## **Homotopic Distance**

Let X and Y be path-connected topological spaces and  $f, g: X \to Y$  two continuous maps.

The *homotopic distance* D(f, g) between f and g is the least integer  $k \ge 1$  such that there exists an open covering  $U_1 \cup \cdots \cup U_k = X$  with the property that  $f_{|U_i|}$ and  $g_{|U_i}$  are homotopic for all j.

Let  $A \subset X$  be a subspace. The **subspace** distance between the two maps f, g on A, is defined as

$$\mathbf{D}_X(A;f,g) := \mathbf{D}(f_{|A},g_{|A}) = \mathbf{D}(f \circ i_A, g \circ i_A),$$

where  $i_A \colon A \hookrightarrow X$  is the inclusion.

- The *L*-*S*-category of X is the distance between the identity  $id_X$  and any constant map,  $\operatorname{cat} X = D(\operatorname{id}_X, x_0).$
- Let  $p_1, p_2: X \times X \to X$  be the projections. The **topological complexity** of X is  $TC(X) = D(p_1, p_2)$ .

### **Properties of the homotopic distance**

Let  $\mathcal{P}(f,g)$  be the space of pairs  $(x,\gamma)$  where  $x \in X$  and  $\gamma$  is a continuous path on Y, such that  $\gamma(0) = f(x)$  and  $\gamma(1) = g(x)$ . Notice that  $\pi^* = (f,g)^* \pi \colon \mathcal{P}(f,g) \to X$ is the pullback fibration of the path fibration  $\pi: Y^{[0,1]} \to Y \times Y$ , where  $\pi(\gamma) =$  $(\gamma(0), \gamma(1))$ , by the map  $(f, g) \colon X \to Y \times Y$ :

$$\begin{array}{ccc} \mathcal{P}(f,g) & \longrightarrow & Y^{[0,1]} \\ \pi^* \downarrow & & \downarrow \pi \\ X & \xrightarrow{(f,g)} & Y \times Y. \end{array}$$

**Theorem 1** D(f,g) equals the *Svarc genus* of  $\pi^*$ , that is, the minimum number  $k \geq 1$  such that there exists an open covering  $U_1 \cup \cdots \cup U_k = X$ , where for each  $U_j$ there is a continuous section  $s_j \colon U_j \to \mathcal{P}(f,g)$  of the pullback fibration  $\pi^*$ .

Note that if X is not connected and  $\{A_i\}_{i=1}^n$  are the connected components of X, then

$$D(f,g) = D_X(X;f,g) = \max_i D_X(A_i;f,g).$$

Let  $\{V_i\}_{i=1}^k$  be a finite open covering of X. Then:

$$\mathsf{D}(f,g) \le \sum_{i=1}^k \mathsf{D}_X(V_i; f, g).$$

Let M be a compact differentiable manifold. A smooth function  $\Phi: M \to \mathbb{R}$  is called a *Morse-Bott function* if the critical set  $Crit \Phi$  is a disjoint union of connected submanifolds  $S_i$  and for each critical point  $p \in S_i \subset \operatorname{Crit} \Phi$  the Hessian is nondegenerate in the directions transverse to  $S_i$ .

**Topological Complexity and Motion Planning** BIRS (México), May 29 to June 3, 2022

# HOMOTOPIC DISTANCE AND GENERALIZED MOTION PLANNING

# E. Macías-Virgós<sup>1</sup>, D. Mosquera-Lois<sup>1</sup> and M.J. Pereira-Sáez<sup>2</sup>

<sup>1</sup>Univ. de Santiago de Compostela, <sup>2</sup>Univ. de A Coruña Galician Centre for Mathematical Research and Technology



Fig. 1: Morse-Bott function on the torus.

**Theorem 2** Let  $\Phi: M \to \mathbb{R}$  be a Morse-Bott function in a compact smooth manifold M. Let  $c_1 < \cdots < c_p$  be its critical values, and let  $\Sigma_i = \Phi^{-1}(c_i) \cap \operatorname{Crit} \Phi$  be the set of critical points in the level  $\Phi = c_i$ . If  $f, g: M \to Y$  are two continuous maps, then

$$\mathsf{D}(f,g) \leq \sum_{i=1}^{p} \mathsf{D}_{M}(\Sigma_{i};f,g).$$

This extends analogous results for the topological complexity ([1]) and the L-S-category ([6]).

# Navigation functions and generalized motion planning problem

We can interpret that the homotopic distance between f and g solves the following:

**Generalized planning problem**: Let  $f, g: X \to Y$  be two continuous maps between topological spaces. Given an arbitrary point  $x \in X$  find a continuous path s(x), joining f(x) and g(x) in Y, in such a way that the path s(x) depends continuously on x.

