Rooted Clusters for Graph LP Algebras "Bases for Cluster Algebras" at Casa Mathemática Oaxaca (joint work with Esther Banaian, Sunita Chepuri, and Sylvester W Bhang)

Snake Graphs
Rooted Clusters for Graph LP Algebras
"Bases for Cluster Algebras" at Casa Mathemática Oaxaca
(joint work with Esther Banaian, Sunita Chepuri, and Sylvester W Zhang)

There are many types of algebras that arse as generalizations of cluster algebras.

LP algebras ${ }^{[2]}$ are one such generalization, where the hallmark binomial exchange relations of ordinary cluster algebras are replaced by irreducible polynomials.
[1] "Cluster Algebras I-IV", Fomin \& zelevinsky
[2] "Laurent phenomenon algebras", Lam \& Pylyavskyy

Why study LP algebras?

- Some interesting combinatorial recurrences occur as exchange relations of LP algebras, including the Gale-Robinson sequence, the Somos sequences ($n \leq 7$). and the cube recurrence.
- Some LP algebras anise naturally as coordinate rings of electrical Lie groups.
- Other generalizations of cluster algebras, like Chekhov-Shapiro algebras, appear as special cases.
- Some of the structural features of cluster algebras extend to LP algebras, including the Laurent Phenomenon.

A natural Question: What can we say about positivity?
[1] an example appears in "Laurent Phenomenon algebras"

Graph LP algebras ${ }^{[1]}$ are a subclass of $L P$ algebras ${ }^{[2]}$ with a nice combinatorial definition in terms of graphs.

If we want to eventually think about positivity for LP algebras, we might start by studying Graph LP algebras where we can take advantage of this more concrete structure.

To define Graph LP algebras, weill need descriptions of:

- cluster variables
- clusters
- exchange relations
[1] "Linear Laurent Phenomenon Algebras", Lam \& Pylyavskyy
[2] "Laurent Phenomenon Algebras", Lam \& Pylyavskyy

Given a simple graph G with vertices labeled by $[n]=\{1, \ldots, n\}$, we can define the cluster vanables in terms of nested collections of venex subsets.

Given a simple graph G with vertices labeled by $[n]=\{1, \ldots, n\}$, we can define the cluster vanables in terms of nested collections of venex subsets.

Non-Examples:

X no pairs of subsets I_{i}, I_{j} that contain adjacent vertices, unless $I_{i} \subseteq I_{j}$ or $I_{j} \subseteq I_{i}$

X no pairs of subsets symmetric difference

Given a simple graph G with vertices labeled by $[n]=\{1, \ldots, n\}$, we can define the cluster vanables in terms of nested collections of venex subsets.

Examples:

$\{1\},\{1,3\},\{1,3,4\},\{1,2,3,4\}$
$\{2\},\{1,2\}$
$\{2\},\{3\},\{4\}$
\checkmark all of these are valid nested collections

Given a graph Γ with vertices labeled by $[n]$, each connected vertex subset $I \subseteq V(\Gamma)$ corresponds to a cluster variable $Y I$.

For each $i \in[n]$, there is an additional cluster variable X_{i}

EXIT

has cluster variables:

$$
\begin{aligned}
& X_{1}, X_{2}, X_{3}, X_{4}, \\
& Y_{1}, Y_{2}, Y_{3}, Y_{4}, \\
& Y_{12}, Y_{23}, Y_{24} \\
& Y_{123}, Y_{124}, Y_{234} \\
& Y_{1234}
\end{aligned}
$$

Given a graph Γ with vertices labeled by $[n]$, each connected vertex subset $I \subseteq V(\Gamma)$ corresponds to a cluster variable Y.

For each $i \in[n]$, there is an additional cluster variable X_{i}.

