Pushforwards of Intrinsic Volumes

Georg Hofstätter ${ }^{1}$
jointly with Thomas Wannerer ${ }^{2}$
${ }^{1}$ Tel Aviv University, ${ }^{2}$ Friedrich-Schiller University Jena

BIRS-CMO Workshop: Integral and Metric Geometry (22w5181) online, May 2-6, 2022

Valuations on Manifolds

$M^{n} \ldots$ oriented smooth manifold of dimension n

Definition

A (smooth) valuation on M is a map $\mu: \mathcal{P}(M) \rightarrow \mathbb{R}$ given by $\omega \in \Omega^{n-1}(S M)$ and $\phi \in \Omega^{n}(M)$, s.t.

$$
\mu(P)=\int_{N(P)} \omega+\int_{P} \phi, \quad P \in \mathcal{P}(M)
$$

The space of valuations is denoted by $\mathcal{V}(M)$.

$$
\begin{array}{lll}
\mathcal{P}(M) & \ldots & \text { compact submanifolds with corners } \\
S M & \ldots & \text { cosphere bundle } \\
N(P) \subseteq S M & \ldots & \text { normal cycle/bundle }
\end{array}
$$

Examples

$M=\mathbb{R}^{n}$

- Intrinsic Volumes $\mu_{k}, k=0, \ldots, n$, defined by

$$
\operatorname{vol}_{\mathbb{R}^{n}}\left(K_{r}\right)=\operatorname{vol}_{\mathbb{R}^{n}}\left(K+r B^{n}\right)=\sum_{k=0}^{n} r^{n-k} \omega_{n-k} \mu_{k}(K), \quad r>0
$$

where $K \subset \mathbb{R}^{n}$ is convex and compact.

- $\mu_{0} \equiv 1$
- $\mu_{n-1} \propto$ Surface area
- μ_{n}... Volume

B^{n}	\ldots	Unit ball
ω_{n}	$=$	$\operatorname{vol}_{\mathbb{R}^{n}}\left(B^{n}\right)$

Pullbacks and Pushforwards of Valuations (Alesker 2010)

Let M, N be oriented smooth manifolds and $f: M \rightarrow N$ smooth.

Definition

If f is an immersion, then the pullback of $\mu \in \mathcal{V}(N)$ is defined (locally) by

$$
\left(f^{*} \mu\right)(P)=\mu(f(P)), \quad P \in \mathcal{P}(M)
$$

Definition

If f is a proper submersion, then the pushforward of $\mu \in \mathcal{V}(M)$ is defined by

$$
\left(f_{*} \mu\right)(P)=\mu\left(f^{-1}(P)\right), \quad P \in \mathcal{P}(N)
$$

Note: Pullback and pushforward can be fully described on the level of differential forms.

Lipschitz-Killing valuations

$\left(M^{n}, g\right)$ Riemannian manifold, $e: M \hookrightarrow \mathbb{R}^{N}$ isometric embedding.
Definition
The Lipschitz-Killing valuations $\mu_{k}^{M} \in \mathcal{V}(M)$ are defined by

$$
\mu_{k}^{M}=e^{*} \mu_{k}, \quad k=0, \ldots, n .
$$

Note:

- μ_{k}^{M} does not depend on e (Weyl's principle)!
- $\mu_{0}^{M}=\chi \ldots$ Euler characteristic
- $\mu_{n}^{M}=\operatorname{vol}_{M} \ldots$. Riemannian volume measure

Theorem (Fu \& Wannerer 2019)

The subspace generated by the Lipschitz-Killing valuations μ_{k}^{M} is characterised among a (narrow) natural family of valuations on M by invariance under pullback w.r.t. isometric immersions.

Main Question

Let $f: M \rightarrow N$ be a proper Riemannian submersion, i.e.

- f is a proper submersion,
- $\left.d f\right|_{(\text {Ker } d f)^{\perp}}:(\operatorname{Ker} d f)^{\perp} \rightarrow T N$ is an isometry.

