or
half-bound states (to be discussed). (Jensen, Kato,...,Fournais,
Skibsted, Wang, Derezinski, Bony, Hafner, Rodnianski, Tao,
Miiller, Strohmaier, and N-body analogues, e.g. Wang, Skibsted,
Tamura, as well as geometric microlocal analysis parametrix
construction: Guillarmou, Hassell, Sikora)
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What kind of structure of Euclidean space is involved? One way to
address is via geometric generalizations.

A conic metric, with cross section a Riemannian manifold (Y, h), is
the metric gg = dr? 4 r>hon R} x Y. Thus R"\ {0} is a cone over
S"—1; the results presented here generalize to asymptotic cones,
where ‘asymptotic’ is in a similar sense as in Euclidean space.

Notice that general conic cross sections can be locally identified
with subsets of S"~! thus all function and (e.g. differential)
operator spaces can be transported from R” to general asymptotic
cones.

Again, we can compactify; then the asymptotic cone is the interior
of a compact manifold with boundary X, so in a neighborhood of
OX =Y, Xis[0,€)x x Y, and then with x =1/r,

dx? h

0=—7 1=
& x4 x2
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Can one make the function spaces more precise? For instance, can

one fit these into a Fredholm (here typically invertible) statement?
Such frameworks are necessarily sharp in a sense.

Here one necessarily must have different domains/target spaces for
H — X for the cases producing the inverses (H — (A +i0))~1. What
are these?

It is useful to write the spectral parameter as A\ = o2, with
Imo > 0 corresponding to A € C\ [0,00), and let

P(o)=H—0° =0z +V — 02
We then are interested in

P(o +i0)~t = lim P(o +ie)7%;

e—0

note that the limits with A &= /0 become +o + /0 for o € R.
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Recall:
P(o 4 i0)™! = lim P(o + ie)™*
e—0
exist e.g. as limits in L(HS=2/ H=/"), 1> 1 1< —1 (so
=1 >1).

This is not a sharp estimate, even though it is sharp on the
standard scale of weighted Sobolev spaces; the point is that this is
not a satisfactory scale.

One way to see this is the 1 + ¢, € > 0, order of loss of decay (cf.
one derivative loss in hyperbolic PDE relative to elliptic ones); one
expects the loss of 1 order if done right.

Moreover, one would like to have a more precise description of the
output of P(c)~! for well-behaved inputs: should have the
outgoing spherical wave form e/?/%(...) where x = r~!, r the
‘radius’. | will often use p = r below to avoid notational conflicts.
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The reason for the non-optimality is that phase space behavior is
not taken into account.

To see what this looks like, consider scattering pseudodifferential
operators of which P(o) is an example. These have a symbol
calculus both in the position z and in the momentum (.

The class W™/ of scattering pseudodifferential operators of
Melrose, going back to Shubin and Parenti in non-geometric
settings, arises from quantizing symbols S™/ satisfying

D2 D a(z,¢)| < Caplz)! ") 17,

here m is the differential and / is the decay order.

One quantizes these symbols as

(Op(a)u)(2) = (27) " / /e a(z, ) u() d2' dC,

R2n
interpreted as an oscillatory integral.



These pseudodifferential operators form a filtered *-algebra, so

° wm,l o Wm’,l’ C wm—l—m’,l—l—l’

° (\Um,l)* — wm,l
Just as importantly, one can compute the composition and adjoints
modulo ‘trivial’ operators in W27 which map any weighted
Sobolev space to any other.

For instance, to leading order, both in ( and in z decay,

Op(a) Op(b) is given by Op(ab)! One calls [a], the class of a in
Ssml/sm=LI=1 "the principal symbol o, (A) of A= Op(a). A'is
elliptic if o, j(A) is invertible.

Moreover, U™/ L(H*>", Hs_m’r_’) for all s,r € R. Indeed, one
could define H>" is consisting of tempered distributions u for

which Au € L2 for some elliptic A € WS,

This transports to asymptotic cones just like the Sobolev spaces.
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Now, A — ¢ has principal symbol |¢|?> — o2, which vanishes for
real o at certain (finite) ¢; the issue is that this persists as
|z| = o0, so in the spatial decay sense this operator is not elliptic.

Note that if we conjugate A — o2 by the Fourier transform, this is
a statement about the standard principal symbol since { becomes
the ‘base’, and —z the ‘dual’ variable.