EXIT

Mole: For disconnected I, weill define Y_{I} as

$$
Y_{I}=Y_{I_{1}} \cdots Y_{I_{K}}
$$

where I_{1}, \ldots, I_{k} are the connected components of I

In general, the collection of all cluster vanables of Γ is

$$
\left\{X_{i}\right\}_{i \in[n]} \cup\left\{Y_{I}: I \leq n \text { is connected }\right\}
$$

A graph Γ with n vertices has clusters of size n of the form

$$
\left\{X_{i_{1}}, \ldots, X_{i_{k}}\right\} \cup\left\{Y_{S}: S \in S\right\}
$$

S is a maximal nested collection of subsets on $[n] \backslash\{i, \ldots, i k\}$

Examples \& Non-Examples of maximal nested Collections:

maximal
on $\{2,3,4\}$

Rooted Clusters

Given a tree Γ, choose a root v.
We can think of Γ as a poset, with v as the maximal element and cover relations given by the edges of Γ.

$V=1$

$v=2$

$v=3$

$v=4$

Let $I_{\leq x}^{v}=\{$ elements $\leq x$ in the pose with maximal element $v\}$
Then each v corresponds to a unique rooted cluster $e_{v}=\left\{I_{\leq x}^{v}\right\}_{x \in[n]}$ Weill often abbreviate $I_{\leq x}^{y}$ as just I_{x}.

Rooted Sets
A set S is rooted with respect to a maximal nested collection I if there exists some $v \in S$ such that for all $i, j \in S$,
$I_{i} \leq I_{j} \Leftrightarrow$ the path from i to v passes through j

All sets are rooted with respect to a rooted cluster.
(just take r to be the root!)

Rooted Sets
A set S is rooted with respect to a maximal nested collection I if there exists some $v \in S$ such that for all $i, j \in S$,
$I_{i} \subseteq I_{j} \Leftrightarrow$ the path from i to v passes through j

Other clusters may have some sets that are rooted with respect to them and some that are not.
$\{1,2,3\}$ is rooted with respect to e. (take $v=2$)

Rooted Sets
A set S is rooted with respect to a maximal nested collection I if there exists some $v \in S$ such that for all $i, j \in S$,
$I_{i} \subseteq I_{j} \Leftrightarrow$ the path from i to v passes through j

Other clusters may have some sets that are rooted with respect to them and some that are not. $\{2,4,5\}$ is not rooted with respect to e.

To define a Graph LP algebra, we also need some definition of an exchange relation.

In fact, there are two types of exchange relations.
(1.) We can exchange X_{i} with $T_{S \oplus i}$ for i\& S if $S \oplus i$ is compatible with 8 this is the connected component of $\mathrm{Su}\{i\}$ that contains i.

$$
e=\left\{Y_{3}, Y_{13}, Y_{123}, X_{4}\right\}
$$

$$
e^{\prime}=\left\{Y_{3}, Y_{13}, Y_{123}, Y_{n 31}\right\}
$$

To define a Graph LP algebra, we also need some definition of an exchange relation.

In fact, there are two types of exchange relations.
2. We can exchange $Y_{S \oplus i}$ with $Y_{S \oplus j}$ for $i, j d S$ and $i \neq j$, if $S \oplus i$ is compatible with $S \backslash\{S \oplus j\}$.

$$
e=\left\{Y_{3}, Y_{13}, Y_{123}, X_{4}\right\}
$$

$$
e=\left\{Y_{3}, Y_{2}, Y_{123}, X_{4}\right\}
$$

The precise exchange relations require some notation that were not going to define.

However, I will include them just in case you're curious:
Lemma: (Lam-Pylyavskyy, 2016)

$$
\begin{aligned}
& X_{i} Y_{S \oplus i}=\frac{\sum_{j \not S i} P_{S}^{i j} X_{j}+\sum_{j \in S_{i}} P_{S}^{i j} A_{j}}{Y_{S \Theta i}} \text { for } 1 \notin S \\
& Y_{S \oplus i} Y_{S \oplus j}=\frac{Y_{S i j} Y_{S}+\left(P_{S}^{i j}\right)^{2}}{Y_{S \Theta_{i}} Y_{S \Theta_{j}}} \text { for } i, j \not S \text { and } i \neq j
\end{aligned}
$$

