Operations in Cluster theory 00000

Triangular Bases for Strata of Algebraic Groups

Fan Qin

Shanghai Jiao Tong University

Bases for Cluster Algebras, 2022.09

Outline

Overview

- Toy model
- Main Results
- 2 Triangular Bases
 - Definition
 - Properties
- Operations in Cluster theoryFreezing
 - Coefficient Change

4 Applications

Triangular Bases

• Work with $\mathbb{k} = \mathbb{C}$ (or $\mathbb{C}[q^{\pm \frac{1}{2}}]$). Toy model:

•
$$G = SL_2 := \{g = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} | \Delta_{12,12}(g) = 1\}$$

- $\mathbb{C}[G] = \mathbb{C}[\Delta_{1,1}, \Delta_{1,2}, \Delta_{2,1}, \Delta_{2,2}]/(\Delta_{1,1}\Delta_{2,2} = 1 + \Delta_{1,2}\Delta_{2,1})$
 - Basis:{mono. in $\Delta_{1,1}, \Delta_{1,2}, \Delta_{2,1}$ } \cup {mono. in $\Delta_{2,2}, \Delta_{1,2}, \Delta_{2,1}$ } (cluster monomials)

•
$$G^{w_0,w_0} := \{g \in SL_2 | \Delta_{1,2}(g) \neq 0, \Delta_{2,1}(g) \neq 0\}$$

[FZ02] Fomin-Zelevinsky invented cluser algebras to study

- total positivity [Lus94]
- <u>dual canonical bases</u> **B**^{*} of quantum groups [Lus90, Lus91][Kas91]

Expect:

- for many varieties \mathcal{A} from Lie theory, $\Bbbk[\mathcal{A}] = \overline{\boldsymbol{U}}$ (or \boldsymbol{U})
- $\bullet \ \Bbbk[\mathcal{A}]$ has a basis: analog of B^* , contains all cluster monomials.

FZ-Conj. [FZ02] (Kac-Moody N^w [Kim12][GLS13][GY16])

 \forall quantum coord. ring $\Bbbk[N]$, quantum cluster monomials $\subset \mathbf{B}^*$.

Proof: [Qin20b] \mathbf{B}^* is the common triangular basis \implies FZ-Conj.

- Symmetric [Qin17], [KKKO18] (symmetric Kac-Moody);
- All cases [Qin20b]. (p-canonical bases [McN21])

- G: connected, simply connected, linear algebraic group
- $G^{u,v} = B_+ u B_+ \cap B_- v B_-$ double Bruhat cell
- (Quantized) coordinate ring $\Bbbk[G^{u,v}] = U$ [BFZ05][GY20]
- $\mathbb{C}[\text{double Bott-Salmeson cell}] = \boldsymbol{U}$ [SW21]
- $\mathbb{C}[SL_n] = \overline{U}$ [FWZ20]

Result 1 [Qin22]

 $\Bbbk[G^{u,v}]$ and $\mathbb{C}[\text{double Bott-Salmeson cell}]$ possess the common triangular bases. The bases are positive when the Cartan datum is symmetric.

Result 2 [Qin22]

 $\mathbb{C}[G] = \overline{U}$, and the statements as in Result 1 are still true.

Conjecture

- Quantized $\Bbbk[G] = \overline{U}$.
- Its common triangular basis is the global crytal basis [Kas93].