Assume that we have two continuous maps  $f, g: M \to Y$ , defined on the manifold M, and a Morse-Bott function  $\Phi: M \to \mathbb{R}$ , with critical values  $c_1, \ldots, c_p$ . The generalized motion planning problem can be reduced to the critical set, by using the gradient flow of  $\Phi$  as in Fig. 2.



Note that  $G_i^i$  is a covering by ENRs for each critical submanifold  $\Sigma_i$ .



#### Examples

1. If  $A \subset X$  is a subspace, the **LS** category of A in X,  $\operatorname{cat}_X A$ , is the minimum integer  $k \geq 1$  such that there is a covering  $U_1 \cup \cdots \cup U_k = A$ , verifying that each subset  $U_i$  is open in A and the inclusion map  $U_i \subset X$  is homotopic to a constant map.

 $\operatorname{cat}_X A = \operatorname{D}_X(A; \operatorname{id}_X, x_0) = \operatorname{D}(i_A, x_0).$ 

For  $x_0 \in X$ , we define the axis inclusion maps  $i_1, i_2 \colon X \to X \times X$  as  $i_1(x) = 1$  $(x, x_0)$  and  $i_2(x) = (x_0, x)$ . Then,  $D(i_1, i_2) = \operatorname{cat} X$ .

2. Let  $A \subset X \times X$  be a subspace. The *subspace topological complexity* of A,  $TC_X(A)$ , is the smallest integer  $k \ge 1$  such that there is a cover  $U_1 \cup \cdots \cup$  $U_k = A$  with the property that each  $U_i \subset A$  is open in A, and the projections  $U_i \rightrightarrows X$  on the first and the second factors are homotopic to each other. If  $p_1, p_2: X \times X \to X$  are the projections, then

$$TC_X(A) = D_{X \times X}(A; p_1, p_2).$$

3. Let us suppose that X is the configuration space of a multi-arm robot and Y is the workspace (the spacial region that can be effectively attained by the end device of the arm). A **work map**  $f: X \to Y$  assigns to each state of X the corresponding position of the end effector.

The **topological complexity of** f, tc(f), is the least integer n such that  $X \times X$  can be covered by n open subsets  $\{U_i\}_{i=1}^n$  such that for each  $U_i$  there exists a continuous map  $f_i: U_i \to Y^I$  satisfying  $f_i(x_0, x_1)(0) = f(x_0)$  and  $f_i(x_0, x_1)(1) = f(x_1)$  ([4]).

The topological complexity of f equals the distance of the projections composed with the map f. That is,

$$\operatorname{tc}(f) = \mathcal{D}(f \circ p_1, f \circ p_2).$$

4. The topological complexity of a fibration  $f: X \to Y$ , cx(f), is the number of partial solutions to the motion planning problem  $\pi_f \colon X^I \to X \times Y$ ,  $\pi(\gamma) = (\gamma(0), f(\gamma(1)))$ , which assigns to each path in the configuration space the initial state x and the end effector position f(y) at the final state ([5]). If  $\pi_X \colon X \times Y \to X$  and  $\pi_Y \colon X \times Y \to Y$  are the projections, then

$$\operatorname{cx}(f) = D(f \circ \pi_X, \pi_Y).$$

#### References

- [1] M. Farber. *Invitation to topological robotics*. English. Zur. Lect. Adv. Math. Zürich: European Mathematical Society (EMS), 2008. ISBN: 978-3-03719-054-8.
- [2] E. Macías-Virgós and D. Mosquera-Lois. "Homotopic distance between maps". In: Math. Proc. *Camb. Philos. Soc.* 172.1 (2022), pp. 73–93.
- [3] E. Macías-Virgós, D. Mosquera-Lois, and M. J. Pereira-Sáez. "Homotopic distance and generalized motion planning". In: (2021). URL: https://arxiv.org/abs/2105.13006.
- [4] A. Murillo and J. Wu. "Topological complexity of the work map". In: Journal of Topology and Analysis 13.01 (2021), pp. 219–238.
- [5] Petar Pavešić. "Topological complexity of a map". In: Homology Homotopy Appl. 21.2 (2019), pp. 107–130. ISSN: 1532-0073.
- [6] Y. B. Rudyak and Felix Schlenk. "Lusternik-Schnirelmann theory for fixed points of maps". In: Topol. Methods Nonlinear Anal. 21.1 (2003), pp. 171–194.