The stony so far...
Given a simple graph Γ with vertices labeled by $[n]$, the associated Graph LP algebra is defined over the ground ing $\mathbb{Z}\left[A_{1}, \ldots, A_{n}\right]$ and we have the dictionary:
vertex i of $\Gamma \quad$ cluster variable X_{i}
connected subset $\longleftrightarrow Y_{s}$

$$
S \subseteq V(\Gamma)
$$

a nested collection $\rightleftarrows a$ cluster $\left\{x_{i 1}, \ldots, x_{i k}\right\} \cup\left\{Y_{s}: s \in B\right\}$ of venex subsets
$\underset{\substack{\text { vexations } \\ \text { relange }}}{\text { exchange }} \quad \longleftrightarrow \quad \begin{aligned} & X_{i} \text { for } Y_{S \oplus i} \\ & Y_{S \oplus j} \text { for } Y_{S \oplus i}\end{aligned} \quad$ (as described) $Y_{S \oplus j}$ for $Y_{S \oplus i}$

Conjecture: (Lam-Pylyvaskyy, 2016)
Every cluster variable of A_{r} can be written as a Laurent polynomial with positive coefficients in terms of any cluster.

Natural Question: What tools could we use to approach this conjecture?

One idea- maybe we can draw on the observation, made by Lam and Pylyvaskyy, that $A_{p_{n}}$ can be identified with the ordinary cluster algebra of type A_{n-1}.

Here's the basic idea:

Γ

Observe: Arcs on the surface that arenit compatible with the triangulation correspond to incompatible vertex subsets of Γ.

For cluster algebras of type An, there are many combinatorial gadgets that can be used to prove positivity.

"T-paths"
(Shifter)
Hyper T-paths for Rooted Clusters: ar Xiv 2107. 14785

"Snake Graphs"
(Musiker, Schiffler,)
Williams

The only thing I'm going to say about T-paths is that we proved:
Theorem: (Banaian - Chepuri-K - Zhang, 2021)
Let Γ be a tree and e be a rooted cluster on Γ.
If $S \subseteq V(\Gamma)$ is connected, then

$$
Y_{S}=\sum \omega t(\alpha)
$$

where the sum is over complete hyper T-paths \propto for S.

Corollary: (Banaian-Chepuri-K.-Zhang, 2021)
For any $S \subseteq V(\Gamma)$, Ms can be written as a Laurent polynomial with positive coefficients in terms of any rooted cluster e.
and if you'd like to know more, you can look at arxiv 2107. 14785!

Snake Graphs

Each crossing of γ is encoded by a square tile:

the + indicates that the tile orientation matches the surface. We can also draw it with the opposite orientation.

Snake Graphs

Each crossing of γ is encoded by a square tile:

[1] "Positivity for Cluster Algebras from Surfaces": Musiker, Schiff(er, \& williams

Snake Graphs

Each crossing of γ is encoded by a square tile:

We then glue tiles together, using alternating tile orientations, in the order of the crossings of γ.

Theorem: (Musiker-Schiffler-Williams, 2011)
Consider a surface with triangulation T and $\gamma \notin T$. Let $O_{\gamma, T}$ be the Snake graph corresponding to γ. Then

$$
x r=\frac{1}{\operatorname{cross}(T, r)} \sum_{P} x(P)
$$

where the sum runs over perfect matchings of $G_{\gamma_{1}}$.

$$
Y_{2}=\frac{1}{Y_{1} Y_{3}}\left[Y_{123}+Y_{3}+Y_{1}\right]
$$

For the rest of the talk, weill consider trees. Now, vertex subsets may have more than two neighbors and we can have hyperedges in Γ^{\prime}.

Γ

Γ^{\prime}

Why trees?
We can take some inspiration from the path graph...

Let's construct G_{4} for this cluster.
$\bigcup_{\text {snake graph }}$ for $\{4\}$
We choose an incompatible neighboring set, Y_{12}, and a vertex 2 in that set that's adjacent to 4 .

