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Chapter 1

Extremal Problems in Combinatorial
Geometry (18w5058)

February 4 - 9, 2018

Organizer(s): János Pach (École Polytechnique Fédérale de Lausanne), József Solymosi (Uni-
versity of British Columbia), Andrew Suk (University of California - San Diego)

Field overview and objectives
The workshop on Extremal problems in combinatorial geometry focused on the algebraic and combinatorial prop-
erties of points, lines, and other simple geometric objects in Euclidean space. The goal was to gather experts and
promising young researchers in combinatorial geometry and related areas, to discuss the recent developments of
algebraic and combinatorial methods used in the field. Over the past 6 years in particular, several ground-breaking
results have been discovered, answering some of the oldest problems in the field. This workshop was a timely
event to capitalize on this momentum.

Problems in combinatorial geometry are often simply described, and usually involve finite set of points, lines,
convex sets, and other geometric objects in Euclidean space. Extremal problems in the field asks how large or
small a finite set of geometric objects can be under certain restrictions. For example, given a set of n points in
the plane, how often can the unit distance occur among them, or what is the size of the largest subset in convex
position? Many questions in the field are very natural and worth studying for their own sake, while others are fueled
by the more recent development of computational geometry. Over the past 6 years, in particular, combinatorial
geometry has seen tremendous growth, and numerous unexpected connections to other fields of mathematics are
being discovered. Two notable examples using algebraic geometry are the works of Guth and Katz [6], who solved
the Erdos distinct distances problem, and of Green and Tao [5], who solved the long-standing conjecture of Dirac
and Motzkin on the number of ordinary lines.

The workshop focused on several areas in combinatorial geometry, such as incidence geometry, intersection
graphs, graph drawing, Erdos-Szekeres-type theorems, and combinatorial number theory. One of the major goals
was to study the interplay between algebraic and combinatorial methods used in the field. Some of the key topics
that the workshop covered are:

1. The polynomial method and its applications in incidence geometry and combinatorial number theory.
Guth and Katz [6] invented, as a step in their nearly complete solution of Erdős’s distinct distances problem,
a new method for partitioning finite point sets in Rd, based on the Stone-Tukey polynomial ham-sandwich
theorem. This method has had numerous applications in incidence geometry. Even more applications were
discussed during the workshop.
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2. The container method and its applications in discrete and computational geometry. This useful method
was recently introduced independently by Balogh, Morris and Samotij, and by Saxton and Thomason [1, 64].
Roughly speaking, it says that if a hypergraph H has a uniform edge distribution, then one can find a
relatively small collection of sets, containers, covering all independent sets in H . One can also require
that the container sets span few edges only. More recently, Balogh and Solymosi [BS] realized that this
machinery is useful in discrete geometry. More precisely, the used the hypergraph container method to
tackle several longing standing problems for points sets in the plane, including epsilon nets. Further possible
applications were discussed during the workshop.

3. The theory of semi-algebraic hypergraphs: regularity lemmas, VC-dimension arguments, and ap-
plications. Famous Ramsey, Turán, and Szemerédi-type results prove the existence of certain patterns in
graphs and hypergraphs under mild assumptions. Recently, several authors have shown that much stronger
results hold for semi-algebraic hypergraphs, that is hypergraphs whose vertices are points in Rd and edges
are defined by a semi-algebraic set in Rdk of bounded complexity. These results had several applications in
discrete geometry, and more applications and results were discussed at the workshop.

With all of the recent developments and exciting breakthrough results in the field, it was important to bring
together prominent experts in the field from all over the world. We believe it is very important to bring together
and foster interactions between senior and junior researchers in combinatorial geometry. The workshop had a num-
ber of key lectures by international experts, which will survey the state-of-the-art of several long-standing open
problems in the field. Other participants had the opportunity to give a 30 minute talk to present their work. The
workshop schedule also provided ample time and opportunity for participants to interact and engage in mathemat-
ical discussion.

Presentation Highlights

The first plenary talk was given by Frank De Zeeuw, who talked about ordinary lines in space. The Sylvester-
Gallai theorem states that if a finite set of points in the real plane is not contained in a line, then it spans at least
one ordinary line, i.e. a line containing exactly two of the points. In fact, such a set always spans a linear number
of ordinary lines, and that is best possible because there are point sets on cubic curves that determine only a linear
number of ordinary lines. One can consider the same question in three-dimensional space. By projection, the
results in the plane hold word-for-word in space. But note that the known constructions with a linear number of
ordinary lines are contained in a plane. I will show that if one assumes that the point set does not have too many
points on a plane, then it spans a quadratic number of ordinary lines. More precisely, for any a < 1 there is a
c > 0 such that if we have n points in space with at most an points on a plane, then there are at least cn2 ordinary
lines. The proof uses projection, Beck’s theorem, and a variant of the Sylvester-Gallai theorem. More details can
be found in his paper [12].

Joshua Zahl gave a talk on his new result which gives a new bound on the unit distances in three dimensions.
In his talk, he talked about a more general problem about cutting curves into pseudo segments and its applications.
More details can be found in his paper [4].

Misha Rudnev gave a review on some better or less known results about incidences of sufficiently small non-
collinear point sets with straight lines. The two best known and in some sense sharp results are the theorem on
distinct directions proved in the 90s by T. Szonyi and the recent Szemeredi-Trotter type incidence theorem by S.
Stevens and F. de Zeeuw.

The second plenary talk was given by Orit Raz, who talked about a generalization of Elekes-Rónyai theorem
to d variables. This was joint work with Zvi Shemtov.

Balázs Keszegh presented his new result, where he proved that the intersection hypergraph of a finite family
of pseudo-disks with respect to another family of pseudo-disks admits a proper coloring with 4 colors. His result
serves as a common generalization and strengthening of many earlier results, including ones about coloring points
with respect to pseudo-disks, coloring pseudo-disks with respect to points and coloring disks with respect to disks.
More details can be found in his paper [2].
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The third plenary talk was given by Natan Rubin, who improved the upper bound on weak epsilon nets in the
plane. This is the first improvement in over 25 years. More precisely, he showed that for any set P of n points
in the plane and ε > 0 there exists a set of O(1/ε1.7) points in the plane that pierce every convex set K with
|K ∩ P | ≥ ε|P |. This improves the previously known upper bound (from 1992) of O(1/ε2) by Alon, Bárány,
Füredi, and Kleitman.

The fourth plenary talk was given by Nathan Linial, who talked about Hypertrees. In a seminal paper, Kalai
(1983) extended the notion of a tree to higher dimensions. Formally, an n-vertex d-dimensional hypertee is a Q-
acyclic simplicial complex with a full (d−1) dimensional skeleton and

(
n−1
d

)
d-dimensional faces. In his talk, Nati

discussed several of the many open problems that arise here and describe some of the more recent new discoveries.
Radoslav Fulek talked about Z2-genus drawings of graphs. A drawing of a graph on a surface is independently

even if every pair of independent edges in the drawing crosses an even number of times. The Z2-genus of a graph
G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. He
showed that the Z2-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this
implies that the genus of a graph is bounded from above by a function of its Z2-genus, solving a problem posed
by Schaefer and Štefankovič, and giving an approximate version of the Hanani-Tutte theorem on surfaces. These
results were joint work with Jan Kyncl [3, 4].

Bartosz Walczak talked about a new upper bound on the chromatic number of intersection graphs of L-figures
in the plane, which is asymptotically tight. This was joint work with Alexandre Rok.

Lena Yuditsky talked about a structure theorem conjectured by Janson and Uzzell: The vertex set of almost all
string graphs on n vertices can be partitioned into five cliques such that some pair of them is not connected by any
edge. As a corollary, almost all string graphs on n vertices are intersection graphs of plane convex sets. This was
joint work with Bruce Reed and János Pach [8].

Scientific Progress Made
The workshop provided ample free time for participants to work together on joint research projects. Moreover,
there were a number of new research projects were initiated during the workshop, while some other researchers
used the opportunity to continue to work on projects started earlier. All talks were well received.

Participants
Aronov, Boris (New York University)
Balko, Martin (Charles University)
Bárány, Imre (Alfred Renyi Institute of Mathematics)
Bukh, Boris (Carnegie Mellon University)
De Zeeuw, Frank (EPFL)
Do, Thao (Massachusetts Institute of Technology)
Dumitrescu, Adrian (University of Wisconsin–Milwaukee)
Ezra, Esther (Georgia Tech)
Fulek, Radoslav (IST Austria)
Furedi, Zoltan (Renyi Institute of Mathematics)
Holmsen, Andreas (KAIST)
Hubard, Alfredo (UPEM)
Kawamura, Akitoshi (Kyushu University)
Keszegh, Balázs (Alfréd Rényi Institute of Mathematics)
Kupavskii, Andrey (University of Birmingham)
Linial, Nathan (Hebrew University of Jerusalem)
Moshchevitin, Nikolay (Moscow Lomonosov State University)
Mubayi, Dhruv (University of Illinois at Chicago)
Pach, Janos (Renyi Institute of Mathematics, Budapest)
Palvolgyi, Domotor (Eötvös Loránd University (ELTE))
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Patáková, Zuzana (Institute of Science and Technology Austria)
Raz, Orit (IAS)
Roche-Newton, Oliver (Johannes Kepler Universität)
Rote, Günter (Freie Universität Berlin)
Rubin, Natan (Ben-Gurion University)
Rudnev, Misha (University of Bristol)
Sheffer, Adam (CUNY - Baruch College)
Solymosi, Jozsef (University of British Columbia)
Stevens, Sophie (University of Bristol)
Suk, Andrew (University of California - San Diego)
Swanepoel, Konrad (London School of Economics and Political Science)
Tardos, Gabor (Renyi Institute, Budapest)
Toth, Geza (Renyi Institute of Mathematics)
Toth, Csaba (California State University Northridge)
Walczak, Bartosz (Jagiellonian University)
White, Ethan (University of British Columbia)
Yuditsky, Lena (Karlsruhe institute of technology)
Zahl, Joshua (University of British Columbia)
Zerbib, Shira (University of Michigan)
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Imbalance refers to the departure from the large-scale primarily vortical flows in the
atmosphere and ocean whose motion is governed by a balance of Coriolis, pressure-
gradient, and buoyancy forces and can be described approximately by quasigeostrophic
theory or similar balance models. Imbalanced motions are manifest either as fully nonlinear
turbulence or as internal gravity waves which can extract energy from these geophysical
flows but which can also feed energy back into the flows. Capturing the physics under-
lying these mechanisms is essential to understanding how energy is transported from
large geophysical scales ultimately to microscopic scales, where it is dissipated. In the
atmosphere, it is also necessary for understanding momentum transport and its impact
upon the mean wind and current speeds. During a February 2018 workshop at the Banff
International Research Station (BIRS), atmospheric scientists, physical oceanographers,
physicists, and mathematicians gathered to discuss recent progress in understanding these
processes through interpretation of observations, numerical simulations, and mathematical
modeling. The outcome of this meeting is reported upon here.

DOI: 10.1103/PhysRevFluids.4.010501

I. INTRODUCTION

With some exceptions, the atmosphere and ocean are described by the same equations of motion,
the two fluids differing primarily by their equation of state, and so it is not surprising that they
exhibit features in common. The most energetic motions of the atmosphere occur at synoptic
and planetary scales, on the order of 1000 km and longer, manifest as perturbations of the mean
zonal (east-west) winds by cyclonic flows (rotating in the same sense of the Earth’s rotation)
and anticyclonic flows (rotating in the opposite sense), respectively associated with low- and
high-pressure systems. The analogous flows in the ocean occur at the mesoscale, on the order of
100 km, being manifest as cyclonic and anticyclonic eddies embedded in the eastward Antarctic
Circumpolar Current and in western boundary currents such as the Gulf Stream and the Kuroshio
and Agulhas Currents. Flows such as these are said to be “balanced,” meaning that Coriolis forces
are equal to pressure-gradient forces such that quasigeostrophic potential vorticity is conserved
as expressed through the quasigeostrophic equations [1]. Generally, a suite of balanced models
(quasigeostrophy, semigeostrophy, planetary geostrophy, and others) has been devised to account

*bruce.sutherland@ualberta.ca

2469-990X/2019/4(1)/010501(22) 010501-1 ©2019 American Physical Society
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for large-scale motion in the tropics, dynamics leading to frontogenesis, and submesoscale motions
in the ocean where isopycnals (constant density surfaces) are relatively steep. (See Ref. [2] for a
recent review of scalings leading to different balance models of the atmosphere.) Common to all
balance models is that they filter out smaller spatial-scale and faster timescale motions associated
in particular with internal gravity waves, which are waves that propagate horizontally and possibly
vertically, being driven by buoyancy forces where the effective background density decreases with
height.

Constantly driven by incoming solar radiation (which itself drives winds that force the upper
ocean), an outstanding question for atmospheric scientists and physical oceanographers is how
energy at these large scales is transferred progressively to smaller scales until ultimately it is
dissipated efficiently by viscosity, closing the global energy balance. One conduit through which
these transfers can take place is through direct generation of fully nonlinear turbulence arising when
balanced motions interact with solid boundaries, for example, through the atmospheric boundary
layer or or when ocean currents and eddies interact with continental margins and, particularly with
the Antarctic Circumpolar Current, with the ocean floor. Away from such boundaries, the main
conduit for energy transfer from balanced motions to dissipative scales is through internal gravity
waves. Although there are similarities, the processes of energy transfer by waves differ significantly
in the atmosphere and ocean.

In the atmosphere, observations suggest that internal waves are generated primarily by zonal
flows over topography and by nonorographic sources such as convection and the formation of
fronts [3,4]. As a consequence of momentum conservation, these waves grow in amplitude as they
propagate upward into thinner, less dense air. As a result of such so-called anelastic growth as
well as interaction with the large-scale winds, the waves break and deposit their momentum, so
decelerating or accelerating the mean wind speeds aloft [5,6]. Breaking waves also vertically mix
the air, tending to homogenize it. However, absorption of solar radiation by ozone and other gases
readily re-establishes stable stratification.

In the ocean, internal waves are generated primarily as a result of either wind stress on the
surface or through the action of tides and eddies embedded within currents that move over bottom
topography [7]. Generation and other breakdown processes are illustrated in Fig. 1. The density
of the ocean changes little over its depth and so upward-propagating waves do not experience
anelastic growth. Except in the equatorial Pacific Ocean, around Antarctica, and at the western
boundaries of the ocean basins, ocean currents are generally weak and have negligible influence on
wave propagation and breaking. Instead, it appears that the main mechanism leading ultimately to
dissipation is through nonlinear wave-wave interactions and wave-induced shear that directly results
in turbulent breakdown. Whereas atmospheric scientists are most interested in momentum transport
by internal waves, this is less of interest to physical oceanographers because the directionality
of the waves is generally horizontally isotropic. Instead, oceanographers are most interested in
energy transport by internal waves, which ultimately determines the degree of mixing that occurs
as they break down into turbulence. Because sunlight penetrates little below the top 100 m of the
ocean surface, the observed stratification of the oceanic abyss can only be explained by internal
wave-driven processes.

“Modeling imbalance” typically describes the endeavor to go beyond the balanced (e.g.,
quasigeostrophic) equations in order to capture the physical processes by which energy is exchanged
between balanced flows and smaller scale motions. Here, we take a broader perspective by
considering in addition the cascade of energy from inertia-gravity waves to faster and smaller scales
through the internal wave spectrum and then onward to dissipation via turbulence, which itself
is typically affected nontrivially by stratification. While we do not include consideration of the
direct dissipation of energy due to balanced motions interacting with solid boundaries, the reader is
referred to recent reviews of research on atmospheric boundary layers [9] and the oceanic kinetic
energy budget [10].

Guiding this review are the talks and discussions that took place during the Workshop on
Modelling Imbalance in the Atmosphere and Ocean [11], which was held at the Banff International

010501-2
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RECENT PROGRESS IN MODELING IMBALANCE IN THE …

FIG. 1. Schematics illustrating the myriad processes that generate internal waves and which ultimately lead
to breaking in (a) the atmosphere and (b) the ocean (the latter, copyright © American Meteorological Society,
is used with permission from Fig. 1 of MacKinnon et al. [8]).

Research Station (BIRS) during February 19 to 23, 2018. Therein presenters described recent
breakthroughs realized through advances in observational technologies, increased computing power,
and newly developed mathematical modeling techniques. Crucially, it is through the combination
of these resources that advances have taken place. For example, now observational campaigns in
the ocean are often guided by numerical simulations that predict where dynamics of interest may be
taking place. Mathematical methods are now being applied to observations to distinguish balanced
vortical motions from waves. Simulations have improved to the extent that they can now begin to
capture the observed spectra of internal gravity waves as well as the processes of turbulent mixing
and dissipation in stratified fluids at geophysically realistic parameter values. Just as models are
being created to adapt quasigeostrophy to include unbalanced motions that are less influenced by
rotation, higher resolution global simulations are now beginning to resolve such small scales that
hydrostatic models need to be adapted to account for nonhydrostatic effects.

All of these advances have the ultimate goal of developing parametrizations of energy and
momentum transport from large to small scales in atmospheric and oceanic general circulation
models. Here again the emphasis of atmosphere and ocean modelers differ. While internal wave
dynamics are important for short-term weather forecasts and predictions of clear-air turbulence,
climate models of the atmosphere are less concerned about the details of transport by internal

010501-3
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waves. Typically their influence is parameterized by assuming they propagate purely in the vertical
and deposit all their momentum where they break, as estimated by linear theory. That said,
the cumulative impact of internal waves on the middle atmosphere is known to be important.
It virtually controls the mean circulation in the mesosphere and leaves significant traces in the
stratosphere, e.g., by contributing to the quasibiennial oscillation in the equatorial stratosphere
[12–15] and the formation and breakdown of the ozone hole in the southern hemisphere [16]. Since
middle-atmosphere dynamics is essential for weather predictions on the seasonal timescale [17]
as well as climate simulations [18,19], middle-atmosphere internal-wave dynamics and its correct
handling in models is important for these issues as well. By contrast, internal waves are thought to
be of primary importance to the ocean’s long-term climatology, particularly in the abyss [7]. With
increasing observational data and through insights gained by theoretical and numerical modeling
of idealized circumstances, ocean general circulation models are only now beginning to develop
parametrizations of internal wave-induced mixing [8]. But it is clear that a deeper understanding of
the various breakdown mechanisms is required before such parametrization schemes can be agreed
upon.

The principal aim of this review is to report recent advances, as discussed in the workshop,
rather than to present a comprehensive historical survey. Therefore, the references presented herein
are inevitably incomplete, yet may act as a useful starting point for exploring this very important
topic. We begin in Sec. II by describing recent progress in distinguishing balanced from imbalanced
flows in observations and in representing such processes by a reduced set of equations. Significant
advances have been made in this area with the recognition that internal waves interacting with
balanced flows may enhance the generation of internal waves through the process of stimulated
imbalance. Other mechanisms for extraction and transport of energy from balanced flows through
interaction with topography, convection, and turbulence are discussed in Sec. III. Primarily through
numerical simulations, insights have been gained into the final stages of breakdown into turbulence,
momentum deposition, and mixing. These are presented for the atmosphere in Sec. IV and for the
ocean in Sec. V. In light of this progress, the most promising directions for future advances are
discussed in Sec. VI.

II. CHARACTERIZING BALANCE AND IMBALANCED FLOWS

Earth-observing satellites readily visualize synoptic-scale cyclonic motions in the atmosphere
through the structure of clouds as shown, for example, in the left image of Fig. 2. Their counterpart
in the ocean, manifest as mesoscale eddies, can be visualized through satellite imagery of the
sea-surface temperature, as shown in the right image of Fig. 2. With some further processing that
includes sea surface height data and the assumption of geostrophic balance, global surface currents
at the mesoscale can be revealed as derived, for example, by the Ocean Surface Current Analyses
Real-time (OSCAR) product [20]. These large-scale motions are said to be “balanced,” meaning
that their motion is determined by a combination of pressure gradient and Coriolis forces as well as
the influence of vortex stretching. These dynamics are captured by the so-called quasigeostrophic
(potential vorticity) equations. In the atmosphere, these describe the synoptic scale motions which
vary over distances of about 1000 km and greater. In the ocean, these describe the mesoscale motions
which vary over distances of about 100 km and greater.

While large-scale motions are clearly distinguished qualitatively from finer strained structures, it
is more challenging quantitatively to partition the energy associated with the balanced motions and
the unbalanced motions, which occur at smaller scales. In situ observations can be gathered in the
atmosphere, for example, of wind speed and temperature from airplanes and radiosonde balloons,
and in the ocean, for example, of speed, temperature, and salinity from shipboard acoustic Doppler
current profilers (ADCPs) and conductivity, temperature, and depth (CTD) profiles. However, these
provide limited spatial information.

One advance in the interpretation of velocity measurements along a given line (e.g., taken from
ship or aircraft tracks) is the use of the Helmholtz decomposition, which separates the fields in

010501-4
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FIG. 2. Images acquired from the Moderate Resolution Imaging Spectroradiometer on NASA’s Terra
satellite showing (left) atmospheric cyclones between Iceland and Scotland visualized by clouds on November
20, 2006 [NASA image by Jesse Allen, Earth Observatory], and (right) anticyclonic and cyclonic eddies
interacting with the Gulf Stream on May 8, 2000, and visualized by sea surface temperature [created at the
University of Miami using the 11- and 12-μm bands, by Evans, Minnett, and coworkers]. The horizontal white
bar to the lower right in the left image indicates a length of 250 km. The vertical white bar to the upper left of
the right image indicates a length of 222 km.

terms of their vertically rotational and horizontally divergent components [21–24]. Significantly,
Bühler et al. [22] and Callies et al. [23] showed how to separate geostrophic from internal wave
motions while Bühler et al. [24] extended the method to account for the anisotropy in the spectra
resulting from eddies and waves being embedded within mean winds and currents. Through these
methods, as shown in Fig. 3, it is clear that the power spectrum as a function of horizontal wave
number, k, varies as k−3 at mesoscales in the ocean, as predicted by Charney [25] (corresponding
to a downscale transfer of enstrophy) and that the energy at these scales can be attributed almost
entirely to balanced (rotational) motion. At mesoscales in the atmosphere (�100 km) and at the
submesoscale in the oceans (�50 km), the spectrum varies as k−5/3. The −5/3 spectrum is predicted
for the downscale cascade of energy in three-dimensional turbulence and the upscale transfer of
energy in two-dimensional turbulence [26]. If indeed this spectral slope is associated with two-
dimensional turbulence, as has been proposed for the atmosphere [27,28], this suggests that energy
at mesoscale ranges in the atmosphere and submesoscale ranges in the ocean is driven “inversely”

FIG. 3. (a) Spectra of along-track and across-track velocities determined from a collection of aircraft flights
in the lower stratosphere, (b) Helmholtz decomposition of the spectra into rotational and divergent components,
and (c) adjustment for spectra accounting for internal gravity wave polarization relations. (Reproduced with
permission from Fig. 1 of Callies et al. [23].)

010501-5
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to large rather than dissipative scales. Other processes must operate in order to provide a global
energy balance. These include mechanisms, discussed below, in which internal gravity waves are
generated by balanced motions and, by interacting either with these motions or with themselves,
energy is carried to small scale, either indirectly via weakly nonlinear interactions or directly by
wave breaking. Another possible mechanism not involving waves is through vertical shear, which
develops naturally in stratified quasi-two-dimensional turbulence.

As a first theoretical step to understand how energy is extracted from balanced flows in the
absence of boundaries, attempts have been made to extend the balanced (e.g., quasigeostrophic)
equations to introduce the influence of divergent processes associated with inertia-gravity waves
[29–34]. Conceptually, these processes can be broken down into triad interactions between vortical
modes (V) and waves (W) acting through the nonlinear advection terms of the fully nonlinear
equations of motion [35].

The quasigeostrophic equations can be represented by the triad VVV, meaning that two vortical
modes interact (first two letters) to put energy into another vortical mode (the last letter). The
triad VVW represents the equations describing the spontaneous generation of internal waves
from interactions between vortical modes [30]. Because of the corresponding eigenfrequencies,
only nonresonant interactions are allowed. Indeed, analysis of these equations in comparison with
observations suggest that this mechanism for wave generation is relatively weak. That said, a recent
breakthrough has been the demonstration that stimulated emission of internal waves, represented
by the triad VWW, may provide an efficient mechanism through which waves interacting with the
vortical modes produce more waves. The question remains as to whether these excited waves in the
ocean are able to propagate away from the generation site and so remotely cause mixing elsewhere
in the ocean. A recent study by Nagai et al. [36] suggests this is not the case: After the waves
are generated, it appears they are reabsorbed into the large-scale balanced flows, as represented by
the triad VWV. A particular mechanism for reabsorption of waves by large-scale flows through the
straining motion between vortices was formulated by Bühler and McIntyre [37]. Another possibility
in the ocean is for waves to become trapped in anticyclonic eddies [38–40], eventually redepositing
their energy there.

In the context of reduced models, the triad WWV describes waves interacting with themselves
without breaking in a way that transfers energy to large-scale flows. For vertically propagating
waves, this is manifest as the (Eulerian) induced mean flow [6,41–44] that, for a localized wave
packet, can be responsible for creating a circulation far from the wave packet itself [45]. Of course,
another mechanism by which waves can affect the large-scale flow, particularly in the atmosphere,
is through momentum deposition caused by breaking. However, the process of breaking does not
involve a resonant wave-wave interaction, as implied by the triad WWV. Instead, it involves a
cascade of energy to the small scales of turbulence, the detailed description of which lies outside
the realm of reduced models. Some aspects of such turbulent processes are discussed below.

The last of the interaction triads, WWW, corresponds with weakly nonlinear interactions
between waves. This can involve refraction of waves by other waves of different scale [46], the
self-interaction of waves in a spanwise-wide wave packet that resonantly generates long waves
[44,47–49], or wave-wave interactions leading to parametric subharmonic instability [50–52]. In
particular, it has been proposed that the last process may be important for the breakdown of the
M2 internal tide at the critical latitude of 29◦, where the subharmonic wave frequency equals
the background Coriolis frequency [53–55]. However, in situ measurements did not reveal as
strong a signal of breakdown as suggested by numerical models [56]. It is likely that processes
described by the WWW triad will explain the prevalence of the universal spectra for internal waves
observed in the abyssal ocean [57–59], and possibly also in the middle atmosphere, whether through
the downscale transport of energy through scattering and parametric subharmonic instability or
through the upscale transport of energy from small-scale wave packets generated, for example, in
the atmosphere through convection [27,28,60] or by localized turbulent patches associated with
wave breaking [61], mechanisms that will be discussed below. While much has yet to be explored
regarding upscale energy transfers in the context of two-dimensional turbulence or otherwise,
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numerical models are now able to achieve resolutions capable of reproducing these spectra from the
balanced flows to the inertia-gravity wave (low-wave-number) end of the internal wave spectrum.

Apart from triad interactions, energy may be dissipated directly through wave breaking. This
can occur due to anelastic growth of atmospheric waves propagating upward into thinner air, due
to waves approaching a critical level where their horizontal phase speed matches the background
flow speed, or due to other interactions that drive the waves to shear or convective instability.
Observations of overturning in the oceanic thermocline suggest that wave packets interacting
with large-scale flows overturn predominantly due to convective rather than shear instability [62]
though shear instability may play a more important role for inertia gravity waves (cf. Sec. 4.6.3 of
Sutherland [63]).

Despite the upscale transfer of energy in two-dimensional turbulence, quasi-two-dimensional
turbulence in nonrotating stratified fluid may nonetheless develop structures leading to efficient
dissipation in the absence of waves. Here it is important to note that while a power spectrum of an
idealized two-dimensional turbulence field inevitably and naturally reveals a spectrum, it is incorrect
to interpret this spectrum physically as a pure superposition of waves: Vortices develop naturally in
two-dimensional turbulence, and a power spectrum loses the information of such coherent, spatially
localized structures. Stratification can render incoherent the vertical structure of vortices in quasi-
two-dimensional turbulence: Columnar vortices naturally devolve into “pancake” eddies [64].

This suggests an alternative framework to model quasi-two-dimensional turbulent flow in
stratified fluid, which still leads to −5/3 slope of the energy spectrum by relying on strong
anisotropy in the flow [65] to give a forward cascade of energy consistent with numerical evidence
[66]. It is important to appreciate that this argument inherently assumes that rotation plays no
dynamical role. As recently demonstrated by Kafiabad and Bartello [67], this places an upper bound
of O(10 km) in the atmosphere where this regime might be expected to be observable. Analogously
in oceanographic contexts, this regime is only expected to occur at below submesoscales, with
horizontal scales O(1–10 km) or less.

As demonstrated by the self-similar scaling analysis of Billant and Chomaz [68], such non-
rotating layered anisotropic stratified turbulence (LAST) [69] is inevitably and inherently three-
dimensional. Although the horizontal scales L are at least in some sense large, though not too
large for rotation to play a dynamical role as characterized by the horizontal Froude number
Frh ≡ U/(NL) � 1, the vertical structure scales as H ∼ U/N such that the vertical Froude number
Frv = U/(NH ) is order unity. In effect, this introduces a different mechanism for energy dissipation
whereby, as two pancakes slide over each other, the vertical shear over the small distance between
them can result in shear-driven turbulence and mixing if the Richardson number, Ri ≡ N2H 2/U 2,
is sufficiently small, which is certainly possible if Frv = Ri−1/2 ∼ O(1).

For shear instability to occur between pancakes, the flow must be of sufficiently high Reynolds
number Re = UL/ν, based on the (largest) horizontal scale such that the combination ReFr2

h � 1.
With a further inertial scaling for the turbulent dissipation rate ε ∼ U 3/L, this scaling for the onset
of instability corresponds to the requirement that the quantity conventionally referred to as the
“buoyancy Reynolds number” [70] Reb ≡ ε/(νN2) is much larger than unity [71,72]. The quantity
Reb can also be expressed in terms of the ratio of the Ozmidov scale �O ≡ (ε/N3)1/2, which is
the largest vertical scale of turbulence not strongly affected by stratification, and the Kolmogorov
scale �ν ≡ (ν3/ε)1/4, which is the smallest turbulence scale at which dissipation occurs. Explicitly,
Reb = (�O/�ν )4/3, thus implying that high-Reb flows, as observed geophysically, have a very high
dynamic range over which the flow is inherently nonlinear and turbulent, with no significant
role played by the internal wave field. Large values of Reb thus imply a fivefold hierarchy of
scales for the LAST regime to exist such that [66] LR � L � H � �O � �ν , where LR is an
appropriate characteristic horizontal scale above which rotational effects can no longer be ignored.
As a consequence, this phenomenon, if it even occurs, is difficult to replicate in the laboratory and to
simulate numerically, although high-resolution simulations are beginning to access this regime [73].
Furthermore, though there is observational evidence (see, for example, Falder et al. [69]) that this
regime occurs, a key outstanding challenge is to understand how it is connected to and interacts with
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rotationally or wave-dominated dynamical processes. At the moment, the fluid-dynamical research
in this area is inevitably somewhat disconnected from oceanic and atmospheric flows, and there
is a pressing need to bridge this gap, both in terms of constructing (and testing) new theories and
generating numerical and observational data sets capturing the transition (or indeed transitions)
in flow dynamics. As perhaps a first step on the theoretical side, some progress has been made
in developing a reduced equation set that exploits the large horizontal to vertical scale separation
to allow for a quasilinear yet still nontrivial coupling between such widely separated scales [33],
constituting a very interesting advance on classical approaches leading to pure hydrostatic flow.

III. INTERNAL WAVE GENERATION BY TOPOGRAPHIC, CONVECTIVE,
AND TURBULENT PROCESSES

Besides spontaneous and stimulated generation of internal waves by large-scale flows, there are
several other mechanisms by which internal waves can be excited. One of the most significant of
these is that of flow over topography, although the main processes of generation and consequent
evolution once again differ qualitatively in the atmosphere and ocean.

In the atmosphere, observations suggest that the largest source of internal waves results from the
unidirectional flow of mean zonal winds over mountain ranges [3]. Whether or not internal waves
are generated depends upon four factors: the characteristic flow speed at the mountain height, U , the
characteristic horizontal length scale of the topography, L, the stratification as characterized by the
buoyancy frequency, N , and the Coriolis frequency, f . From linear theory, vertically propagating
waves exist only if their intrinsic frequency, estimated by U/L, lies between N and f , with typical
values of N � 10−2 s−1 being two orders of magnitude larger than f � 10−4 s−1 at midlatitudes
[1,63]. Waves generated on the scale of mountain ranges have frequencies close to f and so should
be classified as inertia-gravity waves. (Waves generated at very large horizontal scales are also
influenced by the change in the Coriolis frequency with latitude, the so-called β effect. Study of
these waves, known as planetary or Rossby waves, lies beyond the scope of this review.) General
circulation models of the atmosphere are now beginning to resolve such small scales that they must
begin to include nonhydrostatic effects associated with waves having frequency moderately below
N . Being nonhydrostatic means that buoyancy forces are not balanced by vertical pressure gradients
and so can lead directly to vertical accelerations.

The amplitude of topographically generated internal waves is set by the height, H , of the
topography. This is a crucial parameter since it influences the height at which the waves ultimately
break in the absence of encountering a critical level, which is where the upper-level winds change
their zonal direction so that the wind speed equals the (ground-based) zero-horizontal phase speed
of the waves. Because the density of the atmosphere decreases approximately exponentially with
height, the amplitude of the waves grows as they propagate upward in order to conserve momentum.
Because of this anelastic growth, the waves ultimately break when they grow to such large
amplitudes that they overturn. Waves actually generated at large amplitude can overturn in the upper
troposphere irrespective of anelastic effects, sometimes leading to downslope windstorms, and in the
lower stratosphere, potentially leading to clear-air turbulence, which is a hazard to aircraft.

A recent comprehensive observational campaign called the Deep Propagating Gravity Wave
Experiment (DEEPWAVE) used ground-based lidar, radar, and airglow images as well as in situ
aircraft measurements to make unprecedented measurements of the life cycle of internal waves
generated by flow over mountains in southern New Zealand and extending into the ionosphere
situated above 85 km from the surface [74], as shown in Fig. 4. Energy fluxes by internal waves
were found to be highly variable in part owing to the pre-existence of large-scale internal waves
in the middle atmosphere generated by other sources. Some of the fluxes were the largest ever
recorded, with values over 20 times typical values. This campaign also made observations of
small-horizontal-scale and small-amplitude waves penetrating through the middle atmosphere to the
ionosphere. In some instances, wave breaking was so large as to mix sodium ions in the ionosphere
downward by 10 km. It has also been found that from the total spectrum of waves emitted by flow
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FIG. 4. Composite of temperature observed by lidar below 60 km altitude and sodium ion density in
upper mesosphere measured during the DEEPWAVE campaign on July 13, 2014, above Lauder, New Zealand.
(Copyright © American Meteorological Society. Used with permission from Fig. 9 of Fritts et al. [74].)

over topography the less energetic components are most important for the mesosphere, since the
more energetic components already break at lower altitudes.

Conversely, in the ocean it is believed that most of the energy put into the internal wave field
results from the oscillatory flow of the barotropic tide (i.e., the tide with virtually no vertical
structure) over submarine ridges and at the continental shelves [75], a process sometimes described
as baroclinic conversion. More recently, observations and modeling efforts suggest that significant
internal waves may also be generated by mesoscale eddies interacting with topography or by the
flow of the Antarctic Circumpolar Current over rough bottom topography, resulting in lee waves
[76–80]. The efficiency by which energy from the barotropic tide is converted into internal waves
is set by the tidal frequency relative to the buoyancy and Coriolis frequencies and the maximum
topographic slope, s�. Independent of their wave number, internal waves with frequency ω propagate
with lines of constant phase, forming an angle to the horizontal of α = tan−1[(ω2 − f 2)/(N2 −
ω2)], provided f < ω < N . The barotropic tide of frequency ω efficiently generates internal waves
with the same frequency if s� > tan α in which case the internal waves emanate as beams originating
from the topography where its slope equals tan α. Such topography is said to be supercritical [81].

Comprehensive observational studies of internal wave generation by the barotropic tides in the
ocean have been carried out at a few sites in the open ocean [82,83]. These studies provided
evidence for enhanced mixing near topography due to breaking internal tides [84]. However, most
energy appears to escape the hot spots of generation. The lifecycle of these radiating waves remains
poorly understood. There is no anelastic growth of waves in the ocean and, except for the transient

010501-9



18 Five-day Workshop Reports

SUTHERLAND, ACHATZ, CAULFIELD, AND KLYMAK

occurrence of eddies, critical levels play little role in wave breaking. Far from topographic sources,
internal waves are manifest as mode-1 internal waves, characterized by sinusoidal oscillations of
the thermocline. Sometimes these mode-1 waves steepen, as observed west of Luzon Strait in the
South China Sea, and form solitary wave trains [85,86] that eventually shoal and break. Otherwise,
it remains unclear how these mode-1 waves ultimately deposit their energy into turbulence and
mixing. Studies examining mode-1 waves incident upon continental shelves indicate that most of
the energy is reflected back to the open ocean with dissipation recorded in a few localized regions
[87,88], though the proportion reflected is thought to be quite variable [89].

Mean and eddying flows in the ocean also generate internal waves and are thought to be a
substantial sink to such flows [80,90]. Linear lee waves are believed to radiate from topographic
roughness with modest topographic height, as represented by the inverse vertical Froude number or
Long number Lo ≡ Nh/U � 1, and with horizontal scales smaller than �6 km. These lee waves
are then envisioned to undergo wave-wave interactions that drive the cascade to turbulence [76],
though empirical evidence of this process has been hard to detect [78,91]. Larger scale topography is
expected to exert blocking effects, a process that has been realized to be important for parametrizing
mountain drag in the atmosphere [92,93], and for generating low-mode internal tides in the ocean
[94–96]. This blocking and its effects on mean flows is only beginning to be looked at in the oceanic
context [79,97,98].

Convection is understood to be another important source of atmospheric internal waves, partic-
ularly above the equatorial oceans and in the southern midlatitudes in summer, but possibly also
in northern midlatitudes [4,99,100]. The waves can be excited by vertical motions within storm
clouds or induced by latent heating, flow over the cloud tops, or the vertical oscillations of the
cloud tops [101]. In addition, wave generation is influenced by the collective behavior of merging
convective cells, frontogenesis, and the thermodynamics of moist convection [102,103]. Recent
numerical models that capture internal waves generated at the submesoscale by these processes
demonstrate that injection of energy into waves at these small scales contributes to the observed
−5/3 kinetic energy spectrum in the mesoscale through upscale energy transfers [60,102]. One
global-scale manifestation of these small-scale processes is the Quasibiennial Oscillation (QBO)
in which stratospheric winds above the equator alternately flow eastward and westward on an
approximately two-year timescale. The QBO is understood to result from momentum deposition
of vertically propagating eastward and westward Kelvin, Rossby-gravity, and internal waves where
they encounter critical levels [104]. While general circulation models of the atmosphere are
able qualitatively to reproduce the QBO, the details of its amplitude and period differ between
different models, which is an indication of the sensitivity of the results due both to the convective
parametrization scheme used by each [105] and to the gravity-wave parametrization [15].

The role of convection in exciting internal waves in the ocean is unclear at present. In part, this is
because rapid cooling of the ocean surface, as occurs beneath a hurricane or by low-pressure systems
passing over the Labrador Sea in winter, is associated with strong surface wind stress, which itself
acts as a significant hydrodynamic rather than thermodynamic source of waves [106]. Observations
of processes occurring directly underneath the storms remains challenging, though progress may be
made as more autonomous vehicles are being deployed in the world’s oceans. Besides such extreme
events, there is some evidence that Langmuir circulations (counter-rotating cells aligned with the
wind) may generate internal waves at scales between meters and kilometers [107].

Indeed, turbulence itself can act as a source of internal waves as observed in laboratory
experiments [108,109] and through simulations and observations in the atmosphere of secondary
generation of internal waves resulting from the breaking of primary waves [61,74,110,111].
Investigations of the coupling between turbulence and internal waves remains active research.

IV. DRAG PARAMETRIZATIONS IN THE ATMOSPHERE

Climate simulations necessarily are run at relatively coarse resolution so that predictions on
decadal and century timescales can be produced in reasonable time. Although such models are
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FIG. 5. Comparison between simulations (left) and radiosonde balloon observations (right) of 5-month
time-averaged momentum fluxes at 19 km altitude in the Southern Hemisphere. The simulations from ECMWF
have had their spatial resolution downgraded to correspond to that of the balloon data and their values have been
multiplied by 5. Although the spatial pattern of the fluxes is similar, the simulation underpredicts observations
by a factor of 5. (Copyright © American Meteorological Society. Used with permission from Figs. 1(c) and
1(d) of Jewtoukoff et al. [121].)

beginning to capture mesoscale horizontal motions with scales on the order of 50–200 km, they
are unable to capture the dynamics of the generation, propagation, and breaking of mesoscale
(�100 km) and submesoscale (�10 km) internal waves despite observational evidence that suggests
such dynamical behavior has a non-negligible influence upon synoptic scale motions in the middle
atmosphere [112–114]. By not appropriately incorporating the effects of subgrid-scale waves,
general circulation models fail to reproduce realistic zonal mean winds and temperatures in the
middle atmosphere [112,115–117], which affects seasonal and climate forecasts.

Guided by observations and the results of high-resolution numerical simulations, gravity
wave drag parametrization schemes have progressively improved over the years through better
representation of topographic and nonorographic sources. However, general circulation models
continue to underpredict the temperature of the southern-hemisphere winter polar night jet in the
middle atmosphere, which crucially influences accurate predictions of the ozone hole evolution
over Antarctica. While the southern tips of Chile and New Zealand are significant topographic
sources of internal waves, recent evidence suggests that islands in the southern ocean whose sizes
lie below the climate model resolutions may nonetheless contribute non-negligibly to the total
momentum flux [118,119]. Moreover, especially intermittent wave generation from nonorographic
sources, particularly strong winds, constitute an important source of waves [120]. In particular, the
comparison shown in Fig. 5 between measurements of momentum fluxes inferred by radiosonde
balloons and those predicted and resolved by the European Centre for Medium Range Forecasts
(ECMWF) operation model indicate that modeled fluxes can be a fifth of what is observed. This hints
at excessive damping of internal waves resolved in the ECMWF model at the respective altitudes in
the lower stratosphere. However, it might also indicate that further improvements are necessary to
account for nonorographic and transient wave sources, as well as other effects.
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The discrepancies between observed and modeled internal-wave momentum fluxes seem indi-
rectly to point at other fundamental problems of present-day gravity-wave parametrizations. A
model analysis of parameterized gravity-wave drag in spring during southern stratospheric final
warming [16] showed that these events were simulated in a realistic manner though with gravity-
wave momentum fluxes similar to those diagnosed from the above-mentioned ECMWF simulations.
As the latter, however, are known to be too weak in comparison to measurements, only with a very
weak input of internal-wave fluxes at launch altitude can the effects at higher altitude be captured
well. As well as improving parametrizations of sources for internal waves, the representation of
their propagation should be improved. Idealized theoretical models and simulations suggest that the
effect of time-transient background winds, wave energetics, and lateral propagation of the waves
as well as weakly nonlinear effects acting upon moderately large-amplitude waves may need to
be incorporated into the next generation of parametrization schemes [6,37,45,122–125]. Further
corresponding indirect observational evidence is provided again from radiosonde balloons, showing
a conspicuous dependence of the intermittency of internal-wave momentum fluxes on the large-scale
wind strength that parametrizations cannot reproduce [120]. Finally, in all parametrizations, the
handling of internal-wave breaking is still very crude and often in considerable disagreement with
findings from direct simulations of this process [126–128].

V. MIXING PARAMETRIZATIONS IN THE OCEAN

The ocean is driven at the boundaries by surface winds and tides, and some of this energy is
carried into the interior by internal waves. Through most of the ocean, the mean flow of currents is
weak and the propagation of waves is horizontally isotropic. Thus, the influence of drag is generally
less important. However, there is a growing appreciation that drag may play a role where mesoscale
eddies in strong currents such as the Antarctic Circumpolar Current and the western boundary
currents interact with topography [97,129]. Here, the drag more likely acts on the eddy field itself,
rather than the large-scale circulation. Because ocean climate models do not yet resolve mesoscale
eddies, parametrization of drag presently is not an important issue but likely will become one as
the resolution of these models increases. Anticipating this eventuality, idealized studies of lee wave
drag are being revisited in the context of oceanography [130].

At present, general circulation models of the ocean are primarily concerned with mixing as
a result of breaking waves. Only through such mixing can the observed abyssal stratification of
the ocean be explained [7]. Physical oceanographers remain actively engaged in observational and
modeling efforts in order to understand the energy cascade so that better parametrizations can be
formulated [8].

As in the atmosphere, significant advances have been made through detailed in situ and
satellite observations as well as numerical models that capture both mesoscale and submesoscale
dynamics [131,132]. However, there are many mechanisms through which energy at large scales
ultimately results in mixing at small scales, and the relative importance of these processes depends
upon spatial location and temporal forcing that varies between diurnal and seasonal timescales
[133]. As a consequence, turbulence is intermittent and inhomogeneous. The most important
outstanding issue in the improvement of ocean general circulation models is to develop a better
understanding of the connection between the large-scale flows and stratification captured by the
simulations and the subgrid-scale location and time of occurrence of turbulence, and in particular
the cumulative diapycnal mixing induced by such inherently spatiotemporally intermittent turbulent
events. Although it may yet be some years before observations and modeling efforts provide better
predictions for the onset of turbulence, some progress has been made linking mixing to energy
dissipation when turbulence actually occurs.

Most parametrizations of mixing in the ocean quantify the turbulent kinetic energy dissipation
rate ε as a function of fine- or mesoscale parameters. (It is always important to remember that this
quantity is itself highly spatially and temporally intermittent, with growing evidence that it can be
elevated by orders of magnitude in the vicinity of rough or ridgelike bottom topography [134], as
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FIG. 6. Estimates of global ocean energy flux inferred from observations. Colors represent a log scale from
10−4 (white) to 10−1 W/m2 (dark red). The spidery dark red features correspond to internal modes launched
by tidal flow over bottom topography; the remaining light-red zones represent inertia gravity waves launched
by wind stress in the ocean. (Copyright © American Meteorological Society. Used with permission from Fig. 2
of Waterhouse et al. [134]).

shown in Figs. 6 and 7.) However, what is needed for parametrization in larger scale simulations is
a turbulent (vertical, and hence approximately diapycnal) eddy diffusivity for density, κρ ≡ B/N2,
in which B ≡ (g/ρ0)〈w′ρ ′〉 is the (vertical) buoyancy flux. Osborn [135] argued that on average,
particularly for quasistationary turbulence, it was reasonable to assume that the buoyancy flux is
proportional to the dissipation rate, B ≈ �ε, and based on field and laboratory work suggested that
the turbulent flux coefficient � (often referred to as the “mixing efficiency”) may be bounded by
� � 0.2 for a statistically steady state. Studies have shown that during a transient mixing event � can
be much larger [136,137]. There is also evidence that � depends on the nature of the mixing event
[138,139], itself being a function of the buoyancy Reynolds number, Reb, and Richardson number,
Ri, and perhaps other parameters (see, for example, Ivey et al. [140]). It remains an area of active
and somewhat controversial research to capture the fundamental character of different breaking
mechanisms, and in particular the effect of those mechanisms on the particular value of the turbulent
flux coefficient [141–143]. In particular, plausible interpretation of the observational evidence in the
ocean so far indicates that � ≈ 0.2 is a reasonable estimate given other uncertainties in measuring
and parametrizing ocean mixing [144]. On the other hand, there is accumulating evidence that � ∝
Re−1/2

b at sufficiently high values of the buoyancy Reynolds number, at least in some circumstances
[138,139,141,142]. Clearly, much further interdisciplinary work and collaboration in this area is
required, resolving apparent discrepancies between observation, experiment, simulation, and theory.
Furthermore, it is important to remember that κρ is the actual quantity of interest for parametrization
in larger scale models, and since κρ = ν�Reb, understanding whether there is dependence of �

on Reb is of leading-order importance. Furthermore, though there is a large amount of research
activity attempting to model the properties of �, in practice the inherent uncertainty in ε and N and
hence Reb plausibly swamps any robust effect of � variability on estimation of κρ . Just to mention
one (potentially very important) example of profound uncertainty, it is still an open question as to
whether � and/or κρ have qualitatively different behaviors when the flow is in the LAST regime, as
described in Sec. II.
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FIG. 7. Global estimates of dissipation in the top 1 km of the ocean. (Copyright © American Meteorologi-
cal Society. Used with permission, adapted from Fig. 1 of Waterhouse et al. [134]).

Issues with the parametrization of � aside, substantial recent efforts have been made to develop
better parametrizations of ocean mixing [8], leading to spatially variable vertical mixing being
included in ocean models in justifiable ways [145]. These methods usually involve as a first step
computing the energy that is believed to radiate into the internal wave field either from tides [146] or
from mean and eddying flows [76,147]. The simplest of these parametrizations then assume a fixed
fraction of the radiated energy goes to turbulent dissipation in a decay scale near the generation
site, presumably due to wave-wave interactions. More sophisticated versions assume horizontal
isotropy, use wave-wave interaction theory to decide when the wave field is susceptible to breaking,
and deposit the radiated energy at those depths [148,149]. These “local” mixing schemes have been
found to matter for large-scale modeling [145,150] and deep-water buoyancy budgets [151].

These schemes, however, often do not dissipate all their energy at the generation site, with large
vertical wavelength internal waves able to escape the region of generation. This is particularly true
of large obstacles like midocean ridges and sea mounts, where most of the internal wave energy
generated goes into low-mode waves. For large obstacles, parametrizations have been developed to
estimate the local mixing [96,152], but in those cases more than 90% of the energy is still believed
to escape the bathymetry. As discussed above, some of this breaks at remote locations. Efforts are
under way to track this radiated energy in consistent manner [8,153,154] and decide how it will be
dissipated on remote shores [89].

VI. SUMMARY AND FUTURE DIRECTIONS

This review has shown that there remain several open questions regarding fundamental processes
involved with energy transfers in the ocean and atmosphere from large scales (>100 km) to
dissipative scales (<1 mm, though larger in the upper atmosphere). Theoretical and observational
insights have guided the development of parametrizations for these phenomena in general circula-
tion models. However, their limitations are evident.
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It remains a challenge in observations, simulations, and theoretical modeling to capture the dy-
namics occurring in the full range of scales from synoptic and mesoscale through the internal wave
spectrum and downward to dissipative scales. Numerical simulations of idealized circumstances
(e.g., uniform stratification and zero background flow) are still far from having the resolution to
capture the full range. Simulations further suggest that nontrivial effects come into play when the
stratification and background flow are not uniform [155].

As well as building a better database of observations and improving the resolution of simulations,
there may be other processes important to understanding the global energy budget. For example, a
recently proposed hypothesis is that mixing and transport in the deep ocean is driven primarily by its
sloping boundaries, not least because of the substantially enhanced turbulence there [133,151,156].
It is becoming increasingly evident how important it is to study key processes by idealized and
semirealistic simulations, by measurements and observations, and at all stages by critically checking
how well internal-wave parametrizations respect corresponding findings. This seems to be the
only way to limit the use of overtuned parametrizations that might be insufficiently reliable in
climate-change studies where the simulated conditions cannot agree anymore with those used
for present-day empirical parameter optimizations. However, with increasing computing power,
parametrizations will be able to incorporate and represent more detailed dynamics. More work is to
be done in this direction, with interesting prospects ahead.
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I. INTRODUCTION

The nature of dark matter (DM) is one of the most
pressing puzzles in modern particle physics and astron-
omy. Overwhelming evidence from galactic dynamics to
cosmology tells us that ∼ 85% of the matter content of
the Universe is in a very different form from the famil-
iar “baryonic” matter described by the Standard Model
(SM) of particle physics. Precision measurements of the
cosmic microwave background (CMB) suggest the exis-
tence of a new particle that is cold (i.e. non-relativistic
at sufficiently early cosmic times), dark (very weakly-
interacting with quarks, electrons and photons), and be-
haved like matter (a pressureless fluid) in the Early Uni-
verse [1].

Evidence for dark matter comes to us entirely via its
gravitational influence; however, there are many good
reasons to believe in a particle physics portal to the dark
sector. In fact, many theories of physics beyond the stan-
dard model (BSM) such as supersymmetry naturally pre-
dict a nonzero relic abundance of “dark” particles.

In the absence of a definitive non-gravitational sig-
nal of DM, the space of possible models of particle
dark matter has also thrived. Theoretical motivations
such as the “WIMP miracle,” the “baryon disaster,” the
Peccei-Quinn solution to the strong CP problem, and the
neutrino mass problem motivate such candidates as the
WIMP, asymmetric dark matter, the axion or the sterile
neutrino. The full list of DM candidates is as varied as
it is extensive.

Following several decades of searches, it has become
increasingly clear that discovery is less likely to happen
via a single “smoking gun” signal, but rather by scru-
tinizing data from many experiments in many disparate
fields. The main searches for dark matter are broadly
categorized into direct detection, indirect detection, and
production at colliders.

The next decade will present us with major advances
in experiments designed to search for dark matter, as
well as experiments with a broader focus on searches for
BSM physics. Even though current and past searches
have thus far come up empty, the parameter space that
has been explored pales in comparison with what will
become available in years to come. This includes an un-
paralleled quantity of astrophysical data, from e.g. the
Square Kilometre Array (SKA) radio telescope [2] that
will map the distribution of matter in the dark ages be-
fore the formation of the first galaxies via the 21 cm spin
transition line of the hydrogen atom [3]; gamma ray tele-
scopes such as the Cherenkov Telescope Array (CTA)
[4] that will yield important information about the high-
est energies in the universe; and the next generation of
galaxy surveys (eBOSS [5], DESI [6]) which will map the
distribution of structure in the universe. Starting in 2022,
the Large Synoptic Survey Telescope (LSST) [7] will sur-
vey the southern sky to unprecedented depth, allowing
for the discovery of new ultra-faint dwarf galaxies [8] and
increasing the sample of known galaxy-scale strong gravi-
tational lenses by a factor of 10 [9]. Taken together, these
new observations will dramatically improve our knowl-
edge of dark matter structure on kiloparsec scales and
below, hence stress-testing the standard cold dark mat-
ter paradigm in a new regime. Concurrently, space based
missions such as Gaia [10, 11] will map the distribution
of dark matter in our own neighbourhood for the first
time, with the promise of sub-milliarcsecond astrometry.
The PINGU upgrade to the IceCube neutrino detector
at the South Pole [12] will be able to detect light DM
candidates, as we embark on the first decade of neutrino
astronomy.

Meanwhile, DM-specific searches such as XENONnT
[13], LUX-ZEPLIN [14] and ADMX [15] (along with DM-
focused analyses of collider data) will provide the best
sensitivity for testing a large variety of hypotheses re-
garding the particle properties of DM.

Reconciling the vast landscape of theoretical models
and the many disparate data sets is not an easy task, and
it inevitably leads to a number of statistical challenges
on scales that range from the interpretation of a single
experiment, all the way to combination of models and
large datasets with one another.

Our aim in this short review is to outline major sta-
tistical challenges that came up over the course of the
DMStat workshop1, along with proposed approaches and

1 Held Feb 26 – Mar 3 2018 at the Banff International Re-
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solutions including software developed by the commu-
nity. We begin with a brief review of the problem of
dark matter (Sec. II), followed in Sec. III by a descrip-
tion of current strategies for experimental dark matter
searches and some challenges those searches have encoun-
tered. We then outline and discuss several statistical ap-
proaches (Sec. IV), including some novel techniques, and
present some simple examples in Sec V.

A. Disambiguation

Although statistics acts in some sense as a lingua
franca across the sciences, there are certain “regional di-
alects” that should be noted: we have identified a few
terms in particular that have very different meanings
when used by the astroparticle physics community versus
statisticians.

Model: In physics, the word “model” may be entirely
synonymous with “theory”, in the sense of refer-
ring to an entire physical theory that one may wish
to test with statistics – or it may refer to a specific
realisation of a theory. This can be a restriction
of the theory to a particular subspace of its possi-
ble forms, or very often, a specific numerical choice
for all values of the free parameters of a theory. In
contrast, in the field of statistics, the term “model”
refers to an incompletely-specified probability dis-
tribution; draws from this distribution are meant to
replicate the processes that generated the observ-
able data. Data are used to estimate the missing
components of the model, typically a vector of un-
known parameters. Such estimation problems are
fundamental in statistical inference.

Simulation: In statistics, this usually refers to the pro-
cess of generating a large number of random real-
izations from a probability model by Monte Carlo
methods, in order to characterize the distribution
of a quantity of interest, e.g. an estimator or a test
statistic. In physics, the word simulation will usu-
ally refer to modeling the outcome of a physical
experiment based on the model parameters (for ex-
ample, the angular power spectrum of the cosmic
microwave background, given a set of cosmological
parameters). A physicist’s simulation may or may
not be deterministic in nature.

Coverage: Often (mis)used in particle physics as a
loosely defined qualitative notion of the complete-
ness with which a theoretical parameter space has
been sampled. In statistics, coverage has a very
specific and well-defined meaning, referring to the

search Station for Mathematical Innovation and Discovery
(BIRS) in Banff, Alberta (http://www.birs.ca/events/2018/
5-day-workshops/18w5095).

fraction of repeated experiments in which the true
value of a quantity actually appears inside a con-
fidence interval/region. A 90% confidence inter-
val/contour is said to undercover if the true value
would actually appear inside the interval in less
than 90% of repeated experiments, or to overcover
if the true value would appear within the interval
in more than 90% of repeats. Overcoverage is in-
efficient but relatively benign, as it increases the
probability of a type II error (failure to reject a
false null hypothesis, a “false negative” finding);
undercoverage leads to an increase in the rate of
type I error (rejection of a true null hypothesis, a
“false positive” finding), so is generally considered
more serious.

Machine learning: A field that grew out of computer
science and the study of artificial intelligence, but is
concerned with many of the same challenges faced
by statisticians. Indeed, the line between these
fields is quite blurry, although each uses its own
terminology, e.g., supervised learning problems in
machine learning are closely aligned with regression
problems in statistics. Methods developed within
machine learning tend to be more focused on broad
applicability with computational efficiency, while
statisticians will often tailor their models more to
a particular application, and place more emphasis
on theoretical properties of methods.

II. THE DARK MATTER PROBLEM

While the flat rotation curves of spiral galaxies [16] are
often held up as conclusive evidence for a missing mat-
ter component in the Universe, equally strong evidence
for dark matter arises over a range of scales: the mo-
tion of nearby stars above and below the galactic plane
[17, 18]; the velocities of galaxies within clusters [19];
gravitational lensing by galaxies and clusters [20–23]; the
rapid formation time of galaxies [24, 25], as well as the
angular power spectrum of the cosmic microwave back-
ground [26]. Each of these points to a large nonbaryonic
component of matter in the Universe – about 85% of the
total matter, or ∼25% of the total energy density. If
this missing matter is in the form of particles, it should
be (almost) electrically neutral [27] and have only very
weak interactions with ordinary matter [28].

The Standard Model of particle physics does not pro-
vide a suitable particle to play the role of dark mat-
ter. However, a number of BSM theories of physics pro-
vide compelling candidates for this nonbaryonic particle.
In supersymmetric (SUSY) extensions of the Standard
Model, for example, the lightest new SUSY particle is
typically stable and can be produced with sufficient den-
sity in the early Universe to account for all of the dark
matter [29]. Such particles fall into the class of ‘Weakly
Interacting Massive Particles’ (WIMPs) [30]. Another
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popular candidate arises in solutions of the strong CP
problem, which hint at the existence of a new light pseu-
doscalar, the axion [31, 32]. Other exotic candidates are
also plausible: primordial black holes [33], sterile neutri-
nos [34], particles in a strongly-interacting dark sector
[35], or candidates motivated by potential problems on
small astrophysical scales such as self-interacting dark
matter [36, 37].

Each of these models and candidates comes with
its own set of parameters: particle masses, interaction
strengths, etc. While these parameters can in principle
be constrained by experiment, there is often little theo-
retical guidance as to which values should be preferred
and so choosing appropriate priors is often a challenge
[38–40]. Each model also provides its own set of experi-
mental signatures, requiring an ability to sort signal from
background, as we discuss shortly.

In what follows, we will focus on the standard WIMP
paradigm for DM, but of course many of the statistical
challenges we discuss are relevant also for other candi-
dates. Indeed, an interesting question arises if we remain
agnostic about the nature of the dark matter particle:
how do we compare models with very different param-
eter spaces and observational signatures? Most com-
monly used tools for model comparison require them to
be nested, so that a modification of the parameters of
one model yields the second model. We must therefore
be careful if we choose to compare fundamentally distinct
models such as the WIMP and the axion.

III. CONTEMPORARY CHALLENGES IN
DARK MATTER

Here we summarise some of the key observa-
tional challenges in the search for DM. This includes
searches for DM scattering of Standard Model particles
(Sec. III A), searches for the products from DM anni-
hilation (Sec. III B) and searches for DM production in
colliders (Sec. III C). We also discuss the impact of DM
on galaxy formation and the challenge of constraining its
properties with astronomical observations (Sec. III D).
Our goal is not to provide a thorough review of these
topics but to point out some of the statistical issues in-
volved and to provide a backdrop for the more detailed
discussion of statistical challenges in Sec. IV.

A. Direct searches

Direct searches are experiments searching for evidence
of interactions of individual dark matter particles in ter-
restrial detectors. This type of experiment can be carried
out for most dark matter candidates (except for very light
particles which have energies that are below the threshold
of existing particle detectors, and extremely heavy par-
ticles where the number density becomes too small and

interactions are too rare even in the case of high cross
sections).

1. WIMP Signatures

Here we concentrate on experiments originally devel-
oped for the detection of WIMPs or WIMP-like particles.
Due to simple scattering kinematics and the fact that
particles we can hope to detect would be gravitationally
bound to our galaxy (and thus must have a velocity of
less than ∼600 km/s [41]), the energy transfer through
interactions with electrons is at most in the eV range,
while interactions with nuclei yield typical recoil ener-
gies in the keV range. Thus, most of these experiments
concentrate on the identification of nuclear recoils (NR),
while discarding electron recoils (ER). However, recent
developments have yielded detectors with very low en-
ergy thresholds capable of detecting energies in the range
that can be expected from electron interacting dark mat-
ter [42, 43].

Other signatures that have been proposed for the iden-
tification of dark matter interactions include modulations
of the detected signal with time. Due to the motion of
the earth about the Sun and the Sun about the galaxy,
the relative velocity of the detector and the dark matter
particles changes over the course of the year, leading to
a weak modulation of the interaction rate [44].

If the direction of the incoming dark matter particles
can be identified in a detector, one would also expect a
modulation over the course of the day, since the rotation
of the earth about its axis leads to a change of the ori-
entation of the detector relative to the flux of incoming
dark matter particles [45].

2. Detection Channels

There are three main ways of detecting particles:

1. Particle interactions may ionize the target, and the
liberated charges can be collected; the amount of
charge detected allows for an estimate of the de-
posited energy. However, the amount of charge
produced is usually very different for different in-
teractions (ER interactions are usually much more
efficient in ionizing than NR interactions).

2. In some cases excited electrons de-excite via the
emission of photons in a process called scintilla-
tion. The fraction of energy converted to scintilla-
tion light is usually small (few percent) and again
the scintillation efficiency is usually much higher
for ER than for NR interactions.

3. Eventually, most of the energy of the interaction
is converted into thermal energy. This provides an
opportunity to measure the total energy transfer of
the interaction independent of the interaction type.
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Experiments have been designed to take advantage of
each of the detection channels, and in many cases two of
the channels are combined, allowing for the discrimina-
tion between ER background events and NR dark matter
candidate events.

Below we list a selection of current experiments, to give
an idea of the range of techniques:

• Inorganic scintillating crystals are used by the
DAMA/LIBRA experiment [46–48] which relies on
the annual modulation discussed above for signal
identification. Such a signal as indeed been ob-
served beyond any statistical doubt, but its inter-
pretation in terms of dark matter interactions is in-
consistent with the absence of a compatible signal
in other experiments. SABRE [49] and COSINE
[50] are upcoming attempts to test the DAMA sig-
nal using the same technique.

• Semiconductor detectors made out of Si (DAMIC
[51, 52]) and Ge (CoGeNT [53]) benefit from low
thresholds and very high intrinsic material purity.
CoGeNT observed a statistically significant rise of
the observed event rate towards low energy and
hinted at a possible interpretation as a dark mat-
ter signal. However, a careful reanalysis with a
more realistic background model was able to ex-
plain the observation with conventional interac-
tions [54]. This highlights that statistical signifi-
cance must be accompanied with a very good un-
derstanding of background and detector response
in order to avoid misinterpretations.

• Super-heated liquid detectors were developed by
COUPP [55] and PICASSO [56], now combined
to form the PICO collaboration [57]. The level of
superheat in these detectors is adjusted such that
they are insensitive to ER background and only NR
interactions trigger a phase transition.

• Cryogenic detectors combine the detection of ther-
mal energy with the measurement of a charge sig-
nal (SuperCDMS [58–61], EDELWEISS [62, 63]) or
scintillation light (CRESST [64, 65] and COSINUS
[66]) for an effective reduction of ER background.

• Gaseous detectors are either designed to reach very
low thresholds and thus access dark matter parti-
cles down into the sub-GeV mass range (NEWS-
G [67]) or aim at identifying the recoil direc-
tion (DRIFT [68], MIMAC [69], DMTPC [70] and
NEWAGE [71]).

• Noble liquid detectors often use dual-phase time
projection chambers, taking advantage of the high
scintillation light yield of Xe (LUX [72], XENON1T
[73, 74], PANDA-X II [75]) and Ar (DarkSide
[76, 77]) and the fact that electrons liberated in an
interaction can be drifted over long distances in the
inert material. Comparison of the initial scintilla-
tion light and the secondary scintillation produced

by the charges that are extracted from the liquid
into the gas phase allow for an effective ER back-
ground discrimination. In argon, an excellent ER
discrimination can also be achieved by just look-
ing at the pulse-shape of the scintillation light in a
simple liquid detector (DEAP [78]).

Finally, upcoming generations of these detectors (e.g.
LZ [79], XENONnT [80], DarkSide [81], PICO-500L [82],
SuperCDMS SNOLAB [83]) are aiming to push the sen-
sitivity to the ultimate limit given by NR interactions
from solar or atmospheric neutrinos.

3. Statistical methods in direct detection

A very good tool for the analysis of data from experi-
ments with very low background is the Optimum Inter-
val Method [84–86]. This gives the best sensitivity in the
presence of an unknown background. Since no assump-
tion is required about the origin or spectral shape of the
background, this is also a very conservative method. In-
stead of spectral information, other parameters (timing,
pulse shape parameters, etc.) could be used and it would
be very useful to have an expansion of this method to a 2-
or more-dimensional parameter space. This method can
by construction only produce limits on the dark matter
interaction rate and does not allow signal extraction.