Problem (Fu)

Understand the pushforwards $f_{*} \mu_{k}^{M}$ for a Riemannian submersion f.
Example: Hopf fibration $\pi: S^{2 n+1} \subseteq \mathbb{C}^{n+1} \rightarrow \mathbb{C} P^{n}$

$$
\left(z_{1}, \ldots, z_{n+1}\right) \mapsto\left[z_{1}, \ldots, z_{n+1}\right] \in\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{\times}=\mathbb{C} P^{n}
$$

Fiber $\pi^{-1}(p) \cong S^{1}$

Pushforward of $\mu_{0}^{M}=\chi$ and $\mu_{n}^{M}=\operatorname{vol}_{M}$

Let $f: M \rightarrow N$ be a proper Riemannian submersion, N connected.

Proposition

There exist $c \in \mathbb{R}$, s.t.

- $f_{*} \chi=c \cdot \chi$
- $\left(f_{*} \operatorname{vol}_{M}\right)(P)=\int_{P} \operatorname{vol}\left(f^{-1}(\cdot)\right) \cdot \operatorname{vol}_{N}$

Proof.

- By Ehresmann's fibration theorem, $f: M \rightarrow N$ is a fibration (admits local trivializations), denote the fiber by F.

$$
\Longrightarrow \chi(M)=\chi(F) \chi(N)
$$

- By fiber integration of differential forms.

Variations of Valuations

Idea: Take variation (derivative) of a valuation
Definition (Bernig \& Fu 2011)
Let $\mu \in \mathcal{V}(M)$ be given by

$$
\mu(P)=\int_{N(P)} \omega+\int_{P} \phi, \quad P \in \mathcal{P}(M)
$$

Then the variation $\widetilde{\delta} \mu \in \mathcal{V}(M)$ of μ is defined by

$$
(\widetilde{\delta} \mu)(P)=\int_{N(P)} i_{T}\left(D \omega+p_{M}^{*} \phi\right), \quad P \in \mathcal{P}(M)
$$

T	\ldots	Reeb vector field on M
D	\ldots	Rumin differential
$p_{M}: S M \rightarrow M$	\cdots	projection

Variations of Valuations

Note: It holds

$$
(\widetilde{\delta} \mu)(P)=\left.\frac{d}{d r}\right|_{r=0} \mu\left(P_{r}\right)
$$

where P_{r} is the r-neighborhood of $P \in \mathcal{P}(M)$.
Example: Variations of vol \mathbb{R}^{n} via Steiner formula

$$
\begin{gathered}
\widetilde{\delta} \operatorname{vol}_{\mathbb{R}^{n}}(K)=\left.\frac{d}{d r}\right|_{r=0} \operatorname{vol}_{\mathbb{R}^{n}}\left(K_{r}\right)=\left.\frac{d}{d r}\right|_{r=0} \sum_{k=0}^{n} r^{n-k} \omega_{n-k} \mu_{k}(K), \quad r>0 \\
\Longrightarrow \widetilde{\delta}^{i} \operatorname{vol}_{\mathbb{R}^{n}}=\omega_{i} i!\mu_{n-i}
\end{gathered}
$$

Variations and Pushforwards

Let $f: M \rightarrow N$ be a proper Riemannian submersion.

Theorem (H. \& Wannerer 2022+)
Suppose that $\mu \in \mathcal{V}(M)$. Then

$$
f_{*}(\widetilde{\delta} \mu)=\widetilde{\delta}\left(f_{*} \mu\right)
$$

Consequently, if $f^{-1}(p)$ has constant volume for all $p \in N$, then there exists $c^{\prime} \in \mathbb{R}$, s.t.

$$
f_{*}\left(\widetilde{\delta}^{k} \operatorname{vol}_{M}\right)=c^{\prime} \cdot \widetilde{\delta}^{k} \operatorname{vol}_{N}, \quad k \in \mathbb{N}
$$

Problem: Write μ_{k}^{M} in terms of $\widetilde{\delta}^{i} \operatorname{vol}_{M}$? Not possible in general!