Let

$$
B:=\left\{\begin{array}{l}
\text { leaves } ; \text { of } \Gamma^{\prime} \text { such that } i \rightarrow 4 \\
\text { passes through } 2
\end{array}\right\}=\left\{1^{\prime}, 3^{\prime}\right\}
$$

$E:=\left\{\right.$ all other leaves of $\left.\Gamma^{\prime}\right\}=\{4\}$

Then look at the collection of path graphs $P_{i, j}$ where $\left.i \in B=\left\{1_{1}^{\prime},\right\}^{\prime}\right\}$ and $j \in E=\left\{4^{\prime}\right\}$ and construct corresponding triangulated polygons $T_{i, j}$.

Then look at the collection of path graphs $P_{i, j}$ where $\left.i \in B=\left\{1_{1}^{\prime},\right\}^{\prime}\right\}$ and $j \in E=\left\{4^{\prime}\right\}$ and construct corresponding triangulated polygons $T_{i, j}$.

Then look at the collection of path graphs $P_{i, j}$ where $i \in B=\left\{1,3^{\prime}\right\}$ and $j \in E=\left\{4^{\prime}\right\}$ and construct corresponding triangulated polygons $T_{i, j}$.

Then look at the collection of path graphs $P_{i, j}$ where $\left.i \in B=\left\{1_{1}^{\prime},\right\}^{\prime}\right\}$ and $j \in E=\left\{4^{\prime}\right\}$ and construct corresponding triangulated polygons $T_{i, j}$.

The weight on this virtual edge is determined by a condition based on the labels of the separated arcs

Then look at the collection of path graphs $P_{i, j}$ where $i \in B=\left\{1,3^{\prime}\right\}$ and $j \in E=\left\{4^{\prime}\right\}$ and construct corresponding triangulated polygons $T_{i, j}$.

We then construct component snake graphs as usual and glue them to obtain the composite snake graph, G_{4}.

When we identify two vertices with the same label that have different edges in the same direction, that vertex picks up a + .

A vertex with $K "+" s$ is allowed to have valency anywhere from 1 to $K-1$.

and we get the expansion $Y_{4}=\frac{1}{Y_{12} Y_{123}}\left[Y_{1}^{2}+Y_{1} Y_{123}+Y_{1234}\right]$

To see the other possible type of valency requirement in the composite snake graph, weill look at another cluster.

$$
e=\left\{Y_{4}, Y_{3}, Y_{1}, Y_{123 V}\right\}
$$

Let's Construct G_{2}.
Choose incompatible neighbor 1 , so $B=\left\{1^{\prime}\right\}, E=\left\{3^{\prime}, 4^{\prime}\right\}$.

When we identify two vertices with the same label that are incident to different diagonals in this way, we decorate that vertex with $l-1$, where l is the number of neighbors of i in I_{i}.

Here,

$$
\begin{aligned}
& I_{2}=\{1,2,3,4\} \\
& \ell=3
\end{aligned}
$$

Lemma: (Banaian-Chepuri-K - Zhang, 2022+)
Let I be any maximal nested collection on a tree Γ. Then for any $i \in V(\Gamma)$,

$$
Y_{i}=\frac{1}{\ell\left(G_{i}\right)} \sum_{p} \omega t(p)
$$

Where $\ell\left(G_{i}\right)$ is the product of the diagonal labels of G_{i} and the summation is over all allowed matchings.

Next, we would like to construct $G s$, where $S=\left\{s_{1}, \ldots, s_{k}\right\}$ is a connected vertex subset.

One strategy for constructing Y_{s} is to construct and glue together the singleton snake graphs $G_{s_{1}}, \ldots, G_{s_{k}}$.

One helpful fact -
Proposition: (Banaian-Chepun- K - chang, 2022+)
If j is a neighbor of i, then G_{i} contains a unique edge $i-j$.

In our first example,

In our first example,

In our first example,

Which we glue together along the 2-4 edge:

In our second example, what if we wanted to construct $G_{\{1,2\}}$?

Now, Y_{1} is already in our cluster so we cart really construct " G_{1} ".

Instead, we: remove the diagonal Y_{1} and everything on the "opposite" side of it from the internal edge $Y_{I_{2}}=Y_{1234}$.

- reduce the valence of the vertex 2 that was incident to the diagonal Y_{1} by one.

In our second example, what if we wanted to construct $G_{\{1,2\}}$?