Since the principal symbol is real, within the characteristic set
(where the principal symbol vanishes) we expect propagation as for
the wave equation.
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To see this more precisely, use conic coordinates, x = p~! = |z| 71,

y coordinates on the cross-section, so the conic metric is

dx> h
dp? +ph——+ =3
X

h a metric on the cross section. So, if we write covectors as

dx d
(dz = T2 5> + m y
the dual metric function is
CP =72+ |l

this, minus o2, is the principal symbol of P(c):

p(o) = 7%+ |plf — 0.
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As in wave propagation, within the characteristic set, p(c) = 0,

the key issue is the behavior of the Hamilton flow. This is the flow
of Hp, or more precisely of

Hy, = pH, = x 1 H,.

@ p is homogeneous of degree zero in the spatial (x) dilations,
so H, is homogeneous of degree —1; the above rescaling gives
a homogeneous degree zero vector field.

@ Here the H,-flow has a source/sink structure, with 7 = 4o,
w = 0 being the source (+ if o > 0) or sink (— if o > 0).

o (0,0) is the phase-space location of e~"?/% and (—o,0) of
eiO’/X:

(x°Dy F 0)eTo/X =0, xD,eTi?/* =0,

and the principal symbols of these two operators are

TF o, U

@ eTi?/% are the incoming (—) and outgoing (+) spherical wave
phase functions.
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Away from the source/sink, Hérmander's propagation of
singularities theorem applies (as extended by Melrose, but this
particular case reduces to the standard one via the Fourier
transform). This gives estimates like

”B]_U||H*,r < C(||B2UHH*J + HB3PU|

H*,r+1 + HU| H*,—N)

as illustrated.

v/BQN
WE'(By) |
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At the source/sink:
@ Byu can be dropped if r > —1/2 (a threshold value);

@ if r < —1/2 then one can propagate estimates in this form
from a punctured neighborhood of the radial set to the radial

set itself. ////
% / / / L =A/R*
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Issue: being Fredholm needs estimates for both P and P* on dual
spaces, so

e for both we need high regularity (as measured by decay) at
either the source or sink,

@ which means low regularity at the same place for the dual,
@ so we need r > —1/2, say, at source, r < —1/2 at the sink,

@ so the decay order needs to be variable.
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There are such variable order (or anisotropic) Sobolev spaces
(going back to Unterberger, Duistermaat...), and indeed can be
defined via variable order A, essentially Op({(¢)*(z)"), but

r =r(z,() is a homogeneous degree 0 function in z: u € H>" if
for such elliptic variable order A, Au € L2. (Other uses of variable
order spaces: Anosov dynamical systems: Faure, Sjostrand,
Dyatlov, Zworski, Guillarmou...)

The results then extend to:

Theorem (V, 2017)

P(o): {u€ H> : P(o)ue H™>*} — Ho=2rH

is invertible (in particular Fredholm), provided r is monotone along
the H,-flow in the characteristic set, < —1/2 at one of the
source/sink, > —1/2 at the other.
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P(o): {u€ H*" : P(o)ue H* >} — Hs—2rH1

is invertible (in particular Fredholm), provided r is monotone along
the Hp-flow in the characteristic set, < —1/2 at one of the
source/sink, > —1/2 at the other.

We do not need to make sense of the limiting absorption principle
resolvent as a limit; it is an honest Fredholm problem, thus sharp!

Here we can make r high everywhere except in a small
neighborhood of the sink, say.

But shouldn't we be able to make it high everywhere but at the
sink? Here comes 2-microlocalization.

Informally, 2-microlocalization blows up (resolves) the phase space,
and a version goes back to Bony in the 80s.
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Informally, 2-microlocalization blows up (resolves) the phase space.

@ Here we blow up the outgoing radial set, which creates a new
boundary hypersurface.

@ Symbolic orders, as well as Sobolev space orders, arise from
order of vanishing at the boundary hypersurfaces.

@ Thus, we have three orders now: differentiability, general
decay (call it sc-decay) and outgoing decay (call it b-decay):
Hs,r,l

e We can have r > —1/2, | < —1/2 constant.

Theorem (V., 2019)

P(O’) . {U c Hs,r,l : P(U)U e Hsf2,r+1,l+1} N Hsf2,r+1,l+1

is invertible.
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More precisely, what are these spaces?