Recently, many experiments have adopted an analysis
method in which known backgrounds are explicitly taken
into account. The spectral shapes of these backgrounds
are determined and included in a Maximum Likelihood
fit. This provides better sensitivity in the presence of a
background, but requires that the background features be
determined independently. It also allows the extraction
of a dark matter signal. A problem arises if there are
backgrounds whose distributions are not known, or not
well known.

Combining results from different experiments or in
some cases from different detectors in the same experi-
ment may also cause a challenge. In particular if the per-
formance and the backgrounds of the different detectors
are different, it is non-trivial to find an unbiased method
that extracts the best joint sensitivity (see Sec. V B for
a simple toy example).

B. Indirect searches

Indirect searches for DM mainly rely on a search for
the high-energy products of DM self-annihilation into
Standard Model particles (for a dedicated review, see
Ref. [87]). The WIMP hypothesis has been a com-
pelling driver of these searches, since thermal production
through annihilation in the early Universe implies ongo-
ing (albeit suppressed) annihilation today. Nonetheless,
WIMPs are not the only DM candidates that are ex-
pected to yield an indirect signal: asymmetric DM can
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annihilate with a relic symmetric DM component, and
axions and sterile neutrinos can decay or oscillate to stan-
dard model particles. Indirect searches make use of the
large DM concentrations present in astronomical bod-
ies including the Galactic centre, dwarf satellite galaxies,
galaxy clusters, as well as the full isotropic background
at high redshifts.

Signals of DM annihilation or decay can include:

1. Cosmic rays produced by nearby DM annihilation
in the MW halo can be detected by space obser-
vatories including PAMELA [88, 89] and AMS-02
[90], or balloon experiments such as ATIC [91, 92],
HEAO [93], TRACER [94], and CREAM [95]. Cos-
mic rays mainly probe local (within ∼1 kpc) cosmic
ray sources. Because they are composed of charged
particles, their arrival directions do not point back
towards their sources; rather, they diffuse through
the turbulent magnetic structures of the interstellar
medium (ISM).

2. Gamma rays, produced copiously by internal
bremsstrahlung, decay of heavy unstable DM an-
nihilation products, or interactions with the ISM,
are searched for with space-borne experiments such
as Fermi-LAT [96], DAMPE [97], INTEGRAL/SPI
[98] and Chandra [99] (among others). At very high
energies (and thus very high DM mass), ground-
based air Cherenkov telescopes such as MAGIC
[100], VERITAS [101], HESS [102] and in the fu-
ture CTA [4] can constrain signals from high-mass
DM.

3. Neutrinos from DM annihilation and decay can
be searched for at neutrino telescopes such
as SuperKamiokande [103], IceCube [104] and
ANTARES [105]. Because of the difficulty in de-
tecting neutrinos, these bounds are fairly weak.
However, neutrino telescopes are sensitive to DM
which is captured in the Sun via elastic scattering.
Since these particles sink to the Solar centre and an-
nihilate, the neutrino signal (or lack thereof) from
> GeV dark matter becomes one of the cleanest (if
model-dependent) indirect signals of DM [106].

4. Finally, DM annihilation at high-redshift into pho-
tons and charged particles change the ionization
floor during the post-recombination dark ages [107].
This extra fraction of free electrons rescatters CMB
photons, leading to a suppression in the angular
power spectrum at high multipoles, akin to a “blur-
ring” of the last scattering surface. Energy injec-
tion at lower-redshift (e.g., from DM decay or anni-
hilation in clusters) leads to an increase in correla-
tion on large scales. The polarization of the CMB
signal is particularly sensitive to this effect, because
Thomson scattering is polarized.

A common issue that plagues indirect searches for DM
is the simple fact that astrophysical backgrounds are

quite poorly understood. A DM-like signal will inevitably
come with a number of plausible astrophysical interpre-
tations.

Given known backgrounds, indirect searches neverthe-
less provide strong and fairly model-independent con-
straints on new physics. CMB bounds from Planck
[26], gamma ray observations of the Milky Way’s dwarf
satellite galaxies (e.g. [108]), and low-energy (∼10 GeV)
positron observations by AMS-02 [109] provide some
of the strongest limits on WIMP dark matter. Solar
neutrino observations provide the best limits on spin-
dependent WIMP-nucleus scattering [110, 111].

C. Collider searches

If non-gravitational interactions between DM and the
Standard Model (SM) exist, particles of DM could be
produced in proton-proton collisions at the Large Hadron
Collider (LHC) [112]. The LHC operates at the highest
center of mass energy and provides the highest luminosity
in current high energy experiments. Therefore, sensitiv-
ity to very low production cross-sections of DM particles
can be achieved at general purpose experiments like AT-
LAS [113] and CMS [114], while sensitivity to certain DM
models can be also obtained at specialized experiments
like LHCb [115] and ALICE [116]. As DM particles are
not expected to interact with the detector material, the
typical signature will have missing transverse energy in
the detector. The main backgrounds for the analyses
come from limited detector resolution, neutrinos in the fi-
nal states of SM processes, and non-collision background
processes.

Several approaches in DM searches are used at LHC
experiments [117]. The DM particles are not expected
to leave a signal in interaction with the material of the
detectors, but they can be observed if they are pro-
duced in association with a visible SM particle X(=
g, q, γ, Z,W, h). These are the so-called “mono-X” or

�ET+X searches, where �ET is the missing transverse en-
ergy in the detector. Another approach in DM searches
is to use effective field theories (EFT). They rely on the
assumption that production of DM occurs through a con-
tact interaction, involving a quark-antiquark pair (or two
gluons) and two DM particles. Kinematics of �ET+X
models can significantly differ from the contact interac-
tion approach. EFT assumes a heavy mediator in the
interaction of DM and SM particles, but if the media-
tor is not heavy, models that explicitly include media-
tors need to be used. They provide an extension to the
EFT approach, and use “simplified models”, constructed
for specific particles and their interactions. Models us-
ing a mediator can predict significantly different signals,
where decays back to SM particles are viable. In this
context, due to different kinematics, analyses can be op-
timized for two types of signatures. The first use the

�ET+X signature, and can be interpreted using both the
EFT and simplified models, and the second use simpli-
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fied models that probe DM – SM couplings. A number
of additional physics scenarios account for DM. These
include e.g. the two Higgs doublet model (2HDM) [118],
or various models in the framework of Supersymmetry
(SUSY) [119–124].

A few assumptions are made in DM searches at LHC
experiments. To ensure that DM particles are produced
in p-p collisions, it is assumed that interactions between
SM and DM particles exist. Most of the analyses assume
DM to be a weakly interacting massive particle (WIMP),
which is stable on collider time scales and does not inter-
act with the detector material. Typically, minimal flavor
violation (MFV) is assumed [125], which results in the
same flavor structure of couplings of DM to ordinary par-
ticles as in the SM. Results of�ET+X and simplified mod-
els that probe DM – SM couplings are typically presented
using vector and axial-vector mediators; fixed values of
mediator couplings to quarks, leptons and DM; mediator
width set using the minimal width formula; and the me-
diator and DM particle masses as free parameters [126].
Other physics scenarios have their results presented as
a function of free parameters in the model under study,
e.g. Higgs branching ratio or SUSY particle masses, for
2HDM and SUSY models respectively.

1. Collider signatures

A wide range of models are tested and dedicated DM
searches are performed at ATLAS and CMS. These in-
clude the �ET + X and searches using simplified models
that probe DM - SM couplings. Since the interactions
of DM with SM particles are not known, a number of
additional scenarios are considered:

• In the �ET+X search, DM is produced in associ-
ation with the particle X coming from an Initial
State Radiation (ISR) jet, photon, W boson or
Z boson. The DM production cross-section scales
with quark-X coupling, and the signal is expected
as an excess in the tail of the �ET distribution. The
analysis typically has a requirement on �ET , and
a selection for the particle X, and the interpreta-
tion is done for different mediator and DM particle
mass. The highest cross-section is for gluon ISR,
and the highest sensitivity in the mediator and DM
particle mass can be achieved using the �ET+jet
analysis, compared to �ET+γ, �ET+Z and �ET+Z
searches.

• In analyses that probe the DM - SM couplings, the
mediator can decay back to SM particles. Then
the signal appears as a localized excess in the in-
variant mass distribution of two fermions. Typical
searches perform a scan on a di-fermion invariant
mass distribution. The search for dijet resonance
represents one of the most important analyses due
to the high production cross-section and a num-
ber of approaches are used, while the dilepton res-

onance search is well motivated by the clean sig-
nature which provides strong constraints for small
mediator-lepton couplings. The exclusion is done
using different sets of assumptions on the DM, me-
diator and couplings. For an axial-vector mediator,
dijet searches have smaller sensitivity for very low
mediator masses, but very high exclusion for high
mediator masses, for any mass of DM particles.

• At LHC energies there is no top quark content in
protons, and a mono-top final state is a clear sig-
nature of new physics, and represents an important
scenario in DM searches.

• DM can be produced in association with heavy fla-
vor particles, and interesting searches are �ET+tt̄
and �ET+b.

• Since ISR of Higgs bosons is strongly suppressed,
models where the Higgs couples to DM represent
an interesting scenario. The typical signature has
visible decays of the Higgs (e.g.H → bb orH → γγ)
and �ET .

• Invisible Higgs decay occurs for a model where DM
couples to the Higgs boson, and the mass of the
DM particle is smaller than half of the Higgs boson
mass. This gives rise to an ‘invisible’ branching
fraction for the Higgs boson.

• The two Higgs doublet model with a light pseu-
doscalar mediator which decays to DM produces
an enhanced �ET+X signature. Due to resonant
production of heavy scalar and heavy pseudoscalar
Higgses, enhancement occurs in the �ET+Z and

�ET+h channels.

• Supersymmetry (SUSY) predicts a DM candidate
(e.g. neutralino, gravitino), and systematic searches
are done for different productions of SUSY parti-
cles. A typical signature has a long chain of cascade
decays of SUSY particles, with the lightest SUSY
particle (LSP) at the end of the chain.

2. Statistical approaches at the LHC

In LHC searches analyses are optimized to maximize
signal and reduce the background in the signal region
(SR) selection [127]. The SM background is estimated us-
ing data-driven techniques, from the control region (CR)
selections, designed to be dominated by one type of SM
background, and orthogonal to the SRs, where normal-
ization factors for each background are estimated using
data. Statistical interpretation is performed using the
frequentist approach, where a hypothesis is tested us-
ing statistics only. For an analysis with multiple bins
in the discriminating variable distribution, the likelihood
for the observed number of events is modeled by the
Poisson distribution, which considers the expected and
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observed number of events in each bin, and nuisance pa-
rameters to account for uncertainties in each bin as:

L(µ, θ) =

N∏

i=1

P (µsi(θ) + bi(θ))×
M∏

j=1

Pj(θ) , (1)

where µ is the signal strength, s is the expected number
of signal events, b is the expected number of background
events, θ are the nuisance parameters, N is the number of
signal region bins, and M is the number of backgrounds
considered.

In order to quantify a possible excess, a local p-value
is calculated using the profiled log-likelihood ratio test
statistic

qµ = −2 ln
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)
, (2)

where L(µ,
ˆ̂
θ) maximizes the likelihood for a specific sig-

nal strength µ, and L(µ̂, θ̂) is the global maximum likeli-
hood. For the case of a statistical test for the discovery
of a positive signal, a one-sided likelihood for the back-
ground hypothesis only (µ = 0) is used:

q0 =

{
−2 lnλ(0) µ̂ ≥ 0 ,

0 µ̂ < 0 ,
(3)

where λ is the likelihood ratio [128]. The test statis-
tic’s distribution asymptotically follows a χ2 distribu-
tion [129], and the p-value is calculated as an integral
for values higher than the observed test statistic q0,obs.
The significance is calculated using the inverse Gaussian
cumulative distribution function (Z = Φ−1(1 − p)). For
a case of high significance, the global significance needs
to be calculated, as a probability for finding such an ex-
cess from statistical fluctuations of the background when
looking in a large number of SR bins. As the number
of SR bins considered increases, the global significance
becomes smaller.

If no significant excess is observed, upper limits on
the visible production cross-section are set using the one-
sided profile log-likelihood (with the signal strength µ as
a free parameter) using the test statistic:

qµ =

{
−2 lnλ(µ) µ̂ ≤ µ,

0 µ̂ > µ.
(4)

To set exclusion limits, the CLS technique [130] is used.
It accounts for a small number of expected signal events
compared to the number of expected background events.
Exclusion limits are calculated using:

CLs =
ps+b
pb

, (5)

where ps+b = P (q ≥ qobs|s + b) using µ = 1, and
pb = P (q ≥ qobs|b) for µ = 0. The pb is a conditioning fac-
tor to account for the goodness of fit of the background-
only hypothesis, designed to prevent downwards fluctu-
ations in the background leading to the unreasonably

strong exclusion of signal models. The exclusion limits
are typically set at 95% CL, for each DM model point,
and exclusion regions are drawn for CLs ≤ 0.05.

With recent developments of machine learning (ML)
techniques, a number of improvements are being devel-
oped in DM searches. Firstly, performance in object re-
construction can be improved using ML which allows for
better signal separation. A number of applications are
being implemented for e.g. lepton reconstruction or b-
jet tagging. Secondly, signal separation in the analy-
ses can be improved using ML techniques with a num-
ber of new methods being investigated for DM searches,
e.g. Boosted Decision Trees [131], Deep-learning Net-
works [132], Generative Adversarial Networks [133], etc.
Further details of ML techniques in DM searches can be
found in Sec. IV B 3.

Collider searches represent an important avenue in
DM searches, as they provide precise constraints on DM
masses, for given assumptions on the mediator and cou-
plings. The �ET+jet and a dijet resonance searches are
expected to have good sensitivity to many DM models us-
ing the full Run 3 integrated luminosity [134]. If DM is
not found, this would represent an important constraint.
Current analyses use simplified models for optimization
but more complex models of DM interactions need to
be considered for the future. Additionally, initial as-
sumptions on the DM particles need to be relaxed, e.g.
additional scenarios with long-lived DM particles need
to be considered to extend the reach of DM searches.
Statistical interpretation represents a crucial aspect in
quantifying the significance of a potential excess and for
setting exclusion limits. In addition, better sensitivity
can be achieved through improved object reconstruction
and signal separation by using modern machine learning
techniques.

D. Gravitational probes and structure formation

Predictions for the distribution of large scale structure
from cold dark matter (CDM) cosmology are in excellent
agreement with observations on large scales [135]. On
smaller scales, it may be possible to probe the micro-
physics of DM by studying the properties of galaxies and
comparing with the results of numerical simulations of
galaxy formation [136].

For around a decade, a number of discrepancies be-
tween the results of numerical simulations and obser-
vations of galaxies have been put forward as indicators
of physics beyond the standard CDM paradigm. These
“small-scale” problems include the presence of bulge-less
disk galaxies [137], the core-cusp problem [138, 139], the
missing satellites problem [140] and the Too-Big-To-Fail
problem [141, 142]. However, many of these issues were
first observed in DM-only simulations. The inclusion of
gas and stars (and associated feedback mechanisms) in
more realistic hydrodynamical simulations has alleviated
many of these “small-scale” tensions (see e.g., [143–150]).
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The effects of baryonic feedback must be included in
any realistic simulation of galaxy formation, even those
which include non-standard dark matter models. These
include Self-Interacting dark matter [151–154] (originally
invoked to solve the core/cusp problem [155, 156]) and
warm dark matter [157–159] (which may suppress struc-
ture on small scales). Simulations involving even more
exotic models, such as ultra-light fuzzy dark matter
[160, 161], could yield testable predictions but are still
in their infancy. In all cases, the complicated (and some-
times poorly understood) sub-grid physics of baryonic
feedback can make it difficult to derive strong constraints
on the DM properties from galaxy simulations.

Perhaps the most promising probe will be in the prop-
erties of ultra faint dwarf galaxies, many more of which
will be detected and studied in the LSST-era [162–164].
In such galaxies, the effects of baryonic feedback tend to
be less pronounced, and thus small-scale problems (such
as the presence of cored density profiles) in ultra faint
dwarfs would be strongly suggestive of new physics be-
yond the CDM paradigm [165, 166]. Unfortunately, mod-
eling uncertainties in dwarf galaxies means that detecting
the presence of large cores may be difficult. In particular,
different approaches, assumptions and priors tend to pro-
duce different estimates for the density profiles of dwarfs
[167, 168], even when the same data set is used. Rec-
onciling these estimates in a statistically meaningful way
represents a key challenge for using galaxy formation to
probe the properties of DM (see Sec. IV B 1).

This challenge has motivated the development of new
techniques to probe even smaller DM structures. Due to
their small masses and shallow gravitational potentials,
these structures are likely to be devoid of stars and gas,
and are thus essentially dark [8, 169]. Techniques to de-
tect these small DM subhalos thus rely on the latter’s
gravitational influence on their surrounding. These in-
clude phase-space perturbations to local stellar streams
[170–184], to the Milky Way disk [185, 186], or to halo
stars [187] that could be detected with precise astromet-
ric observations such as those enabled by the Gaia satel-
lite [10, 11]. Other techniques rely on the gravitational
lensing signatures of these small, dark subhalos, both
in our local neighborhood [188–190], and at cosmologi-
cal distances from our galaxy (see e.g. Refs. [191–206]).
Although promising, these different methods of probing
the small-scale DM structure all come with their own
statistical challenges, including the delicate balance be-
tween allowing for enough model complexity while avoid-
ing over-fitting the noise.

IV. STATISTICAL CHALLENGES AND
APPROACHES

The two important reasons for scientists to turn to
statistics can be summarized as 1) discovery and 2) pa-
rameter estimation. In this review, we will focus mainly
on the first question, that of discovery, since it is ob-

viously the ultimate goal of dark matter searches. The
question therefore becomes one of model comparison, i.e.,
answering the question: given available data, does this
theory of dark matter do better than the null hypothesis
H0?

The statistical approach to such a problem then de-
pends on a number of criteria: whether H0 is the pre-
sumed model, or if we are comparing two equally “plau-
sible” alternatives (for example, the normal vs inverted
neutrino mass hierarchies); whether H0 is a special case
of – nested within – the alternative; whether parameters
have unknown or meaningless values under H0, and fi-
nally whether one adopts a Bayesian or frequentist frame-
work.

The p-value is the most commonly used discovery crite-
rion. In this framework, the conclusion of the statistical
test for discovery is based on a test statistic TS which has
the property that larger values of TS represent stronger
evidence against H0 and in favor of H1. The p-value has
the intuitive definition

p = Pr(TS(y) ≥ TS(yobs)|H0), (6)

or: the probability that the test statistic TS(y) is more
extreme than the observed TS(yobs) under the null hy-
pothesis. The logarithm of the likelihood ratio

−2 log
maxθPH0(y|θ)
maxθPH1

(y|θ) (7)

is a convenient test statistic, since Wilks’ theorem tells us
that for nested models, and under certain regularity con-
ditions, its probability distribution follows a chi-squared
distribution with degrees of freedom equal to the differ-
ence in the dimension of the parameter space under H0

and H1 [207].
More often than not, Wilks’ theorem will not be ap-

plicable. This is usually due to comparison between non-
nested models, or boundary issues where a given param-
eter has no meaning under H0. In these cases, the “boot-
strap” method of generating a PDF via Monte Carlo sim-
ulation must be used, which can be prohibitively expen-
sive when searching for a 5-sigma effect.

The question that a phenomenologist seeks to answer
when performing a statistical analysis is: how likely is
the model to be true, given the data. However, p-values
do not measure the relative likelihood of hypotheses, nor
do they accurately reflect P (θ|y). Instead, they can be
viewed as a measure of the “false alarm” rate: how often
one should expect data this extreme if the null hypothesis
is true. However, a large p-value does not validate the
null hypothesis H0, nor does a small p-value, in itself,
suggest that P (H0|y) is small. In this sense, the p-value is
anti-conservative: typically p � P (H0|y), meaning that
interpreting the p-value as the probability that the null
hypothesis is true may significantly overstate evidence for
New Physics.

One way to help reduce this confusion is to report
(in addition to the p-value) what is referred to as
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P (H0|y)min. Here, P (H0|y)min is a lower bound on the
probability of the null hypothesis given the data P (H0|y):
the smallest possible value of P (H0|y) which can be ob-
tained over a large class of priors. These two summary
statistics provide different information about the prob-
lem at hand. In addition, reporting both numbers – p
and P (H0|y)min – highlights to the reader that they are
not the same thing and encourages a more careful inter-
pretation of the results. We present a toy example of this
in Sec. V C.

On the practical side, it is not always trivial to find
the maximum likelihood, especially when the parameter
space is complicated and high-dimensional. A number
of tools are available for efficiently exploring parameter
spaces and calculating likelihoods, posterior probabilities
and Bayesian evidences. These include: Markov Chain
Monte Carlo samplers such as CosmoMC [208] and GreAT
[209]; ensemble samplers such as emcee [210]; nested
samplers such as MultiNest [211–213] and POLYCHORD
[214]; differential evolution samplers such as Diver
[215]; and global optimizers such as AMPGO2 [216].
A number of these were compared in Ref. [215] but in
general the best tool will depend (unfortunately) on the
particular problem under investigation.

The rest of this section is split into two subsections.
First we describe the details of a number of novel tech-
niques that were primarily developed to overcome issues
in modern DM data analysis. Second, we discuss recent
progress in tackling some specific statistical problems in
DM searches, as well as a number of opportunities and
challenges that still remain in the field.

A. Novel Techniques

1. Selecting between non-nested models

How do we perform model selection between wildly
different, non-nested models? For example, how do we
choose which DM model (axions vs. WIMPs; scalar vs.
fermion) is preferred by the data when the parameter
spaces differ? In a frequentist framework, Wilks’ the-
orem fails in this setting, and thus comparisons based
on the χ2 approximation of the Likelihood Ratio Test
(LRT) become meaningless. In a Bayesian framework,
comparing evidences can be misleading, as the compar-
ison between prior volumes becomes arbitrary. For ex-
ample, the weight of a decade in axion masses versus a
decade in WIMP masses are certainly not equivalent to
one another.

One proposed solution is to make the models nested by
means of a comprehensive model which includes the mod-
els to be tested as special cases [217, 218]. For instance,

2 See http://infinity77.net/global_optimization/ampgo.html

for an implementation.

φ(Ac) = 1 φ(Ac) = 2 φ(Ac) = 3

FIG. 1. From Ref. [217]. Euler characteristic in two dimen-
sions.

let f(y,ψ) and g(y,θ) be the models to be compared with
vectors of parameters ψ and θ respectively. Consider the
mixture model

(1− η)f(y,ψ) + ηg(y,θ) (8)

where η ∈ [0, 1]. Despite the fact that η does not have
any physical interpretation (as the data are assumed to
be generated by either f or g), the asymptotic normality
of its Maximum Likelihood Estimate (MLE) allows one
to approximate the distribution of the LRT when testing

H0 : η = 0 vs η > 0. (9)

Specifically, as described in Refs. [219, 220], in order to
circumvent the problem of non-identifiability of θ, one
can construct the profile LRT statistic for each value of
θ fixed, i.e.,

LRT (θ) = −2

n∑

i=1

log
f(yi, ψ̂0)

(1− η̂θ)f(yi,ψθ) + η̂θg(yi,θ)
,

(10)

where ψ̂0 is the MLE of ψ under H0, η̂θ and ψθ are
the MLEs of η and ψ under H1 with θ fixed. Let-
ting θ vary, {LRT (θ)} corresponds to a random field3

with index θ. A p-value for the test in (9) is given by
P (supθ{LRT (θ)} > c), where c is the maximum of (10)
observed over a grid of values for θ. Although the asymp-
totic distribution of LRT (θ) is known to be a 50:50 mix-
ture of χ2

1 and zero [221], we can only approximate the
asymptotic distribution of the supremum of the random
field {LRT (θ)}.

One possible way to do so is to consider the so-called
Euler characteristics of the set Ac of points Ac = {θ ∈
Θ : LRT (θ) > c}. We denote with φ(Ac) the Euler char-
acteristic of Ac. In two dimensions, φ(Ack) corresponds
to the numbers of connected components less the number
of holes (see Figure 1). In an arbitrary number of dimen-
sions one can consider a quadrilateral mesh over Ac. In
this case, φ(Ac) is computed by adding and subtracting

3 A random field is a stochastic process where the index is multi-
dimensional.
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hypercubes of increasing dimensionality (i.e., number of
points − number of edges + number of squares − num-
ber of cubes + number of 4-dimensional hypercubes etc).
The p-value of interest can then be computed as

P (sup
θ
{LRT (θ)} > c) ≈ E[φ(Ac)]. (11)

As originally investigated by Ref. [220], the advantage
of referring to the expected Euler characteristic E[φ(Ac)]
in Eq. (11) is that it can be estimated via a small Monte
Carlo simulation of {LRT (θ)} under H0 as described be-
low. Following Ref. [222], we write E[φ(Ac)] as

E[φ(Ac)] =
D∑

d=0

Ld(Θ)ρd(c), (12)

where D is the dimensionality of θ, and the function-
als ρd(c), namely the Euler characteristic densities, are
known in the statistical literature and only depend on the
marginal distribution of each component of {LRT (θ)},
i.e., the above-mentioned 50:50 mixture of χ2

1 and zero.
For instance, if D = 2, Eq. (12) takes the form

E[φ(Ac)] =
c

1
2 e−

c
2

(2π)
3
2

L2(Θ)+
e−

c
2

2π
L1(Θ)+

P (χ2
1 > c)

2
L0(Θ).

(see Ref. [217] for more details.) The functionals Ld(Θ)
in Eq. (12) are known as the Lipschitz-Killing curvatures
and their analytical expression for d > 0 is typically hard
to compute in practice. However, this problem can be
overcome using the following steps:

• Step 1: Simulate y1, . . . , yn from f(y,ψ) 100–1000
times via Monte Carlo.

• Step 2: For each Monte Carlo replicate in Step 1
compute (10) over a grid of values for θ.

• Step 3: Select c1, . . . , cD arbitrary small thresh-
olds.

• Step 4: For each ck, k = 1, . . . , D, in Step 1 com-
pute E[φ(Ack)] over the Monte Carlo simulation
obtained in Steps 1-2.

• Step 5: Obtain the solutions L∗d(Θ) of the system
of D linear equations





E[φ(Ac1)]− L0(Θ)ρ0(c1) =
∑D
d=1 Ld(Θ)ρd(c1)

E[φ(Ac2)]− L0(Θ)ρ0(c2) =
∑D
d=1 Ld(Θ)ρd(c2)

...
E[φ(AcD )]− L0(Θ)ρ0(cD) =

∑D
d=1 Ld(Θ)ρd(cD).

• Step 6: Compute E[φ(Ac)], and consequently
P (supθ{LRT (θ)} > c), as

E[φ(Ac)] =
L0(Θ)P (χ2

1 > c)

2
+

D∑

d=1

L∗d(Θ)ρd(c),

where L0 is the Euler characteristic of Θ, (e.g. it is
one if Θ is a disc, a square, a cube or it is zero if
Θ is a circle).

A more detailed discussion on the computation of the
expected Euler characteristics E[φ(Ack)] is given in
Ref.[217]. Applications to realistic simulated data from
the Fermi LAT are discussed in Refs. [217, 218].

2. Exploiting the count statistics of the signal

DM detectors are typically counting experiments, i.e.
looking for signal events above a background.

In the case of DM indirect detection the observed signal
is pixelized observed counts, e.g. as seen in data from
the Fermi -LAT gamma-ray telescope. In this case the
data would be a Poisson realization of the modeled dark
matter signal, which could represent emission from large-
scale structures such as the smooth Galactic halo, as well
as point/extended structures such as dwarf spheroidal
galaxies, extragalactic halos and Galactic subhalos.

The associated likelihood is then a product of the Pois-
son probabilities associated with the observed counts npi
in each pixel of the region-of-interest:

L(d|θ) =
∏

p

µp(θ)n
p

e−µ
p(θ)

np!
, (13)

where d denotes the data, θ represents the set of model
parameters (e.g. modeled backgrounds or signal) and
µp(θ) is the number of expected counts in a given pixel
and energy bin, usually characterized through spatial
templates which model the emission associated with one
or more physical process and/or source class.

A particular problem with indirect detection is distin-
guishing the signal events on top of a complex and uncer-
tain background. One particular background of common
interest comes from point sources in the signal region of
interest, for example millisecond pulsars, which have non-
power-law gamma-ray spectra similar to those expected
from annihilation of weak-scale DM. Typically, known
point sources are masked or individually modeled in an
analysis, but this cannot be done when point sources can-
not be detected individually. In this case, the collective
emission of dim, sub-threshold point sources could be
confused with a diffuse DM signal.

In the presence of unresolved sources with unknown
positions, detections of multiple photons from the same
pixel no longer behave as independent events, as the
detection of one photon increases the probability that
a source is present in the pixel. The likelihood conse-
quently deviates from the Poissonian form, and is in-
stead characterized by non-Poissonian noise in the data.
Following [223], the non-Poissonian likelihood can be
conveniently cast in the language of probability gen-
erating functions, which for a discrete probability dis-
tribution with pk with k = 0, 1, 2, . . . are defined as
P (t) ≡ ∑∞k=0 pkt

k and allows us to recover the associ-

ated probabilities as pk = 1
k!

dkP (t)
dtk

∣∣∣
t=0

. Exploiting the

fact that the probability generating function for a sum of
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independent random variables is simply the product of
the respective generating functions, the generating func-
tion for a smooth (Poissonian) template (associated with
the likelihood in Eq. 13) takes the form

PP(t;θ) =
∏

p

exp [µp(θ)(t− 1)] , (14)

while for a non-Poissonian template characterizing the
distribution of an underlying unresolved point source
population this takes the form

PNP(t;θ) =
∏

p

exp

[ ∞∑

m=1

xp,m(θ)(tm − 1)

]
, (15)

where the xp,m have the interpretation of being the av-
erage number of point sources contributing m photon
counts within a pixel p. Further details on characteriz-
ing the non-Poissonian likelihood associated with a point
source population, and numerical recipes, may be found
in [224–226].

While DM emission from individual sources has been
traditionally studied in the context of Poissonian tem-
plate fitting [108, 227–232], a comprehensive study
taking into account all potential DM emitters (dwarf
galaxies, sub- and above-threshold extragalactic halos,
sub-threshold subhalos as well as the smooth Galac-
tic halo) would require accurate modeling of the un-
derlying sources and robust characterization of the
(non-)Poissonian signal likelihood.

3. Euclideanized signals

Efficient forecasting of experimental sensitivities is key
for developing the most relevant searches for dark mat-
ter particles. The sensitivity of future experiments can
be quantified in various ways. This includes the discov-
ery reach, expected exclusion limits, and — assuming a
significant detection has been made — the ability to dis-
criminate various models and regions in the model pa-
rameter space. Traditionally, the latter is done by defin-
ing a number of ‘benchmark points’ in the model param-
eter space of interest, and studying with simulated mock
data how well this scenario – if realized in nature – could
be constrained with the experiment at hand.

The ‘Euclideanized signals’ approach that was intro-
duced in Ref. [233] provides a way to study the model
discrimination power of future instruments in a funda-
mentally benchmark-free way. This is achieved by effi-
cient approximation methods for calculating the expected
log-likelihood ratios, which in turn allow us to consider
a very large number of reference points in the param-
eter space simultaneously. Instead of considering, say,
10 benchmark points, one would consider thousands or
millions of points, covering the entire parameter space of
interest exhaustively.

Euclideanized signals are a mapping of a compli-
cated model parameter space into a (typically high-
dimensional) space where statistical distinctness corre-
sponds to the Euclidean distance. Various clustering al-
gorithms allow for the efficient pair-wise comparison and
grouping of points according to their Euclidean distance,
even for millions of points. Once the mapping is done, it
is then easy to study which parts of the parameter space
are in principle distinguishable from other regions.

In Ref. [234] a mapping of model parameters θ 7→ x
was defined, which allows one to approximate the log-
likelihood ratio with Euclidean distances,

TS(~θ′)D(~θ) ≡ −2 ln
L(D(~θ)|~θ′)

max
~θ′′
L(D(~θ)|~θ′′)

' ‖~x(~θ)− ~x(~θ′)‖2 .

(16)
This mapping is valid for Poisson likelihoods (which triv-
ially includes also Gaussian likelihoods), with arbitrary
signal parameterization, and general background uncer-
tainties modelled as Gaussian random fields. In Ref. [234]
it was shown with randomly generated signal and back-
ground models that the approximation technique yields
estimates for the log-likelihood ratio that are correct to
within 20% (for up to 5σ distances).

The Euclideanized signal method makes two analyses
computationally possible:

• Benchmark-free forecasting: an exhaustive study
of the model-discrimination power of experiments
without resorting to a small number of benchmark
scenarios,

• Signal diversity: estimating the number of dis-
criminable signals that are predicted by a specific
model.

We further discuss these in detail below focusing primar-
ily on benchmark free forecasting.

Benchmark-free model comparison — Here we want to
calculate, based on the collection of Euclideanized sig-
nals, whether two subsets of a global model can exist
within a confidence region, with radius r, of each other.

We define the radius as rα(M) =
√
χ2
k=d,ISF(1− α)

where χ2
k=d,ISF is the inverse survival function of the Chi-

squared distribution with k = d degrees of freedom such
that for k = 2 and α = 0.046 (corresponding to 95.45%
CL) r0.046(M) = 2.486. Here the two subsets of the
global model correspond to the distinct models (A and
B) we wish to compare and distinguish. Both model A
and B are nested within (subsets of) the global model.

If within r0.046(M) of a parameter point from model
A there exists a parameter point from B, then the point
in A is not discriminable from B. On the other hand,
if there exists no point from model B within r0.046(M)
then the models can be in principle distinguished at 95%
CL. Here is a step by step guide to performing these
calculations with reference to a direct detection (DD)
example as presented in Ref. [233].
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• Step 1: Sample the parameter space of M, calcu-
lating signals for each point. For the problem at
hand, we found that one obtains stable results if
there are more than around 10 points within every
1σ (68% CL) confidence contour. In the case of DD,
the global model M may correspond to the non-
relativistic effective field theory operators O1 and
O4 (these are simply the usual spin independent
and dependent interactions, respectively) [235]. We
then have a three-parameter model i.e. the mass
of the dark matter particle and the two individual
DM-nucleon couplings to each operator. The sub-
models A and B then correspond to two boundaries
of M where one or the other of the DM-nucleon
couplings is set to zero.

• Step 2: Euclideanize the signals using experimen-
tal parameters such that each parameter point has
an associated new vector ~xi. This step can be done
using swordfish [234].

• Step 3: For each point i in model A (i.e. points

with model parameters ~θi corresponding to model
A), find all points within r0.046(M). We denote
the set of model parameters for these neighboring

points as {~θ(i)j }.
The number of degrees of freedom used to calcu-
late r0.046(M) for model comparison is equal to
the difference in the dimensionality of the models
of interest. If we consider comparison of the over-
all modelM, which has d degrees of freedom, with
the sub-model A with d′ then k = d− d′. For the
DD example, d = 3 and d′ = 2 therefore k = 1 and
r0.046(M) = 2.0.

• Step 4: Each point i is then defined as discrim-
inable or not according to the list of parameter

points {~θ(i)j }. If {~θ(i)j } contains a point from model
B then i is not discriminable and vice versa.

In this way we are able to make benchmark-free state-
ments about the discriminability of models such as those
presented in Ref. [233] and shown in Fig. 2.

Signal Diversity — The number of discriminable mod-
els is approximately defined as the number of points one
could fit in to a parameter space whilst maintaining 2σ
discrimination between all points. We can visualize these
regions by tightly packing confidence contours into the
parameter space, as is shown in Fig. 3 for the case of a
typical direct detection experiment. As can be seen in
Fig. 3, this number is O(10− 100) but calculating ναM,X

(defined below) in higher dimensional models with mul-
tiple experiments can be difficult. We therefore estimate
the quantity using the following method:

• Step 1: Same as previous step 1

• Step 2: Same as previous step 2
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FIG. 2. Taken from Ref. [233]. Blue and Orange Lines: 90%
confidence limits (CL) on the standard spin-independent cross
section for XENON1T (2017) [73], and a future experiment
with 100 times the exposure. To the left/below each broken
line, it is not possible to discriminate an O1-signal (with the
indicated cross-section and DM mass) from the corresponding
best-fit O4, O11 or magnetic dipole signal. Above/right of
each broken line, such a discrimination is possible with at
least 2σ significance. All lines include DM halo uncertainties.

• Step 3: Calculate the number of points wi within
r0.046(M)/2 of the point ~xi. The number of degrees
of freedom is equal to the number of free parame-
ters of the model. Again, for the DD example we
have a three parameter model therefore k = 3 and
r0.046(M) = 2.833.

• Step 4: The volume (here defined) is then approx-
imated by ν0.046M,X = cff

∑
i wi where cff is a filling

factor dependent on the dimensionality.

We can visualise the diversity and global degener-
acy breaking abilities of experimental configurations (for
nested models) using Infometric Venn diagrams as intro-
duced in Ref. [233].

4. ABC: when you can’t actually afford a likelihood

The increasing complexity of the models we use to de-
scribe physical processes have made the computation of
a likelihood often difficult to handle or even impossible.
Fortunately many methods have been developed to allow
for the forward simulation of these complex situations,
for example calculating the end state observables from an
LHC event or the distribution of galaxies from a ΛCDM
cosmological simulation.

Approximate Bayesian Computation (ABC) is a
computationally-intensive framework for approximating
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FIG. 3. Taken from Ref. [233]. Blue and Orange Lines: 90%
confidence limits (CL) on the standard spin-independent cross
section for XENON1T (2017) [73], and a future experiment
with 100 times the exposure. Green Ellipses: 68% confidence
contours for tightly packed set of points. Approximately de-
scribes the number of discriminable signals in the parameter
space between blue and orange lines.

a Bayesian posterior distribution when a likelihood func-
tion is not available or intractable [236, 237]. The basic
ABC algorithm was introducted in [238, 239], but was
also hinted at conceptually in [240]. ABC has proved to
be a useful tool for several problems in astronomy (e.g.
[241–244]).

The basic ABC algorithm proceeds simply, with only
a few steps. The overall idea is to use a forward model
to generate a simulated dataset given draws from the
prior distribution(s). If that simulated dataset is “close
enough” to the real observations, then the draws from the
prior(s) that produced the simulated dataset are consid-
ered “good” draws, and those values are retained. If not,
the values are discarded. This is repeated until enough
draws from the prior are accepted, and those values are
used to approximate the Bayesian posterior.

More precisely, the steps of the basic ABC algo-
rithm proceed as follows given unknown parameter(s)
θ, prior(s) p(θ), observations yobs, and forward model
F (y | θ):

(i) sample θprop ∼ p(θ),

(ii) compute yprop ∼ F (y | θprop),

(iii) if yprop = yobs, then keep θprop, if not, discard θprop,

(iv) repeat until desired number of values of θprop have
been accepted.

Rather than waiting until yprop is equal to yobs exactly,
lower-dimensional summary statistics are used. For ex-
ample, rather than comparing the full set of observations,

one could compare only their sample means. The sum-
mary statistics are crucial for good performance of the
ABC algorithm. The summary statistics will only be as
good as the amount of information they contain about
the data. There are some methods for developing sum-
mary statistics (e.g. [245, 246]), but physically-motivated
summary statistics can also be effective. The perfor-
mance of the summary statistics and distance functions
should be checked in a similar scenario where the true
posterior is available (which will likely require a simpli-
fied model).

In order to define what is meant by “close enough”,
a tolerance (or tolerances) ε is set. Then for distance
function ∆, θprop is accepted if ∆(yobs, yprop) ≤ ε. The
desire is for ε to be small.

For observations yobs with summary statistic(s)
S(yobs), distance function ∆, (small) tolerance ε, and
desired particle sample size N , an ABC posterior can be
based on {θ(1), θ(2), . . . , θ(N)} = {θ(i)}Ni=1 {θ(i)}Ni=1 from
Algorithm 1.

Algorithm 1 Basic ABC Algorithm

1: for i = 1 to N do
2: while ∆ (S(yobs), S(yprop)) > ε do
3: Propose θprop by drawing θprop from prior p(θ)
4: Generate yprop from forward process F (x | θprop)
5: Calculate summary statistics {S(yobs), S(θprop)}
6: end while
7: θ(i) ← θprop
8: end for

Selecting a small enough ε can be challenging be-
cause setting ε too low leads to a lower acceptance rate
and hence (possibly significantly) more computational re-
sources and time. One popular option for getting around
this issue is to use the ABC-Population Monte Carlo
(ABC-PMC) algorithm proposed in [247]. The general
idea with ABC-PMC is to set up a sequential version
of ABC that uses the accepted particles from the pre-
vious iteration as the proposal for the current iteration,
rather than drawing from the prior distribution. This
provides improved proposals at each iteration, which is
coupled with a shrinking tolerance at iteration t, εt. The
important point is that in order to target the correct pos-
terior distribution (assuming everything else is selected
correctly), importance weights need to be computed at
each iteration. Details about the importance weights and
the specific steps of the algorithm can be found in [247].
Ref. [244] also has a nice overview of the ABC-PMC with
an astronomy application and a Python implementation.
There are other sequential extensions of the ABC algo-
rithm (e.g. [248, 249]).
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B. Progress and Challenges

1. Quantifying nuisances

The signal expected in both direct and indirect
searches depends sensitively on quantities of astrophys-
ical nature: for indirect searches the DM distribution
within the target (along the line of sight), and for di-
rect searches, the amount of DM in the proximity of the
Sun/Earth, as well as its velocity distribution (in prin-
ciple also important for indirect searches, but generally
ignored in simplified scenarios). The lack of knowledge
(i.e. uncertainties of statistical and/or systematic nature)
on these quantities can be considered as “nuisances” for
the interpretation of the signal in terms of DM parti-
cle properties (mass, self-annihilation, or scattering cross
section). The local DM density can be extracted from lo-
cal and global measurements [17, 250, 251], while recent
state-of-the-art hydrodynamical simulations of galaxy
formation provide information on the local DM velocity
distribution [252–255], as well as the DM density profile
of Milky Way-like galaxies [256]. Each of these astro-
physical quantities are estimated with their associated
uncertainties, yet little work has been done to properly
quantify all known astrophysical uncertainties in the in-
terpretation of DM signals. The impressive precision and
refinement of both statistical tools, and searches at col-
liders, to which direct and indirect searches must be cou-
pled, compel us to cope with these issues by addressing
the state of our ignorance, and to properly treat the im-
pact of astrophysical uncertainties within the budget of
overall nuisances affecting the signal.

One example of quantifying nuisances is the case of
how uncertainties on quantities in our own Galaxy, the
Milky Way, affect particle DM constraints: how can we
quantify the effect of astrophysical uncertainties in the
determination of new particle physics parameters?

The reconstruction of the DM distribution in the en-
tire Galaxy –when obtained through a method based on
global properties such as the “Rotation Curve”– relies
on a host of ancillary measurements and determinations,
among which are those related to the motion of the Sun
within our own Galaxy (the Local Standard of Rest, and
the relative motion between the Sun and the Galactic
Centre, in the following generically referred to as “Galac-
tic Parameters”), and the spatial distribution of the vis-
ible component of the Milky Way (stars and interstellar
gas). The latter is affected by a statistical uncertainty
related to the overall normalization of the stellar mass,
and from a (currently) irreducible systematic on the de-
termination of the shape of stellar morphological com-
ponents (disc-s, and bulge). The impact of both classes
of uncertainties on the determination of the DM profile
(expressed in terms of the local DM density, and the in-
ner slope of a generalized NFW profile) has been assessed
in recent studies [250, 257], with the conclusion that al-
though none of them can hinder the certainty of the pres-
ence of a dark component of matter in the Galaxy – even

within the solar circle – the effect of both classes of uncer-
tainties is sizable in the actual determination of the local
DM density and its distribution, especially towards the
region of the Galactic bulge. These analyses have com-
pelled a study of how such uncertainties propagate in the
determination of DM parameters, in the case of model-
specific analysis: in Ref. [258] the authors considered the
effect of Galactic uncertainties on two minimal extensions
of the Standard Model, in the context of direct and in-
direct DM searches: the Singlet Scalar (SSDM) and the
Inert Doublet (IDM) DM models. The phenomenologies
of these two particular models have a simple dependence
on a limited set of parameters, which makes them ideal
cases for quantifying the effect of Galactic uncertainties
on the determination of their parameters.

The following constraints from DM direct and indirect
detection in the parameter space of the SSDM and IDM
were taken into account: the 2015 LUX exclusion limit
on the spin-independent elastic WIMP-nucleon cross sec-
tion [259], and the Fermi-LAT limit on the averaged
velocity annihilation cross section from the analysis of
dwarf spheroidal galaxies in the Milky Way [260]. The
authors also considered the parameter space favored by
the DM interpretation of the Galactic Centre GeV ex-
cess [261]. In particular, it was studied how the LUX
exclusion limit and the region favored by the GeV excess
vary in the available parameter space of the SSDM and
IDM, for three different cases of variation of astrophys-
ical uncertainties: a) the statistical uncertainty on one
“reference” baryonic morphology, b) the variation of the
Galactic parameters for the reference morphology, and
c) the baryonic morphologies that maximize or minimize
the local DM density.

It was found that for the SSDM case, the statisti-
cal uncertainty on the reference morphology has a very
small effect on the LUX limit, while the uncertainties
on the values of the Galactic parameters or the baryonic
morphology have large effects on the LUX constraint.
The largest variation in the exclusion limit is due to the
variation in the Galactic parameters which leads to the
largest variation in the local DM density (varying from
0.055 ± 0.004 GeV cm−3 to 1.762 ± 0.017 GeV cm−3; see
Table 1 in Ref. [258]). For the region favored by the
GeV excess, again the statistical uncertainty on the ref-
erence morphology has a minor effect. However, varying
the Galactic parameters and considering different bary-
onic morphologies have large effects on the favored region
and can relieve or worsen the tension with the constraints
from dwarf spheroidals. The largest shift in the GeV ex-
cess region is due to the variation of the baryonic mor-
phologies.

For the IDM case, it was found that the effects of
Galactic uncertainties on the LUX exclusion limit are
similar to those discussed for the SSDM. The variation
of the local DM density causes the largest uncertainty
in direct detection limits, and hence the variation in the
Galactic parameters for the reference morphology has the
largest effect in the IDM parameter space. The anal-
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ysis also showed that the regions which can simultane-
ously explain the GeV excess and reproduce the mea-
sured DM relic abundance are small and in most cases in
tension with the dwarf spheroidal constraints. Varying
the Galactic parameters or baryonic morphology shifts
the GeV excess region such that the DM relic abundance
cannot be reproduced.

In summary, the statistical uncertainties in the ob-
served Milky Way rotation curve and the normaliza-
tion of the baryonic mass component do not affect the
constraints on the parameters of new physics models,
while the uncertainties in the Galactic parameters and
the baryonic morphology can significantly impact the al-
lowed model parameter space. Quantifying astrophysi-
cal uncertainties will be especially important in case a
DM signal is discovered in future direct and indirect ex-
periments, and is required to accurately determine the
particle physics nature of DM.

2. Global fits: let’s just do everything (and worry later
about trying to afford it)

The profusion of experiments hunting for DM in the
last decade has left us with an enormous amount of com-
plementary data on its possible identity. Unfortunately,
the heterogeneity of that data makes it difficult to apply
to the DM problem in a cohesive, efficient and consis-
tent way. Different experiments are optimised to look
for different types of dark matter, involve entirely dif-
ferent (but sometimes correlated) experimental methods
and uncertainties, make different (but related) theoret-
ical assumptions in the analysis of their data, and take
different attitudes to sharing their data with the rest of
the community. Most experimental collaborations look-
ing for DM have apparatuses that in principle are sen-
sitive to many different variants, but only have the re-
sources to analyse their own data, in the context of a
small number of well-chosen theories.

Experimental constraints on theoretically well-justified
theories help theorists to efficiently construct new mod-
els, based on some real picture of physical quantities such
as masses or couplings. The converse is also true: the-
oretical predictions for observable quantities in concrete
and complete models help experimentalists to build pow-
erful cuts, choose the right energy range to search, and es-
timate the exposure required for a statistically-significant
measurement. Ideally, this process should be a circular
feedback loop. This loop has become difficult to imple-
ment in modern times, because of the growing number
and complexity of DM models, and the great number of
different experiments searching for them.

Global fits in particle and astroparticle physics are the
means by which we can use the full treasure-trove of
existing data to analyse a broad range of theories, and
thereby complete the traditional scientific feedback loop.
Working with the experimental collaborations to define
forms of their likelihood functions applicable to a broad

range of DM theories (e.g. [262–265]) and then combining
them into composite likelihood analyses, teams of the-
orists, phenomenologists and experimentalists have suc-
cessfully produced broad-ranging analyses of many popu-
lar theories for DM. These include a number of different
versions of supersymmetry [266–283], extra dimensions
[284], Higgs portal and other minimal WIMP DM mod-
els [285–289], axions [290] and DM effective field theories
[291, 292].

Care needs to be taken when combining data from
different experiments. In particular, consistent theoret-
ical calculations and assumptions must be applied to
all predictions (and even experimental likelihoods) in
a global fit, along with the same assumptions about
Standard Model parameters, nuclear physics and astro-
physical aspects like the density and velocity distribu-
tions of DM [293–295]. Similarly, different theoretical
calculations and experimental analyses must be invoked
for different theories, alternative theoretical calculations
should be considered for the same model in order to
estimate theory errors accurately, sophisticated statisti-
cal sampling schemes must be employed for analysing
high-dimensional parameter spaces [296–298] and cover-
age properties need to be checked carefully [299–301].
Ideally, the global fitting framework itself should auto-
matically ensure that all of these requirements are sat-
isfied. This is something that has only recently become
possible [302]; future work is focussed on extending this
rigorous consistency-checking and automation as far as
the Lagrangian level.

Once a new DM model is proposed, an initial choice of
priors on its parameters must be made, based on some
theoretical constraints or preferences of the researcher.
If the likelihoods are strong, the final fitted result will
not be dependent on the chosen prior. However, because
only the Planck [303] relic density measurement provides
a clear “signal” amongst the different DM experiments,
the likelihoods for DM searches are very often too weak
to dominate over the impact of the prior on the posterior.
Such prior dependence is therefore difficult to avoid until
more constraining experimental data become available.
On the other hand, it is still not clear what kind of prior
distribution – if any – is more objective and therefore
preferable. At this stage, showing results based on both
Bayesian and frequentist statistics is generally considered
best practice in global fits, as they provide complemen-
tary information about the impacts of priors, fine-tuning
and the quality of sampling and fit available in different
parts of the parameter space.

A comprehensive global fit requires a lot of CPU time
for many likelihoods, such as the simulation of signals
at the LHC. If good sampling is required of the entire
likelihood surface, it can be extremely difficult to study
collider signatures in models with more than a few de-
grees of freedom. Nevertheless, considering DM mod-
els in neighbouring parameter regions, and the similar-
ity of their respective likelihood computations, it might
not be necessary to perform full signal simulations across
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entire parameter spaces. Some simplifications can be
used in the global analysis, based on simplified mod-
elling of detector effects [304], the similarity of kinemat-
ics, some mathematical tricks, or model configurations
(e.g. [288, 291, 294, 305–308]). Of course, such simpli-
fications could introduce some systematic uncertainties
or limitations on the applicability of the resulting con-
straints, which must be carefully checked before perform-
ing the fit.

Treating different theories on the same footing, and
comparing them both rigorously and quantitatively, was
one of the major topics of discussion at this workshop.
Indeed, this is of particular difficulty and importance
for global fits, given their comprehensiveness and the
fact that they purport to provide a complete and ac-
curate summary of the current status of the search for
different theories of DM, and the identity of DM more
broadly. Possible approaches include mixture models
(Sec. IV A 1), comparison of global p-values, the use of
Bayes factors, or some extension of the Euclideanized sig-
nals approach (Sec. IV A 3). These have their own chal-
lenges: global p-values are notoriously difficult to obtain
in complicated high-dimensional parameter spaces, Bayes
factors come with attendant prior dependence – which in
general only gets worse for non-nested models – and ap-
plication of Euclideanized signals to model selection first
requires that the method be developed further.

3. Machine Learning in DM Physics

Machine Learning (ML) techniques have already been
widely adopted throughout the high energy, astro, astro-
particle, and particle physics communities. We here
briefly comment on some use cases for DM physics and
provide useful references. Details are beyond the scope
of this work, but we point the interested reader to
darkmachines.org for a community effort to increase
the use of ML in DM physics (an associated white paper
is in preparation). Also, see Refs. [309, 310] for recent
publications in high energy physics.

Direct Detection — The simplicity of direct detection
experiments and their low background design has made
the procedure of data analysis relatively simple. They
have therefore been robust to the revolution of ML tech-
niques. Nevertheless some progress has been made in
improving the efficiency of posterior sampling when con-
sidering the large number nuisance parameters associated
with galactic halo uncertainties [311]. Boosted decision
trees have also be used to improve traditional cut and
count analyses by optimally and automatically selecting
the most promising signal events [312, 313].

Indirect Detection — Unlike DD, a large variety of ML
techniques have been widely adopted throughout the in-
direct detection (ID) community. For concreteness we
mention three major applications here. Firstly, Neural
Networks (NNs) have been used to assess the probabil-
ity of the galactic center gamma-ray excess [261] being

produced by a population of unresolved point sources
[314]. Unlike the characterization of the likelihood pro-
posed in Sec. IV A 2, the approach of Ref. [314] relies on
many simulated realizations of a population of Millisec-
ond Pulsars towards the galactic center. Secondly, the
Fermi-LAT has provided the first view into the varied
population of gamma ray point sources. Classification
of these point sources has proven to be a complicated
task typically involving dedicated follow-up studies from
telescopes in other wavebands [315]. There are close to
1000 objects in the 3FGL source catalog which have yet
to be associated to any source type. For DM searches
these point sources are of great interest when looking for
low mass sub-halos that would appear as point sources
for Fermi-LAT resolution (< 0.15◦ above 10 GeV) [316].
Much progress has been made in classifying these unas-
sociated sources using different methods such as random
forests and logistic regression [317] with searches for novel
source classes such as sub-halos also being performed in
Ref. [318]. Finally, lensing signatures from sub-halos on
a variety of scales, as those mentioned in Sec. III D, can
be sensitive to DM physics. Progress has been made pri-
marily in finding strong lens candidates from the large
volume of incoming data, see Ref. [319] for an example
using Convolutional Neural Networks.
Collider Searches — There is an ongoing and ded-

icated effort to improving the use of machine learn-
ing techniques throughout the collider physics com-
munity, see https://iml.web.cern.ch and http://
diana-hep.org for details. Specifically for DM searches,
see Ref. [320] where distributed Gaussian processes and
NNs were used to increase the speed of likelihood eval-
uations to a computationally feasible rate for parameter
inference.

4. The statistical interpretation of fine-tuning

A theoretical model presents fine-tuning (or, equiv-
alently, the absence of naturalness) when the observ-
able quantities depend critically on fine adjustments of
the fundamental parameters. For example, in the mini-
mal supersymmetric standard model (MSSM) the Higgs
mass, mh, is related to the initial soft mass mHu

and the
µ−parameter by −m2

h/2 ' m2
Hu

+ µ2. Hence, if these
initial parameters are O(1) TeV, the Higgs mass is fine-
tuned by ∼ 1%.

Beyond amusing (and unlikely) coincidences, the pres-
ence of severe fine-tuning is a warning that the model is
implausible in the way it is formulated. The detection
of fine-tuning is always interesting because it is telling us
something potentially highly non-trivial about the model.
There are three possible attitudes in the presence of fine-
tuning: (i) discard the model as implausible; (ii) com-
plete the model, i.e. find a reason for the apparently im-
probable correlations; (iii) ignore the fine-tuning, i.e. as-
sume a fortunate coincidence or, alternatively, hope that
someone else will find a reason for the odd correlations,
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as in attitude (ii).
Fine-tuning is an important but, admittedly, slippery

and debatable subject. There are two reasons for that.
First, it is not easy to quantify the fine-tuning in a univer-
sal, model-independent way (ideally with a sound statis-
tical meaning). Second, once the amount of fine-tuning
has been established, it is a subjective matter how much
fine-tuning one should accept; after all, coincidences hap-
pen. These difficulties (which may seem Bayesian, due
to their implicit subjectivity) do not contradict the fact
that fine-tuning (or naturalness) is a deep, relevant issue
for the structure of a theory.

Consequently, the first and most important matter is
how to quantify fine-tuning. Let F (θi) be the fine-tuned
(observable) quantity, where θi are the fundamental (in-
dependent) parameters of the theory. Generically, this
means that F is very sensitive to small variations of one
(or several) θi. This has inspired the most popular (and
perhaps standard) ‘measure’ of fine-tuning [321]:

∆ ≡ max |∆θi |, with ∆θi =
∂ logF

∂ log θi
. (17)

It is understood that ∆ ∼ 10, 100, · · · amounts to ∼
10%, 1%, · · · fine-tuning. While this seems reasonable,
it would be nice to find a probabilistic interpretation of
(17). Let us call θ and θ0 the parameter responsible for
the tuning and the value that reproduces the experiment,
F (θ0) = F exp. Suppose, for the sake of argument, that
F has to be fine-tuned to a small value. Then θ0 should
lie at a small distance, δθ, from the value that fully can-
cels F . Assuming that the natural range of θ is ∼ [0, θ0]
with a flat prior, and that the expansion of F (θ) at first
order captures its behavior in the neighborhood of inter-
est, then it is straightforward that ∆−1 has the statistical
meaning of a p−value [40, 322, 323]:

P (F ≤ F exp) =
δθ

θ0
' ∆−1 . (18)

The previous assumptions are reasonable, but may be
inappropriate in particular theoretical scenarios. Sup-
pose for instance that the dependence of F on θ is the
one depicted in Fig. 4. Clearly, the standard criterion
(17) underestimates the real fine-tuning, as it overesti-
mates the actual interval of θ where F ≤ F exp. This is
not just an academic example. If the dark matter relic
density is controlled by annihilation through some funnel
(like Higgs or Z funnels), the dependence of ΩDM on the
DM-mass is exactly as in Fig. 4. In the borderline case,
where the previous interval tends to zero, the actual fine-
tuning tends to infinity, whereas the standard criterion
gives ∆→ 0 ! The general lesson is that, before applying
(17) blindly, one should check that the conditions for its
validity are met. It is normally more sensible (and eas-
ier) to directly apply a p−value criterion to the parameter
considered, instead of using the approximate expression
(17). Examples of this, in the context of supersymmet-
ric mechanisms for DM, can be found in [323]. A more

✓

F

�true > �st. crit.

F exp

F  F exp

FIG. 4. An example of a fine-tuned quantity where the stan-
dard criterion (17) cannot be applied.

sophisticated way of giving an statistical meaning to fine-
tuning, in a fully Bayesian spirit, would be the following.
Pretend that the fine-tuned quantity, F (θi) has not been
measured yet. Then, evaluate the Bayesian probability
that F ≤ F exp. A similar-in-spirit procedure was applied
in [324] to the electroweak fine-tuning of the MSSM.

5. Global significance for overlapping signal regions

When high local significance is observed in LHC
searches for new physics, the probability of seeing such
an excess only from statistical fluctuations of the back-
ground in any of the analysis signal regions (SRs) needs
to be quantified. This is described by the global signifi-
cance, which takes into account trial factors, often called
the “look-elsewhere effect” in physics. For a large number
of signal regions, the probability of seeing a “signal-like”
fluctuation in any one of them is higher. The probability
p0 of seeing one such high significance excess anywhere
in a number of signal regions (assuming the background-
only hypothesis H0) is given as:

p0 = P (qx ≥ qx,obs|H0) , (19)

for some test statistic qx. The global significance is ob-
tained from the probability of observing a maximum local
significance (across the NSR signal regions considered)
greater than the observed maximum local significance.
This is typically estimated using a number of pseudo-
experiments Ntoy. A number of aspects in this calcu-
lation are described in [325–327] for the case of non-
overlapping SRs. However, if SRs in the analysis have
overlap in their discriminating variable selections, the
correlations of SR selections need to be taken into ac-
count.

Analyses are often designed to use orthogonal selec-
tions in the parameter space of discriminating variables,
to avoid considering correlations in the overlapping re-
gions. However, there are cases of analyses that require
overlapping selections. An example of such an analysis
is the SUSY search for q̃ and g̃ production using a se-
lection with two leptons, jets and missing transverse en-
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FIG. 5. Overlapping signal regions SR-A, SR-B and SR-C, in
the SUSY analysis for q̃ and g̃ production using a selection
with two leptons, jets and missing transverse energy [328]. Se-
lections have overlap in the selection of missing transverse en-
ergy (�ET ), scalar sum of transverse momentum of jets (HT ),
and invariant mass of two leptons (mll). Global significance
is calculated using orthogonal sub-regions 1,2,3 and 4.

ergy [328]. The analysis is optimized for q̃ and g̃ decays
with jets and two leptons in the decay chain. The signal
would produce an excess in the two-lepton invariant mass
distribution mll. Depending on the mass differences of
the SUSY particles, the mll excess appears at different
ranges of the distribution. In addition, different mass
spectra produce jets of different transverse momentum,
and different masses of the χ̃0

1 LSP give different sizes of
missing energy in the signature, which are considered in
the selection. Therefore, to account for a large number
of SUSY models, SRs are designed with overlap in the
selection. Consequently, when the global significance is
calculated, the correlations of the overlap of SRs need to
be taken into account.

Here, we briefly describe a novel technique to take over-
lapping SRs into account. It makes the assumption that
systematic uncertainties for all background components
are fully correlated across all SRs. First, the NSR con-
sidered signal regions are split into non-overlapping sub-
regions. An example for the SUSY analysis with two
leptons, jets and missing transverse energy is shown in
Figure 5. Next, for each non-overlapping sub-region, and
for each background component, the yields of events are
scaled in the following way:

• To account for systematic uncertainty, scaling is
done by the random value obtained from a Gaus-
sian with unit mean and width equal to the sys-
tematic uncertainty,

• To account for the statistical uncertainty, scaling is
done by the random value obtained from a Gaus-
sian with unit mean and width equal to the statis-
tical uncertainty,

• To produce a pseudo-experiment, a random number
from a Poisson distribution is drawn, with mean
equal to the yield obtained in the previous steps.

Then the newly obtained yields from corresponding bins
are summed into SRs. The p-value and correspond-
ing significance is evaluated for each SR. The procedure
is repeated for a large number of pseudo-experiments.
The global p-value is then calculated as the fraction of
pseudo-experiments in which the largest local significance
is higher than the observed maximum local significance.
This p-value is then converted into a one-sided signifi-
cance.

The calculation of global significance represents a com-
putationally demanding task. As a rule of thumb, a num-
ber of pseudo experiments Ntoy is taken of the order of
the inverse of the p-value, e.g. for a p-value of 10−4, Ntoy

is of order 104. Calculations corresponding to 3-4 σ sig-
nificance are viable using hundreds of processing units on
a modern computing cluster. However, the calculation
of significance regions above 5σ becomes computation-
ally intractable. When the number of signal regions is
O(10), the effect of the correction for the global signifi-
cance becomes negligible at high significance. However,
certain aspects of using asymptotic formulae need to be
considered when the number of signal regions is large.
A viable solution for large number of overlapping signal
regions and high maximum local significance could be
obtained by developing a method using the counting of
up-crossings, as described in the global significance cal-
culation using non-overlapping regions of Ref. [327].

V. EXAMPLES AND TOY MODELS

In this section, we present a number of brief exam-
ples, based on statistical issues which arose during dis-
cussions at the workshop. While these toy examples rep-
resent simplified scenarios, it should be possible to extend
them straightforwardly to more realistic applications in
the field of DM searches.

A. Parameter limits with non-compact support

Consider the following toy problem: an experimental
search for a new signal s with an expected flux φ(E) as
a function of energy E proportional to:

dφs
dE

= α2 E2

(E2 −m2)2 + Γ2
. (20)

This could parametrize some resonant scattering or anni-
hilation process at Eres = m, with width Γ and strength
α. This search could be performed in the presence of
some background event rate:

dφbg
dE

= RBG

(
E

E0

)γ
, (21)
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FIG. 6. Marginalized 1D posterior on the parameter α from
(20), where the true value falls below the experimental sensi-
tivity. Different colors correspond to lower boundaries on the
prior from αmin = 10−6 to 10−2. Vertical dashed line show
the corresponding 95% CL limit inferred in each case.

governed by unknown nuisance parameters RBG, γ. The
total events observed in each energy bin i with width
∆Ei of such a search would be:

Ni = T∆Ei

(
dφs
dE

(Ei) +
dφbg
dE

(Ei)

)
, (22)

where T represents the exposure of the experiment. One
can then construct a likelihood logL =

∑
i logP (Ni) and

proceed with the usual Bayesian analysis.
In the absence of a signal (i.e., the “new physics” rate

is lower than the experiment’s sensitivity can reach), we
would like to place a limit on the (non-background) pa-
rameters governing the new physics we have been search-
ing for (20), via the parameters α and m. Our theory
does not specify a scale for these parameters, so the cor-
rect choice of prior that reflects our understanding of
this theory would be log-uniform. Upon inspection of
Eq. (20), it is clear that in the absence of a clear sig-
nal, α can be arbitrarily small, and m can be arbitrarily
large. There is thus no well-motivated choice of a prior
boundary.

This leads to the following conundrum: any change,
e.g., in the lower prior boundary of α will affect the loca-
tion of the 95% credibility boundary, because the latter
depends on the total posterior volume, even if the likeli-
hood is completely flat down to α→ 10−∞. The limit set
on the theory in this way is therefore entirely dependent
on the arbitrary size of the prior box. This is illustrated
in Fig. 6, where shaded regions represent the marginal-
ized posterior distribution in α, and the vertical lines
show the limit set in each case. This inherent fuzziness
sends many dark matter phenomenologists (who are cur-
rently in the business of setting limits) running towards
a more frequentist approach such as a profile likelihood

where no such ambiguity exists.

B. Combining two experiments

Combining the evidence produced from N similar ex-
periments (i.e., ones which require only a few, commonly
shared nuisance parameters η) can be a relatively pain-
free task with a simple product of likelihood functions

L(d|θ,η) =
N∏

i=1

Li(di|θ,η) . (23)

Here, θ are the parameters of interest and di are the
observed data in each experiment.

Complications can arise however when these exper-
iments have many distinct nuisance parameters which
may or may not be governed by some common parame-
ters. The overall likelihood function is then instead

L(d|θ,η) =

N∏

i=1

Li(di|θi,ηi) . (24)

In general, there can be a large number of nuisance pa-
rameters {ηi}, which may not be independent and which
therefore complicate the issue of specifying priors or joint
likelihoods on these nuisance parameters. Furthermore,
if we want to calculate (for example) posterior distribu-
tions for the parameters of interest, the required integrals
over (correlated) {ηi} are high-dimensional and typically
intractable.