Overv	view
000	

Triangular Bases

Operations in Cluster theory

Applications

Convention

- A seed $\mathbf{t} = (B, (x_i)_{i \in I})$:
 - $I = I_{uf} \sqcup I_f$ (unfrozen, frozen)
 - $B = (b_{ij})$: $I \times I$ skew-symmetrizable integer matrix
 - Skew-symmetric $B \iff$ quiver Q s.t. $b_{ij} = |i \rightarrow j| |j \rightarrow i|$

•
$$x_i = \text{cluster variables}, i \in I. x^{\underline{m}} = \prod x_i^{m_i}$$

•
$$y_k = \prod x_i^{b_{ik}}, \ k \in I_{uf}. \ y^{\underline{n}} = \prod y_k^{n_k}$$

- For any $k \in I_{\sf uf}$, mutation μ_k generates a new seed $\mu_k({\sf t})$
- Iterate mutations \Longrightarrow more seeds, cluster variables \Longrightarrow $m{U}$, $m{U}$
- We assume t can be quantized as in [BZ05]
 - $\iff B_{I_{uf},I}$ is of full-rank [GSV03, GSV05]
 - q-twisted product *

g-pointed Functions: Replace Module Characters

• Choose a seed t

Comparison

• Cluster monomials take the form [CC06][FZ07][DWZ10] $x^{\underline{g}} \cdot \sum_{n \geq 0} c_n y^{\underline{n}}, \ c_0 = 1$

• called \underline{g} -pointed [Qin17]

• Highest weight modules of $U_q(\hat{\mathfrak{g}})$ have characters $\chi(S(\underline{w})) = Y^{\underline{w}} \cdot \sum_{\underline{\nu} \ge 0} c_{\underline{\nu}} A^{-\underline{\nu}}, c_0 = 1, c_{\underline{\nu}} = \text{dim}(\text{eigen space})$

[Qin17] introduced **Dominance order** \prec_t : *g* is the highest deg of *g*-pointed func.

- on quiver varieties: partial order of strata [Nak11]
- in monoidal category *M*: interpreted via degrees of *R*-matrices [KK19]

Cluster algebras do not have standard bases (or PBW bases)

- For $i \in I$, $\deg(x_i) = f_i$ (*i*-th unit vector)
 - $x_i = CC(T_i)$, rigid T_i in a cluster category
 - $x_i = [S_i]$, simple S_i in a monoidal category
- For $k \in I_{\mathrm{uf}}$, define pointed func \mathbb{I}_k s.t deg $\mathbb{I}_k = -f_k \operatorname{mod} \mathbb{Z}^{l_{\mathrm{f}}}$
 - $\mathbb{I}_k := q$. cluster variable for (almost) all well-known cluster alg
 - $\mathbb{I}_k :=$ quantum theta function [GHKK18][DM21]
 - $\mathbb{I}_k = CC_q(T_k[1])$. [1]: shift functor (use Calabi-Yau reduction)
 - $\mathbb{I}_k = [\mathscr{D}(S_k)]$ (right) dual of S_k

Distinguished Functions (Standard Monomials) $I_{\underline{m},\underline{m}'}(t)$ are \underline{g} -pointed functions

$$q^{\alpha}\prod_{j\in I_{\mathsf{f}}} x_{j}^{m_{j}} * \prod_{k\in I_{\mathsf{uf}}} x_{k}^{m_{k}} * \prod_{k\in I_{\mathsf{uf}}} \mathbb{I}_{k}^{m_{k}'}$$

where $\alpha \in \frac{\mathbb{Z}}{2}$, $m_j \in \mathbb{Z}$, $m_k, m'_k \ge 0$.

• Reduced if $m_k m'_k = 0 \ \forall k \in I_{uf}$: denoted as $I_{\underline{g}}(\mathbf{t})$.

Triangular Bases: Kazhdan-Lusztig Type Bases

• The triangular functions $L_g(t) :=$ unique Laurent series

• If U has a basis L: $\forall t$, $L = \{L_{\underline{g}}(t), \forall \underline{g}\}$ and satisfies

$$\mathsf{I}_{\underline{m},\underline{m}'}(\mathsf{t}) \in \mathsf{L}_{\underline{g}} + \sum_{\underline{g}' \prec_{\mathsf{t}}\underline{g}} q^{-\frac{1}{2}} \mathbb{Z}[q^{-\frac{1}{2}}] \mathsf{L}_{\underline{g}'}$$

it is called the (common) triangular basis.