Now, Y_{1} is already in our cluster so we cant really construct " G_{1} ".

Instead, we: remove the diagonal Y_{1} and everything on the "opposite" side of it from the internal edge $Y_{I_{2}}=Y_{1234}$.

- reduce the valence of the vertex 2 that was incident to the diagonal Y_{1} by one.

In our second example, what if we wanted to construct $G_{\{1,2\}}$?

Instead, we: remove the diagonal Y_{1} and everything on the "opposite" side of it from the internal edge $Y_{I_{2}}=Y_{1234}$.

- reduce the valence of the vertex 2 that was incident to the diagonal Y_{1} by one.

Theorem: (Banaian-Chepuri-K.- Zhang. 2022t)
For any maximal nested collection \mathcal{I} and rooted set S,

$$
Y_{s}=\frac{1}{l\left(G_{s}\right)} \sum_{p} w t(P)
$$

where G_{s} is the snake graph obtained by gluing.

Corollary: (Banaian-Chepuri-K. - Bhang, 2022+)
For any maximal nested collection τ and rooted set S, Is can be expressed as a laurent polynomial in I with positive coefficients.

Wrapping up loose ends...

In general, we know how to:

- Glue G_{i} and G_{j} when j is the only vertex that covers i in P_{I}.
- "Adjoin" sets from \mathcal{I}.

In progress:

- Gluing for weakly rooted sets (and beyond?)
vertices i,j meet the condition for being in a rolled set OR are both in some $I \in \mathcal{I}$.
- Another method of constructing Gs ("growing snakes")

This has some advantages \& some disadvantages compared to the gluing method.

Thanks!
(and HAPPY BELATED 60 ${ }^{\text {th }}$ BIRTHDAY to Professor Bernard Lecerc!)

$$
A_{\text {ppendix }}\binom{\text { exchange relation }}{\text { notation }}
$$

The actual exchange relations require a little bit more notation to state.

Let $S_{i}:=\left\{S_{u}\right\}$
$S \oplus i$ be the connected component of Si containing i
$S \Theta_{i}:=S_{i} \backslash(S \oplus i)$ ie, the connected components of S that do not Contain i.

The actual exchange relations require a little bit more notation to state.

Let $S_{i}:=\left\{S_{u}\right\}$
$S \oplus i$ be the connected component of $S i$ containing i
$S \Theta_{i}:=S_{i} \backslash(S \oplus i)$ ie, the connected components of S that do not contain i.

$$
\begin{aligned}
& i=4 \\
& S=\{1,5,6\}
\end{aligned}
$$

The actual exchange relations require a little bit more notation to state.

Let $S_{i}:=\left\{S_{u}\right\}$
$S \oplus i$ be the connected component of $S i$ containing i
$S \Theta_{i}:=S_{i} \backslash(S \oplus i)$ ie, the connected components of S that do not contain i.

$$
\begin{aligned}
& i=4 \\
& S=\{1,5,6\} \\
& S_{i}=\{1,4,5,6\}
\end{aligned}
$$

The actual exchange relations require a little bit more notation to state.

Let $S_{i}:=\left\{S_{u}\right\}$
$S \oplus i$ be the connected component of $S i$ containing i
$S \Theta_{i}:=S_{i} \backslash(S \oplus i)$ ie, the connected components of S that do not Contain i.

$$
\begin{aligned}
& i=4 \\
& S=\{1,5,6\} \\
& S_{i}=\{1,4,5,6\} \\
& S \oplus i=\{4,5,6\} \\
& S O i=\{1\}
\end{aligned}
$$

Let $P_{S}^{\text {is }}:=\left\{\begin{array}{l}\text { verkx non-repeating paths from } i \text { to } j \text { whose } \\ \text { intermediate vertices are in } S\end{array}\right.$

Then define $P_{S}^{i j}:=\sum_{p \in p_{S}^{i j}} Y_{S \backslash\{k \in p\}}$.

EXIT

$$
S=\{1,2,3,4\}
$$

$$
P_{\{1,2,3,4\}}^{3,6}=Y_{12}+1
$$