One can conjugate

P(o) = e "7/*P(a)e’/x.

When applied to ‘nice’ functions (e.g. Schwartz), the expected
behavior of P(c)~1 is e/”/* times an expansion, namely
conormality, which for P(c)~! means just conormality!

The effect of the conjugation is, at the phase space level,
e replacing 7 by 7 — o (leaving x, y, u unchanged),
@ thus moving the outgoing radial set, with 7 = —0o, to the zero
section,

@ so the new principal symbol is

(r =0+ [uP = 0? = 2+ [P — 2r0.
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The blow up of the zero section 7 =0, p =0, at x =0, in
projective coordinates is

T p

™= =, Ub = —-

X X

But
e T is the principal symbol of x?D, = —D,, pof xD, = %Dy,
@ so 1, corresponds to xDy = —pD,, uy to Dy,

@ regularity with respect to 7, up is conormality, or b-regularity
(regularity with respect to vector fields tangent to the
boundary x = 0).

With this insight, we can think of phase space in a different way,
starting with the b-phase space and blowing up the corner.
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With this insight, we can think of phase space in a different way,
starting with the b-phase space and blowing up the corner.
Advantage:

@ Symbolic regularity is unaffected by the blow-up of a corner,
so we get a non-classical version of Melrose’s
b-pseudodifferential algebra,

@ which gives a good symbol calculus,

@ except at finite 1y, .-

@ But for that one can proceed as in other b-situations,

considering the normal operator, i.e. a model at the boundary!
Since P(o) is like

-1
(x*Dy)? + (xDy)? — 20 (X2DX 4l 5 x)

and the first two terms are O(x?) as b-differential operators, the
normal operator is

_1
—20(X2DX 4l > x).
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ff = [FT*ox X; 0px]

bT*[]XX Oh bT*(‘)XX

I’T*OX

Figure: The second microlocal space, on the right, obtained by blowing
up the corner of 2T*X, shown on the left.




Second microlocalization
0000000e0000

The normal operator of P(c) is

-1
—20(X2DX + in > x).

Factor out —2x:

n—1
D, +i )
a(x +1 >

( n .n—1>
I
O\ Tp 2 )
1
U(Tb—15>

after weights are taken into account, so invertible as long as not
borderline, which means [ # —1/2.

Mellin transform

or really

The propagation estimates still hold, so one has a Fredholm theory,
proving the main theorem!
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The high energy version, i.e. o] — oo holds via ‘standard’
semiclassical rescaling.

The low energy version, ¢ — 0, is more delicate as can be seen by
the vanishing of the normal operator (but not the whole operator)
at o =0.

This low energy analysis requires yet another blow up at

o = 0,x =0, but then it gives uniform results on the resolved
spaces Hyes. If n >3, P(0) invertible on the approrpiate spaces, it
implies a uniform estimate

10+ o)) ull pssei-10 < Cll(x + o)) P(o)ull o252,

where a € (I +1— "2 [+ 14 252), | < —1/2, r > —1/2,
s=r—1+1.

In combination, this gives the analytic framework for linearized
Kerr stability, as in the recent work with Hafner and Hintz.
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Th, b

by Hb /

Ne———

Figure: The resolved b-cotangent bundle on the left, and its scattering-b
resolution on the right obtained by blowing up the corner x/o =0 at
fiber infinity (nearest horizontal edges) of the resolved b-cotangent
bundle. At the pseudodifferential operator level the symbolic calculus
works at resolved b-fiber infinity which is the top (as well as bottom!)
face on both pictures, as well as new face on the right picture, which
corresponds to rescaled sc-decay.
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Theorem (V., 2019)

Let |I' + 1| < 52, and suppose that P(0) : H>o%" — Ho0:00./'+2
has trivial nullspace, an assumption independent of I' in this range.
Suppose also that either r > —1/2, | < —1/2, or r < —1/2,
I>—1/2.

There exists o9 > 0 such that

5 : s,rl . p s—2,r+1,/+1 s—2,r+1,/+1
P(o):{ue H:D' - P(o)u e H: } = HS
is invertible for 0 < |o| < 09, Imo > 0, and we have the estimate

10+ o) ull s < ClIO+ o)) T Po)ull ys2rrnisn

for

n—2 n—2
e(1+1-2"% 141 )
« (—i— 5 + 1+ 5
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Thank you!
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