Hopf Fibration - Steiner Formula on $S^{2 n+1}$

Theorem (Glasauer 1995)

There exist (explicit) constants $c_{n, j} \in \mathbb{R}$, s.t.
$\operatorname{vol}_{S^{2 n+1}}\left(P_{r}\right)=\sum_{j=0}^{2 n} c_{n, j}\left(\int_{0}^{r} \sin (s)^{2 n-j} \cos (s)^{j} d s\right) \tau_{j}(P)+c_{n, 2 n+1} \tau_{2 n+1}(P)$.
$\tau_{0}, \ldots, \tau_{2 n+1} \in \mathcal{V}\left(S^{2 n+1}\right)$ is a (natural) basis of $\mathcal{V}\left(S^{2 n+1}\right)^{\mathrm{SO}(2 n+2)}$, s.t.

$$
\tau_{k}\left(S^{j}\right)=\delta_{j, k} 2^{k+1}
$$

In particular, $\mu_{k}^{S^{2 n+1}} \in\left\langle\tau_{0}, \ldots, \tau_{2 n+1}\right\rangle$ (with explicit formulas).

Hopf Fibration - Steiner Formula on $\mathbb{C} P^{n}$

Theorem (Bernig, Fu, Solanes 2014)
There exist (explicit) constants $\tilde{c}_{n, k} \in \mathbb{R}$, s.t.

$$
\operatorname{vol}_{\mathbb{C} P^{n}}\left(P_{r}\right)=\sum_{k=0}^{2 n} \tilde{c}_{n, k} \sin (r)^{2 n-k} \cos (r)^{k} \tau_{k, 0}(P)
$$

Here,

$$
\tau_{k, 0}=\sum_{q=\max \{0, k-n\}}^{\left\lfloor\frac{k}{2}\right\rfloor} \mu_{k, q}
$$

where $\mu_{k, q}$ is the Hermitian intrinsic volume (Bernig \& Fu 2011).

Pushforwards by the Hopf Fibration

$$
\begin{aligned}
& \mu_{k}^{S^{2 n+1}} \Longleftrightarrow \tau_{k} \\
& \Longleftrightarrow \widetilde{\delta}^{k} \operatorname{vol}_{S^{2 n+1}} \\
& \tau_{k, 0} \Longleftrightarrow \tau^{\pi_{*}} \\
& \Longleftrightarrow \widetilde{\delta}^{k} \operatorname{vol}_{\mathbb{C} P^{n}}
\end{aligned}
$$

\Longrightarrow Get $\pi_{*} \mu_{k}^{S^{2 n+1}}$ in terms of $\tau_{k, 0}$
Note: $\pi_{*} \mu_{k}^{S^{2 n+1}} \notin\left\langle\mu_{j}^{\mathbb{C} P^{n}}\right\rangle$

Pushforwards by the Hopf Fibration

Theorem (H. \& Wannerer 2022+)
Let $\pi: S^{2 n+1} \rightarrow \mathbb{C} P^{n}$ be the Hopf fibration. Then

$$
\pi_{*} \operatorname{vol}_{S^{2 n+1}}=2 \pi \operatorname{vol}_{\mathbb{C} P^{n}}
$$

and

$$
\pi_{*} \tau_{j}=\frac{2^{j+1}}{\omega_{j-1}} \tau_{j-1,0}-\frac{2^{j+1}}{\omega_{j+1}} \tau_{j+1,0}, \quad j=0, \ldots, 2 n
$$

(with the convention $\tau_{-1,0}=0=\tau_{2 n+1,0}$)
Check: $\chi=\sum_{j \geq 0}\left(\frac{1}{4}\right)^{j} \tau_{2 j} \Longrightarrow \pi_{*} \chi=0$.

Conclusion

Results

- Variation and pushforward commutes
- Complete answer for Hopf fibration

Future Questions

- General case
- Understand image of pushforward operation
- Integral geometric interpretations
- Relation to algebraic structures on valuations
- ...

Thank you for your attention!