We discuss here a Bayesian solution to this problem of
combining dissimilar experiments. More details can be
found in [329, 330]. For clarity we discuss a simple setup,
namely two toy single bin counting experiments (which
we will refer to as DAMU and LAX) with uncertain back-
ground components. We assume that each experiment
is contaminated with radioactive Unobtainium, governed
by a contamination factor c ∈ [0, 1]. The number of ex-
pected background events is then NBG = cRUnT , where
RUn is the background rate expected from a pure Un-
obtainium source and T is the exposure time (which we
set to 1). From calibration using a purely Unobtainium
source we can constrain the expected background rate to
be

PU (RUn) =
1√

2πσ2R2
avg

exp

(
− (RUn/Ravg − 1)2

2σ2

)
,

(25)
where Ravg = 1000 events per unit time and σ = 10%.
Unfortunately our purification procedure is not perfect
but the contamination in a given experiment can be con-
strained to be below cmax. Below this value we assume a
uniform prior on c, therefore the probability for getting
a number of background events is described by

PBG(NBG) =

∫ cmax

0

PU

(
NBG

c

)
dc

c
. (26)
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Finally, the signal is simply given by a number of events
Nsig = µ on which we want to place an informative limit
by combining evidence from DAMU and LAX.

Our two toy experiments are now governed by different

nuisance parameters N
(LAX)
BG and N

(DAMU)
BG .

We can deal with this in a Bayesian manner by first
identifying the set of parameters common to both exper-
iments - in this case µ and RUn. The different contami-
nation factors c(LAX) and c(DAMU) are now independent.
We can then calculate the adjusted likelihood functions
for each experiment j:

Lj(µ,RUn) =

∫
dN

(j)
BG L(N

(j)
obs|µ,N

(j)
BG)P (N

(j)
BG|RUn) ,

(27)

where P (N
(j)
BG|RUn) simply corresponds to the flat prior

on the contamination c(j) up to c
(j)
max. We can then calcu-

late the marginal likelihood, incorporating our prior on
RUn, P (RUn|µ) = PU (RUn),

L(µ) =

∫
dRUn




∏

j

Lj(µ,RUn)



P (RUn|µ) . (28)

This likelihood function can now be used as usual, for
exploring the parameter space, calculating posteriors and
setting limits on the signal strength for the combined
experiments. In Fig. 7, we show the marginal likelihood
ratio L̂ = L/Lmax (top panel) and cumulative posterior
distribution (bottom) for LAX and DAMU separately
and combined. We assume that both experiments see
a total of 4 events, but that the contamination in LAX
(cmax = 0.01) is more poorly constrained than in DAMU
(cmax = 0.005). The posterior is calculated assuming a
flat prior on µ.

As one can see, this parameterization of the problem
requires the segmentation of relevant nuisance param-
eters to different experiments, i.e., c(LAX) and c(DAMU)

even though they have a common baseline uncertainty
set by the probability of events from pure Unobtainium
(Eq. 25). In this way a hierarchical structure can be
created for convenient computation of the adjusted
likelihood functions per experiment. For more complex
situations, this method can make an intractable likeli-
hood calculation possible by reducing the dimensionality
of the required integrals to variables associated with
each experiment individually.

C. Presenting the p-value and the probability of
the null

As discussed in Sec. IV, it is important to emphasize
the distinction between the p-value and the probability
of the null hypothesis, given the observed data, Pr(H0|y).
These two numbers quantify different things. Taking the
concrete example of looking for a bump-like signal on top
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FIG. 7. Marginal likelihood ratio (top) and cumulative pos-
terior distribution (bottom) for the LAX and DAMU toy ex-
periments separately and combined. The combined curves
correctly account for the correlation between nuisance pa-
rameters in the two experiments and can be used to easily
set limits on the signal strength µ.

of a smooth background (as in the case of the discovery
of the Higgs Boson), the p-value gives a measure of the
false alarm rate – how often we expect the smooth back-
ground to fluctuate upwards to look like a signal. Instead,
Pr(H0|y) gives the probability that the background-only
hypothesis is correct (given the observed data), compared
with the hypothesis that there is a signal. The probabil-
ity of the null hypothesis will depend on the our choice
of priors (for both the background and the signal). How-
ever, by considering a wide range of priors, we can deter-
mine a lower bound on Pr(H0|y) and therefore the lowest
possible probability that the background-only hypothesis
is true.

We demonstrate this idea with a simple toy example
of a single bin counting experiment. We assume that
the expected number of background counts is known,
NBG = 49. Given a number of observed counts Nobs,
we would like to quantify the level of agreement with the
null hypothesis H0 (that only background events con-
tribute to the rate) and the alternative H1 (that there is
some non-zero signal).

The p-value is obtained as the probability of observing
data as extreme or more extreme than what is observed,
assuming H0. Thus, we have:

p =

{∑∞
k=Nobs

P (k|NBG) for Nobs > NBG ,
1
2 for Nobs ≤ NBG .

(29)

Here, P (k|NBG) is the Poisson probability of observing
k events when NBG events are expected. We set the p-
value to 1

2 for Nobs ≤ NBG because an under-fluctuation
does not correspond to data which is incompatible with



DM-Stat: Statistical Challenges in the Search for Dark Matter 53

22

H0 in favor of H1.
The probability of the null hypothesis is obtained using

Bayes’ theorem [331]:

P (H0|Nobs) =
P (Nobs|H0)P (H0)

P (Nobs|H0)P (H0) + P (Nobs|H1)P (H1)
.

(30)

Here, P (H0) and P (H1) are the prior probabilities that
H0 and H1 respectively are true. In the absence of an-
other well-motivated choice, we will assume P (H0) =
P (H1) = 1

2 . As before, P (Nobs|H0) is simply the Poisson
probability of observing Nobs events, given NBG expected
background events. Instead, P (Nobs|H1) is the probabil-
ity of observing Nobs events, integrated over all possible
numbers of signal events Nsig:

P (Nobs|H1) =

∫
P (Nobs|NBG +Nsig)Pβ(Nsig) dNsig .

(31)

Here, we write the prior on Nsig as Pβ(Nsig), which we
parametrize by β. For concreteness, we will assume an
exponential prior on the number of signal events:

Pβ(Nsig) = β exp (−βNsig) . (32)

In Fig. 8, we show the p-value as a function of the num-
ber of observed counts in this toy example. We also show
P (H0|Nobs) for one specific prior on the number of signal
counts, set by β = 0.01. Finally, we show the lower bound
on P (H0|Nobs) obtained by minimizing over a large class
of priors (i.e. by minimizing over β). This concrete ex-
ample highlights what was discussed in Sec. IV: that the
p-value is anti-conservative. In this case, when the p-
value drops to 5%, the probability of the null hypothesis
is always larger than 30%, even in the case of rather ex-
treme priors. By presenting both the p-value and the
bound on the probability of the null hypothesis, we give
a more detailed picture of the evidence at hand as well
as reminding the reader that these two things represent
different information about the data.

VI. CONCLUSIONS

The search for new physics has become a complex task,
with many moving parts. By now, it seems likely that
an eventual detection and identification of dark matter
through its particle interactions will take place through
careful statistical analysis. We have outlined a number
of experimental lines of attack in the hunt for particle
DM, along with their specific statistical challenges. Di-
rect detection experiments search for very rare events
by creating a signal region that is as background-free as
possible. Indirect detection relies on the vast scale of
the cosmos, with the drawback of a large and not-so-well
understood background from standard model astrophys-
ical processes. Finally, collider searches benefit from
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FIG. 8. Compatibility of an observed number of events Nobs

with the ‘background-only’ null hypothesis H0. The p-value
quantifies the false alarm rate while P (H0|Nobs) quantifies
the evidence in favor of H0, as compared with the ‘signal
+ background’ hypothesis H1. The red line corresponds to
the probability of the null hypothesis assuming a particular
choice of prior on the number of signal events (see Eq. 32).
The purple line shows the lower bound on the probability of
the null, over a wide range of priors.

a very well-understood background, but the tremendous
amount of data lead to a challenge of analysis and trials
factors.

We have outlined a number of statistical challenges
that arise in these areas, and some techniques to help
overcome them. The detection of new physics amounts
to a challenge of model selection, which comes with a
number of pitfalls: the construction of a good test statis-
tic, likelihood function or detection criterion; the choice
of physical model parameters and their priors; and the
efficient exploration of that parameter space. We have
discussed Bayesian methods as well as the dangers of p-
values and their misinterpretation. We have also pre-
sented a number of novel techniques for dealing with
complicated and computationally expensive parameter
spaces, such signal euclideanization and likelihood-free
approaches (i.e. ABC). Combining experiments and ap-
proaches poses additional challenges, as nuisance param-
eters may or may not overlap, and systematic uncertain-
ties may have varying effects. Approaches such as hi-
erarchical modeling and global fitting help tackle these
daunting issues with finite effort. We have also provided
a small number of examples or challenges that help il-
lustrate some of the issues of statistics that astroparticle
physicists are confronting.

A key goal of the DMStat workshop was to single out
specific problems in the search for dark matter which
present a statistical challenge. As we have seen, such
problems are not hard to find. Thankfully, a wealth of ad-
vanced statistical tools have made confronting these chal-
lenges feasible. Indeed, we have been able to report sig-
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nificant progress in addressing a number of DM-specific
problems, as well as highlighting a number of future chal-
lenges and avenues for further study. We are confident
that the ongoing cooperation between statistics and DM
physics will continue to yield progress and, perhaps some
day soon, a discovery.
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Chapter 4

Distributionally Robust Optimization
(18w5102)

March 4 - 9, 2018
Organizer(s): Erick Delage (HEC Montréal), Daniel Kuhn (Ecole Polytechnique Federale
de Laussane), Karthik Natarajan (Singapore University of Technology and Design), Wolfram
Wiesemann (Imperial College London)

Overview of the Field
A wide variety of real-life decision-making problems, ranging from managerial planning and governmental policy
making to finance, engineering, energy and healthcare, can naturally be formulated as large-scale mathematical
optimization problems which seek to determine values for a set of decision variables that optimize a specified
objective function, subject to a number of feasibility constraints. These optimization problems are often affected
by substantial uncertainty because their parameters are subject to measurement errors or are not yet observable at
the planning stage.

Optimization problems under uncertainty have a long history, and they are traditionally solved by methods
of stochastic and dynamic programming, both of which have been popularized in the 1950s. Nowadays, the
applicability of these methods is challenged for several reasons:

1. Ambiguity. In stochastic and dynamic programming, uncertainty is traditionally modeled via probability
distributions. However, in many practical decision situations the raw data can be explained by several strik-
ingly different distributions. Naive reliance on a single probabilistic model (e.g., the lognormal distribution
underlying the Black Scholes equation of option pricing or the use of the Gaussian copula in the pricing of
collateralized debt obligations [24]) can have catastrophic consequences, as has been demonstrated during
the recent financial crisis.

2. “Big Data.” In today’s increasingly interconnected world, traditional localized decision problems must be
integrated in order to correctly account for all possible synergies and systemic risks. Moreover, through the
ongoing proliferation of digital information sources, increasing amounts of decision-relevant data become
available (see [15] for a report by McKinsey Global Institute). As a result, modern decision problems
have substantially increased in size and often grown beyond the grasp of traditional dynamic and stochastic
programming methods.

3. The Optimizer’s Curse. The solutions of stochastic programming problems parameterized by statistical
data tend to display an optimistic bias even if the underlying parameter estimates are unbiased. This phe-
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nomenon is referred to as the “optimizer’s curse” and can lead to great post-decision disappointment in
out-of-sample tests (c.f. [26]).

4. The Curse of Dimensionality. In dynamic optimization all future decisions are modeled as contingency
plans, that is, as functions mapping observations to actions. In order to solve the emerging functional opti-
mization problems numerically, dynamic and stochastic programming discretize the underlying state space
or the probability distribution of the uncertain parameters. In either case, the computation time grows expo-
nentially with the problem size (see [1]), which has been a major impediment to the practical use of classical
dynamic and stochastic programming methods.

The new field of distributionally robust optimization (DRO) (as popularized with [8]) aims to remedy both the
conceptual and the computational shortcomings of classical stochastic and dynamic programming. The central
idea is to represent uncertainty through an ambiguity set, that is, a family of (possibly infinitely many) probability
distributions consistent with the available raw data or prior structural information, and to model the decision-
making process as a game against “nature.” In this game, the modeler first selects a decision with the goal to
maximize expected reward, minimize risk or maximize the probability of constraint satisfaction etc., in response
to which “nature” selects a distribution from within the ambiguity set with the goal to inflict maximum harm to the
modeler. This setup prompts the modeler to select worst-case optimal decisions that offer performance guarantees
valid for all distributions in the ambiguity set.

DRO has several striking benefits. It enables modelers to incorporate information about estimation errors into
optimization problems. Therefore, it results in a more realistic account of uncertainty and mitigates the optimizer’s
curse characteristic for classical stochastic programming. Moreover, surprisingly, DRO problems can often be
solved exactly and in polynomial time – in marked contrast to the intractable approximate models obtained via
discretizations of stochastic problems tailored to a single nominal distribution. Thus, DRO models have the poten-
tial to scale to industrially relevant problem sizes and is already being employed in a number of fields of practice
including vehicle routing, fleet management, portfolio selection, revenue management, scheduling, environmental
policies, smart grid management, etc.

Recent Developments and Open Problems
A distributionally robust optimization model typically takes the form of :

minimize
x∈X

sup
F∈D

EF [h(x, ξ)] , (4.0.1)

where x ∈ Rn is a vector of decision variables, X ⊂ Rn is the set of implementable decisions, ξ ∈ Rm is a random
vector for which the distribution F is only known to lie inside an ambiguity set D. Finally, one typically refers to
h(x, ξ) as a cost function which depends on both the decisions that are implemented and the realized values for ξ.

One can classify some of the main open questions with the use of the DRO framework in the following cate-
gories.

Choice of performance measure in DRO: While the DRO paradigm has to this date been heavily used in its
classical form (4.0.1), a number of alternative formulations, involving other risk measures than expectation [23],
and competing paradigms have recently surfaced (e.g. [5]). This brings the question of how to select the right
formulation in any specific context. Perhaps, the pessimistic view is not always the one that should be adopted.
Interestingly, Wolfram Wiesemann presented some work establishing an axiomatic motivation for DRO. We also
refer to talks summarized in sections 4 and 4 which shed more light on some of these issues.

Choice of ambiguity sets in DRO: While the community has been very successful, both from a numerical and
statistical point of view, employing ambiguity sets that are based on perfect or imperfect moment information (e.g.
in [8, 18]), or the notion of “distance” from a reference distribution [2, 27, 10, 4, 17], there are still a number of
questions that should be addressed by our community. In particular, one may ask:
- What are the approaches that make the “best” use of data in the design of ambiguity sets?
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- What type of algorithms might efficiently handle ambiguity sets that describe more structured random variables
such as discrete random variables, dependent variables based on copula information, or even a structure as simple
as independence?
Both of these questions were the subject of a number of talks during the workshop. In particular, the first question
was the main focus on our second day for which highlights are presented in Section 4. One might also be interested
by talks from the following presenters regarding the second question: Melvyn Sim, Krzysztof Postek, and Ruiwei
Jiang.

Efficiency of solution methods : While, in many cases, it is possible to reformulate DRO problems as tractable
mathematical programs (see [11, 19, 30]), there are still a number of DRO models for which high precision solu-
tions are numerically and analytically unattainable. This gives rise to the following questions:
- Can we extend the range of tractable instances?
- Can we design more efficient exact methods or better bounds for approximation algorithms?
In this regard, it is worth examining some of the recent successes achieved in robust optimization (see for instance
the talks summarized in Section 4). Moreover, a number of the talks summarized in Section 4 addressed the second
questions.

Distributionally robust optimization in multi-stage settings: While the DRO approach has been very useful
in the handling of static optimization problems, its use in multi-stage/dynamic problems is more limited (see e.g.
[29, 28, 20] for its use within Markov decision processes). In our opinion, this is due to the fact that the community
still has not found satisfying answers to the following questions:
- How can we design exact/approximate algorithms with solution time that scale reasonably with the number of
periods?
- Following the work in [22, 13, 3], how can algorithms more efficiently handle discrete delayed decision?
- How can ambiguity set account for conditional independence?
- How severe are the time consistency issues that arise as reported in [25]?
We refer the reader to the presentations of Section 4 which shed some light on the first issue.

Applications: We close this section with a brief overview of the areas where distributionally robust optimization
as been used: healthcare [16], energy (see [14], portfolio selection [6, 31, 32], statistics [9], vehicule routing [12],
etc. A number of new applications were discussed in this workshop and are summarized in Section 4.

Presentation Highlights

Emergent Modeling Paradigms

The first session of the workshop had two talks on the general concepts and modeling issues in distributionally
robust optimization (DRO) and was conducted by Yinyu Ye (Stanford University). Professor Ye discussed some
of the popular modeling approaches for ambiguity sets in distributionally robust optimization using moment, like-
lihood and Wasserstein ambiguity sets and some of the corresponding tractability results. A second idea that he
discussed was that of addressing ambiguity in high dimensions where only the marginal distributions are known
but the joint is unknown. Using an approximation to the problem with independent distributions, he showed that
for submodular functions, this approach has a good approximation guarantee which is however not valid for su-
permodular functions. While the complexity of solving the independence model was not discussed in detail in the
talk, an interesting question it naturally raises is if the distributionally robust formulation can be directly solved to
optimality. He also discussed generalization to online learning using concepts from DRO.

Melvyn Sim (National University of Singapore Business School) proposed new ambiguity sets in his work
by building on a scenario wise representation where in each scenario, the uncertain random variables lies in an
ambiguity set defined by moments information. Such an ambiguity set can be defined using clustering methods.
The model has nice tractable convex optimization representation using linear programming (LP) and second-order
cone programming (SOCP) methods and solving the DRO problem can be done in multi-stage problems using
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decision rules. He also discussed using infinitely constrained ambiguity sets to characterize information such as
independence and algorithms to solve it.

Wolfram Wiesemann (Imperial College London) and Professor Erick Delage (HEC Montréal) gave a sequence
of two talks on randomized decision making and the value it provides in distributionally robust optimization.
Professor Wiesemann proposed a mathematical framework to define ambiguity averse risk measures and developed
a representation theorem for it. He discussed conditions under which randomized decisions might be optimal in
such a setting and used a simple facility location example to illustrate this. Professor Delage built on this to
show the application of this method to distributionally robust facility location problems and developed tractable
bounds for this problem while proposing a column generation method to solve this problem. He also proposed that
randomized decision-making might be a useful paradigm particularly if the benefits over deterministic decision-
making is significant. The idea of randomization in other decision-making problems such as consumer choice is
currently under investigation by economists and this stream of work has interesting connections with it, but in an
ambiguity averse setting.

Patrick Jaillet (Massachusetts Institute of Technology) discussed an alternative decision-making criterion under
uncertainty where instead of maximizing expected utility, the objective is to have a satisfactory solution. He
discussed how the classical chance constraint formulation can be generalized by the satisficing model by focusing
on the maximum size of the ambiguity set that leads to satisfactory solution. He used a facility location problem
to illustrate the model and this leads to interesting questions on how these techniques can be adapted to other
decision-making problems.

Marco Campi (University of Brescia) and Simone Garatti (Politecnico di Milano) presented two talks on sce-
nario optimization which appears to be a powerful mathematical tool for controlling the risk that a solution be
infeasible. In particular, they demonstrated that in a decision making problem where the constraint set is indexed
by scenarios drawn from a distribution, the infeasibility risk is directly related to what they call “complexity”, i.e.
the minimum number of scenarios needed to identify the optimal solution. While the distribution of scenarios is
typically difficult to identify precisely, “complexity” can numerically be evaluated once the optimal solution to the
scenario problem is obtained. It is also possible to explore the trade-off between infeasibility risk and expected
performance by employing their theory on a version of the decision problem where violations of the constraints
are penalized more or less heavily through a tunable penalty parameter. The use of regularization as a way of
controlling risk is also discussed.

The Interplay between DRO and Classical Risk Measures
Jonathan Y. Li (University of Ottawa) reviewed some of the closed form bounds for worst-case conditional value
at risk measure under first and second order moment information and showed how it can be generalized to law
invariant risk spectral risk measures. His work discusses how for special cases of risk measures, multi-dimensional
problems can be reduced to single-dimensional problems. The worst-case distribution in such examples is not two
points unlike the classical worst-case conditional value at risk model. A natural question that this work raises is
how can these methods be applied to general two stage distributionally robust optimization problems and what are
the complexity implications in those cases?

Ruiwei Jiang (University of Michigan) in his talk discussed how DRO chance constraints and conditional value
at risk constraints with first and second order moment information can be supplemented with additional structural
information such as log-concavity and tail dominance. For the log-concave set of distributions, the results indicate
that the DRO constraint with conditional value-at-risk (CVaR) can be formulated in a manner similar to what is
currently known but with modified scaling factors for the second order conic terms. In the case of the value-at-risk
(VaR) formulation, it is not tight, but it is possible to develop tractable approximations. He discussed applications
of the results in optimal power flow problems and appointment scheduling problems.

The Use of DRO in Data-driven Problems
Dimitris Bertsimas (Massachusetts Institute of Technology) provided a survey of recent developments in the field
of data-driven optimization. He showed how one can transform predictive machine learning algorithms to pre-
scriptive ones that are useful for two-stage and multi-stage decision-making problems and characterized the rates
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of convergence of the resulting algorithms. He also described an approach to make prescriptive approaches immune
to overfitting phemonema and to improve the performance of parametric methods via kernel techniques.

Anton Kleywegt (Georgia Institute of Technology) showed how distributionally robust optimization can help
to regularize algorithms of statistical learning. This is achieved by minimizing the worst-case expected prediction
error across all distributions in a ball, sized with respect to the Wasserstein distance, is centered at the empirical
distribution. He identified a broad class of loss functions for which the proposed approach leads to a gradient-norm
penalty and discussed important applications in deep learning and discrete choice models.

Andrew Lim (National University of Singapore) proposed a theory for calibrating the ambiguity parameter
that typically determines the size of the uncertainty set in robust optimization. He showed that the first-order
benefit of injecting robustness into a nominal optimization model is a significant reduction in the variance of
the out-of-sample reward, while the corresponding impact on the mean reward is almost an order of magnitude
smaller. This observation motivated Andrew to introduce a robust mean-variance frontier, which can be used to
tune the ambiguity parameter. He also showed that this frontier can conveniently be approximated using resampling
methods like the bootstrap. He then provided evidence that solutions of robust optimization problems whose
ambiguity parameters are calibrated to ensure a certain coverage probability may be too conservative out of sample,
while tuning the ambiguity parameter in view of the out-of-sample expected reward with no regard for the variance
may lack robustness.

Vishal Gupta (University of Southern California) pointed out that practical optimization problems often depend
on a huge number of uncertain parameters, for each of which there are only very few historical observations
leading to imprecise estimates. He then argued that this large-scale, small-data regime is distinct from the large-
sample regime usually studied in statistics. Given a fixed class of candidate policies, he then identified a policy
that performs best in this class asymptotically as the number of uncertain parameters tends to infinity (while the
number of samples per parameter remains small). He further showed that the loss of optimality of the proposed
method relative to the best-in-class policy decays exponentially fast in the number of uncertain parameters for two
important policy classes inspired by the empirical Bayes and the regularization literature, respectively.

Karthyek Murthy (Singapore University of Technology and Design) investigated distributionally robust op-
timization problems where the ambiguity sets are defined via optimal transport distances such as the popular
Wasserstein distance. He demonstrated that several widely used machine learning algorithms that employ regu-
larization can be recovered as particular examples of this distributionally robust approach. He also developed a
method to calibrate the radius of a Wasserstein ambiguity set by leveraging ideas from empirical likelihood theory
in statistics that obviates the need to use brute-force cross-validation techniques. Moreover, he proposed a fast
stochastic gradient descent algorithm for solving the resulting optimization problems.

Bart Van Parys (Massachusetts Institute of Technology) studied data-driven optimization problems, where the
uncertain parameters that impact the problem’s objective function depend on observable contextual information
captured by a potentially large number of covariates. He emphasized that a naı̈ve use of the training data (inde-
pendent samples of the uncertain problem parameters and the covariates) may lead to overfitting. To combat the
overfitting, he proposed to leverage ideas from distributionally robust optimization, the statistical bootstrap and
Nadaraya-Watson or nearest neighbor density estimation. He showed that the proposed approach leads to tractable
convex optimization problems that offers rigorous out-of-sample guarantees.

Henry Lam (Columbia University) discussed new methods to calibrate the uncertainty sets in robust optimiza-
tion and the Monte Carlo sample sizes in constraint sampling or scenario generation. He proposed strategies to
select good parameter values based on data splitting and the validation of their performances in terms of feasi-
bility and optimality. He then showcased the effectiveness of these strategies in relation to the dimension of the
underlying optimization model.

Nathan Kallus (Cornell University) proposed a new approach to policy learning from observational data (for
example, the transformation of electronic health records to personalized treatment regimes). The task is difficult
because only outcomes of the interventions performed are observable, and the distribution of units exposed to
one intervention or another differs systematically. Nathan described a new distributionally robust approach to
policy learning in the context of personalized medicine that offers strong finite-sample guarantees and preserves
the asymptotic optimality and convergence rates of naı̈ve traditional plug-in approaches.

Daniel Kuhn (École Polytechnique Fédérale de Lausanne) outlined an abstract perspective on data-driven
stochastic programming whereby one should find a procedure that maps time series data to a near-optimal decision



Distributionally Robust Optimization 69

(a prescriptor) and to a prediction of this decision’s expected cost under the unknown data-generating distribution
(a predictor). He proposed a meta-optimization problem, that is, an optimization problem over optimization prob-
lems, that identifies the least conservative predictors and prescriptors subject to constraints on their out-of-sample
disappointment. He then showed that the best predictor-prescriptor pair is obtained by solving a distributionally
robust optimization problem.

Computational Lessons Learned from Robust Optimization

Dick den Hertog (Tilburg University) proposed to tackle a robust optimization problem where the cost function
h(x, ξ) is convex with respect to both x and ξ. These are generically difficult problems to handle within a clas-
sical robust optimization framework, yet have recently been addressed successfully for special instances of DRO
models [30, 21]. The proposed approach applies when the uncertainty set is polyhedral and relies on a series of
reformulation that converts the problem into a two-stage robust linear program. The resulting problems can sub-
sequently be approximated via classical approximation schemes for these types of robust optimization models. A
set of numerical examples provide evidence that this approach often leads to near-optimal solutions.

Grani Hanasusanto (University of Texas at Austin) studied robust quadratically constrained quadratic programs
where the uncertain problem parameters contain both continuous and integer components. Grani showed that these
problems can be reformulated as copositive programs of polynomial size, which he subsequently approximated
via semidefinite programs. Grani demonstrated the superiority of these approximations over the state-of-the-art
solution schemes on several problem classes.

Anthony Man-Cho So (Chinese University of Hong Kong) considered a class of robust quadratic optimiza-
tion problems that arise in various applications in signal processing and wireless communications (such as robust
beamforming with cognitive radio constraints). Due to the NP-hardness of this problem class, Anthony developed
an approximate solution scheme that uses the so-called epsilon-net technique from functional analysis to offer
rigorous approximation guarantees.

The Use of DRO with Moment Information

A classical form for the DRO problem employs an ambiguity set defined by imposing constraints on moments
of the distribution. Typically, these include bounding the mean vector of ξ and its second-order moment matrix
E[(ξ−µ)(ξ−µ)T )]. In her talk, Siqian Shen revisited the well-known ambiguity set presented in [8] for the case of
a distributionally robust chance constrained (DRCC) optimization problem. She demonstrated that it is possible to
reformulate the chance constraint using second-order cone (SOC) constraints instead of linear matrix inequalities
(LMI) as was originally proposed. This is interesting since 1) from a numerical perspective, SOC constraints are
easier to optimize than LMIs; 2) it somehow ties in together a number of reformulations that are known for these
type of constraints and which uses the canonical representation first introduced in [7]. Siqian also presented a
branch-and-cut method to improve the solution time in a bin packing problem with these types of constraints. The
numerical results were quite promising.

Abdel Lisser (Laboratoire de Recherche en Informatique - University Paris Sud) further presented how the
DRCC could be reformulated for a geometric program with uncertainty about the coefficients that multiply each
monomial. He also obtained useful reformulation for the cases where the ambiguity set is based on KL-divergence
with respect to some reference empirical distribution. While these reformulations were not SOC programs in
this case they still could be solved using algorithms that are available for convex optimization problems. Abdel’s
numerical results involved a shape optimization problem where it appears that there is still important challenges to
overcome before large scale problems can be addressed.

Krzysztof Postek (Erasmus University Rotterdam) addresses in his talk the common criticism made against
DRO models that they often consider worst-case distribution that are unnatural for the problem at hand. Indeed, it
is well known that most moment-based problems have a worst-case distribution that is supported on a handful of
scenarios. The proposed remedy consist in using a polynomial function as the density function. In this way, it is
possible to control the smoothness of the worst-case density function and prevent it from peaking so significantly
at any point of the support set. While a number of numerical difficulties seem to arise when implementing this
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idea, Krzysztof appeared very resourceful in addressing each of them and will certainly make interesting progress
in the months to come.

The talk of Jianqiang Cheng (University of Arizona) proposed methods to improve the computational efficiency
in moment-based DRO problems by exploiting principal component analysis (PCA) to reduce the dimensionality
of the uncertain vector ξ. This is especially promising in problems that involve covariance information as these
problems can take the form of semi-definite programming model where the dimension of ξ has an important effect
on solution time. Theoretically, he provides a bound on the size of the approximation error that is introduce
through dimensionality reduction which depends on the size of the eigenvalues that are dropped during PCA.
The technique is applied on a production-transportation problem where the objective function is a distributionally
robust conditional value-at-risk (CVaR) measure. Numerical experiments illustrate the trade-off between the size
of the approximation gap and computation time for solving this problem.

Huifu Xu (University of Southampton) presented valuable results concerning the stability of moment-based
DRO models. In particular, he considered the case where the moment information is estimated from data and
whether the solutions of DRO models constructed based on these estimate converge to a limit solution as more
data is used to make the estimation. He also paid special attention to cases where the distribution ambiguity set is
designed as decision dependent. Finally, he concluded is presentation with a discussion on the implication of his
stability results for a distributionally robust chance constrained problem.

Guzin Bayraksan (Ohio State University) introduced the notion of effective scenarios and ineffective scenarios
in the context of a scenario based distributionally robust optimization problem, which is a special case of moment
based DRO where the distribution’s support is assumed discrete. In particular, she noticed that in some DRO
formulations, the optimal solution is not necessarily sensitive to all the scenario with positive probability in a
worst-case distribution. For this reason, she considers a scenario to be effective if its removal from the support
causes the optimal value of the DRO problem to change, otherwise the scenario is considered ineffective. In some
way, these concepts are related to the concept of “complexity” presented by M. Campi and S. Garatti yet the intent
here is different. Indeed, Guzin’s interest is regarding post-optimization analysis where one can question whether
effective scenarios are realistic of perhaps outliers that can be removed from the problem. She also indicates how
this information might be helpful from a computational point of view by motivating scenario reduction scheme or
provide guidance for improving the effectiveness of decomposition schemes. The applications that illustrates her
findings involves a water allocation problem for the Colorado River and where a total variation ambiguity set was
used.

Handling Multi-stage problems with DRO
Sanjay Mehrotra (Northwestern University) proposed decomposition algorithms for two-stage distributionally ro-
bust optimization problems with continuous and binary decision variables in both the first and the second stage.
The algorithms utilize distribution separation procedures and parametric cuts within a Benders’ algorithm. The
presentation also studied conditions and families of ambiguity set for which the proposed algorithms converge in
finite time.

Huan Xu (Georgia Institute of Technology) discussed robust Markov decision process models with parameter
uncertainty. His talk discussed how it is possible to learn the uncertainty when a combination of robust and
stochastic elements are present in a Markov decision process. He developed an algorithm that combines elements
of pessimism and optimism such that it is robust to adversarial uncertainty and optimistic to stochastic uncertainty.
This talk discusses new ideas of learning uncertainty sets that might be relevant in other online decision-making
problems.

Angelos Georghiou (McGill University) proposed an adaptation of the well-known stochastic dual dynamic
programming (SDDP) scheme to multi-stage robust optimization problems. The resulting robust robust dual dy-
namic programming (RDDP) scheme maintains both inner and outer approximations of the cost to-go for each
time stage of the problem. The algorithm converges in finite time, and the presented numerical results show the
promise of the proposed scheme.

Vineet Goyal (Columbia University) investigated the performance of affine policies in two-stage robust opti-
mization problems. While it is well-known that their worst-case performance is poor, it has been observed that
affine policies perform well in numerical experiments. The presentation has shown that affine policies are a good
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approximation for two-stage adjustable robust optimization problems with high probability on random instances
where the constraint coefficients are generated i.i.d.

Dan Iancu (Stanford University) discussed necessary and sufficient conditions for affine policies to be optimal
in multi-stage robust optimization problems. The treatment drew interesting connections with the theory of discrete
convexity and global concave envelopes.

Georg Pflug (University of Vienna) in his talk discussed the idea of how distributional robustness might be
modeled in multi-stage problems. This is a challenging problem and he proposed an extension of the Wasserstein
metric ambiguity set that is relevant for the multi-stage problem using distances between conditional probability
measures. The size of the ambiguity sets can be determined from statistical confidence regions. He also discussed
applications to the multi-period portfolio optimization using the average value at risk measure under ambiguity.

Recent Applications of DRO
Tito Homem-de-Mello (Universidad Adolfo Ibáñez) used distributionally robust optimization to model a general
class of newsvendor problems where the underlying demand distribution is unknown and the goal is to find an order
quantity that minimizes the worst-case expected cost among all distributions within some distance from a given
nominal distribution. Due to the specific structure, Tito was able to derive explicit formulas and properties of the
optimal solution as a function of the level of robustness, determine the regions of demand that are critical to optimal
cost and establish quantitative relationships between the distributionally robust model and the corresponding risk-
neutral and classical robust optimization models.

Karthik Natarajan (Singapore University of Technology and Design) also revisited the distributionally robust
newsvendor problem but this time exploring conditions for which the optimal order quantity that is returned by
DRO can be motived using a risk neutral setting where the distribution is known. While an early result from H.
Scarf already established that this is the case for mean-variance models, Karthik presented an analysis that extends,
in an asymptotic sense, this equivalence to problems where variance information is replaced by any p-th order
moment information. The interesting insight from this range of work is the fact that solutions from DRO models
might for some family of problems be explained using a stochastic programming model that uses a heavy-tailed
distribution which is not even a member of the original distribution set.

Chung Piaw Teo (National University of Singapore) proposed a new method to integrate probabilistic assess-
ment of disruption risks into the Risk Exposure Index approach for supply chains under disruption. His method
measures the resilience of a supply chain by analyzing the Worst-case CVaR (WCVaR) of total lost sales under
disruptions. Chung Piaw showed that the optimal strategy in this model can be fully characterized by a conic
program, which allows managers to focus their mitigation efforts on critical suppliers and/or installations that will
have greater impact on the performance of the supply chain when disrupted.

Selin Damla Ahipasaoglu (Singapore University of Technology and Design) proposed novel classes of equilib-
ria in traffic models with relaxed information assumptions. Selin studied conditions under which these equilibria
exist and are unique, and she also provided convex programs for determining these equilibria and developed cus-
tomized algorithms to calculate the equilibrium flows.

Phebe Vayanos (University of Southern California) studied systems that allocate different types of scarce re-
sources to heterogeneous allocatees based on predetermined priority rules, such as the U.S. deceased-donor kidney
allocation system or the public housing program. Phebe proposed to estimate the wait times in such systems via
the solution of robust multiclass, multiserver queuing systems. Phebe showcased how the methodology can be
applied to the U.S. deceased- donor kidney waitlist.

Jin Qi (Hong Kong University of Science and Technology) studied a finite horizon stochastic inventory routing
problem where the supplier determines the replenishment quantities as well as the times and routes to all retailers.
The probability distribution governing the uncertain demand of each retailer is assumed to be ambiguous, and the
goal is to minimize the risk of the uncertain inventory levels falling outside a pre-specified range. Jin provided al-
gorithms to solve the problem exactly, and she compared the performance of her solutions with several benchmarks
to show their benefits.

John Gunnar Carlsson (University of Southern California) considered a distributionally robust version of the
Euclidean travelling salesman problem and computed the worst-case spatial demand distribution from within a
Wasserstein ball centered at an observed demand distribution. Numerical experiments on a districting problem
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in multi-vehicle routing confirmed that the proposed approach is useful for decision support tools that divide a
territory into service districts for a fleet of vehicles when limited data is available.

Outcome of the Meeting
The meeting provided a great opportunity for high quality researchers to meet and discuss some of the most active
research directions of this field. Our discussions were particularly enriched by the diversity and range of areas
of expertise of the participants. These included experts in optimization, stochastic modeling, game theory, statis-
tics and machine learning, and experts of applications such as financial engineering, vehicle routing, scheduling,
health care, to name a few. In the opinion of the organizing committee, there is no doubt that a number of new
collaborations have emerged from this event.
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Chapter 5

Modular forms and Quantum knot
invariants (18w5007)

March 11 - 16, 2018
Organizer(s): Kazuhiro Hikami (Kyushu University), Jeremy Lovejoy (CNRS, Université
Paris 7), Robert Osburn (University College Dublin)

Overview

A modular form is an analytic object with intrinsic symmetric properties. They have enjoyed long and fruitful in-
teractions with many areas in mathematics such as number theory, algebraic geometry, combinatorics and physics.
Their Fourier coefficients contain a wealth of information, for example, about the number of points over the finite
field of prime order of elliptic curves, K3 surfaces and Calabi-Yau threefolds. Most importantly, they were the key
players in Wiles’ spectacular proof in 1994 of Fermat’s Last Theorem. Quantum knot invariants have their origin
in the seminal work of two Fields medalists, Vaughn Jones in 1984 on von Neumann algebras and Edward Witten
in 1988 on topological quantum field theory. The equivalence between vacuum expectation values of Wilson loops
(in Chern-Simons gauge theory) and knot polynomial invariants (for example, the Jones polynomial, HOMFLY
polynomial and Kauffman polynomial) is a major source of inspiration for the development of new knot invariants
via quantum groups.

Over the past two decades, there have been many tantalizing interactions between quantum knot invariants and
modular forms. For example, quantum invariants of 3-manifolds are typically functions that are defined only at
roots of unity and one can ask whether they extend to holomorphic functions on the complex disk with interesting
arithmetic properties. A first result in this direction was found in 1999 by Lawrence and Zagier [17] who showed
that Ramanujan’s 5th order mock theta functions coincide asymptotically with Witten-Reshetikhin-Turaev (WRT)
invariants of Poincaré homology spheres. More recently, Zagier has found experimental evidence of modularity
properties of a new type for the Kashaev invariants of knots. This “modularity conjecture” implies one of the
major outstanding open problems in this field, namely the Volume conjecture. This latter conjecture relates the
value at e2πi/N of the N th Kashaev invariant of a knot, or equivalently the N th colored Jones polynomial, to its
hyperbolic volume and, if true, would give striking relations between hyperbolic geometry, quantum topology and
modular forms. Other examples of such intriguing interactions can be found in the construction of new mock theta
functions from WRT invariants [3], [14], the stability of the coefficients of the colored Jones polynomial [1], [6],
[9] and generalized quantum modular q-hypergeometric series [13].

Due to recent rapid developments on new theories of modular forms including mock modular forms, vector-
valued modular forms and quantum modular forms and their appearance in quantum topology and physics, there
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was a strong desire amongst researchers with diverse backgrounds to hold a workshop in order to build further
connections between previously believed disparate areas.

In addition to enhancing our knowledge of recent scientific progress, our focus was to create opportunities for
junior participants and to ensure appropriate representation of women. For example, 8 of the 35 participants (and
5 of the 19 speakers) were women.

Scientific content of the meeting

This workshop showcased recent developments and open problems concerning modular forms and quantum knot
invariants. All speakers were encouraged to have their talk videotaped and notes or slides posted online. In the
following, we briefly summarize some highlights of each talk. Junior speakers are indicated with a bullet (•).
Speakers from under-represented groups are designated with a star (?).

Abhijit Champanerkar (?) (College of Staten Island and the CUNY Graduate Center) spoke on Mahler mea-
sure and the Vol-Det conjecture. For a hyperbolic link in the 3-sphere, the hyperbolic volume of its complement
is an interesting and well-studied geometric link invariant. Similarly, the determinant of a link is one of the oldest
diagrammatic link invariants. Previously, the speaker studied the asymptotic behavior of volume and determinant
densities for alternating links, which led to conjecturing a surprisingly simple relationship between the volume and
determinant of an alternating link, called the Vol-Det Conjecture. This talk outlined an interesting method to prove
the Vol-Det Conjecture for infinite families of alternating links using a variety of techniques from the theory of
dimer models, Mahler measures of 2-variable polynomials and the hyperbolic geometry of link complements in
the thickened torus.

Thomas Creutzig (University of Alberta) spoke on Modularity and tensor categories for affine vertex alge-
bras at admissible level. A well-known result is that modules of a rational vertex algebra form a modular tensor
category and that the modular group action on graded traces coincides with the categorical one. Prime examples
are affine vertex algebras at positive integer level. This talk explained the state of the art for affine vertex algebras
at admissible level and mainly restricted to the case of sl(2). From the character point of view three types of traces
arise: vector-valued modular forms, meromorphic Jacobi forms and formal distributions. There are also three types
of categories one can associate to the affine vertex algebra and categorical action of the modular group seems to
coincide with the one on characters.

Renaud Detcherry (•) (Michigan State University) spoke on Quantum representations and monodromies of
fibered links. According to a conjecture of Andersen, Masbaum and Ueno, the Witten-Reshetikhin-Turaev quan-
tum representations of mapping class groups send pseudo-Anosov mapping classes to infinite order elements, when
the level is big enough. This talk discussed how to relate this conjecture to a properties about the growth rate of
Turaev-Viro invariants, and derive infinite families of pseudo-Anosov mapping classes that satisfy the conjecture,
in all surfaces with n boundary components and genus g > n ≥ 2. These families are obtained as monodromies
of fibered links containing some specific sublinks. For further details, see [7].

Amanda Folsom (?) (Amherst College) spoke on Quantum Jacobi forms. This talk introduced the notion of
a quantum Jacobi form, marrying Zagier’s notion of a quantum modular form with that of a Jacobi form. The
speaker also offered a number of two-variable combinatorial generating functions as first examples of quantum Ja-
cobi forms, including certain rank generating functions studied by Bryson-Ono-Pitman-Rhoades, Hikami-Lovejoy,
and Kim-Lim-Lovejoy. These combinatorial functions are also duals to partial theta functions studied by Ramanu-
jan. Additionally, it was shown that all of these examples satisfy the stronger property that they exhibit mock
Jacobi transformations in C×H as well as quantum Jacobi transformations in Q×Q. Finally, the talk discussed
applications of these quantum Jacobi properties which yield new, simple expressions for the aforementioned com-
binatorial generating functions as two-variable polynomials when evaluated at pairs of rational numbers, and yield
similarly simple evaluations of certain Eichler integrals. This is joint work with Bringmann. For further details,
see [4].
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Stavros Garoufalidis (Georgia Tech) spoke on A meromorphic extension of the 3D-index. The 3D-index of
Dimofte-Gaiotto-Gukov is a collection of q-series with integer coefficients which is defined for 1-efficient ideal
triangulations, and gives topological invariants of hyperbolic manifolds, in particular counts the number of genus 2
incompressible and Heegaard surfaces. The talk discussed an extension of the 3D-index to a meromorphic function
defined for all ideal triangulations, and invariant under all Pachner moves. This is joint work with Rinat Kashaev.
For further details, see [10].

Frank Garvan (University of Florida) spoke on Higher order Mock theta conjectures. The Mock Theta Con-
jectures were identities stated by Ramanujan for his so called fifth order mock theta functions. Andrews and
Garvan showed how two of these fifth order functions are related to rank differences mod 5. Hickerson was first
to prove these identities and was also able to relate the three Ramanujan seventh order mock theta functions to
rank differences mod 7. Based on work of Zwegers, Zagier observed that the two fifth order functions and the
three seventh order functions are holomorphic parts of real analytic vector modular forms on SL2(Z). Zagier gave
an indication how these functions could be generalized. This talk detailed these generalizations and showed how
Zagier’s 11th order functions are related to rank differences mod 11.

Sergei Gukov (California Institute of Technology) spoke on Ẑa(q). This talk discussed various ways to define
and compute new q-series invariants that have integer powers and integer coefficients. After a quick review of
the physical framework, the talk showed how it explains and generalizes the observations of Lawrence-Zagier and
Hikami et. al. to arbitrary 3-manifolds. The talk also discussed a modular tensor category which is responsible
for the modularity properties of Ẑa(q). There are many unexpected and intriguing connections with various count-
ing problems as well as with the works of Beliakova-Blanchet-Le and Garoufalidis-Le. For further details, see [11].

Shashank Kanade (•, ?) (University of Denver) spoke on Some new q-series conjectures. Representation the-
ory of affine Lie algebras and more generally, vertex operator algebras, leads to interesting q-series identities. The
q-series related to VOAs often exhibit deep modularity properties. Some of these q-series may also be of interest
to the knot theorists. This talk presented some new q-series conjectures and is joint work with Matthew Russell
and Debajyoti Nandi. For further details, see [15].

Rinat Kashaev (Université de Genève) spoke on Quantum dilogarithms over gaussian groups and punctured
surface mapping class group representations. A gaussian group is a Pontryagin self-dual locally compact abelian
group together with a fixed gaussian exponential that is a symmetric second order character associated with a non-
degenerate self-pairing. This talk explained how a quantum dilogarithm can be used for construction of projective
unitary representations of the mapping class groups of punctured surfaces of negative Euler characteristic.

Ruth Lawrence (?) (Hebrew University) spoke on Higher depth quantum modular forms from sl3 quantum
invariants. This talk presented work-in-progress on higher depth quantum modular forms arising from sl3 WRT
invariants of the Poincare homology sphere, following the work of Bringmann.

Christine Lee (•, ?) (University of Texas at Austin) spoke on Understanding the colored Jones polynomial
via surfaces in 3-manifolds. Quantum link invariants lie at the intersection of hyperbolic geometry, 3- dimensional
manifolds, quantum physics, and representation theory, where a central goal is to understand its connection to other
invariants of links and 3-manifolds. This lecture introduced the colored Jones polynomial, an important quantum
link invariant and discussed how studying properly embedded surfaces in a 3-manifold provides insight into the
topological and geometric content of the colored Jones polynomial in view of the Slope Conjectures by Garoufa-
lidis and Kalfagianni-Tran and the Coarse Volume Conjecture by Futer-Kalfagianni-Purcell, and we will explore
the potential connection to the number-theoretic properties of the polynomial. In particular, the speaker indicated
how their recent joint work with Garoufalidis and van der Veen on the Slope Conjectures for Montesinos knots is
related to the existence of multiple tails of the polynomial for Montesinos knots.
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Antun Milas (SUNY Albany) spoke on False/Mock/Quantum modular forms and Vertex algebras. An im-
portant problem in conformal field theory is to describe modular transformation properties of characters of repre-
sentations of a vertex algebra. By now this is well-understand for “nice” vertex algebras (e.g., if the category of
modules is semisimple). But most vertex algebras have non-semisimple category of representations so modular
properties of their characters is difficult to formulate. This talk focused on a family of W -algebras coming from
certain extensions of affine W -algebras. Their irreducible characters have recently been proposed and studied.
The speaker explained two approaches to modular invariance and Verlinde formula for their modules, both based
on iterated integrals of modular forms. In the first approach, modular invariance is formulated with the help of
regularized variables. In the second approach, one replaces the characters with better behaved non-holomorphic
integrals. This approach is intimately linked to mock and quantum modular forms. Finally, it was discussed how
the two approaches can be understood from a unified viewpoint. For further details, see [5].

Jun Murakami (Waseda University) spoke on Presentation of knots by a braided Hopf algebra. The fun-
damental group of a knot complement is called a knot group. A way to present a knot groups is the Wirtinger
presentation, which is given by a conjugation action at each crossing of the knot. This presentation is also given
by a conjugate quandle, which matches well to the Hopf algebra structure of the group ring of the knot group. This
talk introduced the braided conjugate quandle corresponding to the braided Hopf algebra, which is a deformation
of a Hopf algebra. A typical example of the braided Hopf algebra is the braided SL(2) introduced by S. Majid,
and so it may give a q-deformation of a SL(2) representation of the knot group. This is joint work with Roland
van der Veen.

Satoshi Nawata (•) (Fudan University) spoke on LargeN duality of refined Chern-Simons invariants. Refined
Chern-Simons invariants of torus knots can be defined by using modular matrices associated to Macdonald poly-
nomials or DAHA, generalizing colored quantum invariants. The theory was originally defined in string theory,
and conifold transition in string theory leads to a positivity conjecture of refined Chern-Simons invariants of torus
knots. This conjecture connects refined Chern-Simons theory to enumerative geometry.

Toshie Takata (?) (Kyushu University) spoke on The strong slope conjecture for twisted generalized Whitehead
doubles. The slope conjecture proposed by Garoufalidis asserts that the degree of the colored Jones polynomial
determines a boundary slope, and its refinement, the Strong Slope Conjecture proposed by Kalfagianni and Tran
asserts that the linear term in the degree determines the topology of an essential surface that satisfies the Slope
Conjecture. This talk presented a proof of the strong Slope Conjecture for a twisted, generalized Whitehead dou-
ble of a knot K whenever K satisfies the strong Slope Conjecture and certain extra conditions. This is joint work
with Kenneth L. Baker and Kimihiko Motegi.

Roland van der Veen (•) (Universiteit Leiden) spoke on q-series coming from extending Turaev-Viro into the
unit disk. The Turaev-Viro invariant is a 3-manifold invariant (TQFT) defined at roots of unity q using a handle
decomposition. Following Frohman and Kania Bartoszynska, this talk considered extending the variable q into the
unit disk and discussed under what conditions one still gets an invariant and give some explicit examples of the
ensuing q-series.

Katherine Walsh (•, ?) (University of Connecticut) spoke on Patterns and higher order stability in the colored
Jones polynomial. This talk discussed the patterns and stability in the coefficients of colored Jones polynomial.
While much work has been done looking at the leading sequence of coefficients, the speaker emphasized work
moving towards understanding the middle coefficients. This included small steps like looking at the second N
coefficients of the N th colored Jones polynomial and larger steps like looking at the growth rate of the coefficients
and looking at the patterns present in the coefficients under various re-normalizations. For further details, see [20].

Paul Wedrich (•) (Australian National University) spoke on Knots and quivers, HOMFLY and DT. Physicists
have long been arguing that gauge theories at large rank are related to topological string theories. As a concrete
example, this talk described a correspondence between the colored HOMFLY-PT polynomials of knots and the
motivic DT invariants of certain symmetric quivers, which was recently proposed by Kucharski-Reineke-Stosic-



80 Five-day Workshop Reports

Sulkowski. The speaker outlined a proof of this correspondence for 2-bridge knots and then speculated about how
much of the HOMFLY-PT skein theory might carry over to the realm of DT quiver invariants. This is joint work
with Marko Stosic. For further details, see [19].

Tian Yang (•) (Texas A&M) spoke on Volume conjectures for Reshetikhin-Turaev and Turaev-Viro invari-
ants. Supported by numerical evidence, Chen and the speaker conjectured that at the root of unity e2π

√−1/r,
instead of the usually considered root eπ

√−1/r, the Turaev-Viro and the Reshetikhin-Turaev invariants of a hy-
perbolic 3-manifold grow exponentially with growth rates respectively the hyperbolic and the complex volume of
the manifold. This revealed a different asymptotic behavior of the relevant quantum invariants than that of Wit-
ten’s invariants (that grow polynomially by the Asymptotic Expansion Conjecture), which may indicate a different
geometric interpretation of those invariants than the SU(2) Chern-Simons gauge theory. This talk introduced the
conjecture and showed further supporting evidence, including recent joint work with Detcherry-Kalfagianni. For
further details, see [8].

Outcome of the Meeting

The workshop was well-attended by researchers at different career levels and from a variety of countries: Canada,
USA, Australia, China, Japan, Ireland, Switzerland, Israel, Germany, the Netherlands and France. After the work-
shop, we received extremely positive feedback, like

“Thank you for a wonderful workshop!”

or

“It was an excellent line-up of speakers.”

Regarding the interdiscplinary nature of the workshop, one participant wrote,

“This was a wonderful workshop which brought together number theorists and knot theorists studying various
forms of q-series. It was very helpful to get the other perspective on research and talk to many experts in both
fields. These conversations gave me a good idea of what people in both areas are interested in and which directions
I should extend my research.”

The workshop also led to a number of new results, some of which were even announced before the end of the
week! For example, it was generally expected that for every knot there exists a p such that for sufficiently large N ,
the first N coefficients of the N -colored Jones polynomial only depend on the class of N mod p. These stabilized
coefficients are known as the “tail” of the colored Jones polynomial and much work has gone into studying such
tails. During the workshop, Lee and van der Veen announced the surprising result that there is an infinite family
of knots that does not have this property; instead the first few coefficients grow linearly in N . They proposed
calling these knots Manx knots after a breed of tailless cats. The simplest known Manx knot is the pretzel knot
P (−3, 5, 5).

Other new results established during the workshop were reported by Detcherry, Kalfagianni, and Yang. They
proved that at appropriate roots of unity, the Turaev-Viro invariants of an infinite family of links, including the
“fundamental shadow links,” grow exponentially with growth rate the hyperbolic volume of the link complement.
This verifies the Volume Conjecture by Chen and Yang of the Turaev-Viro invariants for these links.

Finally, the workshop perfectly complemented recent activities such as the Workshop on “Low-dimensional
topology and number theory” at the Mathematisches Forschungsinstitut Oberwolfach, August 20–26, 2017. We
are very grateful for the opportunity to organize such a workshop and hope to continue its success with another
5-day workshop at Banff in 2020 or 2021.
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Future Directions

The goal of this intense five-day workshop was to bring together international experts and young researchers in
low-dimensional topology, number theory, string theory, quantum physics, algebraic geometry, conformal field
theory, special functions and automorphic forms to discuss new developments and investigate potential directions
for future research at the crossroads of modular forms and quantum knot invariants. A brief description of some
future directions are as follows:

The Quantum Modularity and Volume conjectures: Quantum invariants of knots and 3-manifolds have been
constructed rather combinatorially based on quantum groups, and their geometrical meanings are still unclear. The
key is the Volume Conjecture, proposed by Kashaev and Murakami–Murakami, which states that, as N → ∞,
the N -th colored Jones polynomial JN (K; q) for a knot K at the N -th root of unity q = e2πi/N is dominated by
the hyperbolic volume of the knot complement. The Volume Conjecture was proved for some knots such as the
figure-eight knot and torus knots, but is still open for arbitrary K.

The relationship between quantum invariants and the hyperbolic volume motivated Zagier [21] to propose the
notion of a “quantum modular form” as a function having nice properties at a root of unity. A typical example is
the Kontsevich–Zagier series; it coincides, at a root of unity, with the Kashaev invariant for the trefoil, and further-
more can be written in terms of the Eichler integral of the Dedekind η-function. One goal would be to analyze the
asymptotic behavior of the Kashaev invariants for hyperbolic knots and to clarify their quantum modularity. These
are important problems from the viewpoint of quantum topology and modular forms.

Modularity of WRT invariants: A unified WRT invariant for integral homology spheres was recently pro-
posed by Habiro. Interestingly, the computation of this unified WRT invariant for certain manifolds leads to new
mock theta functions. For example, a result of Bringmann, Hikami and Lovejoy [3] says that a certain q-series
φ(q) is a mock theta function and φ(−q1/2) is (up to an explicit factor) the unified WRT invariant of the Seifert
manifold Σ(2, 3, 8) which arises from +2 surgery on the trefoil knot.

One goal would be to study the unified WRT invariants of manifolds which arise from rational surgeries on
other kinds of knots. These are typically quantum modular forms when viewed as functions at roots of unity, but
when they converge inside the unit circle their behavior can vary. In some cases one obtains the usual indefinite
binary theta functions related to mock theta functions, but in other cases one has less familiar expressions involving
indefinite ternary quadratic forms or “partial” positive definite forms. An important task is to make the modularity
properties of these unified WRT invariants explicit.

Stability: In 2006, Dasbach and Lin [6] observed stability in the coefficients of the colored Jones polynomial
JN (K; q) for an alternating knot K. Precisely, they proved that the three leading coefficients of JN (K; q) are
(up to a common sign) independent of N for N ≥ 3. They then conjectured that for every N , the N leading
coefficients of JN (K; q) are (up to sign) equal to the N leading coefficients of JN+1(K; q). This conjecture and
its consequences have sparked a flurry of activity in both number theory and quantum topology. A few highlights
are a resolution of this conjecture due to Armond [1] and (independently) Garoufalidis and Lê [9], the study of
Rogers-Ramanujan type identities for “tails” of JN (K; q) from the perspectives of skein theory [12] and q-series
[2], [16] and the study of potential stability of coefficients for generalizations of JN (K; q), namely for colored
HOMFLY polynomials and colored superpolynomials.

Explicit methods for q-hypergeometric series: Quantum knot invariants are often expressible in terms of
q-hypergeometric series, and explicit methods for these series are crucial. To give just two examples, the recent
computation of the cyclotomic expansion of the colored Jones polynomial for the torus knots (2, 2t+ 1) depended
on key advances in the method of Bailey pairs [13], while the proofs of conjectures of Garoufalidis, Lê and Zagier
on the tails of alternating knots [16] relied heavily on the Andrews-Bowman generalization of Sears’ identity.
Further development of these techniques is still needed, especially with a view toward applications to properties of
knot invariants.
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Chapter 6

Physical, Geometrical and Analytical
aspects of Mean Field Systems of Liouville
type (18w5209)

April 2 - 6, 2018

Organizer(s): Daniele Castorina (University of Rome ÒTor VergataÓ), Changfeng Gui (Uni-
versity of Texas at San Antonio), Gabriella Tarantello (University of Rome ÒTor VergataÓ)

Overview of mean field systems of Liouville type
The study of mean field systems of Liouville type, in particular of the Chern–Simons vortices, has received a
great interest in recent years, especially in the critical coupling of the self-dual regime, where the theory can be
embedded into a supersymmetric field theory. In this way, a new and unexpected role of non-abelian vortices has
emerged also in connection with the delicate issue of quark confinement, see [18, 21, 63].

In this workshop we have discussed some rigorous mathematical results concerning the existence of such vortex
configurations and their asymptotic behaviour, as relevant physical parameters approach their limiting values.

To motivate the nature of the mathematical questions we need to address in the study of gauge field vortices,
we start to discuss the “pure” abelian Chern–Simons model introduced by Jackiw–Weinberg [31] and Hong–Kim–
Pac [29]. It provides a simple yet non-trivial theory, which captures the most interesting features about self-dual
Chern–Simons (CS) vortices.

The model in [31] and [29] proposes a 2D theory governed only by the CS-electromagnetism which supports
charged vortices (both electrically and magnetically). For this reason, such model is particularly appropriate to
describe phenomena such as Superconductivity and the Quantum Hall effect [19].

In comparison, we recall that the more familiar Ginzburg–Landau theory can support only magnetically charged
but electrically neutral vortices.

More precisely, the electromagnetic theory in [31, 29] is formulated within an abelian U(1)-gauge field theory
in terms of the complex valued Higgs field φ and the electromagnetic potential: A = (A0, A1, A2), which are
weakly coupled through the covariant derivative:

Dαφ = ∂αφ− iAαφ, α = 0, 1, 2.

As usual the value of the parameter α = 0 refers to the time-variable, while α = 1, 2 are used for the space
variables.
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The self-dual equations (formulated in the temporal gauge) for the Abelian CS- model with a 6th order potential
[31, 29] are given as follows: 



D1φ± iD2φ = 0

F12 = ± 2

κ2
|φ|2(1− |φ|2)

(6.0.1)

supplemented by the following Gauss-law constraint governing the system:

κF12 = i(φD0φ− φD0φ), (6.0.2)

with ρ = i(φD0φ − φD0φ) the charge density, F = (F12,−F02, F01) = curlA the electromagnetic field, κ > 0
the Chern–Simons coupling parameter.

In particular, F12 = ∂1A2 − ∂2A1 defines the (time-independent) magnetic field (a scalar in 2D), while φ is
the (time independent) complex wave function.

To obtain a self-dual CS vortex, we need to provide a complex function φ : C → C and real functions
Aα : R2 → R, α = 0, 1, 2; such that (φ;A1, A2) solves (6.0.1), while A0 is determined by (6.0.1) and (6.0.2),
so that (away from zero set of of φ) we have :

A0 = ± 2

κ2
(1− |φ|2). (6.0.3)

We can focus only to the vortex equation with “plus” sign, since the opposite sign is obtained simply by
complex conjugation. In the self-dual regime, the following relation holds between the total energyE, the magnetic
flux Φ and the electric charge Q :

E =

∫
F12dx = Φ and Q = κΦ, (6.0.4)

(see [29, 31] for details) so to ensure finite total energy and fluxes we need to supplement (6.0.1) with the condition:
∫
F12dx < +∞, (6.0.5)

Although (6.0.1) provide a first-order reduction of the more involved second-order field equations, still they
are analytically delicate to handle for their invariance with respect to the following gauge transformations:

φ→ eiωφ, Aα → Aα + ∂αω, α = 0, 1, 2

ω : R2 → R a smooth (gauge) function.
Thus analytically, we are able to express explicitly the wave function φ only in terms of a (suitably) fixed gauge.

An appropriate choice of gauge function was introduced by Taubes for the Maxwell–Higgs model (see [32]) based
on the observation that the equation:

D1φ+ iD2φ = 0 (6.0.6)

provides a gauge invariant version of the Cauchy–Riemann equation. Therefore, by the Poincaré ∂ lemma, for a
suitable choice of the gauge function η, we have that eiηφ is holomorphic (see [32] for details). Hence, φ admits
isolated zeros (vortex points), say at {p1, · · · , pN}, with integral multiplicity (“quantized ” local flux). The vortex
points and their multiplicities are “observable” quantities, (i.e. gauge independent) together with F12 (magnetic
field) and |φ|2 (density).

Hence, to obtain an analytical expression for solutions, we need to formulate problem (6.0.1) only in terms
of such “observable” quantities. To this purpose, we express φ in polar (complex) coordinates, according to the
following ansatz:

φ(x) = e

u(x)
2 +i

(
N∑
j=1

Arg(x−pj)
)
. (6.0.7)

So that,
|φ|2 = eu with u(x) = ln |x− pj |2nj + O(1), as x→ pj (6.0.8)
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(with nj the multiplicity of pj , j ∈ {1, . . . , N}), and by (6.0.1), we find that u must satisfy:

−∆u =
4

κ2
eu(1− eu)− 4π

N∑

j=1

δpj . (6.0.9)

Conversely, from any solution u of (6.0.9) we can reconstruct a full vortex solution (φ, (Aα)α=0,1,2), with φ
vanishing exactly at p1, . . . , pN , by means of (6.0.7) and (6.0.3).

Therefore, if we search for periodic CS vortices in the style of Abrikosov’s mixed states [1] then it suffices to
solve (6.0.9) over the torus, while to obtain planar vortices we need to to solve (6.0.9) over R2 supplemented by
the appropriate boundary conditions that ensure the finite energy condition:

∫

R2

eu(1− eu)dx < +∞. (6.0.10)

Based on physically consistent ansatz, a similar procedure can be adopted in the search of non-abelian CS vor-
tices. In this way, we reduce their construction to the search of solutions of elliptic problems involving exponential
nonlinearities in system form. More precisely, the corresponding system of PDE’s governing self-dual non-abelian
CS vortices takes the following form:

−∆ui = λi




n∑

j=1

Kjie
uj −

n∑

j=1

n∑

k=1

KkjKjie
ujeuk


− 4π

Ni∑

s=1

δpi,s(x), i = 1, . . . , n, (6.0.11)

with respect to the unknown functions (u1, . . . , un); where λi > 0, {pi,s, s = 1, . . . , Ni} are the vortex points of
the ith-component with total multiplicity Ni ∈ N, i = 1, . . . , n and the coupling matrix:

K = (Kij)i,j=1,...,n

is fixed by the gauge group G specified by the physical model under exam, since a unified theory including all
fundamental particle interaction is not available yet. To give some examples, we recall that the abelian group
U(1) describe eletro-magnetic interactions, the gauge group G = SU(2) allows for weak particle interactions,
G = SU(3) for strong particle interactions, and G = U(1) × SU(2) describe electroweak particle interactions.
While we refer to [11, 24, 25, 26, 28, 27, 71] for more details, we mention that for the “pure” non-abelian CS
model introduced by Dunne [17], the matrix K corresponds to the Cartan matrix of the group G. So for example,
if G = SU(n+ 1) then K is given by the following n× n matrix:

K =




2 −1 0 · · · 0
−1 2 −1 · · · 0

...
. . . . . . . . .

...
0 . . . −1 2 −1
0 . . . 0 −1 2




(6.0.12)

related to the integrable Toda system, see [54, 26, 72]
Furthermore, if G is a semi-simple Lie group with rank 2, then besides G = SU(3), we have the choices of a

group G of the type B2(= C2) with corresponding 2× 2 corresponding Cartan matrix:

K =

(
2 −1
−2 2

)
(6.0.13)

or G = G2 with Cartan matrix:

K =

(
2 −1
−3 2

)
. (6.0.14)
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More recently, self-duality for Chern–Simons gauge field theories has been attained by exploiting the general
framework of Supersymmetry. Under this point of view, several classes of new genuinely non-abelian vortices (or
supersymmtric monopoles) have been identified, see [22, 23, 46] and references therein. For example the model
in [46] unifies some of the previous models by proposing a theory over the gauge group G = U(1) × SU(N),
N ≥ 2, whose vortex configurations can be obtained by solving a 2× 2 system of the type (6.0.11) with coupling
matrix given as follows:

K =
1

N

(
N − 1 + κ 1− κ

(N − 1)(1− κ) 1 + (N − 1)κ

)
, (6.0.15)

where κ = κ1

κ2
> 0, and κ1 and κ2 are the coupling parameters respectively of the U(1)-fields and SU(N)-fields,

see [22, 23, 46] and [24, 11] for details.
Notice that, for N = 2 and κ = 3, then K in (6.0.15) coincides with the 2× 2-Toda matrix in (6.0.12).
Another interesting example can be found in [52, 53]. There the authors propose an abelian truncation of the

Aharony–Bergman–Jafferis–Maldacena (ABJM) model [2], for which it is possible to introduce a suitable vortex

ansatz, and obtain a system of the type (6.0.11) with an off-diagonal 2 × 2 coupling matrix K =

(
0 1
−1 0

)
, (in

normalized units). This model has been analyzed in [27].
Again, for the physical applications, it is relevant to consider solutions of the system (6.0.11) over a compact

surface (e.g. the flat 2-torus) or over R2 supplemented by suitable integrability conditions of type (6.0.10), which
guarantee finite energy and fluxes.