For A ⊂ U, if L ∩ A is its basis, it is still called the triangular basis.

[BZ14]: $L_g^{BZ}(t)$ for acyclic t. [Qin16, Qin20a] $L_g^{BZ}(t) = L_{\underline{g}}(t)$.

Triangular Bases: Properties and Observations

- L contains all cluster monomials
- L generalizes B^{*} (a motivation of cluster theory)
- L is naturally parameterized by the tropical points of the (Langlands dual) cluster variety (FG-conjecture [FG06])
- [HL10] proposed monoidal categorification of cluster algebras
 - ∀ known monoidal categorification [Qin17][KKKO18][KKOP21][CW19], {simples} = L
- L is related to categorification and/or geometric representation theory (like previous Kazhdan-Lusztig type bases)
- ∀ known cases, L has positive structure constants when B is skew-symmetric.

Triangular Bases: Crystal-Like Structure?

• The triangularity of L can be characterized as:

$$\forall \mathbf{t}, \ x_i * \mathbf{L}_{\underline{g}} \in q^{\alpha} \mathbf{L}_{\underline{g}+f_i} + \sum_{\underline{g}' \prec_{\mathbf{t}} \underline{g}+f_i} q^{\alpha} \cdot q^{-\frac{1}{2}} \mathbb{Z}[q^{-\frac{1}{2}}] \mathbf{L}_{\underline{g}'}$$

- [Qin20a] Similar statement holds if we work with the $\prec_t\text{-lowest}$ Laurent degree (codegree)
- This is an analog of Leclerc's conjecture for B^{*} [Lec03] (proved by [KKKO18])
 - $x_i * ()$ acts like a crystal operator.

Freezing Operators

• Choose any seed t. Take any Laurent series of the form

$$z = x^{\underline{m}} \cdot \sum_{\underline{n} \in \mathbb{N}^{l_{uf}}} c_{\underline{n}} y^{\underline{n}}$$

• Given $F \subset I_{uf}$, freeze F in $t \dashrightarrow$ seed t'

The freezing operator sends $y_k \mapsto 0$ in z for $k \in F$:

$$\mathfrak{f}_{\underline{m}}(z) := x^{\underline{m}} \cdot \sum_{n_k = 0 \forall k \in F} c_{\underline{n}} y^{\underline{n}}$$

• If z has the leading degree deg z = m, we abbreviate $f(z) = f_{\underline{m}}(z)$

Freezing Operators: Properties

• \forall pointed Laurent series z_1, z_2 , we have

$$\mathfrak{f}(z_1 * z_2) = \mathfrak{f}(z_1) * \mathfrak{f}(z_2);$$

 $\mathfrak{f}_{\deg z_1}(z_1+z_2)=\mathfrak{f}_{\deg z_1}(z_1)+\mathfrak{f}_{\deg z_1}(z_2) \text{ if } \deg z_2 \preceq_{\mathbf{t}} \deg z_1.$

- f sends localized cluster monomials of U(t) to localized cluster monomials of U(t')
- $\bullet~\mathfrak{f}$ sends theta func. to theta func.

Theorem [Qin22]

Assume that U(t) possesses the (common) triangular basis L, then f(L) is the (common) triangular basis for U(t').

Coefficient Change & Similarity

• Allow relabeling vertices and $q\mapsto q^{lpha}$ in the following.

Definition ([Qin14, Qin17])

- Two seeds \mathbf{t}, \mathbf{t}' are similar if they share the same unfrozen submatrix: $B_{l_{uf}, l_{uf}} = B'_{l_{uf}, l_{uf}}$. Denote $\mathbf{t} \sim \mathbf{t}'$.
 - We can also define similarity between quantum seeds
- Take <u>m</u>-pointed Laurent series $z = x^{\underline{m}} \cdot F_z$ for **t** and <u>m</u>'-pointed Laurent series $z' = x^{\underline{m}'} \cdot F_{z'}$ for **t**'. They are similar if $\operatorname{pr}_{I_{uf}} \underline{m} = \operatorname{pr}_{I_{uf}} \underline{m}'$ and $F_z = F_{z'}$.
- $\bullet \ t \sim t' \Longrightarrow \textbf{\textit{U}}(t)$ and $\textbf{\textit{U}}(t')$ share similar structures
 - Localized cluster monomials are similar.
 - If S is a well-behaved basis for U(t), then the similar elements form a basis for U(t').