As discussed during the workshop the analysis of the governing CS-vortex equations (6.0.9) and (6.0.11) (also
referred to as the Master equations), touch upon many analytical issues concerning singular Mean Field equations
of Liouville-type, see e.g. [66, 67], surfaces with conical singularities, see e.g. [69], sharp Moser–Trudinger or
log(HLS)-inequalities, see e.g. [61, 62, 70], bubbling phenomena, see e.g. [5, 13, 14] etc.

In this respect, we have learnt that, while for the single equation (6.0.9) the understanding of the (abelian)
vortex-equation is rather satisfactory, in the system case the results available are only partial, as pointed out by the
talks of L. Battaglia, Z. Nie and A. Poliakovsky.

To be more specific, for simplicity we shall focus on 2×2 systems and assume (as in the physical applications)
that in (6.0.11) the 2× 2 coupling matrix K = (Kij)i,j=1,2 satisfies:

detK 6= 0 and Kii > 0, i = 1, 2. (6.0.16)

Furthermore, via the transformation: ui → ui + ln(Kii), and by setting:

τi =
Kji

Kjj
i 6= j ∈ {1, 2}, (6.0.17)

we arrive at the following normalized expression of (6.0.11):




−∆u1 = λ1
(
eu1 + τ1eu2 − e2u1 − τ1e2u2 − τ1(1 + τ2)eu1+u2

)
− 4π

N1∑

j=1

δp1,j

−∆u2 = λ2
(
eu2 + τ2eu1 − e2u2 − τ2e2u1 − τ2(1 + τ1)eu1+u2

)
− 4π

N2∑

j=1

δp2,j

(6.0.18)

with λi > 0, i = 1, 2.
As in the abelian case, in the search of planar non-abelian vortices, we need to solve (6.0.18) over R2, un-

der appropriate boundary conditions which guarantee the integrability of the right hand side of the equations in
(6.0.18), in order to ensure finite energy for the corresponding vortex.

Therefore, we recognize the topological boundary condition to be given as follows:

ui(x)→ ln

(
1− τi

1− τ1τ2

)
as |x| → +∞, i = 1, 2; (6.0.19)
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whenever the right hand side of (6.0.19) is well defined. Indeed, we easily check that (6.0.19) is always well
defined for the physical examples (6.0.12)–(6.0.15).

The existence of such class of solutions has been established under rather general assumptions for the coupling
matrix K, which cover all the interesting physical models. We refer to [11, 24, 25, 26, 71] for more details about
non-abelian topological vortices and their “quantization” property.

On the contrary, much less is understood about the presence of ”non-topological vortices” satisfying:

ui(x)→ −∞ as |x| → +∞, i = 1, 2, (6.0.20)

Also it is of interest the existence of the so-called “mixed” vortices where the topological and non-topological
boundary conditions are each satisfied by either one of the two components available. Unfortunately, mixed vor-
tices have been constructed only in some special situation, see [54, 20], and are difficult to grasp also in the radial
case, see [30]; so that much of their study remains open to future investigation.

Concerning the construction of non-topological vortices, we mention a “perturbation” approach where we
introduce the following scaled version of the solutions:

ui,ε(x) = ui

(√
λx

ε

)
+ 2 ln

1

ε
, ε > 0 (6.0.21)

so that planar solutions of (6.0.18) satisfying:
∫

R2

euidx < +∞, i = 1, 2 (6.0.22)

can be sought (for ε→ 0) as “bifurcating” from solutions of the following system of Liouville type:




−∆u1 = eu1 + τ1eu2 − 4πN1δ0 in R2

−∆u2 = eu2 + τ2eu1 − 4πN2δ0 in R2

∫

R2

euidx < +∞, i = 1, 2.

(6.0.23)

Unlike the single-(singular) Liouville equation, (corresponding to the decoupled case: τ1 = τ2 = 0), in general
the solvability of (6.0.23) is far from understood, except for the integrable and fully conformal case of the Toda-
system (6.0.12), which according to our normalization corresponds to the case where, τ1 = τ2 = − 1

2 . In fact, for
(6.0.23), a full characterization of solutions (analogous to single Liouville equation [60]) has been obtained by Lin–
Wei–Ye in [40], which extends and completes the previous characterization result of Jost–Wang [36] concerning
the “regular” case, where N1 = N2 = 0.

In particular from [40] and [31] we know that all solutions of (6.0.23) with τ1 = τ2 = − 1
2 satisfy:

1

2π

∫

R2

eu1dx =
1

2π

∫

R2

eu2dx = 4(N1 +N2 + 2). (6.0.24)

Furthermore, the explicit expression of the solutions of (6.0.23) as provided in [40, 31] together with their non-
degeneracy properties (see [40]) have been exploited by Ao–Lin–Wei in [3] to carry out a “perturbation” approach
in the same spirit of Chae–Imanuvilov [9] . In this way the authors in [3] obtained a class of non-topological
solutions for the SU(3)-model [17]. Such construction was extended by the same authors in [4] for the gauge
group G of the type B2 and G2. Moreover, we mention the recent work of Lin–Nie–Wei [38] which uses more
algebraic tools to fully characterize solutions and their total integrals, for any n × n Liouville system of the type
(6.0.23) with coupling matrix corresponding to a Cartan matrix.

However, in view of the physical applications, we need to treat with the same accuracy, also the case where
the coupling matrix admits a structure other than a Cartan matrix, as for example (6.0.15). In particular, for the
normalized system (6.0.23), we need to identify the sharp range of admissible pairs (β1, β2) such that problem
(6.0.23) with (τ1, τ2) 6= (− 1

2 ,− 1
2 ) admits a solution satisfying:

βi =
1

2π

∫

R2

euidx, i = 1, 2. (6.0.25)
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This task was carried out by Poliakovsky-Tarantello [59] with respect to the radial solvability of (6.0.23)–
(6.0.25), see also [57, 58, 10, 15, 61, 62] for related results. Notice that, as in the analysis of the single Liouville
equations, [60, 12], we expect the radial problem to furnish a full description about the pairs (β1, β2) admissible
for the solvability of (6.0.23), (6.0.25), in the sense that, non-radial solutions can only occur as “bifurcation” from
radial ones while keeping the same integral pair (β1, β2).

In addition the role of (6.0.23) and (6.0.25) is relevant also in the analysis of the “bubbling” phenomenon in
the context of systems, which is a very delicate task ( see [55, 41, 44, 43, 45, 34]) but crucial to obtain solutions
via topological, variational and perturbative methods, as e.g. [8, 14, 33, 7, 49, 50, 51].

Even more involved is the blow-up analysis when the different components blow-up at the same point but with
a different rate. Here a new phenomenon occurs, namely the possibility of blow-up without an associated “concen-
tration” phenomenon and a “quantization” property, as recently shown in [39]. Similar blow-up phenomena with
“residual mass” (in the terminology of [56]) have been shown to occur when different vortex points collapse into
each other (see to [39, 37] for details), a situation of great interest from the physical point of view.

All such new, interesting and delicate aspects have been discussed during the meeting and we expect to see
some further developments and progress in the near future as an outcome of the workshop.

Scientific activities of the workshop
The workshop has brought together a group of expert mathematicians as well as junior researchers studying dif-
ferent aspects of Mean Field Equations of Liouville type, as they arise from physical and geometrical problems.
The topics discussed during the workshop have concerned the analysis of self-dual gauge field vortices, including
the Abrikosov’s configurations for the celebrated Electroweak theory of Glashow-Salam-Weinberg, and the ”uni-
formization” problem in differential geometry for Riemann surfaces with conical singularities and various other
generalizations concerning the assigned (also sign-changing) Gauss curvature problem.

A first successful outcome of the workshop was stimulated by the new ”sphere covering inequality ” of C. Gui
and A. Moradifam and its application towards uniqueness results. Already, other applications of Gui- Moradifam’s
sharp inequality were presented during the workshop by D. Bartolucci and A. Jevnikar in the setting of the Riemann
sphere with conical singularities. But during the discussionÕs section many of the participants have remarked about
the strength of such inequality and have proposed several other applications, in the form of future projects and
collaborations. For example, the ”Sphere covering inequality” seems flexible enough to yield new non-existence
results in the supercritical and in the non-radial setting, in the presence of more than three conical singularities.

Another important problem discussed during the workshop has concerned traveling waves of the Gross-Pitaevskii
equation, for which ground state solutions have been already established. The results presented by J. Wei show the
asymptotic behaviour of a new class of solutions for small values of the velocity. This however leaves open the
existence of excited state for fixed values of the velocity. During the workshop D. Ruiz and J. Wei discussed about
a possible approach to handle such problem, and on this basis formulated a future project in collaboration.

The recent developments about the spectral gap conjecture, as reported in D. Hauer’s talk got also a lot of
attention. For example, it was observed by D. Bartolucci that in order to describe the global bifurcation diagram
for solutions of mean field equations, so far it has been possible under a spectral gap assumption about entropy
maximizers. It was suggested that (by further investigation) HauerÕs result may be helpful in the understanding of
the above mentioned bifurcation diagram. Furthermore, J. Dolbeault and D. Hauer have been discussing an issue
related with stability in functional inequalities, based on hyper-contractivity. For the fast diffusion equation in the
subcritical range, one can get explicit rates of regularization. A more or less explicit control of the relative uniform
norm in terms of the initial data has recently been obtained by M. Bonforte and N. Simonov (arXiv:1804.03537v1).
Then using the improved spectral gap and an improved entropy (i.e. entropy production inequality), one should
be in position to get an explicit stability result for the Gagliardo-Nirenberg inequality. In the subcritical case,
this is a project of M. Bonforte, J. Dolbeault, B. Nazaret and N. Simonov. The major issue is the critical case
(Sobolev inequality). Techniques based on hyper-contractivity (using the framework of the book of T. Coulhon
and D. Hauer, in preparation) could provide at least a partial answer.

Finally, another important topic widely discussed during the meeting concerned systems of Liouville type,
which arise in the construction of non-abelian vortices. Indeed, the most natural extension of the Mean Field
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Equations into a system form is given by the Toda-system, whose solutions describe the asymptotic profile of
non-abelian vortices for the SU(n+ 1)-Chern-Simons model. More generally in this context mean field equations
of Liouville type are coupled together via the Cartan matrix associated to the gauge group. After the talks of
L. Battaglia, Z. Nie and A. Poliakovsky we have seen that many interesting questions still need to be answered.
Especially concerning the blow-up analysis for systems we still need a complete classification of solutions for the
”limiting” problem in the plane (describing the blow-up profile) away from the conformal case.

According to D. Hauer, who recently started a new collaboration on Mean Field Systems with C. Gui, this
workshop provided many backgrounds, geometrical and mathematical motivations and new knowledge about this
topic, and helped to push forward his current research project. All the participants have remarked that: the work-
shop was very central to their research interest about a field in great development in recent years, with exciting
novelties in unexpected directions. There were people from different backgrounds so that fruitful exchanges of
ideas were encouraged. The intellectual environment during the workshop was notably vibrant.

The discussions during question sessions were remarkably interesting, and served as further motivation to
encourage and enhance the participantsÕ interactions. Also they took a great advantage of the breaks to actively
interact clarifying doubts and intellectual curiosities raised by the talks.The BIRS center offered a very warm
and cozy atmosphere, (despite the unusual winter temperatures of -10 to -15 centi-grades). To have a scientific
workshop in an environment of arts, dance and drama certainly provided an inspiring atmosphere and contributed
to the success of the meeting.
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Ruf, Bernhard (Università degli Studi di Milano)
Ruiz, David (Universidad de Granada)
Sani, Federica (Università degli Studi di Milano)
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A Brief Introduction to the Field
Many natural processes involving the interaction of a very large number of particles, such as conduction of heat,
fluid flows and chemical reactions, possess an entropy, a quantity that increases during the evolution. A powerful
strategy for quantitatively understanding the properties of such systems is to establish mathematical relations be-
tween entropies and other quantities characterizing the state of the system. The investigation of these relations has
been extremely successful in explaining and predicting the properties of the dynamics of such large and compli-
cated systems. In order to draw the precise conclusions it is important to establish the optimal relations between
relevant quantities.

There is also an important geometric aspect to the evolutions of such systems. Mathematically, many nonlinear
evolution equations can be interpreted as gradient flows of entropy/energy functionals, i.e., steepest ascent (or
descent) over the entropy/energy landscape with respect to an appropriate notion of distance. This interpretation
is useful not only to understand the abstract geometric framework of the nonlinear equations, but also to deal, for
instance, with particle approximations and handle mass conservative models in connection with mass transport
theory.

A large scientific community has been involved in this area since the first meeting held in Banff in 2006. This
meeting played an important role in the development of the topic, and entropy methods have now reached a certain
maturity through the geometric interpretation of nonlinear flows. The area is now more vibrant than ever involving
a growing network of interactions between branches of mathematics, physics, biology and social sciences. This
meeting has been intended to consolidate this progress and set the stage for new advances.
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Recent Developments and Open Problems

State of the Art

Entropy estimates for nonlinear evolution equations have proved to be the basis of extremely successful methods
for the investigation of many quantitative issues such as rates of convergence and sharp constants in functional
inequalities. These methods are well-suited to marry with multi-scale analysis and useful to understand physical
systems that are described by systems of evolution equations on different scales, for instance a rarefied gas on the
microscopic individual particle scale, the mesoscopic kinetic many-particle scale and the continuum scale of hydro-
dynamics. The existence of entropies at all these levels is a crucial property underpinning the physical/biological
derivation of systems of equations, allowing for the understanding of qualitative properties as diverse as stability
of steady states, asymptotic behavior and convergence of numerical schemes.

A major break-through in the theory was the observation that many nonlinear evolution equations constitute
gradient flows of entropy functionals with respect to the Wasserstein or related transport metrics. Understanding
the connection between nonlinear flows and the geometry of optimal transportation has paved the road towards a
broad variety of profound results on large-time asymptotics of diffusion, towards novel proofs of sharp functional
inequalities, and towards structure preserving discretizations of evolution equations and manifolds, just to name a
few. Generalizing the ideas of optimal mass transport to coupled systems of evolution equations is not straightfor-
ward at all. Finding sharp conditions under which, e.g., a given reaction-diffusion system has a good entropy or
gradient flow structure is still an open problem, although some recent advances have been done.

Another very novel direction is the application to the “discrete world”. There has been a surge of activity
around using entropy like ideas in Markov chains considered by themselves or as numerical schemes for some of
the standard Fokker-Planck equations related to linear/nonlinear diffusion equations, as well as the extension of
these methods to the quantum setting. Understanding the different notions of steepest descent in these methods,
their interconnections and their potential in other applications such as clustering in machine-learning applications
is another topic of current interest.

Another important theme to emerge from the work discussed at the previous meetings is the role of stability
theorems for sharp functional inequalities in the study of nonlinear evolution equations. The use of nonlinear flows
for proving functional inequalities has developed into a powerful method for establishing new remainder terms for
classical inequalities – which have then been applied to study other nonlinear laws. It will certainly be fruitful
to continue this development in the context of further problems arising in mathematical biology and physics.
Interesting variational arguments involving the use of entropies have been proposed in order to show symmetry of
optimizers in the Caffarelli-Kohn-Nirenberg inequalities or in stationary states of nonlinear diffusion variants of the
Keller-Segel system. Finding an analytical framework to attack the symmetry breaking in some problems of this
type would be an excellent tool in various problems such as questions related to interaction potential functionals.

The extension of gradient flow methods into the domain of non-convex functionals has been another source
of recent progresses. Non-convex functionals appear naturally in many physical/biological problems related to
phase transitions. These free energies have several stationary states and finding good mathematical approaches to
understand the basin of attraction for these cases is an interesting topic. Isotropy or not in the long-time asymptotics
is observed or not depending on the presence and intensity of noise/diffusion. This has been realized only in few
cases in one spatial dimension, and therefore its generalization to more physical dimensions would be a large push
to the theory. Hypocoercivity tools might be a good track for this question.

Nonlocal diffusion equations have been so far elusive to the use of entropy methods except when the interaction
potential is defined as the inverse nonlocal Laplacian of the density or in one dimensional settings. In these cases
the connection to obstacle problems recently found is an excellent tool bridging to the world of nonlocal elliptic
equations. The potential use of these ideas for nonlocal versions of nonlinear diffusion equations is to be explored.

And finally, since these entropy methods are now used not only as tools to solve problems of pure functional
analysis but also as techniques in various applied and even computational areas, it was important to bring together
a group of researchers who can profitably interact, but who might not meet at other meetings.
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Topics of Current Interest

Here are some emerging topics in entropy methods in PDEs and the study of their associated flows which will
probably play an important role in the development of the field in the near future:

• Reaction-Diffusion equations & systems as gradient flows.

• Advances on gradient flows of non-geodesically convex functionals.

• Symmetries of critical points which are not necessarily global minimizers of entropies.

• Stability inequalities for remainder terms involving entropies and rates of decay.

• Hypocoercivity & multiplicity of stationary states.

• Discrete Entropies: Markov chains & clustering in machine learning.

• Non-equilibrium steady states.

• Non-locality and non-isotropy in diffusions and mean-field interactions.

Identification of Relevant Topics for the Workshop

The workshop has been in part intended as a follow-up to the workshops “Nonlinear diffusions: entropies, asymp-
totic behavior and applications”, “Nonlinear Diffusions and Entropy Dissipation: From Geometry to Biology” and
“Entropy Methods, PDEs, Functional Inequalities, and Applications”, held at BIRS in April 2006, in May 2010
and in June 2014, respectively. Ideas emanating from stimulating exchanges at these events have led to important
advances in optimality issues in the theory of functional inequalities, in problems of mathematical biology and
geometric flows, with seemingly far-apart applications such as quantum Markov semigroups and collective behav-
ior models. All in all there is an outstanding track record of this series of workshops as effective catalyzers for
far-reaching consequences outside the comfort zone of mathematical applications of these tools. The organizers
took care to bring together different researchers of the “core communities” involved: PDE analysts, differential
geometers and probabilists; and potential users of these techniques in pure and applied mathematics.

The organizers had given the participants complete freedom in the choice of topic they want to present, as long
as it fits with the general scope of the conference. The portfolio of proposed talks is therefore a good indicator for
general directions and specific problems that are currently topical in the various branches of the community. In
comparison to the previous edition of this workshop in 2014, there was a stronger focus on the further development
of various aspects of the theory, while the adaptation of existing theory to study specific PDEs played a less
prominent role. The new theoretical developments that have been presented were rich and profound.

Already in the past, we could observe that gradient flow dynamics on metric spaces, specifically flows in
the Wasserstein distance, played a role of continuously increasing significance. The current event has been no
exception to that trend: two morning sessions have been devoted exclusively to applications of optimal transport in
the context of entropy methods, and many further talks featured Wasserstein gradient flows as an essential element.
A recurrent theme in that context was that of mean field games, a class of equations and models with surprising,
but yet not fully understood relations to smoothed optimal transport.

For the more classical aspects of the theory, the organizers could observe a shift of interest from fully dissipating
to hypocoercive systems. The first general characteristic of the latter is that there is a part of phase space in which
entropy is dissipated at exponential rates, while in other parts, the flow is almost entropy conserving. However, the
second key feature of hypocoercivity is the existence of a global, possibly slow dynamics that forces any solution
to pass through the rapidly dissipating region at a quantifiable frequency, and thus leads to a continuous decay of
the entropy in the end.
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Presentation Highlights

The organizers were extremely pleased both with the wide range of topics that had been proposed by the partic-
ipants and the quality of each individual presentation. The speakers took great care to make their results under-
standable to the audience.

Nonlinear diffusion

Nonlinear diffusion equations of the form ∂tu = ∆um constitute one of the classical playgrounds for the entropy
method, and possibly the field where the method had its most significant achievements in the past twenty years.
The field is still remarkably lively.

One of the highlights of the conference was the impressive talk by Esteban in which she gave a precise char-
acterization of the symmetry breaking in the Caffarelli-Kohn-Nirenberg inequality [28]. It has been relatively easy
to conjecture the line of transition between radial symmetry and non-symmetry of minimizers by a linear stability
analysis of the Euler-Lagrange equations and then to identify a region where symmetry breaking must occur. On
the contrary, the rigorous proof for radial symmetry in the complement of that region is highly demanding both
on the conceptual and the technical level. The application of entropy method to nonlinear diffusion equations on
particular manifolds plays a key role in the proof.

Figalli gave the first results ever on qualitative properties of the equation ∂tu+ (−∆)s um = 0 on a bounded
domain involving the fractional Laplacian, in the porous medium case m > 1. One of the first difficulties lies
in the appropriate definition of the fractional Laplacian in that context. Three alternative definitions were given,
and for two of them, uniform relative convergence to a self-similar profile could be proven. The key key tool is a
comparison principle. These results are explained in the works [5, 4].

Not far from that is the singular diffusion equation considered by Iacobelli, which is of the form ∂tu =
−(up(u/u∞)x)x, where the target density u∞ is given, and p is a negative power. Under positivity conditions
on u∞ and the initial datum, it has been shown that solutions converge exponentially fast to u∞. As before, the
key element of the proof is a comparison principle. The main objective of her talk was to apply these ideas to the
quantization of measures problem [7, 36].

The very general class of coupled systems of reaction-diffusion equations presented by Fellner bears a prob-
lem that is similar to hypocoercivity. He applies the entropy method to the sum of the physical entropies of the
individual components and uses it as Lyapunov functional. There is no uniform exponential rate of decay for that
quantity: the dissipation vanishes if one of the components is depleted, and becomes arbitrarily slow close to such
solutions.

Nonlinear aggregation/diffusion

More recent than the studies of pure nonlinear diffusion is the combination of diffusion with binary particle in-
teractions moderated by a (typically singular) interaction kernel K. This leads aggregation-diffusion equations of
the type ∂tu = ∆um +∇ · (u∇K ∗ u). Several speakers presented novel results on the long time asymptotics of
solutions. Their general line of approach was to exploit the equation’s gradient flow structure in the Wasserstein
distance.

Craig introduced a method to approximate optimizers for the generalizations of Poincaré ’s problem, that is,
one wants to find a set of given measure on which the integral of a given kernel K is minimized. By means of
Γ-convergence, she could show that the associated aggregation-diffusion equation with exponentm > 1 converges
as m → ∞ to a flow on the space of functions with 0 ≤ u ≤ 1, and that it approximates in the long time limit a
solution to a relaxation of the Poincaré problem. The results are related to several recent works [24, 22, 23, 13]
and a work in preparation with Topaloglu.

Yao considered a model for the reproduction of coral, which leads to a aggregation-diffusion equation with
an additional harvesting term. The main question, namely if the combination of diffusion and interaction leads to
a faster rate of convergence to the trivial equilibrium than diffusion alone, boils down to understanding the long
time asymptotics in a linear Fokker-Planck equation with an attractive, but slowly growing potential. The general
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answer to the question is quite subtle, as she demonstrated on a particular example where the interactions even
leads to a slow-down. The results are based on a work in preparation.

Volzone gave an overview over new conditions for existence, uniqueness and radial symmetry of the stationary
solutions to the Keller-Segel equation in the diffusion dominated regime, i.e., m > 2 − 1/n. The dynamical
stability of these states was also discussed. He showed an impressive result of radial symmetry of stationary states
in the degenerate case that leads to uniqueness of steady states in the Newtonian kernel in two dimensions [12, 16,
17]. A result sought for a long time. Convergence results were obtained without rate of convergence in the two
dimensional Keller-Segel model with nonlinear diffusion m > 1.

The first goal of Patacchini’s presentation was essentially opposite: for a general class of aggregation/diffusion
equations, he derived conditions for the non-existence of stationary solutions. He also derived conditions in order
to have ground states which are sharp for the case of linear diffusion [14].

Schlichting talked about phase transitions in McKean-Vlasov equations (aggregation equation with diffusion)
with periodic boundary conditions. Together with Carrillo, Gvalani and Pavliotis in [15], he has shown that in
the H-stable regime the relative entropy to the minimizer is decaying exponentially fast, while for H-unstable sys-
tems the asymptotic dynamics can be substantially richer. In particular they consider the bifurcation of nontrivial
steady states as the parameter controlling the strength of the nonlocal term (aggregation) increases. Continous and
discontinuous phase transtions can exist depending on assumptions on the Fourier coefficients of the interaction
potential.

Linear kinetic equations
Several talks have been devoted to novel estimates on the rate of equilibration in linear BGK models, or even more
general linear kinetic equations. The main difficulty that was present in each talk was the hypocoercive nature of
the dynamics, which is highly entropy dissipative but only with respect to the velocity variable. To measure global
convergence rates, one has to understand how the transport operator transfers the relaxation to the spatial variable.

Arnold started by showing a seemingly easy way to prove exponential decay of a suitable norm for general
linear systems ẋ = Cx, where the matrix C is positive definite but not symmetric. The applicability of his strategy
to linear BGK equations, however, requires to a find a suitable adapted norm, with a choice that is independent of
the Fourier mode under consideration, and this is a challenging task, that could only be undertaken by sophisticated
trial and error so far. Beyond the systematic method he developed with his collaborators, a significant achievement
compared to standard approaches based on hypo-elliptic methods is that norms can be explicitly constructed and
rates are optimal. The results presented were based on [1, 2]. Evans in [32] was also using a relatively algebraic
approach, but took a different angle of attack: she studied the dissipation of Φ-entropies and related functional
inequalities. Φ-entropies are a natural interpolation between the logarithmic Boltzmann entropy functional and the
quadratic norms considered by Arnold.

A different approach to linear BGK models has been presented by Canizo. His ideas originated from Harris’
ergodic theorem, which states that if a markovian semi-group admits a uniform lower bound after a transition time
t0 > 0, then solutions converge exponentially fast in total variation. Canizo showed how to massage the technique
to be applicable to BGK equations, using geometric and probabilistic arguments. In contrast to the aforementioned
speakers, Guillin did not study the BGK approximation, but a more general linear kinetic equation with diffusion
in the velocity variable and a non-quadratic external potential, see [?]. Previous approaches like those by Villani
were relying on log-Sobolev inequalities and thus induced demanding convexity assumptions on the potential.
Guillin showed a strategy how to make the proof work under essentially weaker hypotheses.

Kac master equation
In two related talks, Carvalho and Loss discussed new results on the old problem of propagation of chaos in the
Boltzmann equation [8]. Specifically, they were looking at the Kac walk on the sphere and gave novel estimates
on the rate of convergence to equilibrium. For the Kac equation (for infinitely many particles), Cercignani’s con-
jecture states that the entropy production D(f) dominates the entropy H(f) in a linear way, yielding exponential
convergence to the steady state. It was shown by Villani that this conjecture is wrong in general, but one can at
least expect D(f) ≥ cεH(f)1+ε for every ε > 0. Carvalho showed that a similar inequality is still true for the
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Kac walk, with a cε independent of the number of particles. Her proof, however, uses a strong assumption on
the disorder of the distribution, for which propagation along solutions is unclear. Loss instead verifies the linear
dependence D(f) ≥ cH(f) originally conjectured by Cercignani, however for a variant of the Kac model, where
the particles are coupled to a huge (but still finite) heat bath, and in a regime which is away from equilibrium.

Entropy methods on discrete structures
One of the goals of the entropy method is to provide guidelines for the definition of structure preserving discretiza-
tions. Currently, the main interest is to build a consistent discrete theory that reproduces key elements of the
original continuous one, but many of the concepts that have been developed so far are directly applicable in the
design of numerical methods that preserve features like entropy dissipation.

One of the forerunners in the field of discretizing the theory of optimal transport is Maas. He had already
developed a successful strategy to define analogues of the Wasserstein metric, associated gradient flows, and cur-
vature properties on graphs [31, 30, 35]. In his presentation, he showed a surprising limitation of his concepts
for the passage the continuum limit: in general, one cannot expect Gromov-Hausdorff convergence of his trans-
port distance on the dual graph of a finite-element decomposition of a domain unless rather restrictive geometric
conditions are met. A remarkable fact is that the associated heat equation converges under much more general
hypotheses. On the basis of Maas’ discretized transport distance, Erbar has developed a notion of super-Ricci
flow on graphs. The main quantities of interest are lengths associated to the edges of the graph, and these change
according to an evolution inequality. Moreover, at certain instances of time, the graph itself changes as well, when
either an edge collapses because its length becomes zero, or a new edge is born out of a point. Erbar justifies his
ansatz by proving discrete analogues of various equivalent characterizations of the continuous super-Ricci flow,
like estimates on the heat kernel or the modulus of convexity of the entropy, see [29].

A complementary approach was taken in the discretization of a model for traffic flow considered by Di
Francesco, who did not use a graph structure but instead a moving mesh, define by the Lagrangian map. The
underlying evolution equation is of aggregation type, but with a nonlinear mobility function that saturates, corre-
sponding to a maximal admissible density of cars on the road. Albeit the PDE has been introduced in arbitrary
dimensions, the traffic flow model is naturally one-dimensional, and that is where most of the analysis has been
carried out. The main result is the convergence of the discrete solutions to an entropy solution, in total variation,
see [27]. Finally, Plazotta discussed a spatially continuous but time discrete approximation to Wasserstein gradi-
ent flows. The scheme, which is formally of second order in time, mimicks the JKO method, but the variational
functional contains the difference of two distances (instead of one distance). He has shown that discrete solutions
converge strongly in Lp to a weak solution in the continuous limit [38]. However, second order convergence could
not be verified due to the roughness of the Wasserstein space.

Derivation of models
Principles like monotonicity of the entropy have always been of great importance in the derivation of PDEs for
models in physics, and — more recently and possibly surprisingly — biology. This was illustrated in the talks of
Degond, Filbet and Raoul, all of which studied micro-to-macro-limits of biological models.

Degond considered swelling materials (like gels and tumors) and explained why Darcy’s law alone is not
sufficient to derive a closed system of evolution equations [26]. He henceforth proposes as an alternative first
principle simple rules on the microscopic scale: essentially maximal packing density and minimal motion. These
indeed lead to a consistent macroscopic model. Filbet started from an spatially extended version of the FitzHugh-
Nagumo model, with forced local interactions. The resulting equation is of kinetic type. The dynamics of appro-
priate “macroscopic” quantities, i.e., suitable moments of the kinetic solution, converges to the classical non-local
reaction-diffusion model in the hydrodynamic limit, see [25]. For Raoul, who considered a model for sexual
reproduction, the initial equation was of collisional Boltzmann type, and his goal was to obtain the macroscopic
Kirkpatrick-Barton model from population genetics, which is of reaction-diffusion system, as a limit in suitable
parameter ranges. The key tool in his derivation were Tanaka-like contraction estimates in the Wasserstein dis-
tance. The derivation of such models is of crucial importance for the understanding of ecological problems like
the ones induced by climate change, see [39].
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A very different set of problems was considered by Kinderlehrer. He studied structure of grain-boundary
networks in polycrystaline materials, as well as their evolution. He discussed the observation that during the
evolution the grain boundary network quickly achieves a stable distribution of grain boundaries with the average
length of boundaries of a certain energy characteristics. This distribution is known as the grain boundary character.
The talk focused on ode-based models to explain and predict the grain boundary character distribution. The models
were derived following ideas of entropy and gradient flows in appropriate metrics. At this point it is worth to be
mentioned that Kinderlehrer’s ideas have been extraordinarily influential in the mathematical community targeted
by the workshop and once more he has challenged the participants by proposing a new area of investigation in [3].

Optimal transportation
Optimal transport has played a key role in understanding nonlinear flows. Primarily by being the metric on the
space of configurations with respect to which many nonlinear flows are gradient flows of an appropriate free
energy. Studying the geometry of optimal transportation, its properties and role in functional inequalities has
led to remarkable progress. Several speakers have focused on new variants of optimal transportation and their
connections to dissipative systems.

Carlier gave a talk on entropy regularized optimal transport and connections to mean-field games. Entropic
regularization of optimal transport was independently introduced by Galichon and Cuturi. In particular the asso-
ciated Sinkhorn numerical algorithm by Cuturi has become one of the most popular approaches to computational
optimal transport. Optimal transport is recovered as the regularization parameter ε → 0. In contrast, Carlier
focused on fixed entropic regularization, ε = 1, and developed the connections with variational descriptions of
mean-field games. In particular he discussed the connections between mean-filed games of Lasry and Lions [37]
with the dynamic description of the entropy regularized optimal transport studied by Chen, Georgiu, and Pavon,
[19], and by Gentil, Léonard, and Ripani. [33]. Carlier also introduces the time discretized dynamical version as a
new and useful tool.

Savaré spoke about dynamic formulation for the entropic regularization of the optimal transportation and
connections to mean-field games. In particular he studied the dual formulation of the dynamic description of
optimal transportation, due to Benamou and Brenier. The dual formulation leads to a Hamilton-Jacobi equation
and connections to mean-field games. Savaré carefully discussed the notions of solutions, hence building the setup
that would allow to study the limit of viscous regularizations of the equations and consequently the limits of the
entropic regularizations of optimal transport.

Ghoussoub gave a presentation on the Theory of Transfers that he recently introduced with Bowles [6].
Namely using notions of convex duality they introduced the notion of (forward and backward) linear transfer
which encompasses all of the classical optimal transportation, martingale optimal transport, entropy regularized
optimal transport (Schrödinger bridges), as well as weak mass transports. For the classical optimal transport the
notion is closely related to the dual formulation of Kantorovich. Ghoussoub also introduced the notion of convex
transfers with particular focus on its subset of entropic transfers. In particular he showed that Donsker-Varadhan
entropy can be described as an entropic transfer.

Palmer talked about a generalization of the dynamic description of optimal transportation where the end time
when a mass reaches its destination is not fixed but can vary over the mass being transferred. Furthermore he
considered general Lagrangian terms in the dynamical description and introduced density processes to be able
to present an eulerian description of the problem. Using Hamilton-Jacobi-Bellman variational inequalities he
gave a characterization of the new transportation distance [34]. Moreover Palmer talked about the extension of
the transportation distances with free end times to a stochastic setting. These have important applications in
mathematical finance and have strong connections to stochastic optimal control. Again he was able to obtain an
eulerian characterization of the optimal stochastic transport with free end times.

Other
There were several talks that did not fall in any of the categories above. In his talk McCann explored possible ge-
ometric explanations for the second law of thermodynamics. Namely just as Einstein’s theory of general relativity
provides a geometric explanation for gravity, one is wondering if geometric explanations can be given for entropy
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in statistical mechanics. As a step in that direction McCann investigated the relation between entropy and cur-
vature on Lorentzian manifolds. Gangbo spoke about stochastic processes on the space of probability measures.
Developing a theory of stochastic processes in the infinite dimensional space of probability measures is a topic
of substantial current interest which has applications in mean-field games. Chow and Gangbo [20] introduce the
notion of partial Laplacian which allows for only a certain family of stochastic paths. Gangbo explained its well
posedness, basic properties and relevance to the field.

Fathi discussed a new approach to proving rates in Central Limit Theorems (CLT) by proving regularity es-
timates for the Monge-Ampère equation. Namely, in order to compare probability measures one often uses the
Stein method, by proving the existence of a Stein kernel. In their very interesting work, Fathi and collaborators
use a type of Monge-Ampère equation studied by Cordero-Erausquin and Klartag, [21] to show the existence of
Stein Kernels. Fathi also discussed the consequences of the existence of the new Stein Kernels to CLT rates for the
Wasserstein metric.

Outcome of the Meeting
This 5-day workshop at BIRS had been a perfect venue for an event like this. The group size of around 40 people
has been large enough for bringing together a representative cross section of the different involved communities,
in the whole range from the established leaders like Robert McCann (differential geometry), Wilfried Gangbo
(optimal transport), Michael Loss (kinetic equations), and Guiseppe Savaré (gradient flows), to young faculty like
Katy Craig (nonlinear diffusions, aggregation), Mikaela Iacobelli (nonlinear diffusions, kinetic equations), and
Yao Yao (aggregation models), to PhD students and Post-Docs, like Josephine Evans (kinetic equations), Aaron
Palmer (optimal transport), Francesco Patacchini (diffusion, aggregation models), and Simon Plazotta (gradient
flows). And on the other hand, the group was compact enough for the exchange of ideas in a relaxed and friendly
atmosphere. According to the feedback that we received from young researchers, they enjoyed the workshop, got
a broad overview of the field, and benefitted from interactions with prominent researchers in the field.

Although we gave essentially everybody the opportunity to present his or her results, we had a strict time limit
of thirty minutes for most of the talks, including questions. The longer slots of forty-five minute were reserved for
a few selected speakers presenting overview talks. This format gave the participants enough freedom for individual
discussions and collaboration in small groups.

Overall there was a sense that the range of applications of entropy methods and related functional inequalities
has significantly broadened over the last five years and that there are subfields and connections with other fields
that are advancing at rapid pace. Among these we noted analysis on discrete spaces, applications to statistics,
numerical computation, highly non-trivial mathematical modeling with applications in particular in mathematical
biology, connections with new forms of optimal transport (martingale, unbalanced, etc.). In addition substantial
progress on some classical problems, as highlighted by the talks of Esteban, Volzone and Loss, has been made.

Appendix A. Abstracts of the lectures

• LARGE-TIME BEHAVIOR IN HYPOCOERCIVE BGK-MODELS. Arnold, Anton. BGK equations are kinetic transport equa-
tions with a relaxation operator that drives the phase space distribution towards the spatially local equilibrium, a Gaussian with
the same macroscopic parameters. Due to the absence of dissipation w.r.t. the spatial direction, convergence to the global
equilibrium is only possible thanks to the transport term that mixes various positions. Hence, such models are hypocoercive.

We shall prove exponential convergence towards the equilibrium with explicit rates for several linear, space periodic BGK-
models in dimension 1 and 2. Their BGK-operators differ by the number of conserved macroscopic quantities (like mass,
momentum, energy), and hence their hypocoercivity index. Our discussion includes also discrete velocity models, and the local
exponential stability of a nonlinear BGK-model.

The proof is based, first, on a Fourier decomposition in space and Hermite function decomposition in velocity. Then, the
crucial step is to construct a problem adapted Lyapunov functional, by introducing equivalent norms for each mode.
• ON A NEW PROOF OF THE HARRIS ERGODIC THEOREM AND RELATED SUB-EXPONENTIAL CONVERGENCE RESULTS.
Cañizo, José A. We revisit a result in probability known as the Harris theorem and give a simple proof which is well-suited for
some applications in PDE. The proof is not far from the ideas of Hairer & Mattingly (2011) but avoids the use of mass transport
metrics and can be readily extended to cases where there is no spectral gap and exponential relaxation to equilibrium does
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not hold. We will also discuss some contexts where this result can be useful, particularly in a model for neuron populations
structured by the elapsed time since the last discharge. This talk is based on joint works with Stéphane Mischler and Havva
Yolda.

• ENTROPIC REGULARIZATION OF OPTIMAL TRANSPORT AND APPLICATIONS. Carlier, Guillaume. Entropic regularization
of optimal transport is appealing both from a numerical and theoretical perspective. In this talk we will discuss two applications,
one from incompressible fluid dynamics and the other from mean-field games theory.

• ENTROPY PRODUCTION INEQUALITIES FOR THE KAC WALK. Carvalho, Maria C. We investigate new functional inequal-
ities for the well-known Kac’s Walk, and largely resolve the ’Almost’ Cercignani Conjecture on the sphere. A new notion of
chaoticity plays an essential role. The results we obtain validate Kac’s suggestion that functional inequalities for the Kac walk
could be used to quantify the rate of approach to equilibrium for the Kac-Boltzmann equation. This is joint work with E. Carlen
and A. Einav.

• FROM SLOW DIFFUSION TO A HARD HEIGHT CONSTRAINT: A SINGULAR LIMIT OF KELLER-SEGEL. Craig, Katy. For
a range of physical and biological processes from dynamics of granular media to biological swarming the evolution of a large
number of interacting agents is modeled according to the competing effects of pairwise attraction and (possibly degenerate)
diffusion. We prove that, in the slow diffusion limit, the degenerate diffusion becomes a hard height constraint on the density
of the population, as arises in models of pedestrian crown motion. We then apply this to develop numerical insight for open
conjectures in geometric optimization.

• A NEW CONTINUUM THEORY FOR INCOMPRESSIBLE SWELLING MATERIALS. Degond, Pierre. Swelling media (e.g. gels,
tumors) are usually described by mechanical constitutive laws (e.g. Hooke or Darcy laws). However, constitutive relations
of real swelling media are not well-known. Here, we take an opposite route and consider a simple heuristics relying on the
following rule: (i) particles are at packing density; (ii) any two particles cannot swap their position; (iii) motion should be as
slow as possible. These heuristics determine the medium velocity uniquely. In general, this velocity cannot be retrieved by a
simple Darcy law.

• DETERMINISTIC PARTICLE APPROXIMATIONS OF LOCAL AND NONLOCAL TRANSPORT EQUATIONS. Di Francesco,
Marco. Nonlinear convection and nonlocal aggregation equations are known to feature a “formal” gradient flow structure
in presence of a “nonlinear mobility”, in terms of the generalized Wasserstein distance “à la” Dolbeault-Nazaret-Savaré. Such
a structure is inherited by the discrete Lagrangian approximations of those equations in a quite natural way in one space dimen-
sion, and this simple remark allows to formulate a discrete-to-continuum “many particle” approximation. I will describe some
recent results in this direction, which include the discrete (deterministic) particle approximation for scalar conservation laws
and (more recently) a large class of nonlocal aggregation equations as main examples. The results are in collaboration with M.
D. Rosini (Ferrara), S. Fagioli and E. Radici (L’Aquila).

• SUPER RICCI FLOWS FOR MARKOV CHAINS. Erbar, Matthias. I will present a discrete notion of super Ricci flow that
applies to time dependent Markov chains or weighted graphs. This notion can be characterized equivalently in terms of a
discrete time-dependent Bochner inequality, gradient estimates for the heat propagator on the evolving graph, contraction
estimates in discrete transport distances, or dynamic convexity of the entropy. I will also discuss several examples. This is joint
work with Eva Kopfer.

•WHY IN SOME CASES THE ASYMPTOTIC LINEARIZED PROBLEM YIELDS OPTIMAL RESULTS FOR A NONLINEAR VERSION

OF THE CARRÉ DU CHAMP. Esteban, Maria J. Using a nonlinear parabolic flow, in this talk I will explain why the optimal
regions of symmetry and symmetry breaking for the extremals of critical and subcritical Caffarelli-Kohn-Nirenberg inequalities
are related to the spectral gap of the linearized problem around the asymptotic Barenblatt solutions. This is a surprising result
since it means that a global test yields a global result. The use of the parabolic flow also allows to get improved inequalities
with explicit remainder terms.

• HYPOCOERCIVITY IN PHI-ENTROPY FOR LINEAR RELAXATION BOLTZMANN EQUATION. Evans, Josephine. As well as
results in Hilbert spaces, Villani’s memoire on hypocoercivity contains convergence to equilibrium results measured in relative
entropy. Since then hypocoercivity in more general Phi entropies has been studied by several authors. These works have mainly
been for diffusion equations which can be put in a “Hörmander sum of squares form”. The linear relaxation Boltzmann equation
is a simple equation not of this form for which hypocoercivity in Phi entropies can still be shown but with extra terms added to
the functional which would not be needed for a diffusion.

• STEIN KERNELS, OPTIMAL TRANSPORT AND THE CLT. Fathi, Max. Stein kernels are a way of measuring distance
between probability measures, defined via integration by parts formulas. I will present a connection between these kernels
and optimal transport. The main result is a way of deriving rates of convergence in the classical central limit theorem using
regularity estimates for a variant of the Monge-Ampère PDE. As an application, we obtain new rates of convergence for the
multi-dimensional CLT, with explicit dependence on the dimension.
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• EQUILIBRATION OF RENORMALISED SOLUTIONS TO NONLINEAR CHEMICAL REACTION-DIFFUSION SYSTEMS. Fellner,
Klemens. We prove exponential convergence to equilibrium for renormalised solutions to general complex balanced reaction-
diffusion systems without boundary equilibria and even for systems with boundary equilibria provided a finite dimensional
inequality holds along solutions trajectories. Our proofs are based on the entropy method and represent the most general results
on the convergence to equilibrium for complex balanced RD systems currently available. (joint works with Bao Quoc Tang)

• GLOBAL ESTIMATES FOR LOCAL AND NONLOCAL POROUS MEDIUM TYPE EQUATIONS ON BOUNDED DOMAINS. Figalli,
Alessio. The behavior of solutions to the classical porous medium equation is by now well understood: the support of the
solution expands at finite speed, and for large times it behaves as the separate-variable solution. When the Laplacian is replaced
by a nonlocal diffusion, completely new and surprising phenomena arise depending on the power of the nonlinearity and the
one of the diffusion. The aim of the talk is to give an overview of this theory.

• RIGOROUS DERIVATION OF THE NONLOCAL REACTION-DIFFUSION FITZHUGH-NAGUMO SYSTEM. Filbet, Francis.
We introduce a spatially extended transport kinetic FitzHugh-Nagumo model with forced local interactions and prove that its
hydrodynamic limit converges towards the classical nonlocal reaction-diffusion FitzHugh-Nagumo system. Our approach is
based on a relative entropy method, where the macroscopic quantities of the kinetic model are compared with the solution to
the nonlocal reaction-diffusion system. This approach allows to make the rigourous link between kinetic and reaction-diffusion
models

• A PARTIAL LAPLACIAN AS AN INFINITESIMAL GENERATOR ON THE WASSERSTEIN SPACE. Gangbo, Wilfrid. We study
stochastic processes on the Wasserstein space, together with their infinitesimal generators. One of these processes plays a
central role in our work. Its infinitesimal generator defines a partial Laplacian on the space of Borel probability measures, and
we use it to define heat flow on the Wasserstein space. We verify a distinctive smoothing effect of this flow for a particular class
of initial conditions. To this end, we will develop a theory of Fourier analysis and conic surfaces in metric spaces. We note
that the use of the infinitesimal generators has been instrumental in proving various theorems for Mean Field Games, and we
anticipate they will play a key role in future studies of viscosity solutions of PDEs in the Wasserstein space (Joint work with Y.
T. Chow).

• WHEN OTTO MEETS NEWTON AND SCHRÖDINGER, AN HEURISTIC POINT OF VIEW. Gentil, Ivan. We propose a gen-
eralization of the Schrödinger problem by replacing the usual entropy with a functional F which approaches the Wasserstein
distance along the gradient of F . From an heuristic point of view by using Otto calculus, we show that interpolations satisfy a
Newton equation, extending the recent result of Giovani Conforti. Various inequalities as Evolutional-Variational-inequalities
are also established from a heuristic point of view. As a rigorous result we prove a new and general contraction inequality for
the usual Schrödinger problem under Ricci bound on a smooth and compact Riemannian manifold. This is a joint work with L.
Ripani and C. Léonard.

• A THEORY OF TRANSFERS. Ghoussoub, Nassif. I introduce and study the class of “linear transfers” between probability
measures. This class contains all cost minimizing mass transports, including “equivariant mass transports” and “martingale
mass transports”. It also contain the “Schrödinger bridge” associated to a reversible Markov process, and the “weak mass
transports” of Talagrand, Marton, Gozlan and others. However, what motivated us to develop the concept are the stochastic
mass transports in their various forms. We also introduce the cone of “convex transfers,” which in addition to linear transfers,
include any p-power of a linear transfer, but also the logarithmic entropy, other energy functionals, as well as the Donsker-
Varadhan information. The ultimate goal: Stochastic Weak KAM theory.

• LONG TIME BEHAVIOR OF KINETIC LANGEVIN EQUATION. Guillin, Arnaud. We will present here two different approaches
to study the long time behavior of the kinetic Langevin equation : 1) hypocoercivity technique for entropic convergence via a
new weighted logarithmic Sobolev inequality ; 2) Wasserstein convergence via a particular reflection coupling.

• EQUILIBRIA IN THE DIFFUSION-DOMINATED REGIME AND RELATED FUNCTIONAL INEQUALITIES. Hoffmann, Franca.
We study interacting particles behaving according to a reaction-diffusion equation with nonlinear diffusion and nonlocal attrac-
tive interaction. This class of partial differential equations has a very nice gradient flow structure that allows us to make links to
different families of functional inequalities. Depending on the nonlinearity of the diffusion, the choice of interaction potential
and the space dimensionality, we obtain different regimes. Understanding the asymptotic profiles of this model is related to the
minimization problem of the corresponding energy functional. We will provide an overview of recent advances. These are joint
works with José A. Carrillo, Vincent Calvez, Jean Dolbeault, Rupert Frank, Edoardo Mainini and Bruno Volzone.

• ASYMPTOTICAL ANALYSIS OF A WEIGHTED VERY FAST DIFFUSION EQUATION ARISING IN QUANTIZATION OF MEA-
SURES VIA THE JKO SCHEME. Iacobelli, Mikaela. In this talk I would like to present some recent results on the asymptotic
behavior of a very fast diffusion PDE with periodic boundary conditions. This equation is motivated by the gradient flow ap-
proach to the problem of quantization of measures. I prove exponential convergence to equilibrium under minimal assumptions
on the data, and I also provide sufficient conditions for W2-stability of solutions. Moreover, I will present a work in progress
with Filippo Santambrogio and Francesco Saverio Patacchini where we use the JKO scheme to relax the hypotheses of my
previous convergence result.
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• TOWARDS A GRADIENT FLOW FOR MICROSTRUCTURE. Kinderlehrer, David. A central problem of microstructure is to
develop technologies capable of producing an arrangement, or ordering, of the material, in terms of mesoscopic parameters
like geometry and crystallography, appropriate for a given application. Is there such an order in the first place? We describe
very briefly the emergence of the grain boundary character distribution (GBCD), a statistic that details texture evolution, and
illustrate why it should be considered a material property. Its identification as a gradient flow by our method is tantamount
to exhibiting the harvested statistic as the iterates in a mass transport JKO implicit scheme, which we found astonishing.
Consequently the GBCD is the solution, in some sense, of a Fokker-Planck Equation. The development exposes the question of
how to understand the circumstances under which a harvested empirical statistic is a property of the underlying process (joint
work with P. Bardsley, K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, X.-Y. Lu and S. Ta’asan)

• ENTROPY DECAY FOR THE KAC MASTER EQUATION. Loss, Michael. The Kac master equation models the behavior of a
large number of randomly colliding particles. Due to its simplicity it allows, without too much pain, to investigate a number
of issues. E.g., Mark Kac, who invented this model in 1956, used it to give a simple derivation of the spatially inhomogeneous
Boltzmann equation. One important issue is the rate of approach to equilibrium, which can be analyzed in various ways, using,
e.g., the gap or the entropy. Explicit entropy estimates will be discussed for a Kac type master equation modeling the interaction
of a finite system with a large but finite reservoir. This is joint work with Federico Bonetto, Alissa Geisinger and Tobias Ried.

• GROMOV-HAUSDORFF CONVERGENCE OF DISCRETE OPTIMAL TRANSPORT. Maas, Jan. For a natural class of discretisa-
tions of a convex domain in Rn, we consider the dynamical optimal transport metric for probability measures on the discrete
mesh. Although the associated discrete heat flow converges to the continuous heat flow, we show that the transport metric may
fail to converge to the 2-Kantorovich metric. Under an additional symmetry condition on the mesh, we show that Gromov-
Hausdorff convergence to the 2-Kantorovich metric holds. This is joint work with Peter Gladbach and Eva Kopfer.

• ENTROPIC CONCAVITY AND POSITIVE ENERGY. McCann, Robert. On a Riemannian manifold, lower Ricci curvature
bounds are known to be characterized by geodesic convexity properties of various entropies with respect to the Kantorovich-
Rubinstein-Wasserstein square distance from optimal transportation. These notions also make sense in a (nonsmooth) metric
measure setting, where they have found powerful applications. In this talk I describe the development of an analogous theory
for lower Ricci curvature bounds in time-like directions on a Lorentzian manifold. In particular, by lifting fractional powers of
the Lorentz distance (a.k.a. time separation function) to probability measures on spacetime, I show the strong energy condition
of Penrose is equivalent to geodesic concavity of the Boltzmann-Shannon entropy there.

• GRADIENT FLOWS IN ABSTRACT METRIC SPACES: EVOLUTION VARIATIONAL INEQUALITIES AND STABILITY. Mu-
ratori, Matteo. We study the main consequences of the existence of a Gradient Flow (GF for short), in the form of Evolution
Variational Inequalities (EVI), in the very general framework of an abstract metric space. In particular, no volume measure is
needed. The hypotheses on the functional associated with the GF are also very mild: we shall require at most completeness of
the sublevels (no compactness assumption is made) and, for some convergence and stability results, approximate λ-convexity.
The main results include: quantitative regularization properties of the flow (in terms e.g. of slope estimates and energy iden-
tities), discrete-approximation estimates of a minimizing-movement scheme and a stability theorem for the GF under suitable
gamma-convergence-type hypotheses on a sequence of functionals approaching the limit functional. Existence of the GF itself
is a quite delicate issue which requires some concavity-type assumptions on the metric, and will be addressed in a future project.
This is a joint work with G. Savaré.

• OPTIMAL TRANSPORTATION WITH FREE END-TIMES. Palmer, Aaron. We explore a dynamic formulation of the optimal
transportation problem with the additional freedom to choose the end-time of each trajectory. The dual problem is then posed
with a Hamilton-Jacobi variational inequality, which we analyze with the method of viscosity solutions. We find properties
that imply the optimal stopping-time is the hitting-time of the free boundary to the variational inequality. Joint work with N.
Ghoussoub and Y.H. Kim.

• EXISTENCE OF GROUND STATES FOR AGGREGATION-DIFFUSION EQUATIONS. Patacchini, Francesco Saverio. We an-
alyze free energy functionals for macroscopic models of multi-agent systems interacting via pairwise attractive forces and
localized repulsion. The repulsion at the level of the continuous description is modeled by pressure-related terms in the func-
tional making it energetically favorable to spread, while the attraction is modeled through nonlocal forces. We give conditions
on general entropies and interaction potentials for which neither ground states nor local minimizers exist. We show that these
results are sharp for homogeneous functionals with entropies leading to degenerate diffusions while they are not sharp for fast
diffusions. The particular relevant case of linear diffusion is totally clarified giving a sharp condition on the interaction potential
under which the corresponding free energy functional has ground states or not. This is joint work with J. A. Carrillo and M. G.
Delgadino.

• A BDF2-APPROACH FOR THE NON-LINEAR FOKKER-PLANCK EQUATION. Plazotta, Simon. In this talk I will discuss
the construction of approximate solutions for the Non-linear Fokker-Planck equation. We utilize the L2-Wasserstein gradient
flow structure of this PDEs to perform a semi discretization in time by means of the variational BDF2 method. Our approach
can be considered as the natural second order analogue of the Minimizing Movement or JKO scheme. In comparison to our
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own recent work on constructing solutions to λ-contractive gradient flows in abstract metric spaces, the technique presented
here exploits the differential structure of the underlying L2-Wasserstein space. We directly prove that the obtained limit curve
is a weak solution of the non-linear Fokker-Planck equation without using the abstract theory of curves of maximal slope.
Additionally, we provide strong Lm convergence instead of merely weak convergence in the L2-Wasserstein topology of the
time-discrete approximations.

• WASSERSTEIN ESTIMATES AND MACROSCOPIC LIMITS IN A MODEL FROM ECOLOGY. Raoul, Gaël. We are interested in
evolutionary biology models for sexual populations. The sexual reproductions are modeled through the so-called Infinitesimal
Model, which is similar to an inelastic Boltzmann operator. This kinetic operator is then combined to selection and spatial
dispersion operators. In this talk, we will show how the Wasserstein estimates that appear naturally for the kinetic operator can
be combined to estimates on the other operators to study the qualitative properties of the solutions. In particular, this approach
allows us to recover a well-known (in populations genetics) macroscopic model.

• ENTROPIC OPTIMAL TRANSPORT AND NONLINEAR PDE’S. Savaré, Giuseppe. We discuss two examples of “dynam-
ical optimal transport problems”, whose formulations involve a relative entropy functional. The first case is related to the
Hellinger-Kantorovich distance and induces an interesting geometric structure on the space of positive measures with finite (but
possibly different) mass. In particular, contraction estimates of nonlinear flows are strongly related to geodesic convexity of the
generating entropy functionals.

In the second example an entropy functional penalizes the density of the connecting measures with respect to a given
reference measure (typically the Lebesgue one) and leads to a first order “mean field planning” problem, which is classically
formulated by a continuity equation and a Hamilton Jacobi equation with a nonlinear coupling. In this case, the variational
approach and the displacement convexity of the entropy functionals (in the usual sense of optimal transport) provide crucial
tools to give a precise meaning to the PDE system and to prove the existence of a solution.

• PHASE TRANSITIONS FOR THE MCKEAN-VLASOV EQUATION ON THE TORUS. Schlichting, André. In the talk, the
McKean-Vlasov equation on the flat torus is studied. The model is obtained as the mean field limit of a system of interacting
diffusion processes enclosed in a periodic box. The system acts as a model for several real-world phenomena from statistical
physics, opinion dynamics, collective behavior, and stellar dynamics.

This work provides a systematic approach to the qualitative and quantitative analysis of the McKean-Vlasov equation. We
comment on the longtime behavior and convergence to equilibrium, for which we introduce a notion of H-stability.

The main part of the talk considers the stationary problem. We show that the system exhibits multiple equilibria which arise
from the uniform state through continuous bifurcations, under certain assumptions on the interaction potential. Finally, criteria
for the classification of continuous and discontinuous transitions of this system are provided. This classification is based on a
fine analysis of the free energy.

The results are illustrated by proving and extending results for a wide range of models, including the noisy Kuramoto model,
Hegselmann-Krause model, and Keller-Segel model (joint work with José Carrillo, Rishabh Gvalani, and Greg Pavliotis).

• PATTERN FORMATION DRIVEN BY TRANSPORT, DRIFT, AND LOCALIZED INTERACTIONS. Stevens, Angela. An exemplary
drift-reaction system with mass conservation is studied w.r.t. pattern formation. The occurrence of rippling patterns in this
system relates to an aggregation equation, whose qualitative behavior will also be discussed.

If time permits, aggregation equations with local interactions will be presented, respectively Chemotaxis-models with a
non-diffusive chemical.

All models have in common that their qualitative features are more of “hyperbolic type”. Thus pattern formation and the
analysis of these systems is different from the one of their “parabolic counterparts”.

• RECENT RESULTS ON NONLINEAR AGGREGATION-DIFFUSION EQUATIONS: RADIAL SYMMETRY AND LONG TIME ASYMP-
TOTICS. Volzone, Bruno. One of the archetypical aggregation-diffusion models is the so-called classical parabolic-elliptic
Patlak-Keller-Segel (PKS for short) model. This model was classically introduced as the simplest description for chemotatic
bacteria movement in which linear diffusion tendency to spread fights the attraction due to the logarithmic kernel interaction in
two dimensions. For this model there is a well-defined critical mass. In fact, here a clear dichotomy arises: if the total mass
of the system is less than the critical mass, then the long time asymptotics are described by a self-similar solution, while for
a mass larger than the critical one, there is finite time blow-up. In this talk we will show some recent results concerning the
symmetry of the stationary states for a nonlinear variant of the PKS model, of the form

∂tρ = ∆ρm +∇ · (ρ∇(W ∗ ρ)), (7.0.1)

being W ∈ C1(Rd \ {0}), d ≥ 2, a suitable aggregation kernel, in the assumptions of dominated diffusion, i.e. when
m > 2 − 2/d. In particular, if W represents the classical logarithmic kernel in the bidimensional case, we will show that
there exists a unique stationary state for the model (7.0.1) and it coincides, according to one of the main results in the work [?],
with the global minimizer of the free energy functional associated to (7.0.1). In the case d = 2 we will also show how such
steady state coincides with the aymptotic profile of (7.0.1). Finally, we will also discuss some recent results concerning the
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model (7.0.1) with a Riesz potential aggregation, namely when W (x) = cd,s|x|2s−d for s ∈ (0, d/2), again in the diffusion
dominated regime, i.e. for m > 2− (2s)/d. In particular, all stationary states of the model are shown to be radially symmetric
decreasing and that global minimizers of the associated free energy are compactly supported, uniformly bounded, Hölder
regular, and smooth inside their support. These results are objects of the joint works [?], [?].
• ENHANCEMENT OF BIOLOGICAL REACTION BY CHEMOTAXIS. Yao, Yao. In this talk, we consider a system of equations
arising from reproduction processes in biology, where two densities evolve under diffusion, absorbing reaction and chemotaxis.
We prove that chemotaxis plays a crucial role to ensure the efficiency of reaction: Namely, the reaction between the two
densities is very slow in the pure diffusion case, while adding a chemotaxis term greatly enhances reaction. While proving our
main results we also obtain a weighted Poincare’s inequality for the Fokker-Planck equation, which might be of independent
interest.

Appendix B. Schedule

•Monday, April 9
09:00 - 09:30 : David Kinderlehrer: Towards a gradient flow for microstructure
09:30 - 10:00 : Gaël Raoul: Wasserstein estimates and macroscopic limits in a model from ecology
10:30 - 11:00 : Pierre Degond: A new continuum theory for incompressible swelling materials
11:00 - 11:30 : Francis Filbet: Rigorous derivation of the nonlocal reaction-diffusion FitzHugh-Nagumo system
14:20 - 15:05 Angela Stevens: Pattern formation driven by transport, drift, and localized interactions
15:30 - 16:00 : Yao Yao: Enhancement of biological reaction by chemotaxis
16:00 - 16:30 : Katy Craig: From slow diffusion to a hard height constraint: a singular limit of Keller-Segel
16:30 - 17:15 : Nassif Ghoussoub: A Theory of Transfers

• Tuesday, April 10
08:45 - 09:15 : Guillaume Carlier: Entropic regularization of optimal transport and applications
09:15 - 10:00 : Robert McCann: Entropic concavity and positive energy
10:30 - 11:15 : Wilfrid Gangbo: A partial Laplacian as an infinitesimal generator on the Wasserstein space
11:15 - 12:00 : Aaron Palmer: Optimal transportation with free end-times
14:00 - 14:30 : Anton Arnold: Large-time behavior in hypocoercive BGK-models
14:30 - 15:00 : Arnaud Guillin: Long time behavior of kinetic Langevin equation
15:30 - 16:15 : Michael Loss: Entropy decay for the Kac master equation
16:15 - 16:45 : Maria C Carvalho: Entropy production inequalities for the Kac Walk
16:45 - 17:30 : Josephine Evans: Hypocoercivity in Phi-entropy for linear relaxation Boltzmann equation

•Wednesday, April 11
08:45 - 09:15 : Klemens Fellner: Equilibration of renormalised solutions to nonlinear chemical reaction-diffusion systems
09:15 - 10:00 : Alessio Figalli: Global estimates for local and nonlocal porous medium type equations on bounded domains
10:30 - 11:00 : Maria J. Esteban: Why in some cases the asymptotic linearized problem yields optimal results for a nonlinear
version of the carré du champ
11:00 - 11:30 : Mikaela Iacobelli: Asymptotical analysis of a weighted very fast diffusion equation arising in quantization of
measures via the JKO scheme

• Thursday, April 12
08:45 - 09:15 : Simon Plazotta: A BDF2-Approach for the Nonlinear Fokker-Planck Equation
09:15 - 10:00 : Giuseppe Savaré: Entropic optimal transport and nonlinear PDE’s
10:30 - 11:00 : Jan Maas: Gradient flows and quantum entropy inequalities via matrix optimal transport
11:00 - 11:30 Matteo Muratori: Gradient flows in abstract metric spaces: evolution variational inequalities and stability
14:00 - 14:30 : Marco Di Francesco: Deterministic particle approximations of local and nonlocal transport equations
14:30 - 15:00 : Bruno Volzone: Recent results on nonlinear aggregation-diffusion equations: radial symmetry and long time
asymptotics
15:30 - 16:00 : Francesco Patacchini: Existence of ground states for aggregation-diffusion equations
16:00 - 16:30 Ivan Gentil: When Otto meets Newton and Schrödinger, an heuristic point of view
16:30 - 17:15 : Max Fathi: Stein kernels, optimal transport and the CLT

• Friday, April 13
08:45 - 09:15 : Matthias Erbar: Super Ricci flows for Markov chains
09:15 - 10:00 : José Alfredo Cañizo: On a new proof of the Harris ergodic theorem and related sub-exponential convergence
results
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10:30 - 11:00 : André Schlichting: Phase transitions for the McKean-Vlasov equation on the torus
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Toronto), Paul-Emile Paradan (Université de Montpellier)

Overview
Quantization is an important theme in many areas of mathematics and physics. Geometric quantization aims to associate to
any classical phase space, modeled by a symplectic manifold, a corresponding quantum space, modeled by a Hilbert space.
Classical observables, given by smooth functions (Hamiltonians), should be quantized to quantum observables.

The original concept of quantization, nowadays usually referred to as canonical quantization, goes back to the work of H.
Weyl, J. von Neumann, P. Dirac and I.E. Segal. Nevertheless, canonical quantization encountered several problems, and among
other things failed to provide a unified framework for the Schrödinger and Bargmann-Fock representation.

In the 1960s, a theory called geometric quantization emerged. Its main goal is to set a relation between classical and
quantum mechanics from a geometrical point of view, taking as a model the canonical quantization method, but removing some
ambiguities involved in the canonical quantization procedure.

The pioneering works on geometric quantization are due to J.M. Souriau [24], B. Kostant [12], although many of their ideas
were based on previous works by A.A. Kirillov [13]. In this theory the Hilbert space of quantum states of a mechanical system
is constructed of some sections of a complex line bundle over a symplectic manifold. The foundation of geometric quantization
is the fact, discovered independently by Kirillov, Souriau and Kostant, that every coadjoint orbit of a Lie group is endowed with
a symplectic structure, and for the integrable one the symplectic structure is pre-quantized by a line bundle.

A relevant feature of geometric quantization is its close relationship with the theory of irreducible unitary representations
of Lie groups. Kirillov [13] proposed a program of realizing irreducible unitary representations of a Lie group G by geometric
quantization of its coadjoint orbits. This program, which became known as the orbit method, has been highly successful, with
contributions from many mathematicians such as Auslander-Kostant, Duflo, Rossmann, Schmid, Vogan, and others.

In the 1980s, Guillemin and Sternberg [10] studied the geometric quantization of more generalG-equivariant Kähler mani-
folds M . The resulting G-representations are reducible in general. Guillemin and Sternberg proved the ground-breaking result
that the multiplicities of this G-representation are calculated in terms of geometric quantizations of the symplectic quotients
of M . They conjectures that the phenomenon of “quantization commutes with reduction” (in short, “[Q,R]=0”) holds in much
greater generality, for the quantization of arbitrary prequantized symplectic manifolds by Dirac operators.

In the 1990s, following Witten’s idea of non-abelian localization, there was considerable progress on the “[Q,R]=0” prob-
lem, through work of Meinrenken, Vergne, Jeffrey-Kirwan, Guillemin, Duistermaat and Wu. The conjecture was finally solved
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by Meinrenken (1996) [18] using Lerman’s technique of symplectic cutting. Subsequently, Tian and Zhang (1997) gave an
analytic proof of the Guillemin-Sternberg conjecture using a deformation of the Dirac operator, and Paradan developed a K-
theoretic approach using the theory of transversally elliptic operators (2001).

Recent Developments
Today, geometric quantization continues to be a highly active area, with links to physics, symplectic geometry, representation
theory, index theory, differential geometry and geometric analysis. One purpose of the workshop was to present different facets
of the “geometric quantization” theme, including topics such as

– quantization of Hamiltonian manifolds,
– group valued momentum maps,
– moduli space problems,
– branching rules in representation theory,
– semiclassical asymptotics,
– index theory (Atiyah-Singer and Connes-Kasparov).

There are many open problems and active developments surrounding geometric quantization, many of which were ad-
dressed during the workshop. For example, the recent generalization of the Verlinde formulas to equivariant Verlinde formula
opens a wide range of question. The application of simplicial techniques to the geometric realization of higher cohomology
groups is a new direction; for instance, there still is no good finite-dimensional realization of the multiplicative gerbe on com-
pact Lie groups. Also quite recently, there have been exciting new developments on the application of C∗-algebras to problems
in representation theory. These and other directions were all presented in workshop talks.

Presentation Highlights
The workshop featured researchers with distinct backgrounds and research interests, as well as PhD students and postdoctoral
fellows. We made an effort to organize each day of the workshop around a different theme, starting with one or two one-hour
survey lectures. This was followed by more specialized 45-minute talks in the afternoon.

Below, we describe some of the highlights in each of these themes.

Foundational aspects of geometric quantization
Yael Karshon: Geometric quantization with metaplectic-c structures

The classical geometric quantization procedure with the ”half-form correction”, as developed in the 1960s and 1970s, has
a number of deficiencies. For example, this approach does not provide a quantization of complex projective space of even
complex dimension, due to the absence of a ”half form bundle”, and one cannot equivariantly quantize any symplectic toric
manifold, due to the absence of an ”equivariant half form bundle”. In her talk, Yael Karshon reported on work with Jennifer
Vaughan (expanding on earlier work of Harald Hess), of a new type of geometric quantization procedure. The new approach
uses metaplectic-c structures to incorporate the ”half form correction” into the prequantization stage, and it does apply to the
examples mentioned above.

Michèle Vergne: Semi-classical limits of geometric quantization and the graded equivariant Todd class

Let T be a torus with Lie algebra t and let M be a compact Hamiltonian T -manifold with Kostant prequantum line bundle
L, and with a proper moment map. The quantization RR(M,L) of these data is a virtual representation of T , defined as the
index of the T -equivariant Spin-c Dirac operator with coefficients in L. Replacing L with its tensor powers, one obtains a
sequence RR(M,Lk) of such representations. Let Q ⊂ t∗ be the weight lattice, and

m(λ, k)
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the multiplicity of the irreducible representation of highest weight λ ∈ Q in RR(M,Lk). The distribution

m = k− dimM/2
∑

λ∈Q
m(λ, k)δ 1

k
λ

has been much-studied in the literature; its limit for k →∞ is the Duistermaat-Heckman measure of the Hamiltonian T -space.
In her lecture, Michèle Vergne explained that this distribution has a complete asymptotic expansion

m ∼
∞∑

i=0

k−i Tdi

where the coefficients are the twisted Duistermaat–Heckman distributions associated with the graded equivariant Todd class of
M . When f polynomial, the resulting asymptotic series for the pairing 〈m, f〉 is finite and exact.

Mathai Varghese: Equivariant index theory in the noncompact context, and the relation to quantisation, reduction and
PSC metrics

Mathai Varghese gave a survey lecture on aspects of index theory and quantization, in situations where the group or the
manifold (or both) are non-compact. For compact spin manifolds, the non-vanishing of the index gives a topological obstruction
to the existence of positive scalar-curvature metrics (PSC’s). Mathai explained his lecture how to generalize Lichnerowicz’
theorem, to the setting where M is a noncompact spin manifold with a proper cocompact action of a Lie group G. To define
the equivariant index, he works with a group C∗-algebra, whose K-theory K0(C∗(G)) is a recipient of the equivariant index
map. In recent joint work with Hao Guo and Hang Wang, he thus obtains an obstruction to the existence ofG-invariant positive
scalar-curvature metrics as an element of this K0-group. Mathai also described some existence results, for the case of ‘almost
connected Lie groups’ whose maximal compact subgroup has nonabelian identity component. For instance, if the G-action
is cocompact and proper, and if the action has a global slice with a proper K-action, then a G-invariant PSC metric exists.
He discussed many applications of these results, as well as further generalizations. He furthermore explained various results
of Mathai-Zhang and Mathai-Hochs on the ‘quantization commutes with reduction’ conjecture, again for situations where the
group or the manifold are non-compact.

Applications of geometric quantization
Martin Puchol: G-invariant holomorphic Morse inequalities

Let G be a connected compact Lie group, acting on a manifold M , and let L→M be a holomorphic line bundle. Suppose
E → M is a G-equivariant holomorphic vector bundle, and consider the sequence of vector bundles E ⊗ Lk. In his talk,
Martin Puchol described an extension of Demailly’s holomorphic Morse inequalities to this equivariant context, computing
the invariant part of the Dolbeault cohomology of E ⊗ Lk. The formula is an instance of the ”quantization commutes with
reduction”, relating the invariant part of the Dolbeault cohomology of M to the Dolbeault cohomology of the symplectic
quotient M//G = µ−1(0)/G, where µ : M → g∗ is Kostant’s momentum map for the line bundle L, and using a regularity
assumption to guarantee that the quotient is smooth. The inequalities are expressed in terms of the curvature of the bundle
induced by E ⊗ Lk on this reduction.

Laurent Charles: Toeplitz operators and entanglement entropy

The first part of Laurent Charles’ talk was an expository introduction to the Berezin-Toeplitz quantization of Kähler man-
ifolds. The second part described his work with B. Estienne, focussing on a particular class of Berezin-Toeplitz operators
whose symbols are characteristic functions. He described their spectral distribution, and presented a two-terms Weyl law. As
an application, he obtained the so-called area law for the entanglement entropy in the Quantum Hall Effect.

George Marinescu: Berezin-Toeplitz quantization for eigenstates of the Bochner-Laplacian on symplectic manifolds

George Marinescu’s talk continued the theme of Berezin-Toeplitz quantization, describing joint work with L. Ioos, W. Lu
and X. Ma. In this context, he regarded as the quantum space the space of eigenstates of the renormalized Bochner Laplacian
on a symplectic manifold, corresponding to eigenvalues localized near the origin. He showed that this quantization has the
correct semiclassical behavior, and constructed the corresponding star-product.



116 Five-day Workshop Reports

Geometric quantization and mathematical physics
Sergei Gukov: Geometric quantization and the equivariant Verlinde formula

Sergei Gukov reported on his work, with Andersen and Pei, on the Verlinde formula for the quantization of the Higgs bundle
moduli spaces and stacks for any simple and simply-connected reductive group G. This was generalized to a Verlinde formula
for the quantization of parabolic Higgs bundle moduli spaces and stacks. These authors also proved that these dimensions form
a one-parameter family of 1 + 1-dimensional TQFT, uniquely classified by the complex Verlinde algebra. It is a one-parameter
family of Frobenius algebras obtained as a deformation of the classical Verlinde algebra for G.

Daniel Freed: Eta-invariants on pin manifolds and time-reversal symmetry

Daniel Freed described some recent joint work with Mike Hopkins. As he explained, this work may be seen as a consis-
tency check for M -theory, specifically its invariance property under time reversal. This consistency check leads to concrete
calculations, involving eta-invariants for odd-dimensional pin manifolds.

Stephan Stolz: From factorization algebras to functorial field theories

The concept of functorial field theories was introduced by Atiyah-Segal in the 1980s, while factorization algebras were
pioneered by Beilinson and Drinfeld (2004) and further developed in the recent work by Costello and Guilliam. Stefan Stolz
decribed a further understanding of the relationship between these two approaches, based on his joint work with Gwyer and
Teichner. In broad terms, their result states that any G-factorization algebra determines a twisted G-field theory. Here G is
additional structure, and a G-factorization algebra is a functor from manifolds M with a G-structure, with morphisms the
embeddings, into the category of cochain complexes, the latter playing the role of observables. One advantage of this approach
is that concrete examples factorization algebra are rather easy to describe in practice.

Nikhil Savale: A Gutzwiller type trace formula for the magnetic Dirac operator

The usual Gutzwiller trace formula gives a semi-classical approximation to the spectrum of a Schrödinger operator, in
terms of data (periods, Maslov indices and so on) of the periodic orbits of the associated classical mechanical system. For a
suitable class of manifolds, including metric contact manifolds with non-resonant Reeb flow, Nikhil Savale proved a Gutzwiller
type trace formula for the associated magnetic Dirac operator involving contributions from Reeb orbits on the base. As an
application, he obtained a semiclassical limit formula for the eta invariant.

Geometric quantization in representation theory
Nigel Higson: Discrete series representations, the Dirac operator and C∗-algebra K-theory

Nigel Higson gave an expository talk on the subject ofC∗-algebraK-theory for reductive groups. Following an explanation
of the foundations of operator K-theory, he explained how some of the known results of the representation theory of Lie
groups can be formulated in K-theoretic, and described some of the new results suggested by this viewpoint. A central
theme in this story is Harish-Chandra’s parametrization of the discrete series representations, and the realization of discrete
series representations using the Dirac operator. Higson also touched on other parts of Harish-Chandra’s theory of tempered
representations that are relevant from the K-theoretic point of view, as well as the the philosophy of Mackey’s machine.

Yanli Song: Fourier transform, orbital integral and character of representations

In the 1980s, Connes and Moscovici studied the equivariant index theory of G-invariant elliptic pseudo-differential oper-
ators, acting on non-compact homogeneous spaces. They proved an L2-index formula using the heat kernel method, which is
related to the discrete series representation of Lie groups. In his talk, Yanli Song, following his joint work with Xiang Tang,
discussed the orbital integral of the heat kernel, and its relation with the Plancherel formula. One result in this context is a
generalization of Connes-Moscovici’s analytic index to the limit of discrete series case. Song’s talk also touched on recent
work by Hochs and Wang, who had obtained a fixed point theorem for the topological side of the index.

Hang Wang: K-theory, fixed point theorem and representation of semisimple Lie groups

The approach to representation theory of Lie groups through theK-theory ofC∗-algebras was continued in the talk of Hang
Wang, who reported on her work with Peter Hochs. More specifically, their work used the K-theory of reduced group C∗-
algebras and their trace maps, in order to study tempered representations of semisimple Lie groups from the viewpoint of index
theory. She explained how for a semisimple Lie group G, every K-theory generator can be viewed not only as the equivariant
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index of some Dirac operator, but also as a family of representations, parametrised by the A-factor of the Levi component of
a cuspidal parabolic subgroup. In particular, if the Lie group G admits discrete series representations, then the corresponding
K-theory classes are realized as equivariant geometric quantizations of the associated coadjoint orbits. Applying orbital traces
to the K-theory group, Hochs and Wang obtained a fixed point formula; its application to the realization of discrete series
representations, recovered the Harish-Chandra character formula. The result may be regarded as a noncompact analogue of the
Atiyah-Segal-Singer fixed point theorem, in relation to the Weyl character formula.

Peter Hochs: K-types of tempered representations

Peter Hochs desribed his joint work with Song and Yu, as well as with Higson and Song. Let G be a real semisimple
Lie group, and K ⊂ G a maximal compact subgroup. A tempered representation π of G is an irreducible representation that
occurs in the Plancherel decomposition of L2(G). Similar to the fact that an irreducible representation of a compact Lie group
is determined by its restriction to the maximal torus, a substantial amount of information about π is captured by the restriction
π|K of π to the maximal compact subgroup K. By realizing this restriction as the geometric quantization of a suitable space,
which (under a regularity assumption on π) is a coadjoint orbit, a suitable version of the quantization commutes with reduction
principle leads to geometric expressions for the multiplicities of the irreducible representations ofK in π|K , that is, theK-types
of π. This was done for the discrete series representations in work of Paradan in 2003. Hochs’ joint work with Song and Yu
extended this result to arbitrary tempered representation. The resulting multiplicity formula was obtained in a different way, for
tempered representations with regular parameters, by Duflo and Vergne in 2011. In joint work with Higson and Song, Hochs
also gave a new proof of Blattner’s formula for multiplicities of K-types of discrete series representations, using the ideas of
geometric quantization. This formula was first proved by Hecht and Schmid in 1975, and later by Duflo, Heckman and Vergne
in 1984.

Loop groups, Higher structures
Konrad Waldorf: Fusion in loop spaces

In his lecture, Konrad Waldorf gave a general overview of fusion operations in loop spaces, based on his work since around
2010. The notion of a fusion structure on objects over the loop space was emphasized by Stolz and Teichner in their 2005 article
“The spinor bundle on loop spaces”. Specifically, these authors had developed the notion of an orientation on loop spaces, giving
precise definitions and proofs for the fact that orientations of the loop space LM are in canonical 1-1 correspondence with spin
structures on M . Waldorf proved that the category of abelian gerbes with connection over a smooth manifold is equivalent to a
category of principal bundles over the free loop space, equipped with a connection and with a “fusion” product with respect to
triples of paths.

Chris Kottke: A new theory of higher gerbes

Complex line bundles on a manifold M are classified naturally up to isomorphism by degree two integer cohomology
H2(M,Z), and it is of interest to find finite-dimensional geometric objects which are similarly associated to higher degree
cohomology, and which would allow for a similar theory of connections, curvature and so on. For degree 3 cohomology
H3(M,Z), such geometric realizations are known as gerbes. There are various models for gerbes, due respectively to Giraud,
Brylinski, Hitchin and Chatterjee, and Murray. Various notions of”higher gerbes” have also been defined, though these tend to
run into technicalities and complicted bookkeeping associated with higher categories.

Chris Kottke’s talk, based on his joint work with Melrose, proposed a new geometric version of higher gerbes in the form
of ”multi simplicial line bundles”. The basic idea is to replace the simplicial manifolds, as used for example in Murray’s notion
of bundle gerbes, by multi-simplicial manifolds, and to study line bundles with connections on such spaces. The theory avoids
many of the higher categorical difficulties, yet still captures key examples including the string obstruction associated to the first
Pontrjagin class

1

2
p1(M) ∈ H4(M,Z).

The authors found that every integral cohomology class is represented by one of these objects, in the guise of a line bundle
on the iterated free loop space equipped with a ”fusion product” (as defined by Stolz and Teichner and further developed by
Waldorf) for each loop factor.

Richard Melrose: Generalized products and quantization
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The ‘generalized products’ in Richard Melroses lecture are simplicial manifolds, for example a sequence of manifolds

M, M ×M, M ×M ×M, . . .

with the usual face and degeneracy maps. He explained how any simplicial manifold M(1),M(2), . . . generates an algebra of
pseudo-differential operators onM(1), using conormal distributions relative to the degeneracy mapM(1)→M(2) as integral
kernels. The fact that these form an algebra is encoded in the properties of a simplicial manifold. Instead of manifolds, one
can also consider other categories, and Melrose’s talk focused on the category of manifolds with corners. He then applied these
ideas to various examples, including compactifications of Lie groups.

Yiannis Loizides: Quantization of Hamiltonian loop group spaces

A theorem of Freed, Hopkins and Teleman relates the representation theory of the loop group LG of a compact Lie group
G to the equivariant twisted K-theory of G. In the special case of a connected, simply connected and simple Lie group, the
theorem states that there is an isomorphism of rings

Rk(G) ∼= KG
0 (G,Ak+h∨)

where the left hand side is the level k Verlinde ring, and the right hand side the equivariant K-homology of G with twisting
(Dixmier-Douady class) at the shifted level k+h∨, where h∨ is the dual Coxeter number. (Freed-Hopkins-Teleman work with
twisted equivariant K-cohomology, which is related by a Poincare duality isomorphism.) In his talk, explained how to realize
classes inKG

0 (G,Ak+h∨) in terms ofD-cycles, thereby defining an explicit inverse to the Freed-Hopkins-Teleman map on the
chain level. One idea in this construction is an abelianization procedure, working with a tubular neighborhood of the maximal
torus T in G. One application of this result, relating it to earlier work of Loizides with Meinrenken and Song, provides the
equivalence of two methods for quantizing Hamiltonian loop group spaces.

Index theory
Jean-Michel Bismut: Hypoelliptic Laplacian and the trace formula

The hypoelliptic Laplacian gives a natural interpolation between the Laplacian and the geodesic flow. This interpolation
preserves important spectral quantities. In his talk, Jean-Michel Bismut explained the construction of the hypoelliptic Laplacian
in the context of compact Lie groups. In this case, the hypoelliptic Laplacian is the analytic counterpart to localization in
equivariant cohomology on the coadjoint orbits of loop groups. The construction for noncompact reductive groups ultimately
produces a geometric formula for the semisimple orbital integrals, which are the key ingredient in Selberg trace formula. In
both cases, the construction of the hypoelliptic Laplacian involves the Dirac operator of Kostant.

Xiang Tang: Hochschild Homology of Proper Lie Groupoids

Xiang Tang reported on his ongoing work with Pflaum and Posthuma. For a compact Lie group acting on a smooth
manifold, this work studies the complex of basic relative forms on the inertia space of a proper Lie groupoid, as originally
constructed by Brylinski. In his talk, Xiang Tang explained how basic relative forms can be used to study the Hochschild
homology of the convolution algebra.

Rudy Rodspohn: Diff-equivariant index theory
Since the early 1980s, Alain Connes had developed his Noncommutative Geometry program. One of the primary goals

of this program was to extend index theory to singular situations, where the usual tools of differential geometry are no longer
available. A typical instance of such a setting are regulations foliations on manifolds for which there does not exist a transverse
measure invariant under the action of the holonomy group. In the late 1990s, Connes and Moscovici proved an equivariant index
theorem for this these context, and formulated a conjecture concerning the calculation of this index in terms of characteristic
classes. In his talk, Rudy Rodspohn gave an account of the history and motivation of the index problem. And explained
his solution, together with Denis Perrot, of the Connes-Moscovici conjecture, with special emphasis on aspects relating to
quantization.

Frédéric Rochon: Torsion on hyperbolic manifolds of finite volume

Frédéric Rochon described joint work with Werner Mueller. Let X be any finite volume hyperbolic manifold of dimension
d. Given a finite dimensional irreducible complex representation of the group G = SO0(d, 1), one can associate a canonical
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flat vector bundle E over X , together with a canonical bundle metric h. For d odd and under some mild hypotheses on the
manifoldX , Rochon explained how to obtain a formula relating the analytic torsion of (X,E, h) with the Reidemeister torsion
of an associated manifold with boundary. The argument involves a family of compact manifolds degenerating toX in a suitable
sense. In the arithmetic setting, this formula can be used to derive exponential growth of torsion in cohomology for various
sequences of congruence subgroups.

Thomas Schick: Index theory and secondary spectral invariants to understand moduli spaces of Riemannian metrics

Thomas Schick presented an overview of applications of index theory to the existence of positive scalar curvature metrics.
Given a manifold X , his talk considered the moduli space of positive scalar curvature metrics by the action of the diffeomor-
phism group of X , fixing some base point x0 and also having differential at x0 equal to the identity:

Riem+(X)/Diffx0(X)

There are many questions about this space – for example, whether it is empty, if non-empty what the number of connected
components would be. Another interesting quotient to consider is the the set of concordance equivalence classes

Riem+(X)/ concordance .

To investigate the relationship, one considers more general bordisms, and introduces a space Pos(X) of cycles (M, g, f)
(where g is a PSC metric and f : M → X is a map) modulo an equivalence relation. A deep theorem of Stolz fits Posm(X)
into an exact sequence gives an exact sequence involving the spin bordism group Ωm(X). Schick’s lecture described the
many unknown questions about this exact sequence, and some recent progress. The second part of the lecture explained the
relationship of these ideas to the Lichnerowicz-Schrödinger formula for the square of a Dirac operator.

Outcome of the Meeting
The workshop at BIRS brought together mathematicians whose work involves quantization in rather different forms and with
many different techniques: loop groups, topological K-theory, analytic estimates, C∗-algebras, representation theory. The
philosophy of geometric quantization served as a focal point for the interaction between all of these areas. The workshop
provided an opportunity for experts working on different aspects of the theory to exchange ideas, leading to fresh insights and
new developments.

Participants
Barron, Tatyana (University of Western Ontario)
Blacker, Casey (University of California Santa Barbara)
Charles, Laurent (University Pierre et Marie Curie)
Dai, Xianzhe (University of California Santa Barbara)
Freed, Daniel (University of Texas at Austin)
Gukov, Sergei (California Institute of Technology)
Hamilton, Mark (Mount Allison University)
Hawkins, Eli (University of York)
Hekmati, Pedram (The University of Auckland)
Higson, Nigel (Pennsylvania State University)
Hochs, Peter (University of Adelaide)
Ioos, Louis (Pierre and Marie Curie University - Paris 6)
Karshon, Yael (University of Toronto)
Kottke, Chris (New College of Florida)
Krepski, Derek (University of Manitoba)
Lackman, Joshua (University of Toronto)
Lerman, Eugene (Uniiversity of Illinois)
Loizides, Yiannis (Pennsylvania State University)
Ma, Xiaonan (Université Paris Diderot - Paris 7)
Marinescu, George (Köln University)
Meinrenken, Eckhard (University of Toronto)



120 Five-day Workshop Reports

Melrose, Richard (Massachusetts Institute of Technology)
Paradan, Paul-Emile (Université de Montpellier)
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Rochon, Frédéric (Université du Québec à Montréal)
Rodsphon, Rudy (Vanderbilt University)
Savale, Nikhil (Universität zu Köln)
Schick, Thomas (Universität Göttingen)
Sniatycki, Jedrzej (University of Calgary)
Song, Yanli (Washington University at St.Louis)
Stolz, Stephan (University of Notre Dame)
Tang, Xiang (Washington University)
Uribe, Alejandro (University of Michigan)
Valiveti, Kaavya (Massachusetts Institute of Technology)
Varghese, Mathai (University of Adelaide)
Vergne, Michèle (University Paris Diderot)
Waldorf, Konrad (Universität Greifswald)
Wang, Hang (East China Normal University)
Zerouali, Ahmed (University of Toronto)
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Chapter 9

An Algebraic Approach to Multilinear
Maps for Cryptography (18w5118)

May 6 - 11, 2018
Organizer(s): Alice Silverberg (University of California, Irvine), Dan Boneh (Stanford Uni-
versity), Ted Chinburg (University of Pennsylvania)

Objectives
A main goal of the BIRS workshop “An Algebraic Approach to Multilinear Maps for Cryptography” was to bring together cryp-
tographers, number theorists and arithmetic geometers to discuss problems of central importance in electronic communication.
The focus of the workshop was on cryptographic multilinear maps. It is an open problem to construct secure cryptographic
multilinear maps with more than two arguments in their domain [1]. A solution to this problem would have many applications.
These include allowing groups of people to share a common secret securely and the ability to obfuscate computer programs in
order to protect the intellectual property they represent. The workshop also dealt with other problems in cryptography such as
quantum computation, pseudo-random number generators and applications of isogenies of abelian varieties to cryptography.

Two specific objectives of the workshop were to

(i) analyze various proposed constructions of cryptographic multilinear maps, and

(ii) familiarize the participants with open problems in number theory and arithmetic geometry arising from cryptography.

The workshop brought together researchers and advanced Ph.D. students working on cryptography and related topics in
number theory and arithmetic geometry.

The workshop was timely in view of recent research activity in this area. It built on progress resulting from an AIM
workshop organized by the same organizers in October of 2017.

Besides the generous support from the Banff International Research Station, this workshop was also supported by an SaTC
award from the National Science Foundation titled “An algebraic approach to secure multilinear maps for cryptography.” The
P.I.’s on this NSF SATC award were the organizers (Silverberg, Boneh and Chinburg) and A. Venkatesh.

The workshop had 29 participants and ten scheduled 50-minute talks. In between these talks, the participants broke into
working groups to discuss particular questions arising from the talks as well as new ideas related to the subject of the workshop.
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Talks
In the following we give a description of each talk, in the order in which the talks were given.

Alice Silverberg, Introduction to cryptographic multilinear maps.
The talk introduced the concept of a cryptographic multilinear map as in [1], starting from basic concepts familiar to the diverse
audience of the workshop, who consisted of both mathematicians and computer scientists. In addition to presenting some open
problems to be considered during the workshop, a goal was to give the participants a common language and background on
which to build. The talk began with Diffie-Hellman key exchange [4], and went on to present the one-round tripartite Diffie-
Hellman protocol of Joux [12], and an identity-based key agreement scheme of Sakai, Ohgishi, and Kasahara [17]. We also
mentioned a destructive use of pairings due to Menezes, Okamoto, and Vanstone [14].

Dan Boneh: Background on multilinear maps, and applications.
The talk defined the notion of a cryptographic multilinear map and explored applications of such maps in cryptography. Ap-
plications include digital signatures, broadcast encryption, indistinguishability obfuscation (iO), and many others. It has been
shown that a cryptographic trilinear map is sufficient for the application to iO. Dan posed the construction of such a map as a
key challenge for the participants.

Ming-Deh Huang: Trilinear maps for cryptography.
The talk presented the approach discussed in [11] to constructing a cryptographic trilinear map using principally polarized
abelian surfaces A over the algebraic closure of a finite field. The map has the form

A[`]×A[`]×NS(A)/`NS(A)→ µ`

where A[`] is the `-torsion of A for a large prime ` and NS(A) is the Neron Severi group of A. This map can be interpreted as
a cup product in étale cohomology, and it can be quickly computed given enough data on the arguments. The main challenge
discussed at the meeting was to represent elements in NS(A) in a way that makes the discrete-log problem difficult.

Peter Stevenhagen: A reciprocity law for Redei symbols.
This talk concerned the possibility of constructing cryptographically useful trilinear maps using generalizations of the Redei
symbol [16]. The Redei symbol is a concrete trilinear map defined on suitable triples (a, b, c) of elements of Q∗/(Q∗)2. The
talk focused on formulas for this symbol and its properties and applications. One property is that the value of the symbol does
not change if one permutes the arguments a, b and c. An application is to understanding the Galois group of the maximal pro-2
extension of Q that is unramified outside a given set of primes. The participants of the workshop focused after the talk on
connections between the Redei symbol and Massey products (see [9], for example).

David Jao: Isogeny based crypto.
The talk surveyed the burgeoning area of isogeny-based cryptography. David explained the different flavors of the available
schemes, using ordinary and supersingular elliptic curves. David also described the sub-exponential time quantum attack on
the isogeny problem on ordinary curves.
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Ted Chinburg: Background on the cohomological point of view.
This talk focused on two potential constructions of cryptographic trilinear maps via étale cohomology. The first involved using
work of Skorobogatov and Zarhin in [18] to replace the groupNS(A)/`NS(A) in Huang’s talk by the larger groupH2(A,µ`).
The main open question is to specify elements of H2(A,µ`) without encountering discrete log problems of the kind associated
to NS(A)/`NS(A). The other construction discussed in the talk was the trilinear cup product map

H1(C,Z/`)×H1(C, µ`)×H1(C, µ`)→ H3(C, µ⊗2
` ) = µ`

associated to a curve C over a finite field. Work of McCallum and Sharifi [MS] leads to an inefficient algorithm for computing
this map. The possibility of using modular forms to compute it efficiently was discussed.

Amit Sahai: Multilinear maps and obfuscation.
The talk explained why indistinguishability obfuscation (iO) is such a useful mechanism in cryptography. It also described at a
high level why multilinear maps are useful for constructing an iO obfuscator.

Dan Boneh: Candidate multilinear maps from ideal lattices, and attacks.
The talk looked at current proposals for multilinear maps based on hard problems on lattices. The GGH13 and CLT13 con-
structions fall in this category. The talk also explained why these constructions, in their basic form, are insecure.
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Working groups
In addition to formal lectures, we had moderated Open Problems sessions in which the participants suggested problems that
might be of interest, including some to be worked on during the week. The participants then split up into working groups to
work on some of these problems. We also had sessions in which representatives of the working groups gave progress reports
on the results obtained to that point. Moderators for the Open Problems and Interim Reports sessions included Kiran Kedlaya
and Steven Galbraith.

The working group topics included:

• Multiparty key agreement based on isogenies on abelian varieties.

• Trilinear maps via Neron-Severi groups and abelian surfaces.

• Trilinear maps via curves over finite fields, Brauer groups, and Massey and Redei symbols.

• Quantum algorithms to solve isogeny problems.

• Hilbert’s 10th problem over the rational numbers.

• The local pseudo-random number generator problem.

Extracurricular activities
The participants also attended a public lecture on Escher and the Droste Effect by Hendrik W. Lenstra, Jr. on Tuesday evening,
and a piano performance “88 Public Keys” on mathematical themes related to the workshop topic by Noam D. Elkies on
Thursday evening.
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Schedule
The schedule of the workshop allowed for ample discussions among the participants. This was appreciated by everyone.

Sunday, May 6
16:00 Check-in begins

(Front Desk - Professional Development Center - open 24 hours)
17:30 - 19:30 Buffet Dinner, Sally Borden Building
20:00 Informal gathering (Corbett Hall, 2nd floor lounge)

Monday, May 7
7:00 - 9:00 Breakfast
9:05 - 9:20 Introduction and welcome by BIRS station manager
9:20 - 9:30 A. Silverberg: Welcome by workshop organizers.
9:30 - 10:00 A. Silverberg: Introduction to cryptographic multlinear maps.
10:00 - 10:30 Coffee break
10:30 - 12:00 D. Boneh: Background on multilinear maps, and applications.
12:00 - 13:00 Lunch
13:00 - 14:00 Guided Tour of The Banff Centre

(meet in the 2nd floor lounge, Corbett Hall)
14:00 - 14:20 Group Photo
14:20 - 15:20 M-D. Huang: Trilinear maps for cryptography.
15:20 - 16:00 Coffee break
16:00 - 18:00 Open problems session
18:00 - 19:30 Dinner

Tuesday, May 8
7:00 - 9:30 Breakfast
9:00 - 9:50 P. Stevenhagen: A reciprocity law for Redei symbols.
10:30 - 11:00 Coffee break
11:00 - 12:00 Discussion about splitting into working groups.
12:00 - 13:30 Lunch
13:30 - 14:30 D. Jao: Isogeny based crypto.
14:30 - 15:00 Coffee break
15:00 - 17:30 Working groups
17:30 - 19:30 Dinner

Wednesday, May 9
7:00 - 9:00 Breakfast
9:00 - 10:00 T. Chinburg: Background on cohomological point of view.
10:00 - 10:30 Coffee break
10:30 - 11:30 A. Sahai Multilinear maps and obfuscation.
11:30 - 13:30 Lunch

Free Afternoon
17:30 - 19:30 Dinner
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Thursday, May 10
7:00 - 9:00 Breakfast
9:30 - 10:30 Working groups
10:30 - 11:00 Coffee break
11:00 - 12:00 Open problems Session II
12:00 - 13:30 Lunch
13:30 - 14:00 Woirking groups
14:00 - 14:30 D. Boneh: Candidate multilinear maps from ideal lattices, and attacks.
14:30 - 15:00 Coffee break
15:00 - 18:00 Working groups
17:30 - 19:30 Dinner

Friday, May 11
7:00 - 9:00 Breakfast
9:00 - 10:00 Working groups
10:00 - 10:30 Coffee break
10:30 - 11:45 Reports of working groups
11:30 - 12:00 Checkout by Noon (Front Desk - Professional Development Centre)
12:00 - 13:30 Lunch
13:00 - 14:00 T. Chinburg: Redone video of the talk given on May 9. The video of the May 9 talk did not record.
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Participants
The participants of the workshop and their affiliations at the time of the workshop were as follows.

Bleher, Frauke University of Iowa

Boneh, Dan Stanford University

Bright, Martin Universiteit Leiden

Chinburg, Ted University of Pennsylvania

Elkies, Noam D. Harvard University

Galbraith, Steven University of Auckland

Gangl, Herbert Durham University

Glass, Darren Gettysburg College

Guy, Richard The University of Calgary

Heninger, Nadia University of Pennsylvania

Huang, Ming-Deh USC

Jao, David University of Waterloo

Kedlaya, Kiran University of California, San Diego

Lee, Changmin Seoul National University

Lenstra, Hendrik Universiteit Leiden

Pellet–Mary, Alice LIP, ENS de Lyon

Rubin, Karl University of California, Irvine

Sahai, Amit UCLA

Scheidler, Renate University of Calgary

Scherr, Zach Bucknell University

Shani, Barak University of Pennsylvania

Sharif, Shahed CSU San Marcos

Silverberg, Alice University of California, Irvine

Stange, Katherine University of Colorado Boulder

Stevenhagen, Peter Universiteit Leiden

Takashima, Katsuyuki Mitsubishi Electric / Kyushu University
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Tibouchi, Mehdi NTT Corporation

Tran, Ha University of Calgary

Zobernig, Lukas The University of Auckland
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Chapter 10

Topics in the Calculus of Variations:
Recent Advances and New Trends
(18w5094)

May 20 - 25, 2018
Organizer(s): Giovanni Leoni (Carnegie Mellon University), Maria Giovanna Mora (Univer-
sity of Pavia)

Overview and Outcome of the Meeting
The calculus of variations is at the same time a classical area of mathematical analysis with longstanding open problems and
a very active subject of modern mathematics, that has important applications in a variety of different fields, such as materials
science, mathematical physics, and treatment of digitalized images, just to name a few examples. In the last decades this subject
has enjoyed a flourishing development worldwide, driven both by mathematical developments and emergent applications.

In this workshop a special emphasis was given to young researchers. Indeed, out of the 31 talks, 2 were given by graduate
students (Hagerty and Gravina), 12 by postdoctoral fellows (Carroccia, Cristoferi, Davoli, Ginster, Gladbach, Maor, Moran-
dotti, Murray, O’Brien, Piovano, Tobasco, Wojtowytsch) and 3 by junior faculty (Friedrich, Iurlano, Rüland). These were
complemented by talks from worldwide experts in different areas of calculus of variations and partial differential equations in-
cluding Gianni Dal Maso (Gamma-convergence, fracture mechanics), Georg Dolzmann (elasticity, plasticity, microstructure),
Nicola Fusco (regularity of partial differential equations, geometric measure theory), and Giuseppe Savaré (abstract evolution
equations, optimal transport, analysis in metric-measure spaces). The presence of so many young participants and the wonder-
ful environment of the Banff International Research Center contributed to a very informal, friendly, and unique atmosphere. We
kept the talks to 35 minutes. This gave plenty of time for informal discussions and networking. New friendships were formed
and collaborations were initiated during the meeting. There were several social activities, including an official hike along the
Hoodoos Trail, as well as a 7 hours hike to Mount Rundle by some of the more adventurous participants. From the feedback
we received, the workshop was very successful and many participants expressed the desire to have another one in the next few
years.

Participants and especially young people were exposed to a wide range of topics at the cutting edge in nonlinear and applied
analysis. Below we highlight some of them.

Epitaxial Growth
Four of the talks (Cristoferi, Lu, Piovano, and partially Fusco) were on epitaxial growth, which is the deposition of a crystalline
film onto a substrate, in which the atoms of the film occupy natural lattice positions of the substrate. If the film and the
substrate are of the same material, the epitaxial deposition is called homoepitaxy, while if they are of different material, it is
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called eteroepitaxy. In eteroepitaxial growth if the mismatch in lattice parameter of the film crystal and the substrate crystal
is large, then the film tends to gather into islands on the surface and the substrate is exposed between islands. This is called
the Volmer-Weber (VW) growth mode. On the other hand, if the mismatch in lattice parameter is small the atoms of the film
tend to align themselves with those of the substrate, continuing its atomic structure. This is due to the fact that the energy gain
associated with the chemical bonding effect is greater than the strain in the film. This layer-by-layer film growth mode is called
the Frank–van der Merwe (FM) growth mode. However, as the film continues to grow, the stored strain energy per unit area
of interface increases linearly with the film thickness. Eventually, the presence of such a strain renders a flat layer of the film
morphologically unstable or metastable, after a critical value of the thickness is reached. To release some of the elastic energy
due to the strain, the atoms on the free surface of the film tend to rearrange into a more favorable configuration. Typically, after
entering the instability regime, the film surface becomes wavy or the material agglomerates into clusters or isolated islands on
the substrate surface. Island formation in systems such as In-GaAs/GaAs or SiGe/Si turns out to be useful in the fabrication of
modern semiconductor electronic and optoelectronic devices such as quantum dots laser.

This growth mode in which islands are separated by a thin wetting layer is known as the Stranski-Krastanow (SK) growth
mode.

In the literature several atomistic and continuum theories for the growth of epitaxially strained solid films are available. In
[30] Spencer proposed the following variational approach in which the film and the substrate are modeled as linearly elastic
solids. Consider an epitaxial layer (with variable thickness h) grown on a flat semi-infinite substrate. Restricting attention to
two-dimensional morphologies which correspond to three-dimensional configurations with planar symmetry, assume that the
material occupies the infinite strip

Ωh := {x = (x, y) : 0 < x < b, y < h (x)} (10.0.1)

where h : [0, b] → [0,∞) is a Lipschitz function. Thus the graph of h represents the free profile of the film, the open set
and the line y = 0 corresponds to the film/substrate interface. We work within the theory of small deformations, so that
E (u) := 1

2

(
∇u +∇uT

)
represents the strain, with u : Ωh → R2 the planar displacement. The displacement is measured

from a configuration of the layer in which the lattices of the film and the layer are perfectly matched; this configuration, in
which E ≡ 0, will not correspond to a minimum energy state of the film, which we assume to occur at a strain E0 = E0 (y).
If the film and the substrate have similar material properties, then they share the same homogeneous elasticity tensor C. Hence,
bearing in mind the mismatch, the elastic energy per unit area is given by W (E −E0 (y)), where

W (E) :=
1

2
E · C [E] (10.0.2)

with C a positive definite fourth-order tensor.
In the sharp interface model the interfacial energy density ψ has a step discontinuity at y = 0: It is γfilm > 0 if the film has

positive thickness and γsub > 0 if the substrate is exposed, to be precise,

ψ (y) :=

{
γfilm if y > 0,
γsub if y = 0.

(10.0.3)

Hence the total energy of the system is given by

F (u, h) :=

∫

Ωh

W (E (u)−E0) dx +

∫

Γh

ψ ds, (10.0.4)

where Γh represents the free surface of the film, that is,

Γh := ∂Ωh ∩ ((0, b)× R) . (10.0.5)

Most of the recent literature (see [24] and the references therein) deals with the Stranski-Krastanow (SK) growth mode, which
corresponds to the case γfilm < γsub. In his talk, Paolo Piovano (University of Vienna) presented some recent work [8] in
collaboration with Elisa Davoli (University of Vienna), another of the workshop speakers, in the Volmer-Weber (VW) growth
mode γfilm > γsub and in the case in which the film and the substrate have different homogeneous elasticity tensor C. The
Young-Dupré law is shown to be satisfied by the angle that energetically-optimal profiles form at contact points with the
substrate. This is one of the first analytical validations of such relation, which was originally formulated in Fluid Mechanics, in
the context of Continuum Mechanics for a thin-film model.

Riccardo Cristoferi (Carnegie Mellon University) and Xin Yang Lu (Lakehead University) in their talks considered modified
variational models that take into consideration the effect of the free atoms moving on the surface (adatoms).
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Ferromagnetism
Ferromagnetic materials have the physical property of exhibiting spatially ordered magnetization patterns (magnetic domains)
under a variety of conditions. This property is at the basis of the large use of ferromagnets in technological applications. The
mechanisms behind the magnetic domain formation can be quite complex, but usually domain patterns may be understood
from energetic considerations based on the micromagnetic modeling framework. Ground states of various ferromagnetic sys-
tems have been widely studied in the physics community and more recently in the mathematical literature (see the review [11]).
In particular, within the micromagnetic framework the ground state domain structure of macroscopically thick uniaxial ferro-
magnetic films is by now fairly well understood mathematically. In contrast, most mathematical treatments of microscopically
thin ferromagnetic films deal with the case where the magnetization prefers to lie in the film plane. Thus, one of the main open
questions in the theory of uniaxial ferromagnets is to rigorously characterize their ground states in the case of films of vanishing
thickness where the magnetization prefers to align normally to the film plane. This was the subject of Hans Knüpfer’s talk,
who reported on a joint work [21] with C. Muratov (another of the workshop speakers) and F. Nolte. Experimental observa-
tions show the formation of bubble and stripe domain patterns in thin ferromagnetic films with strong perpendicular anisotropy.
Using rigorous analysis, Knüpfer and collaborators identified the critical scaling at which the phase transition from a single
domain state to multi-domain states occurs. Moreover, they derived a two-dimensional effective model in the single domain
regime and a scaling law for the minimal energy in the multidomain regime.

Free Boundary and Obstacle Problems
Cagnetti, Gravina, and Rüland talked about free boundary and thin obstacle problems. Many problems in imaging, materials
science, physics, and other areas can be described by partial differential equations that exhibit apriori unknown sets, called free
boundaries, such as interfaces and moving boundaries. The study of such sets occupies a central position in such problems. A
classical example is the one-phase free boundary problem studied by Alt and Caffarelli in [2], to be precise,





∆u = 0 in Ω ∩ {u > 0},

u = 0 on Ω ∩ ∂{u > 0},

|∇u| = Q on Ω ∩ ∂{u > 0},

u = u0 on Γ.

(10.0.6)

Here Ω is an open connected subset of RN with locally Lipschitz continuous boundary and Q is a nonnegative measurable
function. Solutions to (10.0.6) are critical points for the functional

J(u) :=

∫

Ω

(
|∇u|2 + χ{u>0}Q

2) dx, u ∈ K, (10.0.7)

where K := {u ∈ H1
loc(Ω) : u = u0 on Γ}, with Γ ⊂ ∂Ω a measurable set with HN−1(Γ) > 0 and u0 ∈ H1

loc(Ω) a
nonnegative function satisfying J(u0) <∞. The equality u = u0 on Γ is in the sense of traces. Under the assumption that Q
is a Hölder continuous function satisfying

0 < Qmin ≤ Q(x) ≤ Qmax <∞, (10.0.8)

Alt and Caffarelli proved local Lipschitz regularity of local minima and showed that the free boundary ∂{u > 0} is a C1,α
loc

regular curve in Ω if N = 2, while if N ≥ 3 they proved that the reduced free boundary is a hypersurface of class C1,α
loc in Ω,

for some 0 < α < 1. The regularity of the free boundary is strongly related to the assumption 0 < Qmin ≤ Q(x). Indeed,
in the special case in which Ω = R × (0,∞), with R ⊂ RN−1 a cube, Q(x) = (h − xN )+, u0(x) = (m − xN )+, and
Q×{0} ⊂ Γ, the free boundary problem (10.0.6) is related to water waves and to Stokes’ conjecture of water waves of greatest
height (see [29] and the references therein). In his talk, Ph.D. student Giovanni Gravina (Carnegie Mellon University) showed
that by taking Γ = (Q × {0}) ∪ (∂Q × (γ,∞)) minimizers of (10.0.2) are not one-dimensional for a suitable choice of the
parameters m and γ. This is a first crucial step towards a variational proof of Stokes’ conjecture (see [20], see also [13]).

The speaker Angkana Rüland (Max Planck Institute for Mathematics, Leipzig) discussed higher regularity of the free
boundary for the thin obstacle problem with variable coefficients, to be precise

N∑

i,j=1

∫

B+

aij∂iu∂ju dx
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in K := {u ∈ H1(B+) : u ≥ 0 on B′ × {0}}, where B+ := B(0, 1) ∩ {xN > 0} and B′ := {x′ ∈ RN−1 : |x′| < 1}, and
the coefficients aij are symmetric, satisfy standard uniform ellipticity conditions, and are sufficiently regular. Together with
her collaborators in [22] she proved that if the coefficients aij belong to W 1,p for p > N , then the regular free boundary is of
class C1,1−N/p, while if the coefficients aij belong to Ck,α for k ∈ N and α ∈ (0, 1), then the regular free boundary is of
class Ck,α, and, finally, that if the coefficients aij are analytic, then so is the regular free boundary.

Gradient Flows and Abstract Evolution Equations
The speakers Dal Maso, Fusco, Lu, Morini, Savaré discussed about gradient flows and abstract evolution equations with appli-
cations to crystalline mean curvature flows, epitaxial growth, and wave equations in time-dependent domains.

The variational notion of minimizing movements was introduced by De Giorgi in [9] to present a general and unifying
approach to a large class of evolution problems. Given a topological space X , a functional Φ : (0,∞) × X × X → R, an
initial datum u0 ∈ X , and a discrete time step τ > 0, one looks for sequences {unτ }n such that u0

τ = u0 and unτ is defined
recursively as the minimizer of the functional

x ∈ X 7→ Φ(τ, x, un−1
τ ),

if it exists. Setting

uτ (t) :=

{
u0
τ if t = 0,
un−1
τ if (n− 1)τ < t ≤ nτ, n ∈ N,

a function u : (0,∞) → X is called generalized minimizing movement associated to Φ and u0 if there exist a subsequence
{τk}k such that τk → 0+ and corresponding functions uτk : (0,∞)→ X such that uτk → u pointwise in (0,∞).

In [9] De Giorgi conjectured that if X = RN , φ : RN → R is a continuously differentiable and Lipschitz function, and
u0 ∈ RN , a function u ∈ C1([0,∞);RN ) is a solution of the Cauchy problem for the gradient flow

{
u′(t) = −∇φ(u(t)),
u(0) = u0,

if and only if there exist a family of Lipschitz continuous functions φτ : RN → R, τ > 0, such that Lip(φτ − φ) → 0 as
τ → 0+ and u is the generalized minimizing movement associated to the function

Φ(τ, x, y) :=
1

2τ
|x− y|2 + φτ (x), τ > 0, x, y ∈ RN .

In his blackboard talk Giuseppe Savaré (University of Pavia) described how he solved this conjecture in [12].
The speaker Gianni Dal Maso (SISSA, Italy) discussed second order abstract evolution equations in moving domains of

the form 



u′′(t) +Au(t) = 0 for a.e. t > 0,
u(t) ∈ Vt for a.e. t > 0,
u(0) = u0, u

′(0) = u1.

Here {Vt}t is an increasing sequence of spaces contained in a common Hilbert space H , u0 ∈ V0, u1 ∈ H , and A is a
linear continuous and coercive operator mapping Vt into its dual V ′t . In applications to fracture mechanics, H = L2(Ω) with
Ω ⊂ RN and Vt = H1(Ω \ Γt), where Γt is an (N − 1)-dimensional closed set representing the crack at time t. Existence
of weak solutions is obtained in [7] using an approach suggested by De Giorgi and developed by Serra and Tilli for the wave
equation. Weak solutions are obtained as limits of minimizers of the family of functionals

Fε(u) =
1

2

∫ ∞

0

e−t/ε(ε2‖u′′(t)‖2H + a(u(t), u(t))) dt

defined on an appropriate space.
The speaker Nicola Fusco (University of Naples) discussed a surface diffusion problem of the type

Vt = κ∆Γt(divΓt ∇ϕ(νt)−W (E(ut))),

which describes the evolution of voids in a crystalline material. Here ϕ is the anisotropic surface density, Γt is the evolving
surface, E(ut) is the trace of the infinitesimal strain at time t, and ∆Γt and divΓt are the tangential Laplacian and divergence.
This evolution equation is the gradient flow with respect to H−1 of the energy

F 7→
∫

Ω\F
W (E(u)) dx+

∫

∂F

ϕ(νF ) ds,
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where F is the void. In the recent paper [18] it was proved that if the initial configuration is stable then the solution exists for
all time. This is the first existence result for this type of geometric motion without the presence of a higher order regularizing
term involving the curvature in the energy.

The speaker Morini (University of Parma) considered the gradient flow of the same anisotropic surface energy F 7→∫
∂F
ϕ(νF ) ds with respect to L2. This gives rise to the motion by mean curvature

Vt = −m(νt)κFt ,

where m(νt) is the mobility and kFt is the mean curvature, which can be written as κFt = divΓt ∇ϕ(νt), when Ft is smooth.
The well-posedness and the validity of the maximum principle for this type of evolution equations had been a long standing
open problem, which was finally solved in [5].

Phase Transitions Problems
The speakers Davoli, Hagerty, and Murray addressed various problems in liquid-liquid and solid-solid phase transitions. The
prototype for these kind of singularly perturbed problems is the van der Walls–Cahn–Hilliard theory of phase transitions.
Consider a fluid confined into a container Ω ⊂ RN . Assume that the total mass of the fluid is m, so that admissible density dis-
tributions u : Ω→ R satisfy the constraint

∫
Ω
u(x) dx = m. The total energy is given by the functional u 7→

∫
Ω
W (u(x)) dx,

where W : R→ [0,∞) is the energy per unit volume. Assume that W supports two phases a < b, that is, W is a double-well
potential, with

{z ∈ R : W (z) = 0} = {a, b}. (10.0.9)

Then any density distribution u that renders the body stable in the sense of Gibbs is a minimizer of the following problem

min

{∫

Ω

W (u(x)) dx :

∫

Ω

u(x) dx = m
}
. (10.0.10)

If a|Ω| < m < b|Ω|, then given any measurable set E ⊂ Ω with

|E| = m− a|Ω|
b− a , (10.0.11)

the function u = bχE + aχΩ\E is a solution of problem (10.0.10). This lack of uniqueness is due the fact that interfaces
between the two phases a and b are not penalized by the total energy. The physically preferred solutions should be the ones
that arise as limiting cases of a theory that penalizes interfacial energy, so it is expected that these solutions should minimize
the surface area of ∂E ∩ Ω.

In the van der Walls–Cahn–Hilliard theory of phase transitions, the energy depends not only on the density u but also on
its gradient, precisely,

Gε(u) :=

∫

Ω

(W (u) + ε2|∇u|2) dx, u ∈ H1(Ω). (10.0.12)

Note that the gradient term penalizes rapid changes of the density u, and thus it plays the role of an interfacial energy. Stable
density distributions u are now solutions of the minimization problem

min

{∫

Ω

(W (u) + ε2|∇u|2) dx
}
, (10.0.13)

where the minimum is taken over all smooth functions u satisfying
∫

Ω
u(x) dx = m. In 1985 Gurtin conjectured that the limits,

as ε→ 0, of solutions uε of (10.0.13) are solutions u0 of (10.0.10) with minimal surface area, that is, if u0 = aχE0 + bχΩ\E0
,

then
surface area of E0 ≤ surface area of E (10.0.14)

for every measurable set with |E| = m−a|Ω|
b−a . Moreover, he also conjectured that

Gε (uε) ∼ ε surface area of E0. (10.0.15)

Using results of Modica and Mortola this conjecture was proved independently forN ≥ 2 by Modica [27] and by Sternberg
[31] using Gamma-convergence.

In his talk Ryan Murray (Penn State) presented the solution of a long standing open problem, the asymptotic development of
order 2 by Gamma-convergence of the mass-constrained Cahn–Hilliard functional (10.0.12) (see [25]) and its applications to the
slow motion of interfaces for the mass preserving Allen–Cahn equation and the Cahn–Hilliard equations in higher dimension.
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The corresponding problem for gradient vector fields, where in place of Gε we introduce

Iε (u) :=

∫

Ω

(
W (∇u) + ε4|∇2u|2

)
dx, u ∈W 2,2

(
Ω;Rd

)
,

arises naturally in the study of elastic solid-to-solid phase transitions. Here u : Ω → Rd stands for the deformation. One of
the main differences with the functional Gε is that in the case of gradients, some geometrical compatibility conditions must
exist between the wells. The speaker Elisa Davoli (University of Vienna), in collaboration with the speaker Manuel Friedrich
(University of Münster) considered in dimension N = 2 the modified functional

Jε (u) :=

∫

Ω

(
W (∇u) + ε4|∇2u|2 + ε2η2

ε(|∂2
11u|2 + |∂2

12u|2)
)
dx, u ∈W 2,2

(
Ω;Rd

)
,

where the new term |∂2
11u|2 + |∂2

12u|2 represents a penalization in the direction e2 and ηε →∞ as ε→ 0+. The main result
obtained were a two-well rigidity estimate, compactness of equibounded sequence, and the characterization of the effective
limiting model, where the effective linearized energy involves elastic energy as well as two surface terms, one for the jumps of
∇u , which represent the energy associated to single phase transitions between the wells A and B. The second surface term
corresponds to two consecutive phase transitions with a small intermediate layer. It enters the energy functional with double
cost with respect to single phase transitions.

Plasticity and Fracture
One of the major subjects of the workshop was the study of failure phenomena in solids, such as plasticity, crack propagation,
damage, and their microscopic mechanisms.

Plasticity is the property of a material that can undergo permanent deformations in response to an applied force. In the last
decade the mathematical treatment of plasticity at the continuum scale has received a renewed interest, motivated by a change
of perspective. While in the seminal work [52] quasistatic evolution was seen as the limit of viscoplastic evolutions when
the viscosity parameter tends to zero, in [6] the classical theory of Prandtl-Reuss plasticity was revisited within the modern
framework of rate-independent systems [26]. The advantage of this formulation is that quasistatic evolution is now viewed as
a time-parameterized family of minimization problems, so that very mild regularity is needed in the definition of solutions and
variational methods can be used to prove existence.

Dynamic evolution in plasticity was discussed in the talk by Jean-François Babadjian (Paris Orsay). On the one hand, using
variational methods, one can show that the problem of dynamic perfect plasticity is well-posed in a suitable measure theoretic
setting. On the other hand, the problem can be formulated as a constrained boundary value Friedrichs’ system. He showed that
the variational solution coincides with the unique entropic solution of the hyperbolic formulation and, owing to the finite speed
propagation property, he established a new short time regularity result for the solution.

Plasticity in metals is considered to be the macroscopic consequence of the presence (and motion) of curve-like defects in
the atomic structure, called dislocations: plastic deformation is the overall result of the relative slip of atomic layers, which is
favored by the presence of dislocations. Any predictive theory of plasticity at the continuum scale should therefore take into
account the presence and the motion of these defects. Although several models are available in the engineering literature to
describe the dislocation behavior at the microscopic scale, it is not yet clear how to include the effect of their presence and
motion in a model at the macroscopic level. In the last years this issue has been the object of intense research in the engineering
and in the mathematical community. In particular, the approach by Gamma-convergence has led to rigorous upscaling results,
both in the static and in the evolutionary setting, see, e.g., [1, GLP, 28]. However, these contributions, as well as the majority
of the mathematical literature, only apply to an idealized setting, where dislocations are modeled as straight and parallel lines.
Although the mathematical challenges are still numerous, this modeling assumption strongly reduces the complexity of the
problem: in reality dislocations are curves in three dimensions, that typically form loops, entangle with one another, and get
pinned at obstacles. Janusz Ginster (Carnegie Mellon University) presented a very recent work, where the equilibrium problem
for a curved dislocation line in a three-dimensional domain is considered. Using a core radius regularization and sending the
core radius to zero, he derived an asymptotic expression for the induced elastic energy. He then deduced the expression of the
force acting on the dislocation line by computing the variation of the induced elastic energy. In his lecture Georg Dolzmann
(University of Regensburg) discussed how to describe crystals with one active slip system in a continuum plasticity model.

Fracture processes have been widely studied in the last twenty years, starting from the pioneering work of Griffith and
the variational approach of Francfort-Marigo [14], where crack evolution is determined through a competition between the
surface energy spent to increase the crack and the corresponding release of the bulk elastic energy. Damage corresponds to the
worsening of the elastic properties of a material as a consequence of applied stresses. There is an obvious connection between
damage and fracture: on the one hand, a large number of microcracks may weaken the elastic properties of the material; on the
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other hand, concentration of damage may macroscopically results in a fracture. The classical phase-field approximation result
of the Mumford-Shah functional by Ambrosio-Tortorelli [3] can be reinterpreted in this spirit, where the phase-field variable
describes the local amount of damage. An overview on this topic was given in the talk by Marco Caroccia (Lisbon), who also
reported on a new approximation result for a fluid-driven fracture model. The speaker Flaviana Iurlano (University of Paris 6)
showed existence of strong minimizers for the Griffith model in the formulation by Francfort and Marigo, in the framework of
linearized elasticity. A strong minimizer is a minimizer given by a function defined in an open set with a closed discontinuity
set of codimension one. What makes this variational problem hard to tackle is that its natural formulation takes place in the
space SBD of special functions with bounded deformation, where standard approximation methods based on truncation and
on the coarea formula do not apply. In the recent paper [4] it was shown that SBD functions with small jump sets are close
in energy to functions which are smooth in a slightly smaller domain. This result is a key ingredient in proving existence of
strong minimizers for the Griffith’s problem and may prove useful in several applications, including the study of quasistatic
crack evolution.

Thin Structures and Pattern Formation
Since the beginning of research in elasticity a large body of work has been devoted to the justification of lower dimensional
theories for thin structures in terms of the fully three-dimensional theory. A thin structure is a three-dimensional body, whose
thickness in one or two directions is very small compared with the remaining dimensions, such as a rod, a membrane, a plate,
or a shell. These kinds of structures are ubiquitous in the physical world. A precise understanding of the laws governing their
equilibrium configurations is therefore crucial in a large number of applications, ranging from aerospace and civil engineering
to biology.

In the classical approach lower dimensional theories are usually obtained by formal asymptotic expansions, and hence
their range of validity is typically unclear. In the early 90’s a rigorous approach based on Gamma-convergence has emerged
and, starting from the seminal papers [16, 17], has led to the identification of a hierarchy of limit models for plates, rods, and
shells. In his talk Marco Morandotti (Technical University Munich) discussed how to perform dimension reduction within the
framework of structured deformations. Structured deformations [10] provide a rich geometrical setting that includes not only
the smooth, classical deformations that underlie much of solid mechanics, but also the piecewise smooth deformations that
describe macroscopic cracking in fracture mechanics, as well as the complex combination of macroscopic and microscopic
changes relevant for the study of crystals with defects and granular materials.

Recently, there has been a growing interest in the study of prestrained elastic plates, that is, plates that do not have a stress-
free configuration. These plates, also known as non-Euclidean plates, can be generated via growth, plastic deformation, or active
swelling, which are nonuniform across the sheet. Within the formalism of incompatible elasticity such nonuniform deformations
prescribe a non-Euclidean reference metric field on the plate. Because of this geometric incompatibility non-Euclidean plates
assume non-trivial equilibrium configurations in the absence of exterior forces or imposed boundary conditions. This is a
desired property in applications, for instance in the design of self-shaping bodies. Mathematically, minimizing the elastic
energy for a non-Euclidean plate corresponds to the question of finding the “most isometric” immersion of a Riemannian
manifold into another one of the same dimension. The speaker Cy Maor (University of Toronto) showed how this question
relates to a generalization of Reshetnyak’s rigidity theorem to Riemannian manifolds.

Another topic of the workshop was the study of energy-driven pattern formation in thin sheets. In the last years the wrinkling
of thin elastic sheets has attracted a lot of attention in both the mathematics and the physics communities. A general feature
of these problems is that wrinkling arises as an energetically preferable alternative to compression. In particular, a growing
literature is developing on the scaling law of the elastic energy, i.e., its dependence on the sheet thickness h, for problems
involving wrinkling. Wrinkled configurations can be viewed as (local) minimizers of a suitable elastic energyEh, consisting of
a non-convex membrane energy plus a higher order singular perturbation representing bending energy. It is intuitively clear that
the bending energy is small in h: stretching a thin sheet ought to take much more energy than bending it. On the other hand, the
membrane energy alone is non-convex, so, if the bending energy is ignored, then there might not exist a minimizer. Computing
the relaxed energy gives partial information about the minimizers of Eh, but any feature that vanishes in the limit h → 0 is
invisible to the relaxed problem. This is where energy scaling laws may prove useful to have more quantitative bounds on the
minimal energy and on fine properties of the wrinkles. In the talk by Ethan O’Brien (Carnegie Mellon University) a specific
system in the mechanics of thin elastic sheets was explored [23], in which geometry and loading conspire to generate fine-scale
wrinkling, and the optimal energy scaling was determined.

Pattern formation in graphene was the subject of the talk by Manuel Friedrich (University of Münster). Graphene is a
one-atom thick layer of carbon atoms arranged in a regular hexagonal lattice. Despite the progressive growth of experimental,
computational, and theoretical understanding of graphene, the accurate description of its fine geometry is still elusive. Obser-
vations on suspended samples seem to indicate that graphene is generally not exactly flat but gently rippled. On the other hand,
free graphene samples in absence of support have the tendency to roll-up in tube-like structures. Friedrich reported on a recent
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work [15], where a complete classification of ground-state deformations of the hexagonal lattice with respect to configurational
energies including two- and three-body terms was provided. He showed that all energy minimizers are either periodic in one
direction, as in the case of ripples, or rolled up, as in the case of nanotubes. For suspended samples the analysis can be further
refined and the emergence of wave patterning can be proved.
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Overview
Scientific computing is an increasingly important tool in many areas of science and engineering. By simulating models of
physical phenomena on a computer we can, for example, gain insight into processes that are difficult or impossible to measure
experimentally. Such computations can be used to verify or guide theoretical explorations. Here we are driven by physical
solutions which would require prohibitive computational resources if implemented in a naive way. The solutions evolve on
disparate space and time scales requiring techniques which self adapt and direct computational resources to the regions of
interest.

Adaptive moving mesh methods have received increasing attention from researchers and practitioners over the last two
decades. These methods, either used as stand-alone methods or combined with other adaptive mesh methods, are capable
of producing meshes of good quality (smoothness and alignment), and meshes which resolve the features of interests in the
physical solution with significant increases in accuracy whilst reducing the computational cost. Capitalizing on the recent
progress, there is a continuing effort to improve the efficiency of existing methods and to implement these approaches in
numerical solvers for application problems of interest.

Loosely speaking, there are three types of adaptive mesh methods, h-, p-, and r-adaptive methods. h-adaptive methods
achieve adaptivity by adding and deleting mesh points and swapping mesh edges/faces while p-adaptive methods do so by
adjusting the order of solution approximation over mesh elements. On the other hand, r-adaptive methods, also called adaptive
moving mesh methods or more simply, moving mesh methods, achieve desired adaptivity by relocating or moving mesh points.
The mesh connectivity is kept fixed during mesh movement; nevertheless, the mesh points can be reconnected between time
steps or iterations. Adaptive moving mesh methods can be used alone or combined with h- and p-adaptive methods. It should
be pointed out that Lagrangian methods and arbitrary Lagrangian-Eulerian (ALE) methods in computational fluid dynamics
are special types of adaptive moving mesh methods. Moreover, mesh smoothing methods such as Laplacian smoothing and
optimization-based smoothing methods employed in mesh generation and mesh refinement can be viewed as a type of moving
mesh method although their goal is to improve mesh quality.

Whilst h-adaptive methods are now mature in their development, the newer r-adaptive methods show much promise, and
have certain advantages in that they have much less complex data structures, can be easily coupled to legacy codes, they are
well suited to problems with moving boundaries and/or Lagrangian structures, and often result in much more regular meshes.
However, they have yet to realise their full potential on seriously large problems and need to be mapped effectively to many-core
computing technologies.
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The time is ripe for a careful appraisal of these methods and to plan for their future development and adoption. This was
the aim for this meeting.

Meeting Particulars
This five day workshop attracted 37 participants which included 10 females and 6 graduate students. The five days included 25
talks of varying length (keynote and contributed talks) as well as an evening whole group brainstorming and planning session.

The meeting saw leading experts in the design and application of r-adaptive methods address the following topics:

• The effectiveness and design of mesh movement strategies to adapt to a function (which may be a solution of a PDE)
to minimize interpolation/truncation error or satisfy other considerations. Deriving rigorous results to show that this has
been achieved.

• The effectiveness and design of mesh movement associated with changes in the physical domain (free or moving bound-
ary problems) or problems with complex boundary conditions.

• Mesh movement for better mesh quality (mesh smoothing, used in mesh refinement and quality improvement).

• Mesh rezoning in ALE methods (Arbitrarily Lagrangian-Eulerian in computational fluid dynamics).

• Coupling mesh movement to the solution of an evolving PDE. In particular effective strategies for dealing with large
scale advection dominated problems.

• Preservation of qualitative solution properties (such as conservation laws, geostrophic balance) under mesh movement
strategies.

• Mesh movement on manifolds.

• Computing adaptive meshes with global quality effectively on many–core compute technologies.

The brainstorming session included a discussion on the future of the research area and larger research community in
adaptive meshing and r-refinement. This included discussion about

• The development of effective test problems suitable for a wide variety of adaptive meshes, and a comparison of tech-
niques on large scale application problems.

• A permanent website for the research community to share research papers, computer codes, and meeting announcements.

The central goal of this event was to encourage participants to join their expertise for the mutual benefit of developing,
testing, appraising and designing, effective moving mesh methods which can be used on challenging problems in the future.

Presentation Highlights
The complete list of talks and abstracts are available on the BIRS website. Here we mention a small sample of a few highlights.

Mikhail Shashkov, a senior researcher in the field, gave a talk entitled Adaptive reconnection-based Arbitrary Lagrangian-Eulerian
method. In this talk he presented a new adaptive reconnection-based Arbitrary Lagrangian Eulerian method. This method in-
cludes an explicit Lagrangian phase on arbitrary polygonal meshes in which the solution and positions of grid nodes are updated;
a rezoning phase in which a new grid is defined - both number of cells and their locations as well as connectivity (based on
using Voronoi tessellation) of the mesh are allowed to change; and a remapping phase in which the Lagrangian solution is
transferred onto the new grid.

A post-doc Andrew McRae talked about Mesh adaptivity on the sphere using optimal transport, and a moving mesh scheme
for the nonlinear shallow water equations. Here the mesh is obtained as the solution of a Monge-Ampere equation, a scalar
nonlinear elliptic PDE. This optimal transport approach also generalizes naturally from Euclidean space to manifolds such as
the sphere. This method is applied to a finite element shallow water model, as needed in global numerical weather prediction.

In An adaptive moving mesh method for geometric evolution laws and bulk-surface PDEs, John Mackenzie considers the
adaptive numerical solution of a geometric evolution law where the normal velocity of a curve in two-dimensions is proportional
to its local curvature as well as a general non-geometric driving force. An interface tracking approach is used which requires
the generation of a moving mesh. He then considers the generation of bulk meshes for the solution of bulk-surface PDEs in
time-dependent domains. The moving mesh approach is then applied to a range of problems in computational biology including
image segmentation, cell tracking and the modelling of cell migration and chemotaxis.

Graduate student Avary Kolasinski’s talk A surface moving mesh method based on equidistribution and alignment provides
an algorithm to improve the quality of the mesh on a surface using a moving mesh method. She constructs a surface moving
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mesh method based on mesh equidistribution and alignment conditions. She studies various numerical examples using both the
Euclidean metric and a Riemannian metric.