• If
$$\mathbf{t} \sim \mathbf{t}'$$
, $\mu_k \mathbf{t} \sim \mu_k \mathbf{t}'$.

Coefficient Change: Cartesian Product

Triangular Bases

Overview

- Coefficient ring $R(t) = \Bbbk[x_j^{\pm}]_{j \in I_{\mathsf{f}}(t)} \xrightarrow{\pi^*} \boldsymbol{U}(t)$
- $\bullet\ t^{\mathsf{prin}}:$ the seed of principal coefficients associated to t

•
$$\forall k \in I_{uf}$$
, a framing (frozen) vertex $k' \to k$
• $B(\mathbf{t}^{prin}) = \begin{pmatrix} B_{I_{uf},I_{uf}} & -\operatorname{Id} \\ \operatorname{Id} & 0 \end{pmatrix}$

• Assume $\boldsymbol{U}(t^{\mathsf{prin}})$ has an $R(t^{\mathsf{prin}})$ -basis

$$S = \{s_{\underline{g}} = x(t^{\mathsf{prin}})^{\underline{g}} F_{s_{\underline{g}}}(y_k(t^{\mathsf{prin}})) | \underline{g} \in \mathbb{Z}^{I_{\mathrm{uf}}} \}.$$

Then we have the following Cartesian products:

$$\begin{array}{ccccc} \operatorname{Spec} \boldsymbol{U}(t) & \stackrel{f}{\to} & \operatorname{Spec} \boldsymbol{U}(t^{\operatorname{prin}}) & \leftarrow & \operatorname{Spec} \boldsymbol{U}(t') \\ & \downarrow \pi & & \pi \downarrow & & \downarrow \\ \operatorname{Spec} R(t) & \stackrel{f}{\to} & \operatorname{Spec} R(t^{\operatorname{prin}}) & \leftarrow & \operatorname{Spec} R(t') \end{array}$$

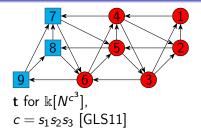
- $\forall k \in I_{\mathrm{uf}}, f^*(x_k) := x_k, f^*(x_{k'}) := \prod_{j \in I_{\mathrm{f}}(t)} x_j^{b_{jk}}.$
- $f^*(S)$ is an R(t)-basis of U(t), $f^*(s_{\underline{g}}) = x(t)^{\underline{g}} F_{s_{\underline{g}}}(y_k(t))$.

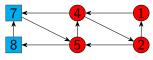
Overview

Triangular Bases

Operations in Cluster theory ○○○○● Applications

Example





t' for \mathscr{C}_2 [HL10] (subcategory of $U_q(\widehat{\mathfrak{sl}_3}) \mod$)

- $z = x_4^{-1}x_7(1 + y_4 + y_2y_4 + y_3y_4 + 2y_2y_3y_4 + y_2^2y_3y_4 + 2y_1y_2y_3y_4 + 2y_1y_2^2y_3y_4 + y_1^2y_2^2y_3y_4)$
- Freeze 3,6 in t: $f(z) = x_4^{-1}x_7(1+y_4+y_2y_4)$
- Similar element in $\mathbf{t}': z' = x_4^{-1}x_7(1+y_4+y_2y_4)$

 $\Bbbk[N^{c^N}]$ has L [Qin17][KKKO18]. Freezing and coefficient change: $\implies q$ -deformed $K_0(\mathscr{C}_{N-1})$ has L [Qin17]. Triangular Bases