In Optimal transformation-based adaptive grids, Paul Zegeling discusses stationary optimal grids for singularly perturbed
boundary-value problems. An optimal time-dependent transformation for monotone traveling wave solutions will be proposed.
This type of transformation is related to a perturbed method of characteristics. In the final part of the talk, fractional-order
differential equations were considered with a discussion of the generation of efficient adaptive grids for these problems.

Jens Lang’s talk Adaptive moving meshes in large eddy simulation for turbulent flows discussed adaptive moving mesh
methods for the Large Eddy Simulation (LES) for turbulent flows. The characteristic length scale of the turbulent fluctuation
varies substantially over the computational domain and has to be resolved by an appropriate numerical grid. The monitor
function, which is the main ingredient of a moving mesh method, is determined with respect to a quantity of interest (QoI). These
QoIs can be physically motivated, like vorticity, turbulent kinetic energy or enstrophy, as well as mathematically motivated, like
solution gradient or some adjoint-based error estimator. Results were presented for real-life engineering and meteorological
applications.

A moving mesh finite difference method for non-monotone solutions of non-equilibrium equations in porous media by
Hong Zhang presents a moving mesh finite difference method to solve a modified Buckley Leverett equation with a dynamic
capillary pressure term from porous media. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the
initial and boundary values are systematically studied using a traveling wave ansatz and efficient numerical methods. The
governing equation is discretized with an adaptive moving mesh finite difference method in the space direction and an implicit-
explicit method in the time direction. In order to obtain high quality meshes, an adaptive time dependent monitor function with
directional control is applied to redistribute the mesh grid in every time step, and a diffusive mechanism is used to smooth the
monitor function.

Meeting Outcome
Moving mesh methods have passed its early development stage (proof-of-concept and algorithm development) and now the
time has come for further mathematical justification, rigorous error analysis, development of more efficient and robust methods
and implementations, and broader, more realistic, and large scale applications (for example, for problems in atmospherical
sciences, computer science, petroleum engineering, aerospace engineering, and biology).

This was the first meeting in many years which brought together senior and up and coming researchers from diverse areas
in the field of adaptive numerical methods for partial differential equations. A fantastic exchange of the latest research in the
area resulted, as well as crucial planning for the future of the community.
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The past decade has seen a significant change in the global energy landscape, largely due to hydraulic fracturing (HF) that has
made the extraction of hydrocarbons from gas-rich shale formations economically viable. This process has been enabled by new
drilling technology that makes it possible to generate multiple hydraulic fractures from horizontal wells. The rapid expansion
of this class of HF is creating concerns about its impact on the environment. Questions are also being raised whether hydraulic
fractures could breach impermeable barriers that isolate aquifers from the hydrocarbon bearing formations, thus imperiling the
supply of fresh groundwater, or whether they could induce significant seismic events. There are also concerns whether the
engineering process has been designed to optimize the recovery of hydrocarbons. The lack of simulation tools that can provide
realistic predictions of the geometry and hydraulic conductivity of the HF that have been created and a lack of techniques to
characterize these fractures from in situ measurements is fueling these concerns. A BIRS workshop was therefore convened to
gather input from industry practitioners as well as academic and industry researchers to accelerate the scientific development
of the analysis tools required to address these concerns.

Overview of the Field

Despite a long series of investigations on the mechanics of fluid-driven fractures since 1950s, it is only over the last two decades
that a coherent understanding of the critical mechanisms at play has emerged. It has been shown that the propagation of a
hydraulic fracture is governed by strong nonlinearities associated with fluid flow in the fracture, non-local elastic deformation,
fluid leak-off in the surrounding rock, and the fracture propagation criterion [3]. Indeed, even the simplest mathematical model
for a single HF propagating in a homogeneous elastic medium involves a coupled system of degenerate nonlinear integro-partial
differential equations with a complex multi-scale structure [4, 12, 5, 8, 9, 10, 11]. These equations also involve a singular
free boundary problem, in which the front velocity can only be determined by evaluating a distinguished limit. Technical
issues brought about by the strong nonlinearity and time-dependence of the governing equations, as well as those associated
with the moving boundary problem have hindered the development of efficient computational algorithms to simulate [1, 15]
(i) the propagation of multiple hydraulic fractures in complex media and (ii) the transport of proppant (e.g. sand) particles
that are added to the injected fluid to create a permeable pathway for hydrocarbon extraction. In order to test these analytic
and numerical models, considerable effort has been devoted to performing hydraulic fractures in well controlled laboratory
experiments [14].
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Recent Developments
Capturing the propagation, interaction, and possible intersection of multiple arbitrary fracture surfaces in a complex solid
medium presents the numerical modeler with formidable challenges. Because of the considerable public interest, the devel-
opment of new numerical models for this purpose has become an area of intense research. These models can be classified
into two broad categories: continuum models that treat the solid and the fluid as continuous media [3] and discrete models
that treat the solid as a collection of particles in a lattice connected by springs [2], and the fluid as either a continuum or as
modeled explicitly as discrete particles. The classical approach to continuum HF modeling has considered boundary integral
equation (BIE) formulations of explicit cracks in a homogeneous or piecewise homogeneous elastic medium. This approach
has reached some maturity and can capture the multiscale behavior that takes place in the vicinity of the fracture tip [6], but
is limited to linear elastic materials and rapidly loses its advantages when dealing with multiple interacting fractures and het-
erogeneous media. Fully coupled eXtended Finite Element Method (XFEM) models [7, 13] have also been developed that can
model heterogeneous solid media and can capture multiscale behavior. However, since the BIE and XFEM formulations rely on
explicit representation of fracture surfaces, capturing the propagation and intersection of these in 3D is challenging. Recently,
a class of phase field [16] or smeared crack models has also been developed, in which fractures are not modelled explicitly
but rather by distributed damage that is represented by a field variable. The primary advantage of both phase field and discrete
models is that they are able to capture the evolution and interaction of complex fracture geometries with significantly less ef-
fort than the continuum models in which cracks are modelled explicitly. On the other hand, phase-field models are extremely
computationally intensive as they involve the solution of a non-convex optimization problem at each time step. Moreover, due
to the discrete nature of lattice models and the smeared-out damage representation of cracks by the phase-field approach, it
is not clear whether these methodologies will be able, without using prohibitive computing resources, to capture the complex
multiscale behaviour characteristic of HF when multiple physical processes compete to determine their evolution. Thus no
one computational method is currently able, without further development, to capture all the required physical processes. It is
also timely for an update on recent laboratory experiments involving more complex hydraulic fracture situations such as the
simultaneous propagation of multiple HF.

Presentation Highlights
Since many of the presentations have been recorded and posted online and all the abstracts are available online we will keep
our description of the presentations brief. We have grouped the presentations into seven categories: Industry Perspective, Inter-
action between HF and natural fractures, Multiple Fracture Interaction, Numerical Techniques (including: DDM/BEM, DEM,
XFEM, FEM, Phase Field), The Tip Region, Near-Surface Hydraulic Fractures, Miscellaneous. There were eight industry rep-
resentatives who gave six talks, there were twenty faculty researchers from universities of whom nineteen gave presentations,
and twelve students or postdoctoral fellows of whom eleven gave presentations. All the presentations were thirty minutes in
duration including at least five minutes for questions and discussion.

Two presentations were singled out as highlights by the attendees : 1) the analysis by Egor Dontsov of the transition of
closely-spaced HF from ‘pancake-shaped’ fractures propagating in the viscous regime to ‘Petal-shaped’ HF propagating in the
toughness regime, 2) the 3D capture, vizualization by student Will Steinhardt, and mechanism analysis by Shmuel Rubinstein
of the formation of fracture steps behind the hydraulic fracture fronts in hydrogels.

1. Industry Perspective:

• Sau-Wai Wong : HF modeling and design - a perspective on how things have changed from conventional to
unconventional reservoirs.

• Alexei Savitski: Outstanding challenges in modeling HF in unconventionals: What we know and what we cannot
do.

2. Interaction between HF and natural fractures

• Olga Kresse: A stacked height P3D fracture network model and a parallel planar algorithm for the accurate
modeling of HF propagating in multiple layered materials.

• Wei Fu: Crossing criteria at interfaces: HF influenced by spatially varying natural fracture properties.

• Guanyi Lu: Subcritical crack growth and time dependent HF initiation and propagation.

3. Multiple Fracture Interaction

• Andy Bunger: A Swarm Theory Framework for evaluating the suitability of models for predicting the simultaneous
growth of multiple hydraulic fractures.
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• Delal Gunaydin: Laboratory experiments involving the simultaneous propagation of multiple hydraulic fractures.

• Innokentiy Protasov: Simultaneous growth of multiple P3D HF

4. Numerical Techniques

(a) Displacement Discontinuity (DDM)/Boundary Element Methods (BEM)

• John Napier: An unstructured triangular mesh model
• Egor Dontsov: FracOptima models demonstrating the transition for closely spaced HF from ‘pancake-

shaped’ fractures propagating in the viscous regime to ‘Petal-shaped’ HF propagating in the toughness
regime.

• Anthony Peirce: The Implicit Level Set Method used in conjunction with the Extended Kalman Filter to
monitor HF propagation using tiltmeter measurements.

• Ali Rezaei: The fast multipole method used for the efficient modeling of HF propagation in a porous medium
using the displacement discontinuity method.

• Sergey Golovin: An efficient implementation of the Implicit Level Set Algorithm for modeling planar HF.
• Denis Esipov: A direct boundary element simulator for 3D HF propagation.

(b) Discrete Element Methods (DEM) - Lattice Models

• Christine Detournay: “Nano-scale” experiments and upscaling - investigation of Kerogen’s effect on hy-
draulic fracturing using XSite.

(c) eXtended Finite Element Method (XFEM)

• Thomas-Peter Fries: Explicit/implicit XFEM crack description for HF with emphasis on transport models on
curved crack surfaces.

• Robert Gracie: How to build a stable and efficient sequential coupling schemes for HF simulation.

(d) Finite Element Method (FEM)

• Adrian Lew: Description of a Universal Mesh scheme to perturb FEM meshes to achieve high order accuracy
to model thermally and hydraulically driven fractures.

• Sergey Golovin: Crack propagation in poroelastic medium

(e) Phase Field

• Mary Wheeler: Diffusive Fracture Network representations in tight formations.
• Sanghyun Lee: Phase field modeling for fracture propagation in porous media.
• Erwan Tanne: A variational phase field model of HF.
• Keita Yoshioka: A phase field hydromechanical model of reservoir simulation.

5. The Tip Region and Regimes of Propagation

• Alena Bessmertnykh: Herschel-Bulkley fluid and the representation of proppant packing by a stress jump.

• Fatima Moukhtari: A semi-infinite HF driven by a shear-thinning fluid.

• Gennady Mishuris: Analysis of the fluid-induced shear-stress at the tip at the HF tip.

• Will Steinhardt/Shmuel Rubinstein: Vizualization and instability at the HF front in hydrogels. The detailed inves-
tigation of the formation of ‘fracture steps’ behind the fracture front.

• Dmitry Garagash: Is Linear Elastic Fracture Mechanics (LEFM) justified in hydraulic fracturing?

6. Near-Surface Hydraulic Fractures

• Thomasina Ball: Magma-driven, gravity/bending and viscosity/toughness

• Zhiqiao Wang: Universal tip solution - viscosity/toughness

7. Miscellaneous

• Nancy Chen: Net Present Value Analysis - optimization of well and fracture placement.

• Robert Viesca: Fluid-induced Faulting: aseismic slip - two asymptotic regimes.

• Peter Grassl: Multiple cracks from a pressurized spherical cavity.

• Erfan Sarvaramini: A continuum approach for stimulated rock volume.

• Emmanuel Detournay: HF in very permeable rocks.
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Scientific Progress Made
In addition to a considerable exchange of new ideas this workshop has stimulated a number of planned collaborations among
the participants (see comments below). A significant benefit from a workshop like this is the opportunity it provides for students
and postdoctoral fellows to meet and learn from researchers whose papers they have only read. This educational opportunity
also enables the students to gain perspective on how their research fits into the ‘big picture’ of research initiatives in the field.

This workshop has fostered the formation of an international team of researchers and practitioners interested in moving the
field forward. There was discussion of biennial or triennial meetings in different parts of the world. Indeed, there was an offer
by the delegates from Novosibirsk to host such a workshop in 2019 to interact with Russian researchers who have been actively
engaged in HF research the past few years.

Below are just a selection of comments solicited from attendees:
Comment from an industry participant:
“It was one of the most effective workshops I had ever attended. The topics discussed range from hydraulic fracture practitioner
perspectives to nitty gritty details of various numerical and analytical methods. Diversity in the talks was certainly the key in
this successful event. Yet, each day had a clear theme and these presentations on a coherent theme kept the story flow very
smoothly. Last not but least, spending consecutive 5 days in somewhat isolated location helped enhance our intimate discussions
with other experts and scholars in the field.”
Faculty member comments:

1. “The combination of industry and academia was outstanding. It was an academic conference, primarily, but the presence
of an active minority from industry kept the discussions honest and ensured we did not stray from the application that
provides the reason for working on these problems in the first place.

2. I walked away with tangible benefits that include plans for 2 papers to be co-authored with various cohorts of colleagues
from the conference, and my students and I were made aware of and provided with basic training on a powerful package
of freely available analysis software that we are starting to use already.

3. The amazing surroundings, healthy lifestyle, and complete freedom from the worries of life provided by the conference
center and staff were conducive to my own reflection on research. On the flight home and in the days that followed I
outlined proposals on 2 new topics related to hydraulic fracturing.

4. One of my students reflected that this is the first time she really understood where her work fits within the global research
community, and knowing the place of the work completely changes her motivation and approach going forward.

5. All of my students were surprised to see how much fun scientists have when they get together to discuss, argue, discover,
and encourage together.”

Selection of student comments:

1. “Thank you for organizing such an amazing workshop. This workshop brings together people who are conducting cutting
edge researches on hydraulic fracturing from all around the world. It also provides a great opportunity to students to
learn the most up-to-date knowledge about experiments and modeling in hydraulic fracturing. I am glad to have attended
this workshop and have benefited a lot from all the presentations.”

2. “I learned from and enjoyed every moment of this excellent workshop. Both the venue and location of the workshop
were amazing, but what made this workshop more exciting for me was to meet all the people that I knew by name from
their papers and contributions in the hydraulic fracturing field. I think the material presented in the workshop was a
thoughtful combination of mathematics, numerical models, and experimental work in the field of hydraulic fracturing.
In this sense, the workshop was on top of the edge and being delivered by experts in the field.”

3. “Thank you for the invitation to the HF workshop. It was an excellent week of talks. For myself as a PhD student, it
was a great opportunity to chat with people in the field that I had read so much of the work of. In particular, talking to
Emmanuel about our similar work on near-surface fractures. And also talking to Andy about some related solidification
experiments that could be done to investigate magmatic intrusions (which excitingly I should be able to do soon!).”

Outcome of the Meeting
In response to the industry presentations and discussion participants agreed on the formation of a list of open problems/challenges
that the newly-formed community can work on. It is anticipated that the various research groups will further develop the algo-
rithms/techniques/experiments they are working on to try to address these problems. One exciting proposal among this list is
the establishment of a modeling challenge that has come from practitioners in the field in which existing models fail to predict
the outcome of an actual stimulation sequence. This challenge along with as much data as possible would be provided to



150 Five-day Workshop Reports

participants a few months before the next workshop. As an extension of this idea, another participant proposed assembling an
easily accessed data base of such modeling challenges.

List of Open Problems
1. The Sinkey Challenge: All future workshops should have a modelling challenge from industry that the modelers/analysts

could try their codes/scalings on to see if they can explain the puzzling phenomenon. The proposers would preferably
submit the description a while before with as much detail and data as possible.

2. Development of phenomenological models in HF similar to the diffuse damage models described by Mary Wheeler and
Erfan Sarvaramini presented. Those models fit the present data which is scarce and the best we can hope for is: geological
data, pump rates, mixtures, and finally, production rates. We have to work with this, and the hope for high-quality data
in large quantities to verify regimes and influences from rheology, turbulence, etc.

3. Creation of a database of challenging HF stimulation cases from industry in which standard modeling failed to explain
the phenomena observed. As much data as possible would be available to modelers in an easily accessible format.

4. The impact of material heterogeneity on hydraulic fracture predictions in physical and numerical settings. Hetero-
geneities could be at the grain scale (potentially impacting tip behavior), or at a larger, engineering scale.

5. Confirm the multiple crack results presented by a number of speakers in numerical and experimental studies.

6. Near wellbore issues. “Tortuosity” has been recognized for decades but very little is known about horizontal wells, and
even for vertical wells there is no systematic theory for predicting, modeling, or deliberately modifying near wellbore
tortuosity. Also, all models are static, while it is know that tortuosity is transient. This is a major area where little is
known and industry believes is essential, perhaps more than any other single issue, to successful application.

7. Develop criteria to avoid the oscillation instabilities that arise in the modelling of simultaneously propagating, closely
spaced, hydraulic fractures.
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Chapter 13

Integrative cell models for disease
intervention (18w5073)

June 10 - 15, 2018
Organizer(s): Matt Scott (University of Waterloo), Peter Swain (University of Edinburgh),
Hans Othmer (University of Minnesota)

Biological processes do not occur in isolation and their appropriate execution requires communication and coordination
across the cell. We know that signals are conveyed via interactions between proteins and between proteins and DNA, but such
regulatory interactions are not the sole drivers of cellular responses. Changes in the physiological composition of the cell and
particularly in the levels of common resources, such as energy and raw materials, also provides a higher level of regulation.
The extent of the control provided by this potentially primordial regulation has only recently been appreciated. Yet its effects
are felt widely, ranging from the development of antibiotic resistance to the production of chemicals in the biotechnology
industry. The broad ambition of this workshop was to foster the development of a new mathematical framework for modelling
cellular processes that includes global regulation, either implicitly or explicitly, and so enable quantitative prediction particularly
focused on disease intervention.

Overview
Biological cells, whether as single-cell organisms or as part of a tissue, comprise many component subsystems, such as the
nucleus and the mitochondria, and execute many processes, such as nutrient uptake, metabolism, biosynthesis, and gene ex-
pression, which interact to define the state and function of the cell. These components and processes typically are strongly
interacting, but the traditional approach has been to study cellular systems under the implicit assumption that the component
or process in question can be understood in isolation from the remaining ones, which merely provide a constant, background
environment. This assumption was necessary to make progress in early investigations, but recent research has now shown that
the assumption is weak, at best. In systems ranging from microbes to human cancers, the environment and growth rate can
affect the level of expression both of single genes, even those with ‘constant’ unregulated gene expression, and of hundreds of
genes across the entire genome.

Taken together, these developments question our understanding of cellular regulation and whether the biochemical networks
in cells can be usefully decomposed into separate modules, the current paradigm in mathematical and systems biology. This
fundamental limitation of existing methods becomes particularly acute in the mathematical modelling of disease states. The
interdependence of cellular processes confounds disease modelling in two important ways. First, diseases can induce system-
wide changes in gene expression making it difficult to distinguish proximal from distal causes. Second, a lack of modularization
in cellular function makes the success of intervention strategies difficult to predict. Often brute-force elimination of what is
thought to be the primary molecular cause of disease has no effect: the cell simply compensates through auxiliary and highly
redundant channels. What is needed is an understanding of disease that transcends molecular mechanism to provide a system-
level view of the phenomenon of how the complex interconnected networks integrate different signals to produce the observed
outputs. Gaining this understanding requires mathematical models and new analytical techniques in order to integrate the effects
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of various levels of regulation and physiology.
Cell physiology imposes strong constraints on how the cell allocates its internal resources. Broadly speaking, to support

rapid growth rates, the cell must devote a large fraction of its synthetic machinery to make more of that synthetic machinery.
This allocation necessarily comes at the expense of producing other cellular constituents, such as proteins responsible for
nutrient assimilation and for repair and maintenance of DNA. As a consequence, in addition to the local, point-to-point concept
of regulation, there is a more diffuse and global layer arising from constraints that exist because of the allocation of cellular
resources. This primordial regulation has a breadth and impact that could completely dominate local interactions. In other
words, the information flow in a cell can be carried by ‘signals’ as commonly understood – concentrations of specific molecules
– but also, perhaps more generally, by macrovariables of the physiological status of the cell. An important example arises in
cancer, where the metabolic state both affects and is controlled by up-regulation of transporters and enzymes and by the micro-
environment in which a cell finds itself. This can lead to supracellular integration of signals via a process called symbiotic
metabolism, in which hypoxic cells produce more lactate that is used by non-hypoxic cells, thereby freeing glucose for cells in
hypoxic regions of a tumour. The realization that this global level of control is important in cellular functioning calls for a new
class of integrative models for cellular systems.

Quantitatively understanding such physiology-dependent disease modeling poses substantial challenges, both experimen-
tally and particularly mathematically. We do not know what level of description of the ‘rest of the cell’ is appropriate; we do
not know how to correctly connect existing models of different cellular phenomena; we do not know the best type of data to
parameterize such modelling or have algorithms in place to carry out this parameterization; we do not even know which cellular
processes are core and should be modelled.

Two distinct approaches to this context-dependent modelling are being developed. The first, which we will call coarse-
grained modelling, has focused on phenomenological models that aim to capture sufficient information to answer questions of
interest with a minimal mathematical description. These approaches have uncovered what appear to be fundamental growth
‘laws’ demonstrating apparent simplicity – such as linear dependencies on the growth rate – despite the underlying biological
complexity [1]. The second methodology, which we will call fine-grained modelling, provides context by including as much
of the cell as possible in the model. A recent triumph is the ‘whole cell’ model of Mycoplasm genitalium, a pathogenic
bacterium with an unusually small genome, in which, in an engineering feat, models that operate at different spatial scales and
over different time scales were linked together and coupled to data to produce a simulation that includes the majority of the
biochemical processes we currently know exist in that cell type [2].

The goal of this workshop was to bring together practitioners of both the fine and coarse-grained methodologies along
with numerical analysts and those working at the interface of context-dependent modelling with medicine and biotechnology.
Our focus was on how physical and biological trade-offs at one level of organization constrain behaviour at other levels. By
exploring how both methodologies might be integrated, how models at different scales may be formally combined, and how
models might best be simulated and quantitatively compared with data, we aimed to provide the momentum and ideas to
develop a framework for physiologically-dependent disease modelling that will drive the field of cellular mathematical biology
for the foreseeable future. Different modelling strategies, ranging from Boolean to continuum models, were represented by
participants.

The workshop was timely. Experimental advances are generating data on how cellular physiology changes because of
both cell growth and human intervention, such as the additions of antimicrobials and of synthetic circuits. New biophysics
now allows physiological variables, such as pH, ATP and NADH levels, and membrane potential, to be measured in single
cells. Further, automation has led to high-throughput technology that measures physiological variables, such as biomass, pH,
dissolved oxygen, fluorescent molecules, levels of NADH and NADPH, and volume, in tens of parallel bioreactors with either
continuous or fed-batch growth or at the single-cell level in a so-called ‘mother machine’ [3]. Mathematical models do not yet
exist to allow quantitative comparison with such data: a gap that this workshop aimed to fill.

In addition, context-dependent effects are hindering our understanding of the development of antimicrobial resistance and
of tumour development. Models that include cellular physiology can predict growth rate, the standard measure of fitness for
microbes. Such information is crucial if we are to reduce antibiotic and anticancer resistance because we have to understand how
the molecular mechanisms that confer resistance also determine fitness. A better understanding of how cellular context affects
disease and disease intervention at various levels will lead to significant advances in medicine, biology and the biotechnology
industry, and our workshop was one step in that direction.

Presentation highlights
Matt Scott (U Waterloo) kicked off the workshop with an overview of physiological constraints on bacterial response to
antibiotics [1]. Two cases studies were examined: the first connecting mechanistic parameters to the efficacy of chemical
antibiotics [4]; the second connecting pre-infection growth state to susceptibility to phage infection. Ting Lu (U Illinois -
UC) continued the theme of physiological constraints, but in the context of rational design of synthetic genetic elements in
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bacteria [5]. The goal is to standardize components to the extent that the design-build-test cycle so familiar in engineering
can be efficiently implemented in synthetic biological systems. David Umulis (Purdue) showcased a variety of sophisticated
mathematical and image-analysis tools he has created for tracking development in zebra fish embryos. These tools were decisive
in discriminating a variety of proposed mechanisms for gene expression patterning in the developing embryo [6]. Tomas
Gedeon (Montana State University) spoke about a generalized theoretical framework for converting large, poorly characterized
mathematical models into tractable quasi-Boolean networks [7]. Within this framework, he is able to rapidly identify parameter
regimes that are necessary to produce, for example, hysteretic trajectories in the full model [8]. Back-to-back talks in the evening
rounded out the first day by returning to operating constraints in bacterial physiology. Bas Teusink (VU Amsterdam) presented
joint theoretical and experimental work linking elementary-flux-mode analysis of metabolic networks with minimal-constraint
criteria in flux balance analysis. Under general hypotheses, he was able to prove that the optimal number of elementary
flux modes operating in steady-state are less-than-or-equal-to the number of constraints operating on the system [9]. Frank
Bruggeman (VU Amsterdam) followed with an extension of the elementary-flux analysis to growth transitions. His object of
study was the control structure that steers a bacterial system toward an optimal growth state. He was able, along with Planqué,
to prove that the number of metabolites that bind regulator proteins is greater-to-or-equal to the number of environmental
parameters to which the system is robust [10].

On the second day, Edda Klipp (Humboldt Berlin) spoke about her ambitious research program to create a comprehensive
mathematical model of yeast growth, comprised of modular sub-systems characterizing metabolism, gene expression, cell cycle,
volume growth, membrane transport and signalling [11, 12]. Moving from microorganisms to multicellular systems, Hans
Othmer (U Minnesota) presented a mechanistic model for intercellular interactions in the wing disk development of Drosophila.
Othmer and coworkers have constructed a detailed kinetic model to inform future experiments. Future work seeks to show that
the model recovers both observed scale invariance and uniform growth across the disk. Erik van Nimwegen (Biozentrum,
Basel) presented a large collection of single-cell data that challenges existing views of regulation in bacteria. First, the novel idea
that regulators perform a ‘noise-propagation’ role in addition to their conditioned response [15]. Second, that the lag-time to
respond to a nutrient shift (lactose) exhibits a long-tailed distribution at the single-cell level [14]. According to van Nimwegen,
both noise-propagation and long-tailed response distributions serve an evolutionary purpose. Carla Bosia (Politecnico di
Torino) presented experimental and theoretical work on the growth of human leukemia cells. Bosia uses inoculum size as
a means of adjusting proliferation rate, but does not observe the same empirical relations coupling ribosome abundance and
proliferation rate that are observed in bacterial systems. Returning to bacterial physiology, Teuta Pilizota (U Edinburgh)
described a methodology using the flagellar motor of E. coli as an endogenous ‘voltmeter’ to track intracellular energy levels.
This exciting technique was used to quantify the difference between indole and UV radiation damage.

The third day began with Jia Gou (U Minnesota) who spoke about theoretical work to both analyze and visualize the
variety of possible patterns forming when three ligands compete for a single receptor. Eldon Emberly (Simon Fraser) presented
examples of spatial organization in bacteria. The first focused on entropy-driven localization of protein aggregates [18, 16].
The second, more recent work using a diffusion-driven ratchet-walker model to analyze intracellular transport via the ParAB
system [17]. The final talks of the day were devoted to antibiotic resistance in bacteria. Mary Dunlop (Boston U) presented
exciting experimental data [20, 21] and mathematical modeling [19] that suggested that transient resistance to antibiotics (via
stochastic induction of the MarAB system) predisposes populations to develop permanent resistance. Rosalind Allen (U
Edinburgh) followed with experimental data and mathematical modeling showing the physiological consequences of cell-wall
targeting antibiotics. Though still in the early stages, Allen’s phenomenological model was able to recapitulate many of the
unusual features of this much-prescribed class of antibiotics.

Kamila Larripa (Humboldt State) started off the fourth day reporting on an industry-driven effort to improve treatment of
myeloma (a blood cancer). Larripa and collaborators have developed a mathematical framework to explore effects of specific
drugs and their targets. Luca Ciandrini (U Montpellier) presented a mechanistic mathematical model of protein translation,
based on prior work characterizing ribosome procession as a totally-asymmetric-simple-exclusion process. The work suggests
that circularization of mRNA transcripts can lead to increased local concentration of recycling ribosomes and that this effect can
be well-quantified by a simple model [22]. Meriem el Karoui (U Edinburgh) considered in detail the mechanistic and stochastic
elements of DNA damage repair in E. coli. First, the DNA damage response appears to inherit growth-rate dependence from
the physiology of the organism. Second, repair proteins repair in low basal abundance, yet the variability is far less than
expected [23] – the reason for this is unknown. Bruno Martins (Cambridge) used experimental characterization of the circadian
rhythms of the cyanobacterium Synechococcus elongatus to illustrate that population heterogeneity can obscure underlying
strategies of cell-size homeostasis [25, 24]. Martins has developed a simple mathematical model to quantitatively account for
the population heterogeneity. Ariel Amir (Harvard) concluded the fourth day with an ambitious survey of past and present
mathematical models of bacterial growth and division. In contrast to classical work by Powell, Amir determines conditions
under which variance in the division time can increase population growth rate [28, 26, 27].

Jim Greene (Rutgers) began the final day of the workshop with a focus on induced drug-resistance in chemotherapy. A
simplified mathematical model was used to explore the control structure that optimizes treatment efficacy. Echoing many of
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themes of previous speakers, Stefan Klumpp (U Goettingen) provided an overview of work coupling bacterial physiology to
population heterogenity. The survey included efforts to model the effect of cell growth as an additional pseudo-regulator [29],
modulation of the inferred drug efficacy depending on whether the cells are grown in bulk or in a single-cell ‘mother ma-
chine’ ’[30], and the physiological characterization of a Bacillus subtilus strain with reduced genome size. Vahid Shahrezaei
(Imperial College London) presented several efforts to extend coarse-grained physiological models to fission yeast, as well as
efforts to provide greater detail in the models [31, 32]. In the final talk, Peter Swain (U Edinburgh) outlined a graph-theoretical
approach to enumerate and visualize the outcome of competitive evolutionary dynamics. The methodology enables incom-
plete information to be leveraged to obtain increasingly accurate prediction of the outcome of the competitive evolutionary
dynamics [33].

Outcomes and open questions
The two major outcomes of the workshop were the recognition of the surprising similarity between bacterial and cancer models
and to identify clear gaps in our knowledge of cell physiology.

As organizers, we deliberately chose participants who likely knew less than 20% of the other speakers. As a result,
from side-by-side talks about cancer biology and antimicrobial resistance, it became clear that much of the framework of the
mathematical modelling is common between these two very different systems.

Nonetheless, the incorporation of physiological constraints into mechanistic mathematical models is far more advanced in
bacterial studies, whereas little in the way of robust empirical relationships linking proliferation rate and the macromolecular
state have been established in cancer cell lines. Carla Bosia’s work illustrates that one of the major obstacles is determining a
reliable method to modulate proliferation rate.

The second major outcome was a broad recognition of how little is known about the coupling between cell growth and
DNA replication, even in bacteria. In 2015, several groups used single cell data to establish that in E. coli, the size at birth
(sb) is related to the size at division (sd) via an adder mechanism, sd = sb + ∆, where ∆ is a constant (though growth-rate
dependent) increment of mass. The mechanism underlying this behaviour remains unresolved. A third of the participants
formed an impromptu focus session to clarify the current state of the field. Unpublished data from the van Nimwegen group in
particular suggests that the simple ‘adder’ model is inadequate.

Altogether, the open questions that emerged are:

1. How can we reliably modulate the proliferation rate of human cell lines in a way to sustain exponential growth over
many generations?

2. Are the complex adaptations of cancer cell lines (e.g. the Warburg effect) the result of physiological constraints (as
appears to be the case in bacteria [34])?

3. How are cell division and DNA replication coordinated in proliferating cells? (This has been an open question for fifty
years.)

Participant response
Several of the participants remarked that this workshop was the most productive conference or workshop that they had ever
attended. Some of these are reproduced below:

I wanted to let you know how much I enjoyed the BIRS workshop. Thanks to that meeting I have already initiated
two new collaborations (with Erik [van Nimwegen (Basel)] and Ariel [Amir (Harvard)]) and I have learned
an enormous amount about both the models currently used for bacterial diseases and also about the potential
similarities with models for cancer treatment and drug resistance in cancer (i.e. Kamila [Larripa (Humboldt)] and
Jim’s [Greene (Rutgers)] talks). I particularly enjoyed the format of the meeting with long talks that allowed
for a lot of interactions between the speaker and the audience as well as enough free time to work with specific
colleagues and to enjoy the magnificent surroundings. I think that the fact that we were a relatively small group
also helped a lot with making the meeting very interactive: I think I had productive discussion with almost all the
participants. Last but not least I was very impressed that the gender balance in the meeting was very good which
in my experience is rarely the case. The facilities were excellent and the provision of small room with boards for
discussion was particularly useful. I also enjoyed the swimming pool! In summary, this was the best meeting I
have attended in a number of years. Thanks again for organizing this workshop!

– Meriem el Karoui (U Edinburgh)
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This was one of the best conferences I attended, for several reasons:
- The topic was focused enough such that my work has significant overlap with many of the participants. Never-
theless I have not met many of them previously and therefore this was extremely stimulating scientifically, both
in terms of feedback and ideas related to my own work as well as learning about recent progress in the field.
- The program was organized in a way that allowed for many off-line discussions, which were often as useful as
the formal talks. I hope to keep in touch with new people I met at BIRS, and I think that there is also a good
chance that this conference will trigger new collaborations.

– Ariel Amir (Harvard)

The BIRS conference was a wonderful experience. I found it extremely useful to hear about work slightly periph-
eral to my own area of research, especially from senior and esteemed mathematicians. I work in cancer biology,
but a number of mathematical techniques and models being used in bacterials systems are directly applicable to
my project– this was wonderful to discover. This has opened up a number of potential directions I plan to pursue,
and I have also found some wonderful collaborators. The group was extremely accomplished and I benefitted
not just from listening to formal talks, but from the questions I received about my own work. Meals and breaks
provided wonderful opportunities for discussion, and the small group size really encouraged this. Big thanks to
the organizers and to BIRS for providing such a wonderful scientific program!

– Kamilla Larripa (Humboldt)
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Richard Tsai (The University of Texas at Austin and KTH)

Overview of the workshop themes
This workshop focused on advanced topics involving interfaces, thin domains around them and free boundary problems. These
geometric objects are governed by nonlocal, singular or anisotropic motion laws. A particular topic was the partial differential
equations (PDEs for short) defined in thin domains around moving interfaces. Effective numerical algorithms for simulating
these problems was another leading theme of the workshop.

Some of the top specialists in analysis and numerical methods came to discuss recent advances in above mentioned problems
and to present the state of the art both in analysis and numerical computations. The goal was to improve our understanding of
the surface and interface dynamics. Below we present the overview of the presentations.

Nonlocal, anisotropic and degenerate diffusions equations The following groups of topics have been discussed
during the workshop.

• PDE with singular diffusivity. Among the typical examples are total variation flows for denoising images or anisotropic
curvature flows with very strong anisotropy such as crystalline curvatures. These flows describe motion of free surfaces.
In these problems motion of surfaces is determined by nonlocal quantities which cannot be written in an explicit way.
Even these relatively accessible problems analysis are nontrivial and have been studied for many years. However, if
one considers more realistic problems like crystal growth models with general Wulff shape having facets, multi-grain
problems or higher order problems involving crystalline mean curvature, mathematical tools are still limited.
One method to treat these problems is the theory of viscosity solutions, whose scope of applicability is widening. It is
based on comparison principle, hence it is restricted to formally 2nd order problems.
The variational approach presents possibilities of developing another set of methods. But these methods have limitations
since they require special structure of the variational models.
Of course, there is a diffuse interface approach represented by use of reaction diffusion equations. However, the relation
to sharp interface approach given above is often not clear, especially for multi-grain problems in materials science.

• Stefan problem with fractional time derivatives. Although the fractional diffusion equations have been studied, the prob-
lem of Caputo fractional time derivative is less developed and even simple questions, e.g. concerning existence of solu-

160



Advanced Developments for Surface and Interface Dynamics - Analysis and Computation 161

tions, are outstanding. The nonlinear theory that is capable of handling this kind of free boundary problems (e.g. for the
position of the head of fluvial sediments) is yet to be developed.

• Modeling and simulating crystal growth. This topic encompasses large networks of grains of different orientations, with
grain boundaries moving according to certain notion of curvature.

Numerical algorithms The methodologies discussed in this workshop encompass non-parametric sharp interface models,
such as level set methods or the closest point methods, and diffuse interface methods involving phase field approximation.
However, the challenges presented in the problems discussed above require non-trivial mathematical formulations before one
can apply the standard methodologies and careful numerical approximations in some cases to derive well-conditioned discrete
systems.

Topics that have been discussed in this workshop include:

• Generalization of `1 optimization, augmentation and splitting based approaches for efficient accurate computation of
singular diffusion problems.

• Numerical methods for PDEs on manifolds or thin domains around them. There has been significant development in
numerical algorithms for PDEs or integral equations on implicitly or non-parametrically defined surfaces. These methods
transform equations defined on surfaces into ones defined in thin tubular neighborhoods of the surfaces, and have great
potential in dealing with data in the form of point clouds (e.g. surfaces sampled by a finite point set and values of data
given on the point set).

• Numerical methods for simulating large network of interfaces and junctions. The leading question is: How to compute
junctions under anisotropic motion laws?

Recent Developments and Open Problems
PDEs with singular diffusivity. Progress has been made in several directions within this area. For example, the level-
set method is extended to crystalline mean curvature flow in an arbitrary dimensional Euclidean space. Two approaches are
presented, one is by A. Chambolle and the other is by N. Požár.

The first method is based on the signed distance function and it applies to a class of evolution problems where the velocity
of the interface depends on crystalline mean curvature linearly. In paper [2] the following problem is studied V = γHγ , where
γ is the surface energy density and Hγ is the anisotropic mean curvature of the surface. The advantage of the approach used by
Chambolle is that it applies to a general interfacial energy, see [3].

The second approach is based on the theory of viscosity solutions. It applies when the speed of the interface depends
monotonically on the curvature but so far it is restricted to a purely crystalline energy. However, the applicability of both
approaches is still limited to the second order problems, because they depend on the comparison principle, see [9], [10].

Several lectures on the recent development of a few versions of the total variation flow were presented during this workshop.
One of them was the presentation by P. Mucha, who discussed the anisotropic total variation flow with the `1 norm anisotropy.
Another one was the talk of M. Muszkieta, in which results on the higher order total variation flow with several numerical
computations were given.

I. Kim addressed a surprisingly difficult but easy to state problem of preserving the star shape property of sets by the mean
curvature flow. This problem remains open.

Stefan problem with fractional time derivative. V. Voller presented an array of problems arising in engineering which
fall into the broadly understood anomalous diffusion. This area is rich with problems waiting for rigorous analysis. One of
them was studied by T. Namba. He presented an extension of the notion of viscosity solutions to equations with Caputo time
fractional derivatives.

Modeling and simulating crystal growth. D.Margetis and J.-G.Liu presented recent development on modeling crystal
growth by a high order partial differential equation with exponential nonlinearities. They also offered the analysis of such a
high order model, see [13].

S.Esedoglu presented a novel variational formulation for large network of grains with boundaries modeled by different
anisotropic interface energies. Based on the new variational formulation, threshold dynamics algorithms with judiciously
chosen, averaging kernels are developed. The approach to formulate variational principles and the related algorithms that uses
threshold dynamics lead to a wide range of applications involving multiphase problems, see [5], [6].
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Numerical algorithms Developments of new algorithms for surface partial differential equations were presented in this
workshop. They require extensions of the surface PDEs into a thin tubular neighborhood of evolving smooth surfaces. B.
Stinner and K. Decklenick presented algorithms that use a phase field formulation. J. Chu and C. Kublik talked about methods
that use an extension approach preserving certain properties of the given equations and integrals. C. Kublik also discussed new
work in computing integrals on Lipschitz surfaces, see [4], [12]. A graduate student K. Taguchi gave a new numerical scheme
for constrained total variation flow, [18].

Even if we witness progress in several directions, still special variational structure is necessary for advancing studies of
these problems.

Other related topics José Mazon presented a development of the theory of harmonic functions and the diffusion equations
on graph and metric spaces without any obvious differential or linear structure. This seems to be a new exciting direction. We
will present it in more details below.

Juan Manfredi talked about the integral formulas for solutions to the p-Laplace equations. This topic is linked to the
stochastic game theory. More details are given below.

Presentation Highlights
We present below ten lectures lectures which are representative of the Workshops main themes.

Mazón: Heat Flow on Metric Random Walk Spaces
The speaker presented results, in the context of “metric random walk spaces”, see [16], on

• Ergodicity

• Functional Inequalities and Curvature (such as Poincaré inequality, its relation to isoperimetric inequality, Bakry-Emery
curvature)

• Transport inequalities

A random walk m on X is a family of probability measures mx such that

1. they depend measurably on x;

2. each measure mx has finite first moment (with respect to the distance).

A metric random walk space is a Polish space equipped with such a random walk. One also has the detailed balance condition,

dmx(y)dν(x) = dmy(x)dν(y).

Example: in RN we take a J ≥ 0 with total mass 1, then we set

mJ
x(A) =

∫

A

J(x− y)dx,

where dx is the Lebesgue measure.

Ollivier-Ricci curvature. In Riemannian geometry, positive Ricci curvature is characterized by the fact that “small balls
are closer, in the 1-Wasserstein distance, than their centers are”. In the framework of metric random walk spaces, inspired by
this, Y. Ollivier (JFA 2009) introduces the concept of coarse Ricci curvature changing the ball by the measures mx.

First, we recall the Monge-Kantorovich problem and the Wasserstein distance.
Definition: Take x, y ∈ X , the Ollivier-Ricci curvature of (X, d,m) along (x, y) is defined as

κm(x, y) := 1− W d
1 (mx,my)

d(x, y)
,

where W d
1 is the 1-Wasserstein distance with respect to the metric d.
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The Heat Flow. Let (X, d,m) be a metric random walk space with invariant measure ν for m. For a function u : X → R
its nonlocal gradient is

∇u(x, y) = u(y)− u(x),

it is a function in X ×X . Likewise we define the m-divergence of a function in X ×X
The averaging operator is

Mmf(x) :=

∫

X

f(y)dmx(y)

and the m-Laplace operator Mm − I . If the invariant measure ν is reversible, the following integration by parts formula is
straightforward ∫

X

f(x)∆mg(x) dν(x) = −1

2

∫

X×X
(f(y)− f(x))(g(y)− g(x)) dmx(y) dν(x).

This gives rise to a symmetric form, Em.

Theorem: Let (X, d,m) be a metric random walk space with invariant and reversible measure ν for m. Then −∆m is a
non-negative self-adjoint operator in L2(X, ν) with associated closed symmetric form Em, which is Markovian.

The associated continuous semigroup Tmt solves the associated heat equation.

Infinite speed of propagation and ergodicity The infinite speed of propagation of the heat flow et∆m , i.e.,

et∆mu0 > 0 for all t > 0

occurs, whenever 0 ≤ u0 ∈ L2(X, ν) and u0 6= 0.
Consider Ω = (−∞, 0] ∪ [ 1

2
,+∞) × RN−1 and the metric random walk space (Ω, d,mJ,Ω), where d is the Euclidean

distance and J(x) = |B1|−1χB1 . This space has Ollivier-Ricci curvature κ, which is negative.
We now introduce the m-total variation function,

1

2

∫

X

∫

X

|u(y)− u(x)|dmx(y)dν(x).

Therefore, we define the concept of m-perimeter of a ν-measurable subset E ⊂ X as the m-total variation of the indicator
function of E. In the particular case of a graph, this gives the classical definition of a set.

Theorem: If (X, d,m) is a metric random walk space with invariant and reversible measure ν, and ν(X) < ∞, then the
following facts are equivalent:

1) ∆m is ergodic;
2) ∆mχD = 0 implies χD is constant;
3) Pm(D) > 0 for every set such that 0 < ν(D) < ν(X).

Functional inequalities and curvature Let us assume ν is a probability measure. We define the mean and the variance
of a function f . Then, we define the spectral gap.
Definition: We say (m, ν) satisfies a Poincaré inequality if there is a λ > 0 such that

λVarν(f) ≤ Hm(f).

There is an example of an infinite, weighted linear graph, which does not satisfy the Poincaré inequality.

Remark: Ollivier showed a Poincaré inequality under certain assumptions on the Ricci-Ollivier curvature. The Poincaré
inequality at the level of sets implies the following isoperimetric inequality

min{ν(D), 1− ν(D)} ≤ 2

λ
Pm(D).

Question: P. Rybka asked about the motivation for studying these problems?

Question: What about Lévy processes? Some cases are covered, but not all: the integrability at infinity becomes an issue – e.g.
the process corresponding to the standard fractional Laplacian in Rd is covered by the theory.
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Manfredi – A discrete stochastic interpretation of the dominative p-Laplacian
Dominative p-Laplacian is defined by

Lpu(x) =
1

p
(λ1 + . . .+ λN−1) + (p− 1)/pλN ,

where λ1 ≤ . . . ≤ λN are the eigenvalues of D2u(x). The speaker discussed the relationship between Lp and the regular
p-Laplacian, which the topic of a recent paper, [15].

The ordinary p-Laplacian ∆h
pu is given by the formula div(|∇u|p−2∇u) = |∇u|p−2∆h

pu. It is is not difficult to show,
(Brustad, 2017), that ∆h

pu ≤ pLpu with equality for radial functions.

Mean values

MVq(v,Bε(x)) =
1

q − 1

1

|Bε|

∫

Bε(x)

v(y)dy +
q − 2

q − 1
supσ

v(x+ εσ(x)) + v(x− εσ(x))

2
,

where σ is what is called a strategy, q = (p+ 4n+ 6/2N + 4). What is important is to know this for p = 2 and for p→∞
If Lpv(x), we have the asymptotic mean value property

v(x) = MVq(v,Bε(x)) + o(ε).

Fix x0 ∈ Ω and a strategy σ. We will consider a discrete process

x0, x1, . . .

defined as follows: If x0 ∈ Γε, we set x1 = x0 and stop. Otherwise, Bε(x0) ⊂ X . In the latter case, we move one step
according to the following rules:
• with probability 1/(q − 1) select x1 ∈ Bε(x0) at random;
• with probability (q − 2)/2(q − 1) select x1 = x0 + εσ(x0);
• with probability (q − 2)/2(q − 1) x1 = x0 − εσ(x0).

Then, we consider the pay off function associated to the strategy σ,

uσε (x) = Ex0σ [F (xτσ )],

which we call the ε-stochastic solution.

Theorem: Stochastic solution = mean value solution.
“The interesting thing (to me) is that one can actually prove that something satisfies the dynamic programming principle.”
One uses the idea of Barles-Souganidis from 1991, exploiting the upper and lower semicontinuous envelopes.

Question by R.Choksi: What was the original motivation of Brustad?
Manfredi: It may have come from the motivation of explaining that result about the sum of p-superharmonic radial functions,
the original proofs of which were quite complicated.

Stinner: On a diffuse interface approach to PDEs on surfaces and networks
This is a recent work, performed with the following applications in mind: cluster formation in different situations (cell clusters,
foam and bubble clusters, grain boundaries).

These problems led to PDEs on those interfaces. Triple junctions are an important issue. Our approach is a phase field
method. We shall describe these interfaces by thin layers. The phase field methodology boils down to the introduction of a bulk
phase field ϕ(t) : Ω→ R, going from 1 to −1 on a strip of size that can be shown to be ∼ ε. We look at

F ε =

∫

Ω

K̃w(
ε

2
|∇ϕ|2 +

1

ε
W (ϕ)) as ε→ 0.

Example: PDE on an evolving surface Γ(t), with material velocity v(t) : Γ(t)→ Rn

∂•t c+ c∇Γ · v = D(Γ)∆Γc+ r(c) on Γ(t),

where ∂•t is the material derivative.
Idea: smoothing using the phase field with some δε(εε)→ δΓ as ε→ 0. Rigorous convergence analysis as ε→ 0 ({δε}ε

given): Elliot - S 2008, Abels - Lam - S 2015, Burger-Elvetun-Schlottbom 2016, Miura 2017.
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PDEs on bubble clusters Domains Ω(i)(t) separated by interfaces Γ(i,j)(t) meeting at triple junctions T (,j,k)(t) trans-
ported by a continuous solenoidal velocity field v. Species densities: c(i,j),Γi,j . The speaker presented definitions of ”Energy”,
”Chemical potentials” for the system. The potentials drive the evolution of the system.

We approximate the resulting equations in distributional forms with a phase field. Phase variable ϕ(i) for phase i. A
constraint: they add up to 1.

A key assumption: along the layer between i and j only ϕi and ϕj are present.

Phase field Ansatz
δΓi,j ∼ δi,j = Cδ

1

ε
(ϕi, ϕj)2,

τT i,j,k = Cτ
1

ε2
(ϕiϕjϕk)2.

In practice: the phase fields themselves solve PDEs that depend on the surfaces. One must also bear in mind additional
conditions in practical applications such as Young’s law. This becomes a problem, because we may need this information to
calibrate Cτ (the exact form of Cτ may depend on extra modeling assumptions involving higher order terms).

Question: Can you do quadruple junctions?
Answer: No, conceptually probably you could set them up. In the applications I am interested in, they are not stable, so you
do not see them.

Question: For the computations, did you do a moving mesh?
Answer: No, we used an adaptive algorithm concentrating in an ε neighborhood of the interface.

Kublik: Applications of distance functions to motions of curves in the plane, and integra-
tion over interfaces and unstructured point sets
We are working on a general framework for integrating over interfaces which are implicitly defined. The first part of the talk
discussed an MBO (Merriman-Bence-Osher) scheme for two-dimensional area preserving motion by curvature. The normal
velocity is

vN = κ− κ̄,
where κ̄ is the average of the curvature on the curve, when if the curve is simply connected. Otherwise, a modified expression is
necessary which depends on the number of “holes”. A similar thresholding scheme can be used here – the modification arising
in the diffusion step.

In the second half of the talk, the speaker discussed a simple, efficient, scheme for computing such boundary integrals.
The context is that the boundary is not defined by an specific parametrization (e.g. boundaries evolving in time, with possible
changes in the topology). The presented strategy is to derive a volume integral around a tubular neighbor of the interface that is
identical to the given integral along the interface. The idea is to approximate the integral over Γ, via an integral over Γη , where
Γη is a properly chosen nearby surface Γη is given by a level set of the distance function,

∫

Γ

v(z)dS(z) =

∫

Γη

v(PΓ(y))JηdSη(y),

where PΓ(y) is the closest point mapping to Γ. We have that Jη is a polynomial in η Jη = 1 + ηκ in 2D (similar formula
in 3D). Then, averaging and using the co-area formula, we obtain a volume integral representation of the surface integral,
(K-Tanushev-Tsai, 2013). The Jacobian J(x) can be computed from the singular values of the Jacobian matrix of the closest
point mapping PΓ. This offers additional convenience for computation of J and interpreting it, especially for manifolds with
boundaries.

The speaker further discussed: (i) how integration along curves with corners and surfaces with creases could be computed
accurately by the proposed methodology, but with more elaborate averaging kernels, and (ii) analysis of the algorithm when
applied to analyze finite point set that are sampled from manifolds of different Hausdorff dimensions.

Kim: Volume preserving mean curvature flow with start-shaped sets
The speaker considers motion with normal velocity given by,

V = −κ+ λ̄t on Γt = ∂Ωt
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with λt such that
∫

Γt
V = 0, so the volume is preserved. Ωt is assumed to have smooth boundaries and

λt =
1

Per(Ωt)

∫

Γt

κdσ.

This motion converges exponentially to the sphere (smooth, convex flow). Studies of existence of solutions but uniqueness is
open.

Most people care about convex sets and the flow is known to preserve convexity. Also, the curve can undergo topological
changes in finite time.
Question: Are there other geometries that are preserved by the flow (other than convexity)? The star-shapedness is expected to
be preserved.

The speaker then introduced a strong version of star-shapedness, called ρ-reflection. It turns out that this property is
preserved by the motion. To study the flow, we need a notion of weak solution because the flow may develop singularities. The
speaker uses two techniques:

1. Notion of a viscosity solution to enable barrier arguments;

2. Variational approach to obtain energy estimates.

The flow considered is the gradient flow for Per(F ), the perimeter of the set F , over sets of fixed volume (say 1). The
speaker uses minimizing movement to construct the flow. This requires minimizing

Per(F ) +
1

h
d̃2(F,E),

where E is the set from the previous set and F the current one.
Discrete scheme. Approximate energy:

Per(E) +
1

δ
(|F | − 1)2 +

1

h
d̃2(F,E).

When you minimize it, you get a discrete flow Ωδ,ht that converges to the δ-flow with normal velocity,

V = −κ+ λδ(|F |), λδ(s) =
2

δ
(s− 1).

This is the δ-flow Ωδt . Now, the speaker uses a modified viscosity-type argument to show that the strong star-shapedness
property is preserved. She needs to investigate the convergence of the δ flow.

Result: Ωδ,ht → Ωδt as h→ 0 and Ωδt → Ωt as δ → 0. Regularity of δ-flow: the boundary of Ωδt can be locally represented
by a Lipschitz graph.

Last result: Assume Ωt is star-shaped, smooth, preserves volume over time. Then Ωt is the unique solution of the motion
with normal velocity,

V = −κ+ λ̄t,

and Ωt converges exponentially fast to a unit ball. More details can be found in [11].

Chu: Numerical methods for energy minimization problems on surfaces
We look at an energy defined on a surface Γ of the form

IΓ(u) =

∫

Γ

F (u,∇Γu)ds.

We take an ε-neighborhood of Γ and write ū(x) = u(PΓ(x)), ∂ū
∂n

= 0 (constant extension along the normals). We want to
construct an integral formulation IΓε(ū), such that

IΓε(ū) = IΓ(u), ∀u.

Questions: Is the minimizer of ITε(ū) equivalent to the minimizer of IΓ(u)? The answer is yes.
We derive

IΓε(v) =

∫

Tε

F̃ (v,∇v)dx,

where Tε is a tubular neighborhood around Γ.
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Question: Is ¯∇Γu(z) = ∇ū(z), ∀ z ∈ Tε? No, this is only true when z ∈ Γ. In fact we have

¯∇Γu(z) = A(z)∇ū(z),

where A = (1− ηκ1)τ1 ⊗ τ1 + (1− ηκ2)τ2 ⊗ τ2 + δn⊗ n. η corresponds to the η level set. There is an extra dimension in
the normal direction which gives us a free parameter δ (because the normal derivative is 0).
Question: Choice of δ? δ plays a different role for elliptic than for hyperbolic equations. δ > 0 preserves ellipticity of elliptic
equation. δ = 0 is for hyperbolic equation.

Construct an identical volume integral,

IΓ(u) =

∫

Γ

F (u,∇Γu)ds = IΓε(v) =
1

2ε

∫

Tε

F̃ (x, v,∇v)dx.

The speaker discussed the boundary (of the tube) treatment: project boundary point (d = ε or d = −ε) to any point along
the normal inside the tube. He also studied the instability (he has a model problem for that). This instability was previously
studied by Kreiss, but the speaker studied this for manifolds. He uses the Fourier transform in space and the Laplace transform
in time. He studies the existence of unstable modes. For δ large, there is an instability so it is necessary to have small δ.

The speaker discussed a stabilization strategy: add another term to the PDE (already done by Kreiss). He discretizes the
integral first (direct method). Looks at obstacle problems and TV-denoising on a torus.
Question asked by a member of the audience: can you solve Maxwell’s equation with this method?

Margetis: On the mathematical modeling of crystal facets
The speaker presents a PDE approach with a touch of discreteness in the modeling.

Classical relaxation by surface diffusion Region Ωt with moving boundary, Γt = ∂Ωt, with velocity

vn = −divΓJ,

where J - the surface flux is given by
J = −∇Γµ

and µ is the chemical potential.
This model has to be revised in the presence of line defects (steps) and facets (at low temperatures).

Multiple scales Typically, micro- (atomic scale), mesoscale (about 25 nm), macroscale (20 µm). The last two scales are
subject of the talk.

How is macroscale facet evolution linked to the step motion? To address this question, one needs to consider 1) PDE away
from facets, 2) boundary conditions. Typically for the step flow away from facets, one uses the BCF model. Near a facet, one
needs to consider the discrete nature of the problem.

Adatom diffusion On the i-th terrace,

Ji = −Ds∇ρi, Ds∆ρi + F =
∂ρi
∂t
≈ 0.

and Robin-type boundary conditions at bonding step edges. Here, ρeqi = ρse
µi/T is the Gibbs-Thomson relation, µi(s, t) is

the step chemical potential.

• Step motion and continuum limit (heuristics in 1D): Step velocity leads to ∂t̃h = −∂xJ , where

J =
Ds

1 + 2Ds
qα
|∂xh|

∂xρ
eq

attachment/detachment at bonding steps leads to “Fick’s law” for surface diffusion.

• Chemical potential near equilibrium leads to energy E(h).

• Force dipole-dipole interaction model (nearest neighbor).

• Relaxation PDE in 2+1 dimensions, outside facets yields a 4-th order parabolic-like PDE for h. PDE for height profile.
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How does the full (nonlinear) Gibbs-Thomson relation affect facet evolution?

∂th = ∆ exp

[
−βdiv

( ∇h
|∇h| + g|∇h|∇h

)]
,

here β = T−1, g ≥ 0.
In 1+1 dimensions:

∂th = ∂xx exp[−∂x ∂xh|∂xh|
].

We neglect |∂xh|∂xh in the exponent (of facets ∂xh = 0).
The speaker then discussed some further analysis of the newly derived model: the appropriate boundary conditions at

facets. The discussion led to free boundary problems. More details can be found in [14].

Liu: Dynamics of a degenerate PDE model of epitaxial crystal growth
This talk complements Dionisios Margetis lecture.

Epitaxial growth is an important physical process for forming solid films or other nano-structures. It occurs as atoms,
deposited from above, adsorb and diffuse on a crystal surface. Modeling the rates that atoms hop and break bonds leads in
the continuum limit to a degenerate 4th order PDE that involve exponential nonlinearity and the p-Laplacian with p = 1, for
example. The lecturer discussed a number of analytical results for such models, some of which involving subgradient dynamics
for Radon measure solutions.

Particularly noteworthy was how the author dealt with exponentials of singular measures.

Voller: Anomalous infiltration into Heterogeneous Porous media: Simulation and frac-
tional calculus models
Sub-diffusive behavior was demonstrated in some physical systems and with fractional derivative the same behavior can be
observed. This motivated that fractional derivatives can be used to model such systems. Problems, where obstacles were
considered and the volume of fluid method was used to study how flows go through these obstacles. Two one dimensional
measures for the progress of filling was found which gave good agreement with experimental data. The two measures: 1) S:
the one dimensional representative front, and 2) F: an effective filling length, the infiltration depth were related to physical
parameters such as porosity and the obstacle pattern. The talk was based on [1], [7] and [19].
Questions: fine structures such as fingers? Neglected here but for viscous fluids, no fingering, one still observe sub diffusion.

Does the shape of the obstacles affect the model with the fractional derivative?

Namba: Well-posedness of fully nonlinear PDEs with Caputo time fractional derivatives
Caputo time fractional derivatives were motivated for modeling anomalous diffusion that is observed in heterogeneous media
(∂αt u = ∆u). In the talk the notion of viscosity solutions were extended to equations with Caputo time fractional derivatives.
Perron’s method and comparison principle were used to construct sub and super-solution and to establish the unique existence
of viscosity solutions for the initial value problem with Caputo time fractional derivatives. Continuous dependence of the
solution on the fraction of the time derivative was also addressed. The talk is based on the following papers, [8], [17].
Questions: Do Caputo time fractional derivatives make sense also for functions that have jumps? Yes!

Scientific Progress Made
There were talks on different models and numerical algorithms for treating junctions and grain boundary motions. Discussions
on how to extend surface PDEs into thin domains around interfaces for numerical computation were held. There were lectures
on very novel high order PDEs for modeling the dynamics of facets in crystal growth. There were discussion about different
nonlocal equations, connection to random walks, and relation between local and non-local diffusions in different domains.

Outcome of the Meeting
Specialists from many disciplines and background took part in the meeting. As a result exchanging ideas from distant area of
the Science was facilitated. Indeed, the participants praised the choice of speakers, which conveyed new ideas and viewpoints.
This is why one of the outcomes of the meeting was the transfer of knowledge among specialists.
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Another outcome, which will turn out to be material, is the meeting of old collaborators, working on joint projects. We
expect that the discussions held during the meeting will result in new projects leading to publications.
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Chapter 15

New Trends in Syzygies (18w5133)

June 24 - 29, 2018
Organizer(s): Giulio Caviglia (Purdue University, Jason McCullough (Iowa State University)

Overview of the Field
Since the pioneering work of David Hilbert in the 1890s, syzygies have been a central area of research in commutative alge-
bra. The idea is to approximate arbitrary modules by free modules. Let R be a Noetherian, commutative ring and let M be
a finitely generated R-module. A free resolution is an exact sequence of free R-modules · · · → Fi+1 → Fi → · · ·F0 such
that H0(F•) ∼= M . Elements of Fi are called ith syzygies of M . When R is local or graded, we can choose a minimal free
resolution of M , meaning that a basis for Fi is mapped onto a minimal set of generators of Ker(Fi−1 → Fi−2). In this case,
we get uniqueness of minimal free resolutions up to isomorphism of complexes. Therefore, invariants defined by minimal free
resolutions yield invariants of the module being resolved. In most cases, minimal resolutions are infinite, but over regular rings,
like polynomial and power series rings, all finitely generated modules have finite minimal free resolutions.

Beyond the study of invariants of modules, syzygies have connections to algebraic geometry, algebraic topology, and com-
binatorics. Statements like the Total Rank Conjecture connect algebraic topology with free resolutions. Bounds on Castelnuovo-
Mumford regularity and projective dimension, as with the Eisenbud-Goto Conjecture and Stillman’s Conjecture, have implica-
tions for the computational complexity of Gröbner bases and computational algebra systems. Green’s Conjecture provides a
link between graded free resolutions and the geometry of canonical curves. These are just some of the important problems that
have seen great recent progress and were discussed at this BIRS meeting. In the following we focus on these four problems in
detail. Then we summarize some other meeting highlights and positive feedback from meeting participants.

Recent Developments and Open Problems
The theory of free resolutions and syzygies has seen many spectacular results in the last few years with several long-standing
conjectures being resolved. Here we briefly summarize the biggest results and their connections with this workshop.

Buchsbaum-Eisenbud-Horrocks Conjecture
Let k be any field, let R be a regular local ring of dimension n. The Buchsbaum-Eisenbud-Horrocks rank conjecture roughly
says that the Koszul complex is the smallest possible minimal free resolution. The conjecture was formulated by David Buchs-
baum and David Eisenbud [BE]. The conjecture is also implicit in the work of Horrocks. See [Har]. The precise statement is
as follows.
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Conjecture 15.0.1 (BEH Conjecture) Let M be an R module of finite length. Then

βi(M) ≥
(
n

i

)
.

Note that if M = k, then the minimal free resolution is a Koszul complex and the ith total Betti number is exactly
(
n
i

)
.

The conjecture has been settled for n ≤ 4 by Graham Evans and Phillip Griffith [EG2]. A similar statement can be made in the
graded case. A special case of this question was proved by Daniel Erman [E].

One can ask the weaker question as to whether the sum of all the Betti numbers is at least 2n. This is sometimes known
as the Weak Horrocks Conjecture or Total Rank Conjecture. In a recent breakthrough, Mark Walker proved the Total Rank
Conjecture for all characteristics except 2. Walker gave a talk on his work at the meeting. The proof relies on techniques from
K-theory and fits nicely into a one-hour talk. In fact, his result applies more generally to finitely generated modules of finite
projective dimension over local complete intersections not of characteristic two or over local rings containing a field of odd,
prime characteristic.

Srikanth Iyengar gave a related talk he presented joint work with Walker constructing counterexamples to various general-
izations of the Total Rank Conjecture. (See description below.)

Eisenbud-Goto Conjecture
Let S = K[x1, . . . , xn] be a standard graded polynomial ring over a field and let M be a finitely generated graded S-module.
We define the (Castelnuovo-Mumford) regularity of M to be

reg(S/I) = max{j |βi,i+j(S/I) 6= 0.

Thus the regularity of S/I is the index of the last nonzero row in the Betti table of S/I . David Eisenbud and Shiro Goto showed
[EG] that this agrees with the more classical definition of regularity given in terms of vanishing of twists of sheaf cohomology
modules. In particular, note that the regularity of an ideal is an upper bound on the degrees of the minimal generators. Thus
finding effective bounds on regularity has attracted a lot of attention.

David Bayer and Michael Stillman [BS] gave another characterization of regularity: reg(I) is equal to the maximal degree
of a Gröber basis element of I in the revlex monomial order if we first take a generic change of coordinates. Since Gröbner
bases are required for many computational tasks, this means that finding upper bounds on regularity equates to finding bounds
on the computational complexity of an ideal. Unfortunately, in the most general setting possible, such upper bounds are quite
large. Set maxdeg(I) to be the maximal degree of a minimal generator of I . A well-known result of David Bayer and David
Mumford [BM] and later Giulio Caviglia and Enrico Sbarra [CS] shows that reg(I) ≤ (2maxdeg(I))2n−2

, where n is the
number of variables.

This doubly exponential bound grows quickly with respect to n. Unfortunately, this bound is nearly optimal. In one
construction derived from the so-called Mayr-Meyer [MM3] ideals, Koh [Koh] proved that for any integer r ≥ 1 there exists
an ideal Ir in Sr = k[x1, . . . , x22r−1] such that

maxdeg(Ir) = 2

reg(Sr/Ir) ≥ 22r−1

.

Thus doubly exponential behavior cannot be avoided. We note for later reference that Ir is generated by 22r − 3 quadrics and
1 linear form while the regularity is realized at the first syzygies of I (second syzygies of S/I).

The ideals Ir have many associated primes and embedded primes; in particular, they are far from prime. Better bounds
were expected for ideals with some geometric content. This expectation was expressed in the following conjecture:

Conjecture 15.0.2 (Eisenbud-Goto (1984)) Let S = k[x1, . . . , xn] with k = k̄ and suppose p ⊂ (x1, . . . , xn)2 is a homoge-
neous prime ideal. Then

reg(S/p) ≤ e(S/p)− ht(p).
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The condition p ⊂ (x1, . . . , xn)2 is equivalent to saying that the projective variety corresponding to p is not contained in a
hyperplane and thus is optimally embedded. Such ideals are called nondegenerate. It is worth noting that the right-hand side of
the inequality above is always positive for nondegenerate prime ideals.

The Eisenbud-Goto Conjecture can be viewed as an expectation that for ideals with more geometric content, regularity is
better behaved. Via the Bayer-Stillman result, this would then ensure that computations involving prime ideals are much better
behaved than for arbitrary ideals. Castelnuovo essentially showed in 1893 that smooth curves in P3

C satisfy the conjecture. In
1983 Gruson-Lazarsfeld-Peskine [GLP] proved the bound for all curves (smooth and singular) in any projective space. (Re-
member that p defines a projective curve when dim(S/p) = 2.) Pinkham [Pi] and Lazarsfeld [La] proved the bound for smooth
projective surfaces over C. Ran [Ra] proved the bound for most smooth projective 3-folds over C. Eisenbud and Goto also
proved the Cohen-Macaulay case. Numerous other special cases have also been proved.

In 2016, Jason McCullough and Irena Peeva [MP] constructed counterexamples to the Eisenbud-Goto Conjecture. The
construction involved two new concepts: Rees-like algebras and Step-by-step homogenization. Given an ideal I ⊂ S, the Rees
algebra of I is S[It], where t is a new indeterminate. It defines the blow up of projective space along the subvariety defined
by I and thus is important in the resolution of singularities. McCullough and Peeva defined the Rees-like algebra as S[It, t2].
Contrary to the case of the Rees algebra, where defining equations are difficult to find, the defining equations of the Rees-like
algebra are easy. Moreover, McCullough and Peeva constructed the entire minimal graded free resolution of the defining prime
ideal of any Rees-like algebra. Thus they were able to compute the degree and regularity of these ideals and show that they
yield counterexamples to the Eisenbud-Goto Conjecture 15.0.2. Moreover, they showed that there was no polynomial bound
on the regularity of nondegenerate prime ideals purely in terms of the degree. A new homogenization was constructed to form
standard graded analogs of the non-standard graded prime ideals above.

In more recent work, Giulio Caviglia, Marc Chardin, Jason McCullough, Irena Peeva, and Matteo Varbaro [CCMPV]
showed that there is a (necessarily large) bound on the regularity or projective dimension of nondegenerate primes in terms of
the degree alone. They also gave new counterexamples to the Eisenbud-Goto Conjecture 15.0.2 that use Rees algebras instead
of Rees-like algebras and ones that do not rely on the Mayr-Meyer ideals. Work of Craig Huneke, Paolo Mantero, Jason Mc-
Cullough, and Alexandra Seceleanu [HMMS4] shows that no similar bound is possible more generally for primary ideals.

While these counterexamples indicate that the Eisenbud-Goto Conjecture 15.0.2 is false in general, it remains open in the
smooth case. Suppose char(k) = 0 and X ⊂ Pp−1

k is a smooth variety. In this case Sijong Kwak and Jinhyung Park [KP] and
Atsushi Noma [No] reduced it to the Castelnuovo’s Normality Conjecture thatX is r-normal for all r ≥ deg(X)−codim(X).
They do so by bounding the regularity of the structure sheaf of X . Sijong Kwak attended the meeting and gave a talk on “OX
regularity bound for smooth varieties with classification of extremal and next to extremal examples.” The proof uses geometric
properties of double point divisors from inner projections.

Green’s Conjecture
Let S = K[x1, . . . , xn] be a standard graded polynomial ring over a field K. Let I be a homogeneous ideal of S. We denote
by βij(S/I) = dimK TorKi (S/I,K) the graded Betti numbers of S/I . Typically one displays the Betti numbers of a module
in what is called the Betti table. We place βij(S/I) in column i and row j − i. The length of the 2-linear strand of the Betti
table is 2LP(S/I) = max{i |βi,i+1(S/I) 6= 0}, and therefore measures the index of the last nonzero entry in the second row
in the Betti table.

Green’s conjecture concerns the shape of the Betti tables of canonical curves. A projective curve may be embedded into
projective space in many ways, but for non-hyperelliptic cruves there is a canonical embedding into projective space. Resolving
the associated homogeneous ideal I , one finds that S/I is Gorenstein and has Betti table of the form

0 1 2 · · · g-4 g-3 g-2
0: 1 - - · · · - - -
1: - a1 a2 · · · ag−4 ag−3 -
2: - ag−3 ag−4 · · · a2 a1 -
3: - - - · · · - - 1,

where the ai are the only possibly nonzero Betti numbers and g denotes the genus of the curve. We recall the definition of
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the clifford index. For a given line bundle L on C, we set

Cliff(L) = g + 1−
(
h0(ω ⊗ L−1)

)
= degL − 2(h0(L)− 1).

The Clifford index of C (in the case when the genus of C is at least 3) is the minimum of all Clifford indices of bundles L with
h0(L) ≥ 2 and h0(ω ⊗ L−1) ≥ 2. We can now state Green’s Conjecture:

Conjecture 15.0.3 (Green) The length of the 2-linear strand of the resolution of the canonical ring of a curve of genus g and
clifford index c is

2LP(S/I) = g − c− 2.

Equivalently, ag−3 = ag−4 = · · · ag−c−1 = 0 and ag−c−2 6= 0 in the Betti table above.

The generic curve of genus g is known to have Clifford index b(g − 1)/2c. Since the Betti number vanishing condition
above defines a Zariski open set, the generic case of Green’s Conjecture asserts that there exists a smooth curve whose canonical
ring satisfies the conclusion. Special cases of the Conjecture were known, such as for low genus curve, but even the generic
case was open until Clair Voisin resolved the generic case in characteristic 0 in 2005 [V1, V2].

At this meeting Claudiu Raicu presented a new proof (joint work with Marian Aprodu, Gavril Farkas, Stefan Papadima, and
Jerzy Wayman) of the generic Green’s Conjecture that goes further and simplifies Voisin’s proof. Their proof uses a vanishing
theorem for Koszul modules and connects to other exciting work in [AFPRW]

Stillman’s Conjecture
Let S = K[x1, . . . , xn] be a polynomial ring over a field K. View S as a standard graded ring S =

⊕
i≥0 Si, where Si

denotes the K-vector space of degree i homogeneous polynomials. Let I = (f1, . . . , fm) denote a homogeneous ideal of S.
Around 2000, Michael Stillman posed the following:

Conjecture 15.0.4 ([PS, Problem 3.14]) Fix a sequence of natural numbers d1, . . . , dg . Does there exist a number p such
that pdS(S/I) ≤ p, where I is a homogeneous ideal in a polynomial ring S with a minimal system of generators of degrees
d1, . . . , dg? Note that the number of variables in S is not fixed.

It follows from Hilbert’s Syzygy Theorem that pdS(S/I) ≤ n, but the conjecture does not reference the number of vari-
ables. It follows from work of Buch [Bu], Kohn [Ko], and Bruns [Br] that there is no bound on the projective dimension of
three-generated ideals. Thus to find any such bound we must at least take into account the degrees of the generators. More
recent work of Caviglia (see [MS]) that Conjecture 15.0.4 is equivalent to one where we replace projective dimension by regu-
larity.

Previously, only special cases of the Conjecture had been proved, e.g. [En1, En2, HMMS1, HMMS3, MM2, MM3, AH1].
In 2016, Ananyan and Hocster [AH2] gave a proof of Stillman’s Conjecture 15.0.4 in full generality. The bound they prove
is generally non-constructive and it remains open as to what an asymptotically tight bound would look like. But they intro-
duced many new ideas that have already had a significant impact on the field. Notably, their result led to the result of Caviglia,
Chardin, McCullough, Peeva, and Varbaro [CCMPV] mentioned previously. They also introduced the notion of the strength of
a form which we now discuss.

Let f ∈ K[x1, . . . , xn] with deg(f) > 0. We say that F has a k-collapse for k ∈ N, if f is in an ideal generated by k
elements of strictly smaller positive degree. We say that f has strength k if it has a (k + 1)-collapse but no k-collapse. For
instance, all linear forms have infinite strength. If f is a nonzero form of positive degree then f has strength at least 1 if and
only if f is irreducible.

Another new concept was that of a prime (resp. Ri) sequence. A sequence of elements f1, . . . , fm ∈ S is a prime sequence
(respectively Ri -sequence, where i ∈ N), if fj /∈ (f1, . . . , fj−1) and S/(f1, . . . , fj) is a domain (respectively, satisfies (Ri))
for j = 1, . . . ,m. One of the key observations of Ananyan-Hochster was that F has a small collapse if and only if the sin-
gular locus of f is large (i.e. has small codimension). Their proof is a massive yet subtle inductive argument that relies on
a technical theorem of Grothendieck. However, their paper also provides other bounds on the number of associated primes,
degrees and number of generators of primary components, and more for ideals with a fixed number of generators of fixed degree.
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More recently, Daniel Erman, Steven Sam and Andrew Snowden have given two brand new proofs of Stillman’s Conjec-
ture. Both rely on a new characterization of infinitely generated polynomial rings via derivations. One of their proofs uses the
inverse limit of polynomial rings in an increasing finite number of variables. The other proof uses ultra products. The meeting
was fortunate to have Steven Sam give a talk on this paper.

Yet another new proof of Stillman’s Conjecture has been given by Jan Draisma, Michael Lason and Anton Leykin [DLL].
Their proof relies on an initial term and Gröbner basis argument. Despite all the progress on Stillman’s Conjecture, it remains
open as to what the optimal bounds should be in general. Ananyan and Hochster have announced a forthcoming paper giving
explicit bounds in the case of ideals generated by quadrics, cubics, and quartics but even these bounds are large and far from
optimal.

Presentation Highlights
Including the talks discussed above, there were 22 talks given at the workshop. Here we survey the highlights among those talks.

Hai Long Dao spoke about joint work [DDM] with Allesandro de Stefani and Linquan Ma. Inspired by a question raised by
Eisenbud-Mustaţă-Stillman regarding the injectivity of maps from Ext modules to local cohomology modules, they introduce a
class of rings which called cohomologically full rings. In positive characteristic, this notion coincides with that of F-full rings,
while in characteristic 0, they include Du Bois singularities. They prove many basic properties of cohomologically full rings,
including their behavior under flat base change. Ideals defining these rings satisfy many desirable properties, in particular they
have small cohomological and projective dimension. Furthermore, they obtain Kodaira-type vanishing and strong bounds on
the regularity of cohomologically full graded algebras.

Takayuki Hibi spoke on joint work [HM] with Kazunori Matsuda entitled “Regularity and h-polynomials of monomial
ideals.” Let S = K[x1, . . . , xn] denote the polynomial ring in n variables over a field K with each deg xi = 1 and
I ⊂ S a homogeneous ideal of S with dimS/I = d. The Hilbert series of S/I is of the form hS/I(λ)/(1 − λ)d, where
hS/I(λ) = h0 + h1λ + h2λ

2 + · · · + hsλ
s with hs 6= 0 is the h-polynomial of S/I . It is known that, when S/I is Cohen–

Macaulay, one has reg(S/I) = deg hS/I(λ), where reg(S/I) is the (Castelnuovo–Mumford) regularity of S/I . Hibi showed
how, given arbitrary integers r and s with r ≥ 1 and s ≥ 1, a monomial ideal I of S = K[x1, . . . , xn] with n� 0 for which
reg(S/I) = r and deg hS/I(λ) = s could be constructed.

Srikanth Iyengar spoke on joint work with Mark Walker [IW] on “Examples of finite free complexes of small rank and small
homology.” Given Walker’s resolution of the Total Rank Conjecture, one could imagine that there are lower bounds on the total
Betti numbers of certain complexes more generally. To the contrary, Iyengar and Walker construct finite free complexes over
commutative noetherian rings such that the total rank of their underlying free modules, or the total length of their homology, is
less than predicted by various conjectures in the theory of transformation groups and in local algebra.

Satoshi Murai spoke on “h-vectors and the number of generators of fundamental groups,” representing joint work [MN]
with Isabella Novik. In his talk, he showed how to resolve a conjecture of Kalai asserting that the g2-number of any (finite)
simplicial complex ∆ that represents a normal pseudomanifold of dimension d ≥ 3 is at least as large as

(
d+2

2

)
m(∆), where

m(∆) denotes the minimum number of generators of the fundamental group of ∆. He also showed how to prove that a weaker
bound, h2(∆) ≥

(
d+1

2

)
m(∆), applies to any d-dimensional pure simplicial poset ∆ all of whose faces of co-dimension at least

2 have connected links.

Maria Rossi gave a talk on “A generalization of Macaulay’s correspondence for Gorenstein k-algebras and applications.”
Macaulay’s inverse systems give a one-to-one correspondence between Artinian, Gorenstein ideals in R = k[x1, . . . , xn] and
finitely-generatedR-submodules of the injective envelope ofR. Rossi gave a talk on how this picture generalizes to Gorenstein
ideals of arbitrary dimension. This is joint work [ER] with Juan Elias.

Hal Schenck spoke on joint work with Matt Mastroeni and Mike Stillman. In his talk entitled “Theta characteristics, Koszul
algebras, and the Gorenstein property,” Schenck addressed a question of Conca who asked if every quadratic, Gorenstein alge-
bra R of regularity at most 3 is Koszul. They construct a family of counterexamples using the idealization process.

Matteo Varbaro reported on joint work [CV] with Aldo Conca on “Square-free Gröbner Degenerations.” They address a
conjecture of Jürgen Herzog regarding square-free initial ideals. It is well known that the graded Betti numbers, projective
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dimension, regularity of the initial ideal of an ideal I are upper bounds for those of I itself. A celebrated result of Bayer and
Stillman says that in the degree revlex order and in generic coordinates, these upper bounds become equalities. It had been
conjectured by Herzog that this was also the case under any monomial order when the initial ideal was a square-free monomial
ideal. Varbaro gave a detailed talk in which he and Conca prove Herzog’s conjecture.

Outcome of the Meeting
This meeting brought together 41 researchers in commutative algebra and algebraic geometry. The meeting allowed for par-
ticipants from far away a chance to talk and collaborate. The participants hailed from Canada, France, Germany, Italy, Japan,
South Korea, Spain, and USA.

The meeting was very received very positively with many excellent talks. Several participants reported starting new col-
laborations as a result of attending the meeting. We include here some of the feedback and testimonials the organizers received
regarding the benefits and outcomes of their attendance.

David Eisenbud wrote: “It really was a great workshop. Hightlights for me were the talks reporting on 4 spectacular results:

1. New, simpler proof of Voisin’s theorem on Green’s conjecture (Raicu)

2. New, very clever and simpler proof of Ananyan-Hochster’s result on Stillman’s problem (Sam)

3. Wonderful and surprising results on square free initial ideals (Varbaro)

4. Proof of Kalai’s conjecture (Murai)

...and lots more.
For my own research, I was particularly happy to interact with Mats Boij, who showed me some things related to inverse

systems that I will now publish as part of the next Macaulay2 release.”

Takayuki Hibi wrote: “My participation in the BIRS workshop created a motive to write a new paper as well as a new
research project. In fact, (a) During the coffee break just after my talk, Marc Chardin kindly made a frank comment about the
argument in my talk. His suggestion, in fact, can make our proof much elegant and, as a result, yields a motive to write a new
paper. (b) Talking to Adam Van Tuyl over lunch about a conjecture on edge ideals, he agreed with me about making a new joint
research project on regularity of edge ideals. Even though each of us have written a lot of papers on edge ideals, I have never
had an opportunity to have a conversation with him. This is one of the most productive benefits gotten from participating in the
workshop.”

Srikanth Iyengar wrote: “Besides giving a chance to catch up and pursue “old” collaborators and collaborations (among
whom I count Mark Walker, Claudia Miller and Liana Sega), the conference gave me a chance to talk to Lukas Katthaen. I
am not sure this will lead to any theorems right away, but we certainly started a conversation that will be continued. Another
benefit of the meeting was that I learnt some new things from Bernd Ulrich’s talks that are pertinent to a ongoing project I have
with Ryo Takahashi.”

Thomas Kahle wrote: “I really enjoyed the workshop and how it helped me to stay up to date with some very recent
developments in commutative algebra such as the result by Varbaro and Conca that extremal Betti numbers are preserved under
square-free Gröbner degenerations.

Attending the workshop also gave me the chance to renew some long-running collaborations. Together with Lukas Katthän
we tested some ideas on random structures in commutative algebra. The wonderful atmosphere at BIRS and Banff makes all
this much more enjoyable and effective than collaboration via e-mail.”

Paolo Mantero wrote: “This workshop also gave me the opportunity to make progress on two joint projects, one with J.
McCullough and one with A. Sammartano; most likely the projects will be done around the end of the Fall semester. I also
had the opportunity to discuss research ideas with Matteo Varbaro and Maria Evelina Rossi, which I am very grateful for, since
both researchers reside and work in Europe, so without the workshop it is unlikely I could have had this great interactions with
them.

Additionally, the workshop helped me strengthen the relation with Greg Smith and Adam Van Tuyl; as a likely outcome
I will give talks at their institutions (Queen’s University and McMaster University) in the near future. It opens the door to
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potential future collaborations.”

Irena Swanson wrote: “I enjoyed the conference, the talks, and the people very much. Thank you for inviting me. I will
be teaching a course on homological algebra on my Fulbright at University of Graz this fall, so connecting with very recent
research in the area is very beneficial. I learned much.”

Adam Van Tuyl wrote: “I just wanted to write and thank you again for inviting me to conference at BIRS. I really enjoyed
the talks, and I came away with a couple of new ideas to play with.”
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Chapter 16

Spectral Geometry: Theory, Numerical
Analysis and Applications (18w5090)

July 1 - 6, 2018
Organizer(s): Nilima Nigam (Simon Fraser University), Iosif Polterovich (Université de Montréal),
Justin Solomon (MIT)

Overview of the Field
Spectral geometry is an area of mathematics at the intersection of analysis, partial differential equations and differential ge-
ometry. It investigates the properties of eigenvalues and eigenfunctions of the Laplacian and other operators, including their
dependence on the geometric, topological and dynamical features of the underlying space (e.g. a Riemannian manifold or a
Euclidean domain).

Originally, spectral geometry was motivated by the study of mathematical models of physical processes, such as vibration,
heat propagation, oscillations of fluids and quantum-mechanical effects. The quest to better understand these phenomena lead
to the development of powerful analytic and numerical methods in geometric spectral theory and also had a profound impact on
engineering applications. In recent years, new and somewhat unexpected applications of these techniques to computer science
have emerged, notably to shape recognition and machine learning. These applications, in turn, inspire new exciting theoretical
and computational challenges.

Spurred by recent fast-paced progress on theoretical and applied aspects of spectral geometry, our workshop brought
together experts on theoretical, numerical and applied aspects of this discipline, with the objective to foster interactions and
promote new collaborations. To our knowledge, no interdisciplinary meetings of this kind have been held previously, and by
all accounts the meeting led to a variety of new research collaborations and open problems.

Recent Developments
There is a long history of fruitful interactions between geometric spectral theory, numerical analysis and computer science.
In recent years, the interplay between these fields has reached new heights due to the emergence of increasingly powerful
computers, new motivating applications and more efficient numerical algorithms.

Numerical calculations serve as an indispensable source of intuition and are behind many important advances in spectral
geometry. In particular, numerical experiments played a stimulating role in recent breakthrough research on nodal portraits of
random linear combinations of eigenfunctions (see, for instance, [?, ?, ?]). Numerical methods are actively used in the rapidly
developing theory of spectral minimal partitions (see [?, ?]). For low eigenvalues, numerical experiments are a major source
of conjectures in shape optimization problems (see [?, ?, ?, ?]). An exciting new trend is to use numerical analysis not only to
formulate conjectures, but to actually prove theorems in spectral geometry [?, ?] using rigorous computer-assisted methods.
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Some of the most important recent applications of spectral geometry lie in the areas of shape analysis and machine learning
(see [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]). These applications are based on the properties of spectral quantities such as heat
kernels and eigenfunctions associated with the Laplacian (see, for instance, [?, ?]). As it is now well-understood, the Laplacian
on a Riemannian manifold carries a lot of information about intrinsic geometry. To capture the extrinsic geometry of shapes
using spectral quantities, however, one needs to use other operators. A natural choice is the Dirichlet-to-Neumann operator,
which, incidentally, has been in the focus of intensive research in theoretical spectral geometry in recent years (see [?, ?, ?, ?, ?,
?, ?]). The collection of eigenvalues of the Dirichlet-to-Neumann operator is also called the Steklov spectrum, as it is precisely
the spectrum of the Steklov boundary value problem. Recent advances in the study of the Steklov spectrum, particularly, of the
corresponding geometric invariants, open up a number of promising new applications to shape analysis (see [?]).

Accompanying these developments, the design and analysis of high-accuracy discretization methods for spectral prob-
lems and optimal design has been the focus of intense research activity in numerical analysis. A plethora of discretization
techniques—including methods based on particular solutions [?], spectral methods, finite element methods [?, ?] and integral
equation methods [?]—have been developed. Each of these methods presents both advantages and challenges in the numerical
analysis, and this analysis in turn leads us to improved understanding of the properties of the eigenvalues and eigenfunctions
of the operators under investigation, and can spark entirely novel areas of development. For example, as described in [?], the
use of very common Lagrange finite elements for the Maxwell eigenvalue problem was shown to yield the wrong spectrum
even on simple geometries, motivating the large-scale adoption of the edge finite elements. The design of numerical methods
for inverse problems has lead to the investigation of (nonlinear and non self-adjoint) transmission eigenvalue problems, and
this in turn lead to the design of novel methods. The computations were used extensively to enhance our understanding of the
situations under which the existence of such eigenvalues could be proven. The design of a boundary integral method for mixed
Dirichlet-Neumann eigenvalues of the Laplacian is necessarily intertwined with a careful study of the asymptotic behaviour of
the eigenfunctions [?].

Upon discretization, the resulting large discrete systems have been coupled to state-of-the-art eigenvalue solvers and opti-
mization methods. Naı̈ve approaches do not suffice, and the design of good algorithms in this area has yielded many interesting
and challenging research directions, due to the potentially nonlinear/non-convex nature of the objective function to be opti-
mized. If the eigenvalues are clustered, or if the original spectrum is not discrete, these problems are much harder, see e.g. [?].

Another fascinating and important area of investigation seeks to provide computable error bounds and eigenvalue enclo-
sures, e.g. [?]. These bounds are crucial if numerical methods are to be used for formulating conjectures.

Finally, practitioners in geometry processing, computer graphics, medical imaging, machine learning, and other compu-
tational disciplines have employed spectral geometry to great effect, improving the quality and flexibility of algorithms for a
broad range of geometric tasks. The most exciting research in this field requires synthesis of theoretical, numerical, and ap-
plied ideas to motivate practical research problems, extract detailed understanding of underlying models, and formulate discrete
approximations that provide a stable, faithful link between theory and practice.

Presentation Highlights
In view of the interdisciplinary nature of the workshop, the talks were equally divided into three main themes: theory, numerics
and applications. In each theme, one talk was reserved for an overview of the subject. All speakers were advised to give
colloquium-style presentations accessible to non-experts.

Theoretical aspects of spectral geometry
A broad historical overview of theoretical advances in spectral geometry from Lord Rayleigh and Hermann Weyl to our time
was presented by Michael Levitin. He described some major results on eigenvalue estimates, spectral asymptotics and spectral
geometry of the Dirichlet-to-Neumann map. These were recurrent themes during the workshop, and Michael’s talk served as
an excellent introduction to the subject.

The talks by Dorin Bucur and Mikhail Karpukhin were concerned with shape optimization for Laplace eigenvalues on
Riemannian manifolds and Euclidean domains. Dorin Bucur presented his recent work with Antoine Henrot [?] on the max-
imization of the second nonzero Neumann eigenvalue on Euclidean domains. They have shown that among all domains (not
necessarily connected) of given volume, the second nonzero Neumann eigenvalue is maximized by a disjoint union of two iden-
tical balls. This result extends the 2009 theorem of Girouard, Nadirashvili and Polterovich [?] who proved a similar statement
for simply connected planar domains. Mikhail Karpukhin reported on his recent joint work with Nadirashvili, Penskoi and
Polterovich on a sharp isoperimetric inequality for all Laplace eigenvalues on a sphere [?]. It was shown that for any positive
integer k, the k-th nonzero eigenvalue on the two-dimensional sphere endowed with a Riemannian metric of fixed area, is
maximized in the limit by a sequence of metrics converging to a union of k touching identical round spheres. This proved a
conjecture posed by Nadirashvili in 2002.



182 Five-day Workshop Reports

David Sher and Asma Hassannezhad spoke about recent progress in understanding spectral asymptotics for Steklov-type
problems on Euclidean domains. David Sher presented his recent joint work with Levitin, Parnovski and Polterovich on the
proof of the two-term asymptotic formula for sloshing (mixed Steklov–Neumann) eigenvalues on planar domains [?]. In
particular, this result confirmed the 1983 conjecture of Fox–Kuttler [?] and could be considered a first step towards obtaining
sharp spectral asymptotics for the Steklov eigenvalues (or, equivalently, eigenvalues of the Dirichlet-to-Neumann map) on
polygons. Asma Hassannezhad’s talk was based on her joint work with Ari Laptev [?] on estimates on the Riesz means for the
eigenvalues of mixed Steklov problems on Euclidean domains of arbitrary dimension.

Virginie Bonnaillie-Noël presented a collection of analytic and numerical results on spectral minimal partitions. Earlier
developments on this topic were mostly concerned with either sums or maxima of the first eigenvalues of a partition. The talk
focused on recent advances in the general case of the p-norm of the vector composed by the first eigenvalues of each subdomain
of the partition. Some of these results were obtained jointly with Beniamin Bogosel [?, ?].

Yaiza Canzani presented her recent joint works with John Toth and Jeffrey Galkowski [?, ?] on estimates of the averages of
Laplace eigenfunctions over Riemannian submanifolds. Particularly strong results were obtained for surfaces with an Anosov
geodesic flow, such as surfaces of negative curvature.

Numerical methods
Jeff Ovall presented an overview of discretization strategies and methods for locating the eigenvalues of discrete systems. Naı̈ve
implementations of discretizations can lead to problematic results, and this point was highlighted by simple examples. Next,
he presented a filtered subspace iteration strategy for (possibly) unbounded self-adjoint operators. The method is analyzed in
a fairly general framework. The bulk of the computational effort in the algorithm involves approximating the action of the
resolvent at a few points along a contour enclosing the eigenvalues of interest.

David Colton provided a survey of transmission eigenvalue problems. These arise in inverse scattering theory, and are
non-self-adjoint in nature. Transmission problems exhibit fascinating spectral properties and many open questions remain:
indeed, the existence of the spectrum is only guaranteed under fairly restrictive assumptions on the contrast parameter. Whether
these can be relaxed is an interesting open question. A remarkable connection (due to Fioralba Cakoni and Sagun Chanillo)
between the location of transmission eigenvalues for automorphic solutions of the wave equation in the hyperbolic plane and
the Riemann hypothesis was also briefly discussed.

The spectral indicator method described by Jiguang Sun is an efficient method for determining the location and multiplicity
of eigenvalues in the complex plane. The indicators are inexpensive to compute, and the method is memory-efficient even for
large spectral problems.

There is an intimate connection between the numerical analysis of wave scattering problems and the calculation of spectra;
the family of time-domain spectral methods have typically relied on the availability of eigenfunctions of the Laplacian on a
given domain to serve as an efficicent basis. These can, however, be prohibitively expensive to compute on complex geometries.
Oscar Bruno described the need for spectrally accurate algorithms for both scattering and spectral problems, and discussed some
of the key ideas behind integral-equation based approaches.

Xuefeng Liu presented the recent progress in providing guaranteed eigenvalue bounds in computation. For all but the
simplest geometries the eigenvalues of elliptic operators are computed via approximation; it is important to be able to state
computable intervals around the approximate eigenvalue within which the true eigenvalue is guaranteed to lie. Such a method
is now available using finite element methods, and guaranteed eigenvalue bounding strategies for the Laplace, the Biharmonic,
the Stokes, the Steklov operators were presented. A related talk was given by Joscha Gedicke on his joint worith with Carsten
Carstensen. He discussed recent results on guaranteed lower bounds for eigenvalues of the Laplace operator on arbitrary
coarse meshes using the nonconforming Crouzeix-Raviart finite element method. This approach was shown to yield guaranteed
eigenvalue bounds of surprisingly high accuracy.

Francesca Gardini’s talk was concerned with the adaptive finite elmeent method for eigenvalue problems. In particular, she
explained how this method could be used to approximate multiple eigenvalues and clusters of eigenvalues. Optimal convergence
of the method for the Laplace eigenvalue problem in mixed form was also discussed.

Sebastien Dominguez presented his joint work with Nilima Nigam and Jiguang Sun on Jones modes in Lipschitz domains.
The Jones eigenvalue problem is an overdetermined problem, where the Neumann eigenvalue problem for linear elasticity is
coupled with a constraint on the normal trace of the displacement along the boundary. It is relatively unexplored and has
many interesting features, notably its sensitive dependence on boundary geometry. In the talk, existence of eigenpairs for this
eigenvalue problem was proved in two and three dimensions, and some numerical results were presented on simple geometries.

The meeting concluded by the talk of Braxton Osting on his joint work with Dong Wang and Ryan Viertel on diffusion
generated methods for target valued maps. Diffusion generated methods were discused for minimizing the Dirichlet energy
of a function taking values in a wide class of target sets. Applications to finding Dirichlet partitions, generating quadrilateral
meshes and solving certain inverse problems were presented.
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Applications
Justin Solomon gave a survey of applications of spectral geometry to different disciplines in computer science, including
computer graphics, machine learning, and medical imaging. The key theme in his talk was to show how the numerical methods
and theoretical results covered in the previous survey talks are incorporated into algorithms that leverage the geometry of
scanned shapes and abstract clouds of data points.

Ron Kimmel reported on applications of spectral geometry to surface classification. The classification problem is to find
an algebraic representation for each surface that would be similar for objects within the same class and preserve dissimilarities
between classes. He discussed how to transform the geometric problem of surface classification into an algebraic form of
classifying matrices. The eigenfunctions of the Laplacian with two distinct metrics on a surface are used extensively [?].
Another key topic is the connection with deep learning techniques, and a new approach for encoding geometric intuition into
modeling, training, and testing. The key idea is to design learning algorithms to use geometric representations and invariants,
for applications from shape matching, facial surface reconstruction from a single image, to reading facial expressions [?, ?, ?].

Etienne Vouga described preliminary results on inverse spectral problems, namely how to embed a piece of geometry given
its Laplace–Beltrami spectrum. His talk covered a promising new algorithm leveraging spherical conformal parameterization
techniques to pose the problem in terms of optimization over spherical harmonic coefficients. Preliminary experiments show
some promise for practical tools that solve the inverse spectral problem numerically.

Mirela Ben-Chen and Amir Vaxman demonstrated the value of spectral geometry algorithms for problems involving vectors
and frames on discrete surfaces. Prof. Ben-Chen’s talk focused on an operator-based approach to vector field processing,
representing fields not as collections of direction vectors but rather as derivative operators discretized as matrices; her work
reveals new discretization techniques with structure-preserving properties, as well as applications to field design [?, ?] and
simulation [?, ?]. Prof. Vaxman presented efforts to unify directional field processing with subdivision operators for discrete
surfaces, providing a representation of vector fields compatible with subdivision-based superresolution.

Hervé Lombaert demonstrated the value of spectral techniques for medical image processing [?], in particular correspon-
dence between 3D brain models gathered using MRI. In this domain, spectral algorithms allow for efficient and accurate
intrinsic matching of neuroimaging data, enabling tools that transfer labels and other information across multiple scans and
subjects [?].

Finally, Yu Wang showed that intrinsic surface-based algorithms for geometry processing can be extended to incorporate
volumetric information by replacing the Laplacian with the Dirichlet-to-Neumann operator [?]. His application of the boundary
element method (BEM) enables volumetric shape analysis without tetrahedral remeshing to fill the volume bounded by a
surface. Intriguing theoretical questions arise from his work involving the behavior of integral operators involved discretizing
the Dirichet-to-Neumann operator in the case of open surfaces.

Outcomes of the Meeting
The intents of this meeting were to (a) capture the state-of-the-art in the theory, numerical analysis and applications of spectral
geometry, (b) provide a forum for experts in these typically disparate communities to interact and (c) identify common chal-
lenges or problems of mutual interest. As is typical in many mathematical disciplines, several subcommunities of researchers
make significant progress with little “cross-pollination”, sharing their results with others who may benefit or have ideas for
extension.

The current workshop was demonstrably successful in achieving these goals. Longer tutorial and survey-style talks from
theory, numerics and applications set a common technical base and vocabulary among the participants. For instance, we saw
that the ‘stiffness matrix’ in finite elements is the ‘cotangent Laplacian’ in discrete differential geometry. Shorter talks presented
the state-of-the-art from the viewpoint of the subcommunities, and the tutorials prepared all the participants to understand some
of the recent developments in the field more broadly, as well as to launch meaningful interactions and collaborations. The
breaks and open problem sessions generated several interactions and inspired research projects of mutual interest. Here is a
sampling of open problems:

Inferring interior structure of Mars from spectral data
The first seismometer is about to land on Mars in November 2018. Amongst other data, it will be able to measure the spectrum of
free elastic oscillations of the planet. What can be inferred about the internal structure of Mars from this data? Do discontinuities
in the media have a “spectral fingerprint” in terms of heat invariants, Weyl asymptotics, or some other spectral quantity? As a
simple first model, one may consider the Neumann spectrum of the Laplace-Beltrami operator on a Riemannian manifold with
boundary when the metric has a conormal jump or other singularities across a hypersurface.

This problem was presented by Joonas Illmavirta.
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A numerical analysis for the Jones eigenvalue problem in elasticity in curvilinear domains
An unusual eigenvalue problem in elasticity was introduced by D.S. Jones [?], in the larger context of fluid-structure and
elastodynamic transmission problems. Stated abstractly, the eigenvalue problem is as follows. Let Ω be an open and bounded
domain in Rd with reasonable boundary, and λ, µ ∈ R are given constants so that µ > 0, λ + 2

d
µ > 0. We seek nontrivial u,

vector fields in Ω, and ω2 ∈ C such that

Lu := µ∆u + (λ+
2

d
µ)grad divu = ω2u (16.0.1)

in Ω. On the boundary we enforce the natural boundary condition for the Lamé operator L. In addition, we enforce u · n = 0
on the boundary of Ω, where n is the unit outer normal to the boundary (defined a.e.). It was only recently established that this
constrained eigenvalue problem has a discrete countable spectrum in non-axisymmetric domains with Lipschitz boundaries; it
was shown by Hargé in 1990 that the set of C∞ domains which do not support such a spectrum is dense amongst all possible
C∞ domains. It is clear that any rigid rotation is a Jones mode in a disk, and so zero is an eigenvalue of L in some instances.

We would like to understand the approximation problem of computing these eigenmodes in curvilinear domains. A standard
mesh of triangles will not approximate the boundary exactly, and a consistency error is committed. Certain coercivity constants
degenerate in the passage from polygonal domains with many sides to a curvilinear domain, and therefore one question is:
In what situations does the Jones spectrum on approximating domains approach the true Jones spectrum, and at what rate?
Another question is: Can one develop a stable approximation scheme for the eigenmodes in curvilinear domains?

This problem was presented by Nilima Nigam.

Discrete isoperimetric inequalities
Fine-grained results characterize isoperimetry in terms of the eigenvalues of the Laplacian operator for shapes embedded in
the plane; for instance, the shape extremizing the first eigenvalue is a circle. No analogous results, however, are known about
discrete Laplacian operators, e.g. the cotangent Laplacian from first-order finite elements on a triangle mesh. Suppose the
topology of a triangle mesh with n vertices is fixed. Then, we could consider the first nonzero Laplacian eigenvalue of the mesh
to be a function λ(X) : Rn×2 → R+, whereX ∈ Rn×2 gives the positions of the vertices in the plane. Then, we could ask the
usual isoperimetric question: What configuration of vertices in X extremizes λ(X) subject to a constraint on the area covered
by X in the plane?

Similarly, if we fix the boundary of a polygonal region Ω ⊆ R2, we have many choices of triangulations in the interior of
Ω. A distinguishing feature of the discrete problem is that different triangulations of the same region in the plane may have
different spectra. Hence, we can ask: What conditions on a mesh of Ω make for larger or smaller principal eigenvalues?

This problem was presented by Justin Solomon.

Participants
Ben-Chen, Mirela (Technion - Israel Institute of Technology)
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Cakoni, Fioralba (Rutgers University)
Canzani, Yaiza (University of North Carolina at Chapel Hill)
Charron, Philippe (Université de Montréal)
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Around Quantum Chaos (in conjunction
with 2018 ICMP in Montreal) (18w5002)

July 15 - 20, 2018
Organizer(s): Dmitry Jakobson (McGill University), Stephane Nonnenmacher (Universite
Paris-Sud), Steve Zelditch (Northwestern university)

Introduction
The workshop was focussing on various aspects of “quantum chaos”, namely the study of quantum or wave systems, the clas-
sical limit of which exhibits some chaotic behaviour. More generally, the talks concerned the high frequency and semiclassical
limit of wave propagation in various geometric settings.

Quantum Chaos aims to understand spectra and eigenstates of quantum systems, and relate them to the properties of the cor-
responding classical dynamical system. The Correspondence Principle in Quantum Mechanics predicts that certain features of
the classical system manifest themselves in the semiclassical limit of its quantization. For example, the properties of high energy
eigenvalues and eigenfunctions of the Laplacian ∆ on a Riemannian manifold should reflect the properties of the corresponding
geodesic flow. Other examples include the billiard flow, for spectral problems on manifolds with boundary (Gérard–Leichtnam,
Zelditch–Zworski); the frame flow, for the Dirac operator and the Hodge Laplacian (Jakobson–Strohmaier–Zelditch); and
branching billiard flows, for systems where the operator coefficients have jump discontinuities (Colin de Verdière, Jakobson–
Safarov–Strohmaier).

The workshop gathered specialists studying such problems for various systems, including Riemannian manifolds (with
ergodic, completely integrable or mixed geodesic flows), arithmetic manifolds, quantum graphs, as well as random systems.
The spectral theory of such systems is studied using a variety of different methods, including microlocal analysis, number
theory, the theory of elliptic PDE, probabilistic methods and graph theory. The goal of the workshop was to review the latest
progress in the field (including the work related to several fascinating universality conjectures), and to facilitate interactions
between specialists of different subdomains.

The workshop was organized in conjunction with 2018 ICMP in Montreal that was held the following week. Many work-
shop participants also took part in the ICMP.

Participants
The workshop attracted altogether 34 participants, among whom 6 graduate students, 3 postdocs and about 5 recently hired
academics. A vast majority of the participants stayed the whole week. The origin of the participants was essentially Western
Europe and North America.
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Detailed report
Monday was devoted to the analysis of high frequency eigenfunctions of Laplace-Beltrami or Schrödinger operators on Rie-
mannian manifolds. The structure of these eigenfunctions can be described in various ways: through their Lp norms (how
fast do the norms grow with the frequency?), through their restrictions on submanifolds, through their microlocal concentra-
tion properties (that is, their localization properties on the manifold and in Fourier space), through the structure of their nodal
set. The interplay between these different aspects has proved very fruitful. Some of the talks focussed on situations of Quan-
tum chaos, that is when the geodesic flow on the manifold is chaotic, leading to a certain amount of delocalization for the
eigenfunctions.

The first talk was given by Jeff Galkowski. The title was Concentration of eigenfunctions: sup norms and averages. Jeff
related the microlocal concentration of Laplace eigenfunctions (that is, their localization in phase space) to their sup-norms and
their averages on submanifold. In particular, he presented a unified picture for sup-norms and submanifold averages, which
characterizes the concentration of those eigenfunctions with maximal growth. He then exploited this characterization to derive
geometric conditions under which maximal growth cannot occur. Moreover, he obtained quantitative gains on possible growth
in a variety of geometric settings. The talk was mostly based on joint works with Y.Canzani and J.Toth.

The second talk was given by Semyon Dyatlov, who spoke on Lower bounds on eigenfunctions and fractal uncertainty
principle. The talk concerned the following problem. Let (M, g) be a compact Riemannian manifold and Ω ⊂M a nonempty
open set. Take an L2 normalized eigenfunction uλ of the Laplacian on M with eigenvalue λ2. What lower bounds can we get
on the mass mΩ(uλ) =

∫
Ω
|uλ|2? There are two well-known bounds for a general manifold M :

(a) mΩ(uλ) ≥ c e−cλ, following from unique continuation estimates,

(b) mΩ(uλ) ≥ c, assuming that Ω intersects every sufficiently long geodesic (this is known as the geometric control
condition).

(in both cases c > 0 is independent of λ). In general one cannot improve the bound (a) for an arbitrary domain Ω, as illustrated
by the example of the “Gaussian beam” eigenstates of the round sphere, which are exponentially concentrated along the equator.

Semyon presented a recent result which establishes the lower bound (b) for any choice of Ω if M is a compact surface
of constant negative curvature. This bound has numerous applications, such as a control for the Schrödinger equation, the
exponential decay of damped waves (no matter how small the support of the damping is), and the full support property for
the semiclassical measures associated with the eigenstates. The proof uses the chaotic nature of the geodesic flow on M . The
key new ingredient is a recently established Fractal Uncertainty Principle, which states that no function can be simultaneously
localized close to fractal sets in both position and frequency. This talk was based on joint works with Joshua Zahl, Jean Bourgain
and Long Jin.

The first talk of the afternoon was given by John Toth, joint work with X. Wu. It was titled Reverse Agmon estimates for
Schrödinger eigenfunctions. Let (M, g) be a compact, Riemannian manifold and V ∈ C∞(M ;R). Given a regular energy
level E > minV , John considered L2-normalized eigenfunctions, uh of the semiclassical Schrödinger operator P (h) =
−h2∆g + V with eigenenergies E(h) = E + o(1) as h → 0+. The well-known Agmon-Lithner estimates are exponential
decay estimates (i.e. upper bounds) for eigenfunctions in the forbidden region {V (x) > E}. The decay rate is given in terms of
the Agmon distance function dE associated with the degenerate Agmon metric (V −E)+ g supported in the forbidden region.

The main result is a partial converse to the Agmon estimates (ie. exponential lower bounds for the eigenfunctions) in terms
of Agmon distance in the forbidden region, under a control assumption on the L2 mass of the eigenfunction in the allowed
region {V (x) < E} arbitrarily close to the caustic {V (x) = E}. John explained this reverse Agmon estimate, and then
gave some applications to the restrictions of the eigenfunctions on hypersurfaces situated in the forbidden region, along with
corresponding nodal intersection estimates.

The next talk was given by Lior Silberman (joint work with S. Eswarathasan), entitled Scarring of quasimodes on hyperbolic
manifolds. For M be a compact hyperbolic manifold, the entropy bounds of Anantharaman et al. restrict the possible invariant
measures on T 1M that can be obtained as semiclassical measures of sequences of Laplace eigenfunctions. On the other hand, if
one relaxes the strict eigenfunction condition, but authorizes approximate eigenfunctions (“quasimodes”) with a certain preci-
sion, the associated semiclassical measures may be less constrained. The precision threshold beyond which the entropy bounds
relax corresponds to so-called “logarithmic quasimodes” (the precision depends inverse logarithmically with the approximate
eigenvalue). It is thus relevant to construct quasimodes of this precision, which may be associated with more singular semiclas-
sical measures. Generalizing works of Brooks and Eswarathasan–Nonnenmacher (who constructed logarithmic quasimodes
concentrated on closed hyperbolic geodesics), Silberman considered hyperbolic manifolds M admitting a totally geodesic
submanifold, and then constructed logarithmic quasimodes concentrating on this submanifold.

Etienne Le Masson gave the last talk on Monday, titled Quantum Chaos in the Benjamini-Schramm limit, based on joint
works with T. Sahlsten, M. Abert and N. Bergeron. One of the fundamental problems in quantum chaos is to understand
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how high-frequency waves behave in chaotic environments. A famous but vague conjecture of Michael Berry predicts that
they should look on small scales like Gaussian random waves. Etienne showed how a notion of convergence for sequences of
manifolds, called the Benjamini-Schramm convergence, can provide a satisfying formulation of this conjecture. The Benjamini-
Schramm convergence includes the high-frequency limit as a special case, but provides a more general framework. Based on
this formulation, he expanded the scope and considered a case where the frequencies stays bounded but instead the size of
the manifold increases. He formulated the corresponding random wave conjecture and presented some results to support it,
including a quantum ergodicity theorem.

Tuesday was concerned with the study of nodal sets and critical sets of high frequency eigenfunctions, a topic which has
experienced a boom in the last 10-15 years. Examples included the Laplace-Beltrami operator on manifolds or on quantum
graphs, as well as the perturbations of the Harmonic oscillator on Rn, where the geometry of the nodal set drastically differs
between the allowed vs. forbidden regions of space.

The first talk was by Boris Hanin, titled Nodal Sets and Eigenvalues for Small Radial Pertrubations of the Harmonic
Oscillator. In this talk, he presented some recent results (joint with T. Beck) about the behavior near infinity of the nodal sets of
eigenfunctions for a small radial perturbation of the harmonic oscillator. For the unperturbed oscillator P (h) = −h2∆ + |x|2,
the separation of variables allows to write eigenfunctions as products of Laguerre functions and spherical harmonics. For a
fixed energy E0 > 0 and small semiclassical parameter h > 0, the eigenfunctions with energies E = h(n+ d/2) ≈ E0 may
be composed of spherical harmonics of degrees (= angular momentum) up to h−1. Imposing a radial perturbation, the energy
E eigenspace breaks into different energies with different angular momenta. The radial rate of growth for the eigenfunctions is
an increasing function of their energy E. The authors’ results give precise information about which angular momenta give the
largest energies after perturbation, and are able to draw quantitative estimate for the nodal set of these eigenfunctions deep into
the forbidden region.

The next talk was by Robert Chang, titled Log-scale equidistribution of nodal sets in Grauert tubes. Let M be a compact
real analytic negatively curved manifold. It admits a complexification in which the metric induces a pluri-subharmonic function√
ρ whose sublevel sets are strictly pseudo-convex domains Mτ , known as Grauert tubes. The Laplace eigenfunctions on M

analytically continue to the Grauert tubes, and their complex nodal sets are complex hypersurfaces in Mτ . S.Zelditch proved
that the normalized currents of integration over the complex nodal sets tend to a single weak limit ddc

√
ρ along a density one

subsequence of eigenvalues. In this talk, Robert discussed a joint work with S.Zelditch, in which they showed that the weak
convergence result holds on small scale, namely, on logarithmically shrinking Kaehler balls whose centers lie in Mτ \ M .
The main technique is a Poisson-FBI transform relating quantum ergodicity on Kaehler balls to quantum ergodicity on the real
domain. Similar small-scale quantum ergodicity results were obtained in the Riemannian setting by Hezari-Riviere and Han,
and in the ample line bundle setting by Chang-Zelditch.

In the next talk, Graham Cox talked about Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map. Courant’s
nodal domain theorem provides a natural generalization of Sturm–Liouville theory to higher dimensions; however, the result
is in general not sharp. It was recently shown that the nodal deficiency of an eigenfunction is encoded in the spectrum of
the Dirichlet-to-Neumann operators for the eigenfunction’s positive and negative nodal domains. While originally derived
using symplectic methods, this result can also be understood through the spectral flow for a family of boundary conditions
imposed on the nodal set. In the talk Graham described this flow for a Schrödinger operator with separable potential on
a rectangular domain, and describe a mechanism by which low energy eigenfunctions do or do not contribute to the nodal
deficiency. Operators on non-rectangular domains and quantum graphs were also discussed. The talk represents joint work
with G. Berkolaiko and J. Marzuola.

Gregory Berkolaiko gave a talk on Nodal statistics of graph eigenfunctions, based on joint work with L. Alon and R. Band.
He started by reviewing the notion of “quantum graph”, its eigenfunctions and the problem of counting the number of their
zeros. The nodal surplus of the n-th eigenfunction is defined as the number of its zeros minus (n − 1), the latter being the
“baseline” nodal count of Sturm-Liouville theory. It appears from numerics that the distribution of the nodal surplus of large
graphs has a universal form: it approaches a Gaussian as the number of cycles grows. Gregory discussed recent progress
towards proving this conjecture. When the graph is composed of two or more blocks separated by bridges, he proposed a way
to define a “local nodal surplus” of a given block. Since the eigenfunction index n has no local meaning, the local nodal surplus
has to be defined in an indirect way via the nodal-magnetic theorem of Berkolaiko, Colin de Verdière and Weyand. By studying
the symmetry properties of the distribution of the local nodal surpluses the authors showed that for graphs with disjoint cycles
the distribution of (total) nodal surplus is binomial.

Ram Band gave the next talk titled Neumann domains on manifolds and graphs, based on joint works with L. Alon,
M. Bersudsky, S. Egger, D. Fajman and A. Taylor. The nodal set of a Laplace eigenfunction forms a partition of the underlying
manifold or graph. Another natural partition is based on the gradient vector field of the eigenfunction (on a manifold) or on
the extremal points of the eigenfunction (on a graph). The submanifolds (or subgraphs) of this partition are called Neumann
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domains. Ram presented the main results concerning these Neumann domains. He compared the situation for manifolds and
graphs and related the Neumann domain results in each case to the corresponding nodal domains.

The last talk on Tuesday was given by Junehyuk Jung, titled Boundedness of the number of nodal domains of eigenfunctions.
The asymptotic number of nodal domains of eigenfunctions is related with the dynamics of the geodesic flow on the manifold.
For instance, if a surface with boundary has an ergodic geodesic flow, then for any given Dirichlet eigenbasis, one can find a
density one subsequence of eigenfunctions, for which the number of nodal domains tends to +∞ with the frequency. In this
talk, Junehyuk discussed what happens to the unit circle bundle over a manifold. When equipped with a metric which makes the
Laplacian commute with the circular action on the fibers, the geodesic flow never is ergodic. Recently he and S. Zelditch proved
that among such metrics the following property is generic: for any given orthonormal eigenbasis one can find a subsequence
of density one where the number of nodal domains is identically 2. This highlights how the underlying dynamics can impact
the nodal counting. Junehyuk sketched the proof in the case of a compact surface of genus 6= 1, and presented an explicit
orthonormal eigenbasis on the 3-torus where all the eigenfunctions only featured two nodal domains.

On Wednesday morning, the talks dealt with the study of resonances, both in the case of hyperbolic dynamical systems
(Pollicott-Ruelle resonances) and in quantum disordered systems (Anderson model). The dynamical resonances were investi-
gated using tools from microlocal analysis, thus establishing a direct connection with quantum chaos.

Gabriel Rivière gave a talk titled Witten Laplacians and Pollicott-Ruelle spectrum, based on joint work with N.V. Dang.
Given a smooth Morse function and a Riemannian metric on a compact manifold M , Witten defined a twisted Laplacian,
which is nowadays referred to as the Witten Laplacian. In light of the recent developpement towards the spectral analysis of
hyperbolic dynamical systems, Gabriel discussed some well-known properties and some new ones of these Witten Laplacians.
For instance, he explained that the spectrum of this operator converges, in the semiclassical limit, to a certain Pollicott-Ruelle
spectrum, describing the decay of correlations for the geodesic flow on M .

The next talk by Frederic Faure was titled Some properties of hyperbolic dynamics from micro-local analysis, joint work
with M. Tsujii. In a uniformly hyperbolic system (Anosov system), each trajectory is strongly unstable and its behavior
is unpredictable. A smooth probability distribution evolves also in a complicated way since it acquires higher and higher
oscillations. Nevertheless, using microlocal analysis, this evolution is predictable in the sense of distributions. It is similar to
a quantum scattering problem in the cotangent space, as treated by Helffer and Sjöstrand using escape functions in 1986. In
the talk Frederic used wave packet formalism (or FBI transform) and explained how to derive some spectral properties of the
dynamics: the existence of the intrinsic discrete spectrum of Ruelle-Pollicott resonances, informations about their distribution
(fractal Weyl law, band structure), or estimates on the wave front set of the metastable states associated with the resonances.

The last talk on Wednesday (followed by a free afternoon) was delivered by Martin Vogel, titled Resonances for large
random systems. There have been many works studying resonances generated by compactly supported potentials and by
potentials which decay sufficiently fast at infinity. However, in the case of random potentials there are only very few results.
Martin gave an overview of some recent results in this direction by J. Sjöstrand, A. Drouot and F. Klopp. In particular he
discussed his results obtained in collaboration with F. Klopp on the distribution of resonances close to the real axis, and their
link to the eigenstates of a full random Schrödinger operator in the localized regime.

The first four talks on Thursday concerned various forms of random wave models, which were initially proposed as models
describing the statistical properties of quantum chaotic eigenfunctions. These models are now investigated by both probabilists
and mathematical physicists, making connections with percolation theory and real algebraic geometry.

Igor Wigman spoke on Russo-Seymour-Welsh estimates for the Kostlan ensemble of random polynomials, based on joint
work with D. Beliaev and S. Muirhead. Beginning with the predictions of Bogomolny-Schmit for the random monochromatic
plane wave, in recent years deep connections have emerged between the level sets of smooth Gaussian random fields and
percolation. In classical percolation theory a key input into the analysis of global connectivity are scale-independent bounds
on crossing probabilities in the critical regime, known as Russo-Seymour-Welsh (RSW) estimates. Similarly, establishing
RSW-type estimates for the nodal sets of Gaussian random fields is a major step towards a rigorous understanding of these
connections. The Kostlan ensemble is an important model of Gaussian homogeneous random polynomials. The nodal set
of this ensemble is a natural model for a ‘typical’ real projective hypersurface, whose understanding can be considered as a
statistical version of Hilbert’s 16th problem. In the talk, Igor established RSW-type estimates for the nodal sets of the Kostlan
ensemble in dimension two, providing a rigorous relation between random algebraic curves and percolation. The estimates are
uniform with respect to the degree of the polynomials, and are valid on all relevant scales; this result resolves an open question
raised recently by Beffara–Gayet. More generally, the arguments yield RSW estimates for a wide class of Gaussian ensembles
of smooth random functions on the sphere or the flat torus.

Yaiza Canzani spoke on Local universality for zeros and critical points of monochromatic random waves, based on joint
work with B. Hanin. In the talk she discussed the asymptotic behavior of zeros and critical points for monochromatic random
waves on compact smooth Riemannian manifolds, as the energy of the waves grows to infinity.
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Damien Gayet gave a talk titled Percolation of random nodal lines. If a real smooth function is given at random on the plane,
what is the probability that its vanishing locus has a large connected component? Damien explained some recent answers he
obtained with Vincent Beffara to this question, for some natural models coming from algebraic geometry and spectral analysis.

Melissa Tacy gave a talk titled Does it matter what we randomize? The behaviour of quantum chaotic states of billiard
systems is believed to be well described by Berry’s random plane wave model u =

∑
j cje

iλx·ξj , where the cj are Gaussian
random variables. However, in Rn there are many other candidate waves over which we could randomize. Some are easier to
adapt to manifolds than others. In this talk Melissa discussed when (in Rn ) we can replace the plane wave eiλx·ξj with other
waves and how those can be adapted to manifolds.

The last two talks on Thursday as well as the first one on Friday were concerned with wave propagation or wave control in
presence of nonsmooth coefficients: control of the Schrödinger operator by an arbitray L2 control function; propagation of sin-
gularities on surfaces with conical singularities, or in presence of a potential with a conormal singularity along a hypersurface.

Nicolas Burq spoke about Rough controls for the Schrödinger equation on the torus. He presented some results on the
exact controllability of the Schrödinger equation on the torus. In a general setting, these questions are well understood for wave
equations with continuous localization functions, while for Schrödinger one only has partial results. For rough localization
functions, Nicolas first presented some partial results for waves. Then he showed how one can take benefit from the particular
simplicity of the geodesic flow on the torus to get (for continuous localization functions) strong results (works by Haraux,
Jaffard, Burq-Zworski, Anantharaman-Macia). Finally, for general localization functions (typically characteristic functions of
measurable sets) he showed how one can go further, by taking benefit from dispersive properties (on the 2 dimensional torus),
to show that in this setting the Schrödinger equation is exactly controllable by any L2 (non trivial) localization function (and in
particular by the characteristic function of any set with positive measure).

Luc Hillairet spoke on The wave trace on a flat surface with conical singularities. In joint work with A. Ford and A. Hassell,
he studies the contribution to the wave trace of diffractive periodic orbits on Euclidean surfaces with conical singularities. Using
a new description of the propagator near the so-called geometrically diffractive rays, he is able to compute the leading term of
any kind of diffractive periodic orbit.

Jared Wunsch spoke on Diffraction of semiclassical singularities by conormal potentials, joint work with O. Gannot. Con-
sider a semiclassical Schrödinger operator P = −h2∆ + V , where V has a conormal singularity along a hypersurface. The
singular structure of V affects the propagation of semiclassical singularities for solutions to Pu = Eu, and in particular there
is a ‘diffraction’ of the wavefront set by the interface: singularities are reflected as well as transmitted as they cross the interface
transversely. The reflected wave, however, is more regular, with the improvement depending on the regularity of the interface;
moreover singularities cannot (for high enough regularity) glide along the interface.

The last conference talk on Friday by Semyon Klevtsov described the mathematical theory of the Quantum Hall Effect,
more specifically the study of Laughlin states, the fundamental Ansätze of this theory. It was titled Geometry and large N
asymptotics in Laughlin states. Laughlin states are N -particle wave functions, successfully describing the fractional quantum
Hall effect (QHE) for plateaux with simple fractions. It was understood early on that much can be learned about QHE when
Laughlin states are considered on a Riemann surface. Mathematically, it is interesting to know how the Laughlin states depend
on the Riemannian metric, the magnetic potential, the complex structure moduli, the singularities – for a large number of parti-
clesN . Semyon reviewed the results, conjectures and further questions in this area, and their relation to topics such as Coulomb
gases/beta-ensembles, Bergman kernels for holomorphic line bundles, Quillen metric, or zeta regularized determinants.

The conference ended around noon on Friday.
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Jakobson, Dmitry (McGill University)
Jung, Junehyuk (Texas A&M University)
Karpukhin, Mikhail (McGill)
Kleinhenz, Perry (Northwestern university)
Klevtsov, Semyon (Univ. Koln)
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Chapter 18

Physics and Mathematics of Quantum
Field Theory (18w5015)

July 29 - August 3, 2018
Organizer(s): Jan Dereziński (University of Warsaw), Stefan Hollands (Leipzig University),
Karl-Henning Rehren (Göttingen University)

Overview of the Field
The origins of quantum field theory (QFT) date back to the early days of quantum physics. Having developed quantum me-
chanics, describing non-relativistic systems of a finite number of degrees of freedom, physicists tried to apply similar ideas to
relativistic classical field theories such as electrodynamics following early attempts already made by the founding fathers of
quantum mechanics. Since quantum mechanics is usually “derived” from classical mechanics by a procedure called quantiza-
tion, the first attempts tried to mimick this procedure for classical field theories. But it was clear almost from the beginning
that this endeavor would not work without qualitatively new ideas, owing both to the new difficulties presented by relativistic
kinematics, as well as to the fact that field theories, while possessing a Lagrangian/Hamiltonian formulation just as classical me-
chanics, effectively describe infinitely many degrees of freedom. In particular, QFT completely dissolved the classical distinc-
tion between “particles” (like the electron) and “fields” (like the electromagnetic field). Instead, the dichotomy in nomenclature
acquired a very different meaning: Fields are the fundamental entities for all sorts of matter, while particles are manifestations
when the fields arise in special states. Thus, from the outset, one is dealing with systems with an unlimited number of particles.

Early successes of quantum field theory consolidated by the early 50’s, such as precise computations of the Lamb shifts
of the Hydrogen and of the anomalous magnetic moment of the electron, were accompanied around the same time by the first
attempts to formalize this theory in a more mathematical fashion. Owing to progress and the emergence of new perspectives
on quantum field theory, several answers to this question have subsequently been formulated in the 80 years since its birth,
illuminating the many facets of this theory. The quest for the ultimate mathematical framework of quantum field theory is still
underway.

One of the main motivations for quantum field theory is the description of particle physics. This endeavor culminated in
the early 80’s in the formulation of the so-called standard model of particle physics, describing quarks, leptons, vector bosons
mediating the various forces, as well as the recently discovered Higgs boson. These particles are believed to encompass the
visible matter content of the universe, with the exception of dark matter (probably another invisible sector in the standard
model) and dark energy. Although the various forces have qualitatively different features – becoming strong effectively at
long, respectively short ranges – by the early 70’s physicists developed reliable perturbative schemes to calculate quantities
of direct physical interest in experiments. These computational techniques typically proceed via Feynman integrals and a
systematic control of perturbation theory and renormalization. Open questions, like the convergence of the perturbation theory
and infrared problems, motivated axiomatic approaches. It seems that the axiomatic approach that has proven the most vital is
the operator algebraic approach. Its scope has widened in the last decades so as to cover more general situations such as thermal
equilibrium, non-equilibrium states, or quantum field theory in curved spacetime.

196
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Thermal equilibrium and non-equilibrium states were previously studied mainly in non-relativistic quantum many-body
systems and condensed matter physics, where field-theoretical methods and renormalization also play a major role. Modern
issues like the thermodynamics of black holes or of the early universe demand the extension of statistical physics to relativistic
systems.

The mathematics involved in quantum field theory is very diverse, to the extent that for mathematicians QFT may appear
as a collection of many different and completely unrelated formalisms. The underlying principles of quantum mechanics in-
volve spectral theory and the theory of operator algebras, with modular theory playing a major role in modern applications.
Perturbation theory naturally uses analysis (for the computation of Feynman integrals) and functional analysis (for questions of
convergence, scattering theory, and adiabatic limits). Gauge theories involve tools from differential geometry, and their anoma-
lies are related to cohomological issues. The theory of distributions and microlocal analysis are at the core of the study of states
of quantum fields in nontrivial gravitational backgrounds. Modern constructive approaches to path integrals employ stochastic
partial differential equations and regularity structures. Numerical high-performance simulations are employed for computa-
tions in numerous places. Computer-assisted exact methods, such as the “conformal bootstrap”, have gained an increasing
importance. (The list is certainly not complete.)

Quantum field theory triggered the development of various mathematical concepts of independent interest, such as non-
commutative geometry, vertex operator algebras, tensor categories, random matrices, or topological invariants, to name but a
few.

The aim of the workshop was to bring together researchers from different communities interested in various aspects of
quantum field theory, so as to explore and vitalize the common roots of their respective approaches and to foster an exchange
and comparison of ideas.

Recent Developments and Open Problems
In recent years the research about mathematical structure of quantum field theory made progress in various directions. When
organizing this workshop, we decided to focus on the developments that to our minds appeared the most interesting in terms
of potential physical applications, as well as from the purely mathematical point of view. Broadly speaking, the areas that we
identified as the most interesting by these criteria can be classified as follows:

1. Developments relating algebraic approaches to quantum field theory with perturbative methods.

2. New ideas in conformal quantum field theories, which describe systems in statistical mechanics at the critical point
or scale invariant models of particle theory. Among these, we identified the conformal bootstrap approach, which is
applicable in principle in any dimension, and algebraic methods relating vertex operator algebras and non-commutative
geometry/operator algebras, which are suitable in two dimensions.

3. Algorithmic problems in computing Feynman integrals, such as the Laporta algorithm and related ideas.

4. Recent developments in stochastic quantization/stochastic partial differential equations (which strictly speaking
belong to pure mathematics, however they have strong analogies with quantum field theory).

5. Quantum field theory in curved spacetime backgrounds, and microlocal characterization of classes of “states of phys-
ical interest”.

6. Mean field approaches to systems of electrons interacting with electromagnetic fields.

7. Interesting aspects of the infrared problem in models with massless particles.

8. Non-equilibrium situations in quantum field theory, such as heat waves, non-equilibrium steady states, entropy produc-
tion, and return to equilibrium.

Our goal was to invite leading researchers representing each circle of ideas as speakers. In our view, this goal has been
accomplished. A more detailed overview of the contributions is given in the next section; here we try to explain the context and
motivation for our choices.

One major direction of the research over the past decade was an attempt to achieve a synthesis between algebraic and
perturbative quantum field theory. This direction has several motivations. One is to put on a firm conceptual foundation the
rules for perturbative calculations, especially in the cases where these rules are not clear-cut, or where naive interpretations
of the existing rules lead to problems. Examples of this are: Dealing with the infrared problem, which plagues theories with
massless particles; finding correct renormalization for quantum field theories on a non-trivial spacetime or e.g. electromagnetic
backgrounds without symmetries; renormalization schemes for correlation functions in states other than the vacuum, such as
thermal states, non-equilibrium steady states etc. The Epstein-Glaser method turned out to be a convenient tool to carry out
such a programme. This method, invented in the 70’s, is experiencing in recent years its revival. It works well in quantum
field theory on curved spacetime. It is based on the theory of distributions, allowing for renormalization in position space,
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which is a setting without translation symmetry, where the Fourier transformation is not available. In recent years, complicated
analytical questions about the existence and construction of special quantum states in curved spacetimes have been attacked
using powerful methods from microlocal analysis instead of the more global technique of Fourier analysis.

One of the most important quantum field theories is quantum electrodynamics (QED). It is often useful to consider its ap-
proximate versions, which are easier to study by nonperturbative methods. One such version is the so-called mean-field QED,
where charged particles are treated quantum-mechanically and the electromagnetic field is treated classically. The electromag-
netic field is divided into a given external part and fluctuations, which are the object of a variational problem. Mean-field QED
has been a topic of interesting research involving deep methods from analysis, convex optimization, calculus of variations. In
practice, of particular interest are stationary states, but the method is in principle capable of treating non-equilibrium situations
as well.

With a similar mix of conceptual and practical motivations, the algebraic viewpoint is exploited to address the notoriously
difficult infrared problems in theories with massless particles, thus opening the door to more conceptional treatments of scatter-
ing of electrically charged particles and photons. The particularly transparent separation of infra-red and ultra-violet features of
perturbative quantum field theories in such a treatment allows for conceptually clear and rigorous proofs of non-renormalization
theorems, covering cases of current interest, such as supersymmetric gauge theories and, potentially, supergravity theories.

Algebraic approaches have also received a considerable new impetus from the emergent field of quantum information
(QI). Key concepts within this field such a entanglement, capacities, local operations, etc. are naturally formulated in terms of
algebraic notions such as entanglement measures, relative entropy functionals, conditional expectations or completely positive
maps. While QI historically has been concerned mainly with quantum mechanical systems, it has triggered the interest in
the above concepts also in relativistic systems, thus linking QI, for example, with non-equilibrium thermodynamics. Tomita-
Takesaki modular theory (a celebrated theory in operator algebras) is used as an important tool when states cannot be described
by density matrices.

In practical applications to high-energy physics, once a renormalization scheme is settled upon, calculations of scattering
amplitudes typically lead to the problem of evaluating Feynman integrals. Such integrals come with certain parameters, such
as masses or the powers of the propagator kernels. Typically, there can exist many relationships between these expressions for
different parameters. This naturally leads to the quest for “bases” of independent integrals and algorithms for determining such
bases and for computing the corresponding integrals. Such algorithms are thereby not only of practical importance, but also
seem to have interesting connections to questions in algebraic geometry and the theory of D-modules.