Operations in Cluster theory $_{\rm OOOOO}$

Applications

Double Bott-Salmeson Cells

- $A = (a_{i,j})_{i,j \in [1,r]}$ symmetrizable generalized Cartan matrix
- Generalized braid group $Br = \langle s_i \rangle_{i \in [1,r]}$:

•
$$s_i s_j = s_j s_i$$
, if $a_{ij} a_{ji} = 0$
• $s_i s_j s_i = s_j s_i s_j$, if $a_{ij} a_{ji} = 1$
• $(s_i s_j)^m = (s_j s_i)^m$, if $m = a_{ij} a_{ji} = 2,3$
• For $\underline{j} = (j_1, \dots, j_r)$, $s_j := s_{j_1} \dots s_{j_r}$

[SW21] For any double Bott-Samelson cell, we have

$$\mathbb{C}[\mathsf{Conf}_{\underline{s_k}}^{\underline{s_j}}(\mathcal{A}_{\mathrm{sc}})] = \boldsymbol{U}(\mathsf{t}(\underline{j},\underline{k},\Delta))$$

• If $(\underline{s_{\underline{j}'}}, \underline{s_{\underline{k}'}}) = (\underline{s_{\underline{j}}}, \underline{s_{\underline{k}}})$, $\mathbf{t}(\underline{j}', \underline{k}', \Delta')$ can be obtained from $\mathbf{t}(\underline{j}, \underline{k}, \Delta)$ by mutations [SW21]

Overview

Triangular Bases

Operations in Cluster theory

Applications ninnn

Example: Seeds for Double Bott-Salmeson cells

•
$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
, $(\underline{j}, \underline{k}) = ((1), (2, 1))$.
• Choose Δ for a trapezoid (letters of \underline{j} viewed as negative)
Line 2
Line 1
 $\Delta_{-,+}$ \underline{k} 2 1
 \underline{j} $\underline{-1}$ \underline{j} $\underline{-1}$ $\underline{-1}$ \underline{j} $\underline{-1}$ $\underline{-1}$

 $t(j, \underline{k}, \Delta_{-,+})$

Overv	iew	
000		

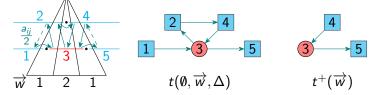
Triangular Bases

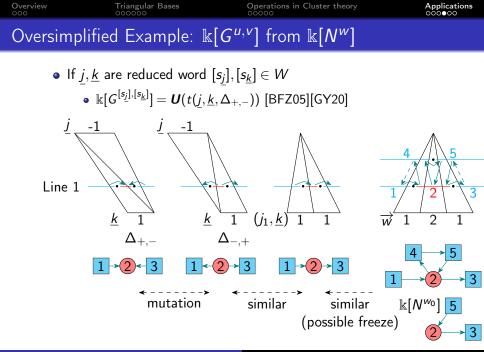
Operations in Cluster theory

Applications

Unipotent Cells

- Weyl group $W := \operatorname{Br}/(s_i^2 = e, \forall i)$
- \overrightarrow{w} reduced word of $w \in W$
- $\Bbbk[N^w] = \boldsymbol{U}(\mathbf{t}^+(\overrightarrow{w})), \ N^w = N \cap B_- w B_-$
 - $\mathbf{t}^+(\overrightarrow{w})$: obtained from $t(\emptyset, \overrightarrow{w}, \Delta)$ by removing the left open intervals





Double Bott-Salmeson cells from Unipotent Cells

- Given $(\underline{j}, \underline{k})$
 - Extend size r matrix A to size r+1 matrix \widetilde{A}
 - Insert letters r+1 to $(\underline{j}^{^{op}}, \underline{k}) \Longrightarrow$ reduced word \overrightarrow{w}

 $t(\underline{j}, \underline{k}, \Delta_{-,+})$ can be obtained from $t^+(\overrightarrow{w})$ by mutations, freezing and coefficient change

- Reflection (coefficient change) $t(\underline{j}, \underline{k}, \Delta_{-,+}) \sim t((j_2, \ldots), (j_1, \underline{k}), \Delta')$
- **3** Mutations $t((j_2,...),(j_1,\underline{k}),\Delta') \rightarrow t((j_2,...),(j_1,\underline{k}),\Delta_{-,+})$
- Solution Repeat, until obtain $t(\emptyset, (\underline{j}^{op}, \underline{k}), \Delta)$
- $t(\emptyset, (\underline{j}^{op}, \underline{k}), \Delta)$ is obtained from $t(\emptyset, \overrightarrow{w}, \widetilde{\Delta})$ by freezing and then deleting the vertices on Line r + 1.

$$\mathbb{k}[N^w] = U(t^+(\overrightarrow{w}))$$
 has $L \Longrightarrow$ So does $U(t(\underline{j}, \underline{k}, \Delta_{-,+}))$.

Triangular Bases

Operations in Cluster theory

Applications

Algebraic Groups

•
$$\mathbb{C}[G^{w_0,w_0}] = \boldsymbol{U}$$
. $G = \overline{G^{w_0,w_0}}$

 $\mathbb{C}[G] \subset \overline{U}.$ Proof: $f \in \mathbb{C}[G^{w_0, w_0}]$ is contained in $\mathbb{C}[G] \Longrightarrow$ regular on $\{x_j = 0\} \subset G.$

 $\mathbb{C}[G] = \overline{U}.$ Proof: a comparison up to codim 2 in *G*.

- $\forall j$ frozen, \exists double Bruhat cell V_j open dense in $\{x_j = 0\}$
 - $\mathbb{C}[V_j]$ = localization of $\mathbb{C}[G]/(x_j)$
 - Already know that $\mathbb{C}[V_j] = U'$.
- Show $\boldsymbol{U}' = \text{localization of } \overline{\boldsymbol{U}}/(x_j)$

Take the triangular basis $\mathbf{L} \subset \mathbf{U}$, then $\mathbf{L} \cap \mathbb{C}[G]$ spans $\mathbb{C}[G]$. Proof: $\forall j$ frozen, \exists an optimized seed t_j ($b_{jk} \ge 0 \ \forall k \in I_{uf}$)

References I

- [BFZ05] Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1–52.
- [BZ05] Arkady Berenstein and Andrei Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005), no. 2, 405–455, arXiv:math/0404446v2.
- [BZ14] _____, Triangular bases in quantum cluster algebras, International Mathematics Research Notices 2014 (2014), no. 6, 1651–1688, arXiv:1206.3586.
- [CC06] Philippe Caldero and Frédéric Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), no. 3, 595–616, arXiv:math.RT/0410187.
- [CW19] Sabin Cautis and Harold Williams, Cluster theory of the coherent Satake category, Journal of the American Mathematical Society 32 (2019), no. 3, 709–778, arXiv:1801.08111.

References II

- [DM21] Ben Davison and Travis Mandel, Strong positivity for quantum theta bases of quantum cluster algebras, Inventiones mathematicae (2021), 1–119, arXiv:1910.12915.
- [DWZ10] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, Quivers with potentials and their representations II: Applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), no. 3, 749–790, arXiv:0904.0676.
- [FG06] Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006), no. 103, 1–211, arXiv:math/0311149.
- [FWZ20] Sergey Fomin, Lauren Williams, and Andrei Zelevinsky, Introduction to Cluster Algebras. Chapter 6, arXiv:2008.09189.
- [FZ02] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I: Foundations, Journal of the American Mathematical Society 15 (2002), no. 2, 497–529, arXiv:math/0104151.

References III

[FZ07] _____, Cluster algebras IV: Coefficients, Compositio Mathematica 143 (2007), 112–164, arXiv:math/0602259v3.

- [GHKK18] Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich, Canonical bases for cluster algebras, Journal of the American Mathematical Society 31 (2018), no. 2, 497–608, arXiv:1411.1394.
- [GLS11] Christof Geiß, Bernard Leclerc, and Jan Schröer, Kac-Moody groups and cluster algebras, Advances in Mathematics 228 (2011), no. 1, 329–433, arXiv:1001.3545.
- [GLS13] _____, Cluster structures on quantum coordinate rings, Selecta Mathematica **19** (2013), no. 2, 337–397, arXiv:1104.0531.
- [GSV03] Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), no. 3, 899–934, 1199, {Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday}.

[GSV05] _____, Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), no. 2, 291–311.

- [GY16] K.R. Goodearl and M.T. Yakimov, Quantum cluster algebra structures on quantum nilpotent algebras, Memoirs of the American Mathematical Society 247 (2016), no. 1169, arXiv:1309.7869.
- [GY20] _____, The Berenstein-Zelevinsky quantum cluster algebra conjecture, Journal of the European Mathematical Society 22 (2020), no. 8, 2453–2509, arXiv:1602.00498.
- [HL10] David Hernandez and Bernard Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), no. 2, 265–341, arXiv:0903.1452.
- [Kas91] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516.

[Kas93] _____, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2, 455-485, Available from: http://dx.doi.org/10.1215/S0012-7094-93-06920-7, doi:10.1215/S0012-7094-93-06920-7. MR 1203234 (94b:17024)

- [Kim12] Yoshiyuki Kimura, Quantum unipotent subgroup and dual canonical basis, Kyoto J. Math. 52 (2012), no. 2, 277–331, arXiv:1010.4242, doi:10.1215/21562261-1550976.
- [KK19] Masaki Kashiwara and Myungho Kim, Laurent phenomenon and simple modules of quiver Hecke algebras, Compositio Mathematica 155 (2019), no. 12, 2263–2295, arXiv:1811.02237.
- [KKK018] S.-J. Kang, M. Kashiwara, M. Kim, and S.-j. Oh, Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), 349-426, arXiv:1412.8106, doi:https://doi.org/10.1090/jams/895.

References VI

- [KKOP21] Masaki Kashiwara, Myungho Kim, Se-jin Oh, and Euiyong Park, Monoidal categorification and quantum affine algebras II, arXiv:2103.10067.
- [Lec03] B. Leclerc, Imaginary vectors in the dual canonical basis of $U_q(n)$, Transform. Groups **8** (2003), no. 1, 95–104.
- [Lus90] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498.
- [Lus91] _____, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), no. 2, 365–421.
- [Lus94] _____, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568.
- [McN21] Peter J McNamara, *Cluster monomials are dual canonical*, arXiv:2112.04109.
- [Nak11] Hiraku Nakajima, Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), no. 1, 71–126, arXiv:0905.0002v5.

References VII

- [Qin14] Fan Qin, t-analog of q-characters, bases of quantum cluster algebras, and a correction technique, International Mathematics Research Notices 2014 (2014), no. 22, 6175–6232, arXiv:1207.6604, doi:10.1093/imrn/rnt115.
- [Qin16] _____, Compare triangular bases of acyclic quantum cluster algebras, arXiv:1606.05604.
- [Qin17] _____, Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Mathematical Journal 166 (2017), no. 12, 2337–2442, arXiv:1501.04085.
- [Qin20a] _____, An analog of Leclerc's conjecture for bases of quantum cluster algebras, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 16 (2020), 122, arXiv:2004.12466.
- [Qin20b] _____, Dual canonical bases and quantum cluster algebras, arXiv:2003.13674.
- [Qin22] _____, Bases for strata of algebraic groups via operations in cluster theory, in preparation (2022).

[SW21]

Linhui Shen and Daping Weng, *Cluster structures on double Bott–Samelson cells*, Forum of Mathematics, Sigma, vol. 9, Cambridge University Press, 2021, arXiv:1904.07992.