The idea of stochastic quantization goes back to the early 80’s. It is closely related to quantum field theory, especially its
Euclidean version. Not surprisingly, stochastic partial differential equations are often affected by divergences of various sorts.
A considerable progress how to deal with such divergences has recently been achieved. This progress has triggered renewed
interest in various aspects of renormalization.

Conformal quantum field theories form an important subclass of QFT. They are interesting for many reasons: they are
relevant for critical phenomena in statistical physics and they have a surprisingly rich structure, which often allows for finding
explicit solutions. Besides, they are often good approximations to a realistic description of high-energy physics – note that the
Lagrangian of the Standard Model contains only one term that breaks the conformal invariance on the classical level: the Higgs
mass term. This approximate conformal invariance is exploited in a recent proposal of Meissner and Nicolai for a quantum
field theory that should adequately describe high energy physics over many orders of magnitude beyond the Standard Model.

Conformal invariance is especially rigid in two dimensions. It can be used to describe a large class of models of conformal
quantum field theory with rigorous constructive schemes and a complete classification. This classification involves sophisticated
mathematical tools such as elements of the theory of categories. Conformal field theory has been developed in various research
directions, including the approach based on operator algebras, and a more formal algebraic approach involving the so-called
vertex algebras. Heuristically one could expect that the various approaches should be equivalent, however in practice they are
not so easy to compare.

In higher dimensions the conformal group is not so large and other tools have to be used in the study of conformally
invariant QFT’s. One of them is the method of operator product expansions (OPE’s). In recent years, there has been a revival of
non-perturbative algebraic methods that in essence postulate the OPE of a theory as its defining input. Constraints on the form
of this expansion, such as their convergence or associativity, can provide tools to find “exclusion plots” for the conformal data,
i.e., the structure constants in the operator product expansion and the conformal dimensions in this expansion. A similar set of
ideas, involving constraints on the OPE, seems to be relevant also for QFT’s without conformal invariance.

Non-perturbative treatment of quantum field theories (beyond the class of conformal field theories) has a long tradition
dating back to works of Glimm and Jaffe, Fröhlich, Nelson, Brydges, Rivasseau, and others. The most traditional subject of
this direction of research, usually called Constructive Field Theory, is an attempt to construct interacting models of quantum
field theory in various dimensions. It has turned out to be very difficult to construct realistic models in 4 dimensions. In recent
years the methods of constructive field theory were applied to construct and investigate some other classes of models, such as
hierarchical models and matrix models. They turned out to exhibit many interesting features, which seem to be relevant for
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realistic theories. Hierarchical models require sophisticated renormalization and lead to interesting phase diagrams. Matrix
models are believed to be relevant as approximations of random geometry, and are an important step in our quest for quantum
gravity.

Presentation Highlights
There were 14 long talks (55min) and 10 shorter talks (30min).

Long talks:

• Vincent Rivasseau presented the theory of random tensors. It is a theory directly inspired by QFT. It leads to a perturba-
tion theory involving sophisticated versions of Feynman diagrams. Random tensor theory can be viewed as an approach
to random geometry, and also as a toy model for quantum gravity in D ≥ 3 dimensions. Vincent reported on the recent
progress in the 1/N expansion (in the size of the tensors) and on renormalization group methods for these models. They
are believed to be approximate AdS-CFT duals of the Sachdev-Ye-Kitaev model. [1]

• Mathieu Lewin reported on recent progress (achieved with Hainzl, Séré and others) in the so-called mean-field QED.
This theory can be thought of as a caricature of the true QED, with charged particles treated quantum-mechanically and
classical electromagnetic fields. The electromagnetic field is divided into a fixed external field and a “fluctuation”, which
is subject to a variational treatment. It leads to a well-defined nonlinear functional on density matrices of charged parti-
cles. Proving the existence of minimizers amounts to establishing the stability of the approximation. The model needs an
ultraviolet regularization – for instance, one can employ the Pauli-Villars method. The Landau pole phenomenon appears
when one tries to remove the ultraviolet cutoff. The electrostatic case can be treated non-perturbatively, using methods
of convex analysis and the calculus of variations. These methods are closely related to the backreaction equation on
curved spacetime for quantum fields coupled to the Einstein Equation. [2]

• Detlev Buchholz presented a construction of a certain new C∗-algebra, which can be used to describe observables of
interacting non-relativistic Bose particles. The point of departure of this construction is the so-called resolvent algebra,
generated by resolvents of field operators. The next step involves taking the gauge-invariant (particle number preserving)
part of that algebra. The finalC∗-algebra is capable of supporting a large class of interesting many-body dynamics asC∗

automorphisms, giving a rigorous meaning to the dynamics generated formally by many-body Schrödinger Hamiltonians
with bounded potentials. The state space and ideal structure are particularly rich and the specific dynamics select states
and ideals. The algebra has a quasi-local structure, it possesses positive energy representations and asymptotic ground
states. Scattering theory can be formulated in this setting. Progress towards the existence of thermal states has been
achieved. [3]

• Abdelmalek Abdesselam presented a non-perturbative construction of hierarchical φ4-type models of statistical me-
chanics on the space of p-adic numbers. The hierarchical structure allows for a rather detailed analysis of the model. In
particular, the application of space-dependent renormalization group analysis leads to a definition composite operators,
whose anomalous dimensions establish the non-Gaussian nature of theory. By interpreting the infinite hierarchical level
as a boundary, an analogy with Witten diagrams in AdS-CFT can be set up. (Talk prepared jointly with A. Chandra) [4]

• Wojciech Dybalski gave a comprehensive overview of infrared features in relativistic and non-relativistic models of many
body systems with massless and massive particles. He gave an existence proof for scattering states of electrons, photons
and “atoms” in the context of the Nelson model using the Haag-Ruelle ansatz. He emphasized the notable difference
between neutral and charged particles, and reported on recent progress made by combining the Dollard formalism with
sophisticated methods from scattering theory, which are developed further in his joint work with A. Pizzo. In relativistic
quantum field theory, he proposed a general framework for the superselection structure of scattering states, building on
ideas of Buchholz et al. He gave an outlook on the “infrared triangle” put forward by Strominger et al. [5]

• Stefan Hollands reported on a longer programme towards a perturbative construction of quantum field theories in generic
globally hyperbolic curved spacetimes. The method is based on a combination of essentially algebraic techniques with
analytical methods such as scaling/curvature expansions, extensions of distributions to complicated subspaces such as
stratifolds, and microlocal analysis. A culmination of this line of research, carried out partly together with Robert M.
Wald and based also on work by Radzikowski and by Brunetti and Fredenhagen, is the perturbative construction of
non-abelian gauge theories in curved spacetime. Here, one has to combine the algebraic and analytic methods with
cohomological methods (the so called BV-complex) in order to control the gauge invariance of the renormalized theory
(see also the contribution by Rejzner). [6]
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• Mikołaj Misiak gave an overview of the methods and algorithms for computing Feynman integrals of interest in high
energy phenomenology, especially in the calculations of various processes beyond the Standard Model. Feynman in-
tegrals satisfy a number of identities, which can be obtained via integration by parts. With help of these identities one
can reduce Feynman integrals to a finite number of master integrals. These can be solved because they satisfy a coupled
system of differential equations. The choice of master integrals is non-unique and seems important from the practical of
view, because it often affects the computer time needed to solve a given problem. Mikołaj pointed out several directions
for future research, which seem to lead to interesting questions formulated in an abstract algebraic language. [7]

• Krzysztof Meissner analysed the conformal anomaly in theories of fields of various spin and reported on the observation
that contributions of different fields in maximally supersymmetric supergravity theories (embedded in conformal super-
gravity) cancel from N = 5 upwards. Based on an argument for the necessity of this cancellation in the cosmological
context, he proposed a novel extension of the standard model motivated by maximally supersymmetric gravity theories.
In this extension, all masses, being tiny compared to the Planck mass, arise through a soft breaking of conformal symme-
try. The model involves an infinite-dimensional hidden K(E10) symmetry of N = 8 supergravity, whose mathematics
and physical implementations remain to be explored. [8]

• Scott Smith presented an overview of stochastic quantization á la Parisi-Wu. He explained how the necessity of renor-
malization arises in this set-up and outlined different approaches to the problem: regularity structures á la Hairer, para-
controlled distributions á la Perkovski-Gubinelli, or an RG-approach á la Kupiainen. He gave a detailed outline of
recent progress for semi-linear stochastic PDEs with stochastic noise of varying regularity (joint with F.Otto, J.Sauer
and H.Weber). [9]

• Christopher Fewster reported on ongoing work with R. Verch on the problem of measurement schemes and observables
in quantum field theory in curved spacetime. Their basic scenario involved a system coupled to a probe. Both were
described in the framework algebraic quantum field theory on curved spacetime. It was assumed that the interaction
happened in a compact subset of spacetime and the probe was measured elsewhere. The talk discussed effect-valued
measures, their non-selective measurement and joint unsharp measurement of observables. [10]

• Michał Wrochna discussed the importance of Hadamard states in the context of linear quantum field theory in curved
spacetime, their applications, microlocal characterization, and methods how to establish them. He gave examples of im-
portant Hadamard states in the Schwarzschild black-hole spacetime, recent constructions of Unruh and Hartle-Hawking
states, and commented on the non-existence of stationary Hadamard states in the Kerr black-hole spacetime. He pre-
sented a microlocal construction of Hadamard states in smooth asymptotically flat spacetimes, and also in analytic
spacetimes. The latter construction involves the so-called Calderon projectors, defined after performing a microlocal
version of the “Wick rotation”. (Talk prepared jointly with C. Gérard) [11]

• Nicola Pinamonti reviewed the construction of thermal equilibrium states of interacting quantum field theories on
Minkowski spacetime in the setting of renormalized perturbative algebraic quantum field theory. He compared this
modern approach (due to Fredenhagen and Lindner) with other more formal ones á la Landsman and á la Keldysh. He
presented results about perturbed dynamics and return to equilibrium. Secular divergences in time are observed in the
thermodynamic limit if the initial state is not appropriately chosen. He characterized the asymptotic stationary state as
a non-equilibrium steady state (NESS), computed the relative entropy between the NESS and the initial Gibbs state,
adapting methods from Araki’s perturbation theory. [12]

• David Simmons-Duffin reported on the key ideas and recent progress in the conformal bootstrap approach to conformal
field theories. This approach is based on an old idea of Polyakov, Migdal, and others: One tries to exploit the bounds on
the so-called conformal data of the theory (the structure constants and dimensions) by writing down the consequences
of the associativity law for the operator product expansion (”bootstrap equation”). Recent progress has been achieved
thanks to better suited analytical expressions for the so called conformal blocks appearing in those conditions. A concrete
algorithm proposed by Rychkov, Rattazzi, Tonni, and others is to test the bootstrap equation via certain well-chosen
linear functionals. This algorithm yields exclusion plots in the space of conformal data. Particularly impressive results
are available in the 3-dimensional Ising model. [13]

• Sebastiano Carpi reported on the status of the connection between two axiomatic settings: Borcherds’ vertex operator
algebras (VOA) and the algebraic formulation of chiral conformal QFT á la Haag-Kastler. Both approaches can be used
to axiomatize conformal QFT models, even though the original motivation of the first approach was purely mathematical
(the “moonshine conjecture” and number theory). Both have complementary advantages that can be transferred to the
other, once a suitable “dictionary” has been established. Provided certain energy bounds on their states (the so-called anb
bounds) are satisfied, unitary VOAs can be turned into Wightman-like fields. One can then introduce nets of local(ized)
algebras. Unfortunately, their locality is not automatic. If it holds, then the VOA can be reconstructed from the net via
the Fredenhagen-Jörß construction. Many conjectures and questions concerning the representation theory of the two
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approaches remain open. [14]

Short talks:

• Daniel Siemssen reviewed some properties of the Klein-Gordon equation on curved spacetimes, which are relevant for
applications in Quantum Field Theory. In particular, he described a proof of the existence of a distinguished Feynman
propagator on a large class of asymptotically static globally hyperbolic manifold. He also discussed the relationship of
the distinguished Feynman propagator with the problem of self-adjointness of the Klein-Gordon operator. [15]

• Krzysztof Gawȩdzki discussed the time evolution of states called “heat waves” in conformal field theory. These states
are defined by a density matrix with non-trivial temperature profiles. Methods using Virasoro symmetry allow us to
compute the energy density and currents. Conformal welding techniques (related to the Riemann-Hilbert problem) yield
a semi-explicit expression for the exact probability distribution. [16]

• Alessandro Pizzo reported on an unexpected emergence of a non-commutative recurrence problem in the context of
non-relativistic scattering theory (as discussed in the talk by Dybalski). He presented various closed form solutions of
the recurrence in terms of multi-variate polynomials. This methods leads to results about detailed regularity properties
of n-particle wave functions. [17]

• Daniela Cadamuro reviewed the construction of interacting quantum field theories in two spacetime dimensions with
a factorizing scattering matrix via an “inverse approach”: The S-matrix is taken as an input, and is used to define
“deformed” creation and annihilation operators. The associated fields fail to be local, but are localized in wedge-like
regions, so that local algebras can be defined as intersections of two algebras of wedge-localized observables. In the
case of the Bullough-Dodd model, where the poles of the S-matrix indicate the presence of bound states, one has to
add a “bound-state operator” in order to achieve weak commutativity of wedge-localized fields. (Talk continued by Yoh
Tanimoto)

• Yoh Tanimoto, in continuation of Daniela’s talk, focused on the problem of establishing the Haag-Kastler axioms for
the local algebras of the Bullough-Dodd model. This problem involves three steps: the self-adjointness of the wedge-
localized generators, their strong commutativity, and finally the “size” of the intersection of two opposite wedge algebras.
He reported on the progress in this program. [18]

• Markus Fröb spoke about recent results on the operator product expansion in non-conformally invariant theories. He
presented convergence results and estimates on the remainder of the expansion in various theories, originally due to
Kopper and Hollands. Furthermore, he explained a flow equation for the coefficients in the operator product expansion,
which in principle can be used to self-consistently determine these quantities beyond perturbation theory. When solved
in perturbation theory, the flow equation gives a recursive definition of the coefficients which agrees with traditional
methods, but is conceptually much clearer. The methods can be generalized to non-abelian gauge theories. [6]

• Kasia Rejzner advertized the application of the Batavin-Vilkovisky formalism in perturbative algebraic quantum field
theory with local symmetries (Yang-Mills, effective quantum gravity) on curved spacetime. Using homological algebra,
she derived a rigorous quantum Master Equation involving potential anomalies, thereby reinterpreting a formula of
Hollands. This approach exhibits the cohomological nature of consistency conditions for anomalies. [20]

• Paweł Duch reviewed the problem of the adiabatic limit (infrared problem) in perturbative QFT with massless particles.
He covered the weak adiabatic limit (convergence of correlations and Green functions) and the strong adiabatic limit
(construction of fields and their scattering matrix). The existence of the weak adiabatic limit was recently established by
him in a large class of models. For the construction of the S-matrix, he reported on his work in progress, which involves
a version of ideas of Dollard and Faddeev-Kulish. [21]

• Joseph Várilly reconsidered Wigner’s “continuous spin representations” of the Poincaré group, by identifying them
with coadjoint orbits of its Lie algebra, in the spirit of the Kirillov approach. Massive and massless orbits have rather
different properties. Massive orbits do not have a massless limit. Massless continuous spin orbits allow to define a
helicity operator and position operators that are conjugate to the momentum operators. The position operators, however,
do not commute among themselves, indicating an intrinsic “noncommutative geometry”. The resulting wave-function
representation of the one-particle Hilbert space can be cast into a form compatible with the recent “string-localized”
second-quantized theory (Mund-Schroer-Yngvason). [22]

• Christian Jäkel discussed QFT on 2-dimensional deSitter spaces. He explained how free quantum fields can be con-
structed using the theory of representations of the deSitter group SO(1, 2). Then he discussed how one can construct
interacting fields using the modular theory. He also described a natural generalization of Haag-Kastler axioms to the
context of deSitter spacetimes. [23]
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Scientific Progress Made / Outcome of the Meeting
The workshop brought together researchers rooted in different communities who address the same subject “Quantum Field
Theory”, but use widely different concepts and methods, to the extent that they sometimes do not even understand the language
of the others. It was our objective to bridge such gaps and thus trigger communication between various communities. The
pay-off of such a meeting may not be immediate, but we are convinced that it will develop over time.

For this purpose we gave priority to overview talks. We have the impression that the talks were sincerely appreciated by
participants, who engaged in lively discussions during and after the talks. It was visible that many participants were eager
to understand the complementary approaches. Most talks were recorded by the BIRS video system, and pdf’s of slides are
available for all but a few blackboard talks. These documents are valuable resources for who wants to delve deeper into the
subjects.

In spite of a large number of talks, there was sufficient time for informal scientific interaction among the participants.
Several small groups of participants benefitted from the workshop and its facilities to pursue or initiate joint research projects.
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Hack, Thomas-Paul (Leipzig University)
Hollands, Stefan (University of Leipzig)
Jaekel, Christian (University of São Paulo)
Khavkine, Igor (Czech Academy of Sciences)
Lechner, Gandalf (Cardiff University)
Lewin, Mathieu (CNRS & Université Paris Dauphine)
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Chapter 19

New Statistical Methods for Family-Based
Sequencing Studies (18w5154)

August 5 - 10, 2018
Organizer(s): Alexandre Bureau (Université Laval), Kelly Burkett (University of Ottawa),
Jinko Graham (Simon Fraser University), Ingo Ruczinski (Johns Hopkins University

Overview of the Field
After the era of genome-wide association studies (GWAs) high-throughput DNA sequencing studies became fundamental to
isolate the exact causes and contributors of human disease, and to tailor medical treatment to the individual characteristics
of each patient (“precision medicine”). While the vast majority of effect sizes for common single nucleotide polymorphisms
(SNPs) reported in the GWAS catalogue are small, we now know that much of the heritability for many traits including complex
disorders can be explained by rare but highly penetrant variants. These variants have the potential to be used as “genetic
biomarkers” in practice, for example to predict disease risk or response to a specific therapy. To detect these rare but highly
penetrant variants, family-based study designs are much better suited than population based designs as they provide a way to
test co-segregation with disease of variants that are too rare in the population to be tested individually in a conventional case-
control study. However, many mathematical and statistical challenges remain in approaches to fully exploit the information
in these family based designs. One of the particularly difficult but exciting challenges for bio-mathematicians and statistical
geneticists is to account for various types of dependence structures in familial DNA sequencing data, and to develop optimal
approaches (in terms of power and scalability) for these time-consuming and expensive studies. Here, dependency can be
caused by relatedness among individuals unknown to the investigators, correlation of nearby genetic markers, and/or pleiotropy
(i.e. genetic variants affecting multiple traits). This workshop brought together some of the world’s leading experts in this field
to address these critical and timely issues.

Presentation Highlights
Rare variant sharing
Sequencing DNA in extended multiplex families can help to identify high penetrance disease variants too rare in the population
to be detected through tests of association in population based studies, but co-segregating with disease in families. Alexan-
dre Bureau and Ingo Ruczinski presented a statistical framework based on this paradigm to exploit sequencing data from
extended multiplex families [2, 4]. Specifically, when only few affected subjects per family are sequenced, evidence that a rare
variant may be causal can be quantified from the probability of sharing alleles by all affected relatives given it was seen in any
one family member under the null hypothesis of complete absence of linkage and association. Ingo Ruczinski presented the
general RVS (rare variant sharing) framework for calculating such sharing probabilities when two or more affected subjects
per family are sequenced, showed how information from multiple families can be combined by calculating a p-value as the
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sum of the probabilities of sharing events as (or more) extreme, and introduced the concept of ”potential p-values” to alleviate
the burden due to multiple comparisons. He discussed the importance of the rare variant assumption, and the power of the
approach. Alexandre Bureau later discussed the effect of cryptic relatedness among family founders on the inference, and
presented solutions to address the independence violation (see 19). The usefulness of this approach was highlighted in a case
study from families with multiple members born with oral clefts, interrogating the sharing patterns of nucleotide and structural
variants [3, 6].

Dandi Qiao presented an alternative approach, the gene-based segregation test (GESE) [9]. In contrast to RVS, GESE
requires an estimate of variant frequencies to calculate an unconditional probability of segregation patterns (as compared to
calculating the probability of sharing conditional on the variant being observed), but otherwise relies on very similar assump-
tions as RVS. Specifically, GESE (like RVS) assumes only one founder in the family introduced a causal variant in a gene, and
limiting the tests to variants with high functional impact is recommended. Further, GESE also calculates the p-value as the
sum of the probabilities of all events as or less likely as the observed event. GESE uses the sequence data from affected and
unaffected family members, while RVS is based only on sharing among affected subjects, and does not make any assumptions
about unaffected subjects.

Exploiting genealogical databases and isolated populations
Genealogical databases have been developed from a variety of data sources. Databases created from systematic civil registers in
founder populations contain nearly the complete history of the population and can serve to answer a number of questions about
the distribution and history of genetic variants in the population. The largest such database in Canada is the BALSAC database
of the Quebec founder population (balsac.uqac.ca). Simon Girard gave an overview of this database hosted at Université du
Québec à Chicoutimi and containing over 3 million linked records from the Catholic church.

For rare genetic conditions due to a genetic variant likely introduced by a single population founder, Simon Gravel pre-
sented an approach to estimate the variant genotype posterior distribution over the population founders and, from that founder
distribution, estimate the variant frequency in the various regions of Quebec. Assuming the variant entered the population
through a unique founder and the genealogy is correct, the variant genotype founder distribution is inferred by ”Monte Carlo
climbing simulations”, where more promising paths are favored by an importance sampling scheme. The resulting bias in
likelihood computation is then corrected. The method implemented in ISGen (github.com/DomNelson/ISGen) was applied to
Chronic Atrial et Intestinal Dysrhythmia (CAID), an autosomal recessive condition caused by a variant in gene SGOL1 present
in Europe with frequency 0.0002. The distribution of the ancestor most likely to have introduced the variant was inferred based
on 11 patients tied to the genealogy, and is concentrated on 4 founders. The allele frequencies inferred in the various regions
of Quebec matches estimates from population samples. The genealogical approach predicted high frequencies of the causal
variant in regions where the available population samples were too small for reliable estimation (e.g. the Charlevoix region),
highlighting its potential for orienting mutation screening.

The problem addressed by Alexandre Bureau within the rare variant sharing framework for identification of rare disease-
susceptibility variants (see 19), was conceptually different but similar in approach. It consisted in estimating the null distribution
of rare variant sharing events among present-day affected subjects included in a sequencing study, given a rare variant was seen
in any of them, considering the genealogy of these subjects as a single extended pedigree. Solving this problem would have
two benefits: controlling for cryptic relatedness (i.e. relatedness that is not captured in typical pedigree structures extending
over 3-5 generations) and improving the power of the approach. Like the variant frequency estimation approach of Gravel, the
present approach has two steps: 1) sampling the distribution of the founder introducing the variant conditional on the genotype
of present-day subjects and 2) sampling the transmission of the variant from that founder to the current generation. Step 1)
is here much simpler because it conditions on the genotype of a single subject instead of a set of subjects: thus the sampling
of the parent transmitting the variant to his offspring is a simple coin toss performed recursively from a present-day variant
carrier to a genealogy founder, while step 2) is the same as for frequency estimation, but applies to a more restricted set of
subjects. Estimates of the sharing probabilities given any affected subject carries the variant (instead of a specific one) and their
associated standard error are obtained by combining results for all present-day affected subjects. This method was attempted
on datasets simulated using the 56,800-member genealogy of 217 families from the Saguenay–Lac-St-Jean (SLSJ) region of
Quebec comprising 1018 individuals enrolled in an actual study of asthma, extracted from the BALSAC database. The current
implementation is however excessively slow when the number of affected subjects exceeds about 10.

A contrasting example of a smaller and older population isolate without genealogical database was provided by Arthur
Gilly with the Minoean isolates of the Greek island of Crete. With no genealogical database available, standard rare variant
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aggregation methods to test association with quantitative and dichotomous traits have been applied to genotyping and sequenc-
ing data on 1500 individuals from this population, while controlling for relatedness estimated from the genotype data. This
analysis in this special population revealed a burden of rare variants in gene FAM189B driven by isolate-specific rare variants.

Gene genealogies
For understanding genetic associations with trait data, it can be useful to model the latent ancestries that give rise to the sam-
ple’s genetic variability. The gene genealogy is a graph that describes the ancestry or lines of descent of chromosomal segments
sampled from the general population. The neutral coalescent provides a mathematical model for the topology and node times
of the graph. Several speakers spoke about their work in incorporating the gene genealogy in mapping methodology, including
for the discovery of rare variants and extending the modeling to pedigrees.

Jinko Graham presented her work in developing ancestral tree based statistics to find trait-influencing mutations. The
ancestry-based approach is motivated by a similar principle as family-based mapping: the similarity in relationships between
haplotypes is reflected in similarity between trait values. This suggests examining statistics that capture the degree to which
haplotypes from individuals with similar trait values cluster together in the ancestral tree. She discussed an application in which
Pearson correlation between tree-defined clusters and disease status was used as a measure of association. This was applied to a
dataset consisting of genotype data for diabetes cases and healthy controls. Trees were sampled from their posterior distribution
conditional on imputed haplotype data at 55 focal points in a genomic region. The fuzzy pvalue was used to assess the strength
of the association. The results highlighted a small number of adjacent focal points where the median of the fuzzy pvalue was
low and the spread of the fuzzy pvalue distribution was small, indicating more certainty about the genealogical tree given the
data.

Both Kelly Burkett and Renaud Alie discussed their progress in extending population-based models for the gene ge-
nealogy to family data. Kelly Burkett presented her work in extending a Markov chain Monte Carlo approach to sample an
approximation of the gene genealogy conditional on genotype data from trios (mother, father, child). Each parents’ two un-
observed haplotypes correspond to two tips of the ancestral tree and the child’s genotypic data restricts the set of parental
haplotype configurations. A proposal distribution is then used to update the parental haplotypes while ensuring the child’s
genotypes remain the same. She applied the sampler to a previously-analysed Crohn’s disease dataset and compared results
using the trio-based sampler to sampling conditional on imputed parental haplotypes. Results were similar between the two
approaches; however, the trio-based sampler showed signs of poor convergence. Renaud Alie spoke about his work developing
the pedigree-based coalescent. He proposed using previously developed models for the inheritance of genetic material within
the pedigrees at the tips and using the ancestral recombination graph as the model for the relationships between the pedigree
founders.

Tree-based association statistics capture the degree to which sequences from disease-affected individuals cluster in the an-
cestral tree. However, each individual corresponds to two tips of the ancestral tree - one for each of their sequences. Depending
on the disease model, it’s possible that only one of these sequences actually carries a risk variant. Therefore, a sequence from a
case could be misclassified. Charith Bhagya Karunarathna described his work comparing the performance of multiple tree
and non-tree based association methods in localizing a risk variant. In particular, he compared two versions of the tree-based
Mantel test: a naive version where both sequences are classified as a case and an informed version where only the sequence
carrying the risk variant was classified as a case. He showed that there was a substantially worse performance for the naive
Mantel test relative to all other approaches. The informed Mantel test performed well, but it is an idealized test that cannot be
implemented in practice without knowledge of the risk variant. This highlights a challenge to be addressed when developing
tree-based association statistics.

Simulation software to test rare variant methods for family data
Simulated genetic data is frequently required for testing new rare variant methods or to compare existing methods. Although
many programs for simulating genetic data have been created, they often rely on mathematical models from population genetics
that may not be biologically plausible. In addition, programs typically simulate data from unrelated individuals; to generate
family data, additional programming or separate software is needed to probabilistically “drop genes” in known family struc-
tures. As mentioned in Section 19, public databases contain real genealogical (BALSAC) or genomic data (e.g. 1000 Genomes).
These databases are valuable resources for simulating realistic datasets or evaluating algorithms based on probabilistic models.
Many of the participants presented simulation software developed by themselves or their colleagues that utilicize these public
databases to model the reference population for their simulations.
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A number of speakers (e.g. Briollais, Bull, Choi) used Sim1000G as part of the research that they presented. Sim1000G,
co-developed by Laurent Briollais, can be used to simulate genetic data using a reference population stored in a VCF file that
is supplied by the user. In particular, the reference population can be phased data from the 1000 Genomes project. Genetic
data for new individuals is generated by sampling from this reference population so that the allele frequencies and linkage
disequilibrium patterns are maintained. Unrelated individuals and pedigrees of arbitrary size can be simulated. For pedigree
data, two recombination models are available.

Christina Nieuwoudt presented two R packages that she and Jinko Graham developed for simulating genetic data on
pedigrees ascertained to contain a minimum number of affected individuals. simRVpedigree [8] is used to simulate the
pedigrees and disease status. The disease model for affected pedigree members includes sporadic cases as well as cases caused
by a rare variant segregating in the pedigree. simRVsequences can then be used to simulate genetic data for the pedigree
members using a model inspired by gene dropping and including recombination events. The sequence data in the founders can
be obtained using publicly-available datasets.

Simon Gravel described how a coalescent-based simulation algorithm, msprime, failed to capture the genomic struc-
ture seen with real data. The distributions of both the length and number of IBD segments between individuals with different
familial relationships were quite different between data from “23andme” and the simulated data. Although coalescent-based
simulators might reasonably approximate real data over smaller genomic regions, the approximation is poor when simulating
large regions since it allows more than two parents per offspring. He is working with collaborators on a simulator, hybride,
that is based on the forward-in-time Wright-Fisher model rather than the coalescent. By incorporating recent improvements to
the representation of gene genealogies used in msprime [7], computation time for hybride is remarkably fast. Though they
are still working on improvements, the software will be available for download in the future.

Variance-components models and identity by descent
Variance-components models are a useful tool for mapping quantitative phenotypes in families. Phenotypes are typically as-
sumed to follow a Gaussian distribution, with a mean that may depend on alleles at a genetic marker of known or hypothesized
influence. Overall phenotypic variance within a family is decomposed into genetic and non-genetic components. In the lin-
ear model of the mean phenotype, the genetic component is characterized by a vector of family-specific random effects. The
variance-covariance matrix of these family-specific random effects is the genetic component of variance. To assess the evidence
for genetic association between the phenotype and alleles at a given genetic marker, the coefficients for fixed allelic effects are
tested in the linear model. To assess the evidence for genetic linkage between the phenotype and a particular genomic location,
the variance of the random effects is further decomposed into genome-wide and location-specific components. The genome-
wide genetic-variance matrix is written as a scalar “polygenic” variance times a kinship matrix summarizing the pairwise
relationships in the pedigree. The location-specific variance matrix is expressed as a scalar, location-specific variance times a
matrix of pairwise identity-by-descent (IBD) proportions estimated from genetic markers near the location of interest. Linkage
corresponds to the scalar location-specific variance being non-zero. Presentations in the workshop extended and/or applied this
variance-components model in novel ways. We heard about extensions to accommodate non-Gaussian (e.g., time-to-event or
binary) phenotypes, and heterogeneous variance components across families and across ethnic groups. We also heard about
methods for estimating kinship matrices and local IBD sharing. The estimates from these methods allow for linkage analysis
without the need to know the pedigree relationships between individuals.

Yun-Hee Choi and JC Loredo-Osti presented variance-components models for linkage and association analysis of time-
to-event and binary phenotypes, respectively. Their generalized linear models for the mean phenotype specify a linear predictor
comprised of fixed effects and a vector of family-specific random effects, as well as a link function that relates the linear pre-
dictor to the mean. In classic variance-components style, the covariance between family-specific random effects is decomposed
into genome-wide and location-specific components. Fixed effects in the mixed model can be viewed as association parame-
ters. By contrast, the location-specific scalar variance in the variance-component model is a linkage parameter. In particular,
large scalar variances indicate that the locus-specific contribution to the genetic random effect varies according to the degree
of local relationship (i.e. linkage). Choi’s model allows for ascertainment of the families through a proband. The likelihood
for randomly-sampled (i.e. unascertained) families is corrected by conditioning or adding a penalty term. Issues such as model
identifiability and the appropriate null distribution of test statistics for linkage and/or association were discussed by both speak-
ers. Loredo-Osti commented that unrelated individuals may be incorporated as “families” of size one.

Laura Almasy presented methods that allow for genetic variance components that can vary across families. Her motivation
for developing these methods was the family-based Collaborative Study on the Genetics of Alcoholism. So far, linkage-mapping
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studies of alcoholism and its endophenotypes have identified only broad genomic regions of interest. The rationale for her pro-
posed extension is that more detailed modelling of the genetic variance should improve the linkage resolution and provide
insight into families segregating different causal loci. Almasy lets the proportion of total variance attributable to the genome-
wide and location-specific genetic components vary by family, while holding constant across all families the total variance. In
the linear model, fixed effects are also assumed to be the same across families. Examining the resulting family-specific lod
scores for linkage leads to insight into which families are contributory to a given linkage peak. Focusing analysis on these
contributory families leads to insight into which genes under a linkage peak are contributory, and therefore improved resolu-
tion. The results of her linkage analysis highlight the complex nature of alcoholism. Several promising genes and variants were
prioritized for further investigation.

Tim Thornton described a variance-components association analysis for two large consortia comprised of multiple ethnic
groups. The data for these consortia were collected from different study designs involving families, founder populations and
case-control samples. He used variance-components models to account for correlation between related study subjects. The
multi-ethnic nature of the subjects leads to a mix of recent relatedness through family structure and distant relatedness through
population structure. To account for population structure, he included fixed effects for genetic principal components in the
linear model for the mean response. The new approach improves upon competing methods that under-compensate for popu-
lation stratification at highly-differentiated markers, and over-compensate for population stratification at weakly-differentiated
markers. He found that, in multiethnic samples, allowing for the non-genetic variance to be different for different ethnic groups
is crucial for unbiased tests of association.

The Workshop included several case studies involving variance-component models and/or IBD. These case studies high-
lighted the challenges, rewards and insights offered by analysis of sequencing data. For example, Mariza de Andrade described
whole-genome sequencing of a family with venous thromboembolism and insights gained from linkage and association analy-
sis. Heather Cordell described valuable lessons learned from sequencing under a linkage peak in an ongoing study of families
with vesico-ureteric reflux. The process of analysis uncovered some pitfalls of working with sequencing data, including variant
calls that are highly dependent on the platforms used for sequencing and on the bioinformatics pipeline. Janet Sinsheimer
discussed a sequencing study of the microbiome of a beetle that lives in family units. The aim of the study was to estimate the
heritability of the microbiome. Her results suggested heritability of important bacterial groups. Simon Girard used pairwise
IBD sharing in the Quebec founder population to identify genetic variants associated with epilepsy.

Elizabeth Thompson discussed methods for estimating kinship matrices and local IBD sharing. The resulting estimates
allow for linkage analysis without knowing the pedigree relationships between individuals. Thompson first presented methods
for local IBD estimation. She then described how to combine these local estimates to obtain genome-wide measures of kinship.
When these estimates are used in linkage analyses of simulated datasets, the likelihood-ratio (lod) curves correctly identify the
linkage regions. Shelley Bull described an application of inferred local IBD to mapping risk genes for breast cancer using data
on affected sisters. The basic premise is that the siblings share disease because of the genomic regions they share IBD, and in
particular the susceptibility variants within those regions. If so, more susceptibility variants are expected on haplotypes shared
IBD by the sisters than on haplotypes that are not shared IBD. These idea leads to a statistical test of association in terms of
inferred IBD and the number of rare variants in a genomic region for the sibship.

Accommodating biased sampling of families
Family studies of genetic diseases typically sample families having one or more affected members. The first affected family
member to be included in the study is called the proband, and the set of individuals used to determine family eligibility for the
study is called the ascertainment set. As ascertained families do not represent a random sample from the population, statistical
methods must account for the biased sampling to avoid biased inference. If we view families as independent, we can understand
the ascertainment issues in terms of the likelihood for a single family. Let A be the event that the family is ascertained and Y
be the phenotypes (e.g., disease status, or age-at-onset of disease). In heritability studies that do not collect genetic data, the
likelihood is P (Y |A). In studies that collect genetic data, G, the likelihood is P (Y,G|A).

In studies that collect genetic data, alternatives to the full likelihood, P (Y,G|A), may be obtained by further conditioning.
The prospective likelihood is based on P (Y |G,A) and the retrospective likelihood on P (G|Y,A). As a rule, conditioning
ignores information and can lead to a loss of efficiency in statistical inference. However, approaches based on conditional like-
lihoods may be easier to implement than approaches based on the full likelihood. For example, if ascertainment depends only
on Y, then P (A|Y,G) = P (A|Y ). We can then argue that the retrospective likelihood is P (G|Y,A) = P (G|Y ), so that the
ascertainment doesn’t matter. Prospective likelihoods can also be easier to implement under certain assumptions. For example,
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complete ascertainment occurs when every eligible family in the population is ascertained into a study. Under complete ascer-
tainment, P (A|Y,G) = 1 for every (Y,G) that meets the ascertainment criteria. Choi et al. (2008) show that the prospective
likelihood is P (Y |G,A) = P (Y |G)/P (A|G), which is a penalized prospective likelihood with penalty term 1/P (A|G). This
simplification allows ascertainment-adjusted methods to be developed as penalized versions of existing prospective methods.

The workshop featured several talks that included the concept of biased sampling of families and ascertainment adjustment.
Lajmi Lakhal Chaieb presented work investigating the heritability of psoriatic arthritis and its possible dependence on parent
of origin. Families were ascertained through a proband only. The phenotype was age-at-onset of arthritis and no genetic data
were collected; hence the likelihood is of the form P (Y |A). The ascertainment event A is that the proband develops disease
by the time the family is recruited. Jooyoung Lee presented methods to estimate risk parameters from time-to-disease pheno-
types in studies collecting genetic data. The ascertainment event A is that the proband is alive and affected with the disease
and has multiple relatives alive at the time of recruitment into the study. She described how the complexity of the full likeli-
hood, P (Y,G|A), increases rapidly with the family size. To make the problem tractable, she proposed an approximation to
P (Y,G|A) that involves the proband and a pair of non-probands from the ascertainment set. Other speakers took retrospective
approaches to the analysis of data from their family studies. For example, Alexandre Bureau and Ingo Ruczinski presented an
approach to test for co-segregation of a rare variant with disease. The approach is based on the sharing probabilities, P (G|Y,A),
under the null hypothesis of no co-segregation. The ascertainment event A is that there is at least one affected family member
and that the rare variant is present in at least one of them. In contrast, Yun-Hee Choi took a prospective approach to analysis
of her family data. Under complete ascertainment, she adjusts the prospective likelihood by a penalty term to correct for the
biased sampling of families. She also assumes that families are recruited through a proband only. The ascertainment event A is
that the proband develops disease by the time of recruitment into the study.

Under complex ascertainment, simplifying assumptions for tractable calculations may not be possible. We may then have
to resort to Monte-Carlo sampling of ascertained families. Families are randomly sampled from the population and then filtered
by the ascertainment criteria. Along these lines, Christina Nieuwoudt described her simRVSequences R package. This
software simulates whole-exome sequence data in families segregating a rare causal variant and allows for different schemes of
family ascertainment.

Causal inference using genetic and epigenetic measurements
Inference of causal effects of exposures on health outcomes from observational data gives rise to a large variety of difficult prob-
lems. Two contributors to this workshop considered the setting where an exposure A may have a causal effect on a continuous
health outcome Y through a mediator variableM , but some of these causal effects may be confounded by a set of factorsX [1]
(see Figure 19). Both Karim Oualkacha and Xihong Lin considered studies where DNA methylation at a given genomic site
was the mediator variable M , but the problems studied by these two speakers differed. In Oualkacha’s talk, the interest lied in
establishing the causal effect of M on Y , and A was genotype at a set of genetic markers, to be used as instrumental variables
in a Mendelian randomization analysis. Since genotype is fixed at birth, the effect of genotype cannot be confounded by factors
acting after birth, so it is assumed that there is no effect of X on A. Mendelian randomization also requires that the genetic
markers A selected as instruments have no direct effect on the outcome Y . When these conditions are met, detecting an asso-
ciation between A and Y is evidence of a causal effect of M on Y . With high-dimensional genotype data from genome-wide
arrays, selection of the markers to use as instruments A can be performed by penalized least square regression methods such as
the Lasso. The difficulty encountered by Oualkacha was that study subjects were grouped in families. A two-step procedure had
previously been proposed: 1) use linear mixed models to adjust for relatedness of the subjects and 2) use the residuals from step
1 in variable-selection least-square regression methods. Oualkacha introduced ggmix, a two-in-one procedure which controls
for relatedness and performs variable selection under linear mixed models. The optimization problem was solved using a block
relaxation technique. Initial simulations studies focused on the performance of the approach to select the right set of markers
and correctly estimate heritability of M and revealed that ggmix is a promising alternative to the two-step approach and the
naive Lasso ignoring familial relatedness.

Participants
Alie, Renaud (Université du Québec à Montréal)
Almasy, Laura (University of Pennsylvania)
Briollais, Laurent (Lunenfeld Tanenbaum Research Inst.)
Bull, Shelley (University of Toronto)
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Figure 19.1: Causal diagram between an exposure A, a mediator M , confounding factors X and an outcome Y
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Bureau, Alexandre (Université Laval)
Burkett, Kelly (University of Ottawa)
Choi, Yun-Hee (University of Western Ontario)
Cordell, Heather (Newcastle University)
de Andrade, Mariza (Mayo Clinic)
Dossa, Houssou Roland Giustti (UQAM)
Fournier, Patrick (UQAM)
Fu, Jack (Johns Hopkins Bloomberg School of Public Health)
Gilly, Arthur (Wellcome Sanger Institute)
Girard, Simon (Université du Québec à Chicoutimi)
Graham, Jinko (Simon Fraser University)
Gravel, Simon (McGill University)
Hecker, Julian (Harvard T.H. Chan School of Public Health)
Ionita-Laza, Iuliana (Columbia University)
Jiang, Lai (Mc Gill University)
Karunarathna, Charith Bhagya (Simon Fraser University)
Krukov, Ivan (University of Calgary)
Lakhal Chaieb, Lajmi (Université Laval)
Lange, Ken (University of California, Los Angeles)
Larribe, Fabrice (UQAM)
Lee, Jooyoung (University of waterloo)
Lin, Xihong (Harvard University)
Liu, Dongmeng (Simon Fraser University)
Loredo-Osti, J-C (Memorial University)
Nickchi, Payman (Simon Fraser University)
Onifade, Maryam (University of Ottawa)
Oualkacha, Karim (Université du Québec à Montréal)
Qiao, Dandi (Brigham and Women’s Hospital and Harvard Medical School)
Ruczinski, Ingo (Johns Hopkins Bloomberg School of Public Health)
Scharpf, Rob (Johns Hopkins University)
Sinsheimer, Janet (University of California, Los Angeles)
Taub, Margaret (Johns Hopkins University)
Thompson, Elizabeth (University of Washington)
Thornton, Timothy (University of Washington)
Wijsman, Ellen (University of Washington)
Yilmaz, Yildiz (Memorial University)
Zhao, Kaiqiong (McGill University)

Lin was interested in performing classical mediation analysis in unrelated subjects with an exposure A (e.g. smoking) that
may affect DNA methylation M at multiple genomic sites, and thus may have a natural indirect effect (NIE) on the outcome
Y through M , in addition to a possible direct effect. Earlier work had showed that tests of the NIE were conservative under
the null case where there is no association between A and M and no association between M and Y , which is likely to be the
case for most methylation sites in a genome-wide analysis[1]. She proposed the divide-aggregate or DAT method to correct
conservativeness of NIE tests under standard mediation approaches.
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Outcome of the Meeting
The workshop was an opportunity for exchanges leading to new ideas to solve problems faced by participants. For instance,
Alexandre Bureau, Ingo Ruczinski and Simon Gravel determined that the software developed by the Gravel group to sample the
transmission of variants from founders of a genealogy to present-day individuals could speed-up the same step in the estimation
of the null distribution of rare variant sharing statistics in extended families extracted from a genealogical database attempted
by Bureau. Also, the suggestion made by Ken Lange at the workshop to subdivide the genealogy into lineages under each
founder was later implemented by Bureau in the RVS Bioconductor package and enabled exact computations in larger families
than had been possible previously.

The workshop gave speakers an opportunity to demonstrate the use of their software in assessing methods for rare variant
discovery with family data. As the software described above is freely available, other participants can now use these programs
for their own research. For example, sim1000G is currently being used by Kelly Burkett’s research group for simulating
genetic pathway data on trios (mother, father, child). Because it uses real human genetic data, they are able to easily simulate
data for human genes in the pathways of interest.
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Overview of the Field
A hallmark of biological systems is their ability to integrate external and internal signals and communicate information at
different spatial scales (from molecules, cells and tissues to organs and whole organisms) and temporal scales (microsecond
scales of molecular rearrangements to developmental and physiological processes that occur over time scales measured in
hours to months). From a mathematical point of view, biological signaling is exceedingly complex, involving a multitude of
non-linear interactions.

A seminal application of mathematical ideas to understanding the underlying mechanisms in biological signaling was
started by the landmark work of Alan Turing in 1952 [9] on how diffusible chemicals can induce macroscopic biochemical
patterns and influence organism development. In the 1960s Lewis Wolpert [10] proposed that biochemical gradients can induce
downstream cellular signals and generate different cell types in distinct spatial order.

Following these early studies, a number of mathematically deep ideas have emerged that have had profound impact on
biology, physiology and medicine. We now have a better molecular understanding of biochemical signals, and recent work
has shown that the mechanical environment plays a critical role in regulating many aspects of cell function such as migration
and cell fate determination. Mechanical regulation of cell function appears to be widespread, resulting from a conserved set
of physical mechanisms. How cells, tissues, organs and organisms integrate and respond to the interplay of mechanical and
chemical signals are frontier problems in biology.

The past few years have witnessed a virtual revolution in the application of quantitative approaches to studying biological
systems, stimulated largely by rapidly developing measurement techniques that allow the monitoring of cellular signals with
high precision in space and time, as well as the ability to manipulate gene expression and to genetically engineer a variety of
cells and model organisms. These new methods now give biologists unprecedented power to test mathematical models, while
allowing mathematicians to formulate abstract yet biologically grounded models.

Mathematical cell biology offers an integrative framework allows modern quantitative data to be ordered within predictive
models of sufficient abstraction that is amenable to analysis. However, to do so requires bringing together biologists and
mathematicians with different areas of expertise. It is essential that mathematicians be aware of the latest biological discoveries,
and that biologists be able to actively participate in model development. It is therefore timely to bring together researchers,
including young scientists, to reveal the next round of mathematically deep ideas.
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Recent Developments and Open Problems
The field of Mathematical Cell Biology has benefited from — and, arguably, emerged into mainstream cell biology with — a
series of workshops at BIRS that started in 2005, the first of which was titled “Mathematical Biology of the Cell: Cytoskeleton
and Motility” (BIRS 05w5004). This was followed by BIRS workshops in 2011 and 2014. These workshops attracted world-
leading biologists and mathematicians, often meeting for the first time, to tackle emerging open questions. The first two
meetings focused on the cytoskeleton and cell motility. As the frontiers of knowledge advanced, new questions emerged and
the focus of the meeting shifted. The 2014 workshop focused on integrating genes, biochemistry and mechanics. The success
of that meeting is evident in the number of collaborations that were initiated at that meeting.

The frontiers of biology have again advanced. Most strikingly, first, new quantitative experimental tools (especially in
imaging) are allowing models to be tested and demanding new, integrative models to make sense of a deluge of data. Second,
the question of how cells process information — cell signaling — is turning out to be more complex than previously thought,
involving not only genes, biochemistry and mechanics, but also collections of cells acting in concert as they interact with their
environment, i.e., the tissue, organ or organism in which they reside. In other words, signaling involves biochemistry and
mechanics across length scales. This workshop therefore aimed to use the powerful history of the BIRS Mathematical Biology
of the Cell workshop series to tackle these emerging questions by enlisting a new generation of researchers.

One of the goals of this diverse group of scientists is to understand the fundamental principles governing cell signaling. This
is an ambitious problem because, as noted above (and among many other reasons), it ranges across scales: from single molecules
involved in processes such as immune cell recognition and cell division, to integration of environmental signals during cell
migration, to cell-to-cell communication involved in wound healing and development. Many of these processes involve the
spatiotemporal dynamics of the cytoskeleton which modulates cell mechanics, is critical for cellular force generation, and
instrumental in cellular sensing of the chemical and physical environment. This problem is not only of fundamental scientific
importance, but also of medical importance, since many new therapies, including cancer immunotherapy, operate by modulating
our cell signaling systems.

Participants and meeting highlights
The “inputs” of the participants were diverse along many dimensions. There was representation from United Kingdom, Canada,
Australia, and the United States, from research universities, public research institutes (e.g., John Innes Center and Francis
Crick Institute) and non-profit institutes (Allen Institute for Cell Science). They came from many types of departments besides
Mathematics and Applied Mathematics, with the role of Physics being particularly notable compared to previous years (1.5 of
the organizers are appointed in Physics departments), but also including Biology, Medicine, Engineering. Many participants
have made fundamental contributions to the understanding of the actin cytoskeleton, the microtubule cytoskeleton, and their
role in cell polarization, self-organization of subcellular structures such as the mitotic spindle and cytokinetic ring, and cell
size control. In addition to intellectual diversity, the diversity also manifested itself in career stage: 4 graduate students and
7 postdoctoral researchers (the majority of whom presented either talks or posters), 5 pre-tenure principle investigators (the
number was due to be higher, but participants were promoted between invitation and participation), and 15 female participants.

Many notable outputs arose from these inputs. As senior researchers in their respective fields, Ken Jacobson and Leah
Edelstein-Keshet [4] gave presentations reviewing their decades of contributions (in cell membrane organization and cell motil-
ity, respectively) and, especially in the discussions that followed formal presentation, anticipated the next few years: What
hypotheses might be confirmed or rejected and what technologies might be enabling or over-hyped. Even more memorable
were the presentations by 6 postdoctoral researchers. These were mixed approximately equally between mathematical / com-
putational / theoreticians and experimental biologists — however, in many cases, it was impossible to distinguish this separation
from their presentations and discussions because they exuded expertise on both sides of the mathematical-experimental inter-
face. This augurs well for the future of the field of Mathematical Cell Biology. In an anonymous post-meeting survey, one
reported that “as a postdoc this was a great opportunity for me to meet researchers who could become collaborators in my
future career.”

Topics emerging from participants and discussions
The schedule of formal presentations was deliberately not sorted into topics, so that new topics would not be constrained by
historically-defined separations, but rather could emerge from the speakers’ most current research. As the workshop progressed,
we identified five clusters, which we describe in turn below.

The cytoskeleton continues to be a major organizer of researchers (this is fitting, since the cytoskeleton was the theme
in the subtitle of previous iterations of this workshop). The cytoskeleton is an integral and ubiquitous part of all eukaryotic
cells. Two of the main cytoskeletal components are actin and microtubule filaments, which form networks and higher order



216 Five-day Workshop Reports

structures to determine cell shape and enable the cell to interact with the external environment and mechanical stimuli. Further,
these biopolymer filaments undergo dynamic assembly and disassembly in cells. A host of associated proteins regulate these
dynamics and crosslink filaments to allow the formation of diverse structures. Additionally, motor proteins are important for
transport on these filaments and exertion of forces. These collective dynamics of cytoskeletal filaments, regulatory proteins
and molecular motors are important in diverse cellular processes such as cell migration, cell polarization and cell division.
Both experimental and mathematical approaches are critical to solving some of the open questions in the field. This workshop
brought together scientists from different disciplines and facilitated vibrant discussions on this topic.

Actomyosin Organization

Actin and myosin organization and dynamics is the primary mechanism for force generation in the cell and is hence critical to
diverse cellular processes including migration and developmental processes. There were several talks that focused on various
aspects related to the organization of actin networks, both in cells and in reconstituted systems from both the experimental
and theoretical perspective. The semi-flexible nature of actin filaments and the binding/unbinding kinetics of crosslinkers
result in remarkable viscoelastic properties of actin networks, with behaviors such as strain stiffening, nonlinear elasticity and
stress-induced reordering. Moumita Das spoke about her work on these dynamical mechanical response properties of actin
networks. She showed that actin networks can reversibly transition between rigid and non-rigid states (studied experimentally
using microfluidic approaches) and that this transition emerges from the assembly and disassembly kinetics of actin filaments
as shown from theoretical considerations. Her results highlight how understanding the structural and functional properties of
these systems will provide insight into the dynamic response and stability of biopolymer networks. These will be important
for predicting behavior across multiple scales — from cells to tissues and may be applicable to tissue repair therapies and soft
robotics. Garegin Papoian spoke about their work on understanding the emergence of contractility in disordered actomyosin
networks as a result of crosslinker binding dynamics. They showed that contractile force dipoles result from the interaction
of non-equilibrium dynamics of active motors and passive cross-linkers. Papoian also highlighted an open source software
program (Mechanochemical Dynamics of Active Networks – MEDYAN) that his group has developed for simulations of actin
and microtubules networks with crosslinking proteins, regulatory proteins and molecular motors. Following this presentation a
number of discussions were initiated at this BIRS workshop for further collaborative work. Moving on to cells, Amy Maddox
[2] gave a cell biologist’s perspective on how the actomyosin cytoskeletal network behaves like active living matter, due to
the far-from-equilibrium nature of motor contraction and polymerization dynamics. She discussed the contractile behaviors of
this network in cells undergoing cell division (cytoskinesis). Her work showed the existence of both positive and time-delayed
negative feedback loops that lead to traveling waves of contractility with multiple periodicities of oscillations. Again, they
showed that cross-linkers are key elements regulating the frequency of oscillations and that structural reorganizations can give
rise to negative feedbacks. These contractility fluctuations may be an emergent property of contractile actomyosin networks.
Discussion regarding simulations using MEDYAN as well as mean-field models such as those developed by Das to explain such
global behaviors in these networks then ensued. Orion Weiner presented his work on higher-level regulation of actin networks,
in particular, how the WAVE2 regulatory complex (WRC) self-organizes into ring-like foci. Using super-resolution microscopy
they revealed that these act as the fundamental units of organization (templates) of actin sheets which power cell lamellipodia
formation during migration, with significant implications for the basic mechanisms underlying motility. He further talked about
the use of nanotopographic surfaces to probe curvature sensing by WAVE complex proteins. Adriana Dawes talked about the
mechanisms underlying the formation of contractile structures called ring channels in the nematode worm, C. elegans. Their
work used both mathematical modeling (including MEDYAN from the Papoian group) and experimental manipulations to
show that two types of myosins motors act in an antagonistic manner to exert orthogonal forces to stabilize these ring channels.
Arpita Upadhyaya discussed her work on how the actomyosin cytoskeleton self-organizes into characteristic rings during
signaling activation in the T cell immune synapse and is responsible for force generation. Finally, Bill Bement discussed how
the cell cortex behaves as an excitable medium during cytokinesis and the role of both the actin cytoskeleton (which acts as a
negative regulator) and membrane organization in this process. He talked about their work on the interplay between chemical
and mechanical waves.

Cell Movements: from single-cell to collective cell behavior

A number of talks were devoted to cell motility and the mechanisms underlying directed cell motion from the subcellular single
cell level to that of collective motion in multicellular tissues. Angelika Manhart addressed the question of how the properties
of branched actin networks could be tuned by changing the composition of cofilin (an actin depolymerizing factor). She used
mathematical modeling to show that cofilin binding changes the elasticity of actin filaments, which modulated the directionality
of actin network growth, thereby directing cell migration. Going to a longer length scale, Andreas Buttenschoen showed using
a cell based computational model that migrating cells interact with their extra-cellular matrix and can break it down by me-
chanically adapting to it, with implications for directed cell movements in several biological contexts. Considering even longer
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length scales, Rachel Lee showed that collective motion in epithelial cell clusters can be attributed to a jamming transition and
involve an interplay between active cell motility, cell adhesion and cell-cell guidance. Leah Keshet gave an overview of her
group’s work over many years in which they have pioneered the use of mathematical models to couple mechanical interactions
between cells to biochemical signaling pathways and thereby predict behavior both at the cellular level (cell migration) to the
multicellular level (contractile waves in cell sheets). She highlight some “hot topics” in the field including how the interplay
between chemical signaling and mechanical tension which can lead to directed single cell motion as well as collective behavior
— in particular how tissue stiffness affects morphogenesis (which was recapitulated by the work from Otger Campas).

Several talks focused specifically on cell movements at the multicellular level and how cellular interactions led to emer-
gent behaviors at larger length scales. These collective cell behaviors are important during many stages of embryonic devel-
opment, wound healing and metastases of cancer cells. Zoltan Neufeld [8] discussed models for collective migration of cells
in different types of geometries — from linear channels to cells in two-dimensional monolayers. Cell motility is regulated by
mechanical interactions between cells and their stiffness, resulting in propagating waves. These models are similar to the ones
presented by Keshet but extend them by the addition of the external environment as boundary conditions. Calina Copos talked
about the mechanical coupling between stress fibers and the actin meshworks in cells and how this may facilitate mechanosens-
ing. She continued on the theme of the mechanisms underlying coordinated movements of cells, focusing on the migration of
a two-cell system in the ascidian, Ciona. She presented her work using computational modeling to study the coupling between
actin assembly, actomyosin contractility, cell and extracellular matrix interactions and adhesions to uncover how mechanochem-
ical coordination is achieved in this simple system for collective motion. Insights from this study will be applicable to more
complex systems — as were discussed in other talks at the workshop. The theme of cell-cell versus cell-matrix interactions
and the interplay between these was discussed again by James Feng, who talked about collective migration in neural crest
cells, which form clusters that undergo spontaneous persistent migration. He explained this behavior based on models that in-
clude biochemical signaling pathways (e.g. modulation of Rho-GTPase) coupled with physical interactions (contact inhibition
of locomotion and co-attraction). Otger Campas offered an experimental perspective on the mechanical regulation of tissue
morphogenesis and how the coordinated motion and deformations of cells direct the elongation of the body axis in developing
vertebrates [7]. He presented his work using deformable magnetic microdroplets embedded in tissue to obtain spatiotemporal
maps of forces and mechanical properties of the tissue during growth in zebrafish embryos. His work revealed transitions
between fluid-like and solid-like tissue states during morphogenesis and suggests that control of tissue mechanical properties
could be a fundamental mechanism of morphogenesis. This session highlighted the common themes between mathematical
models of collective cellular motion and sparked discussion regarding appropriate coarse-graining approaches that go beyond
phenomenological models and can more naturally yield the observed behaviors in cell aggregates. The session could have
benefited from additional experimental speakers who could provide a more empirical perspective. Future workshops may wish
to emphasize this aspect as advances in imaging and force measurement techniques are beginning to reveal collective behaviors
that challenge existing models.

Microtubule organization

Microtubule organization and dynamics is important for many cellular processes including cell division, cell polarization and
migration. Holly Goodson discussed her work on understanding the fundamental mechanisms underlying dynamic instabil-
ity of microtubule filaments using computational models to study microtubule behavior at multiple scales from subunits to
populations of filaments. Their work helps to establish how system level properties emerge from molecular characteristics in
non-equilibrium systems and may be applicable to many biological systems. Returning to the cellular level, a number of talks
in the workshop were devoted to studying the role of microtubules and associated proteins in cellular processes — in particular
mitosis — in which proper segregation of chromosomes is achieved by the mitotic spindle. Dan Needleman spoke about how
forces are coordinated to move the mitotic spindle in C. elegans. Using laser ablation to perturb the spindle and theoretical
models, they have found that pulling forces drive various spindle movements. Their work establishes general principles for a
quantitative understanding of spindle positioning and may be applicable to diverse systems. This work also emphasized the
deep connections between different active matter systems (e.g. actin and microtubule networks). Jay Gatlin talked about
experiments using in vitro reconstituted systems in microfluidic devices (to create tunable cell geometries) in order to examine
the mechanisms underlying the positioning of the microtubule aster during cell division and dissected the relative roles of cor-
tical pushing, cortical pulling and cytoplasmic pulling. In contrast to spindle positioning, they found that microtubule pushing
forces at the cell cortex can generated forces at long length scales and contribute to aster positioning. Turning to theory and
three-dimensional modeling, Meredith Betterton showed that the mechanical properties of kinetochores and their interactions
with microtubules determine the attachment dynamics of mitotic spindles. Alex Mogilner talked about how mechanical posi-
tioning of nuclei in large multinucleated cells emerge from coordinated actions of microtubules and associated motors [6]. To
explain this, he used mathematical ideas from a large body of work on spindle positioning to describe the possible force balance
schemes. How the microtubule cytoskeleton interacts with actomyosin networks to create optimal force balance in cells is a
topic that has been relatively less explored but would benefit from both experimental and computational approaches.



218 Five-day Workshop Reports

Intracellular transport and motor proteins

The interiors of cells are not random mixtures of chemicals but are spatially organized, across micrometer length scales and,
e.g., in the case of neuronal cells, organized across millimeter scales and above. One of the major drivers of this organization
is the action of molecular motors kinesin and dynein, which use microtubules as tracks. While the broad mechanism of these
motors is understood, how they combine with microtubule organization and dozens of regulatory molecules to effect control
of cell organization is an open mystery. The objects being transported are generically referred to as “cargo”. As a first step
between understanding how cargo is transported on a single microtubule, Matt Bovyn presented an experimental-theoretical
collaboration on how motors confront an intersection between two microtubules [1]. The results demonstrate how the angle
and separation of the microtubules can tune the “decision” made by the cargo on which route to take. Alexandria Volkening
presented her work to understand the case where the cargo is a varicosity, pathological subcellular objects present in neurons
following brain injuries. In his presentation, Bill Holmes discussed the case where the cargo is an insulin granule in pancreatic
cells. The motion of these granules relative to the cell periphery not only explain pancreatic function but provide an example
of non-Brownian motion, and, specifically, the mathematically curious case of non-Brownian motion near a boundary (in this
case the cell boundary). The action of motors is regulated by molecules including microtubule-associated proteins or MAPs.
A particularly visually-striking result was presented when Jonathan Howard presented striking images of a single MAP
interacting with a microtubule using the technique of interference reflection microscopy.

Membrane organization

Another topic that emerged involves the organization of biological membranes, the lipid-bilayer-based elements that form
barriers between cells and the outside world, and around many organelles. While the classical view of cell biology holds that
these are fluid sheets that contain a few freely-diffusing embedded molecules, recent research is demonstrating much more
complexity, and indeed the role of lipids is taking a backstage to the often dense embedded protein. Several talks discussed the
spatial organization of these molecules in the quasi-two-dimensional membrane. For Alan Lindsay, the embedded molecules
were receptors on a spherical cell ready to receive information from freely diffusing ligands. His work demonstrates that
different spatial positioning of the receptors on the surface of the sphere leads to different reaction properties between the ligand
and receptors. Interestingly, by assuming the diffusing ligand is emitted from a single source and studying (via simulation and
analytic methods) how receptor binding varied as the location of the source changes, his work demonstrated the ability of a
cell to sense its environment. This work helped emphasize the importance of surface molecule organization, a theme that was
highlighted in several other talks. The driver of this spatial organization varied. In the case of Daniel Fletcher [3], it was due to
the molecule size (normal to the plane of the membrane). In immune cells like macrophages performing phagocytosis (“eating”
target pathogens), these molecules are pushed up against the target, and are thus pushed into specific regions depending on their
size and how they interact with other molecules. In the case presented by Ken Jacobson [5], spatial organization arises from
non-diffusion-driven modes of motion. Finally, Nathan Goehring presented the example of PAR proteins on the membranes
of C. elegans, where a dramatic advective motion is driven by the motion of the protein network below the membrane, made of
F-actin and termed the cortex.

Outcomes
The activities at the workshop already have notable outcomes. Many of these outcomes emerged from the extended discussions
following each presentation. For example, after a presentation in which Nathan Geohring hypothesized about the connection
between a (yet-to-be-identified) molecule that flows along the cell membrane by interacting with the cell cortex, Ken Jacobson
pointed out a strong, but as-yet-unnoticed, analogy with the behavior of the B Cell Receptor, which moves along the membrane
and is associated with the cortex with some similarities.

Many new collaborations emerged from the workshop. We queried the participants two weeks after the conclusion and
have identified 9 new collaborations, some of which are already “underway” (as stated by the participant in the survey).
These include the exploration of using the MEDYAN software by Garegin Papoian’s research group to accomplish objectives
at the Allen Institute for Cell Science. Another example is between Alan Lindsay (Notre Dame) and Jay Gatlin (U Wyoming)
on mathematical modeling of nuclear dynamics. Using experimental data from Gatlin lab and mathematical modeling by
Lindsay, this collaboration aims to explain how the structure of the nuclear envelope changes in response to protein import.
Yet another example is between Alan Lindsay and Angelika Manhart (CIMS, NYU) to build and analyze mathematical models
to the explain the size, shape and spatial organization of nuclei in multiple-nucleated fly muscle cells. A description of one
collaboration is particularly striking: “One person made a suggestion while at my poster and took it upon themselves to create
some code for me. Then they spent 2.5 hours with me one afternoon teaching me how to use it, extending it, and brainstorming
about the project.”
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The future of Mathematical Cell Biology
A discussion on the final evening of the workshop was dedicated to the future of the field of Mathematical Cell Biology.
There was unanimous agreement that the idea of “multiple scales” (alluded to in the workshop’s subtitle “across scales”)
was becoming more important. It is necessary to connect the tremendous progress in understanding single molecules (e.g.,
Jonathan Howard’s work observing a single microtuble-associated protein with a single microtubule using Interference Reflec-
tion Microscopy) to understand how combinations of cells form robust structures in tissues (e.g., the migration of cells during
development studied by Otger Campas). This will require new mathematical methods, and applied mathematics is particularly
suited to the upcoming challenge of “multi-scale” biology.

Another discussion that emerged was the need to integrate new scientific communities, so that the progress of the Mathemat-
ical Cell Biology community continues to have maximal impact, and so that the frontiers of life sciences and other disciplines
is integrated into our community:

• There is a particular need for the involvement of control systems engineering, where we are seeing hints that the lessons
of control theory (in human engineered systems) are emergent in living systems as well.

• There was also a discussion about the appropriate involvement of medicine, here meaning specifically the development
of diagnostics and therapeutics. This is one of the ultimate goals of biological sciences, and mathematical cell biology
being no different. As we approach the integration of our communities, it will become increasingly important to involve
diagnostics and therapeutics into meetings like this one.

• Finally, there was discussion about the role of bioinformatics, specifically the tremendous progress being made in tran-
scriptomics. Here, the links between things like cell mechanics and transcriptomics is most cloudy: The evidence is
unequivocal that the proteins being transcribed (and transcriptionally controlled) have a major impact on cell behavior,
including the cell dynamics discussed at this workshop. Yet the nature of the link is unknown.

Participant surveys
Two weeks after the conclusion of the workshop, the organizers sent an anonymous electronic survey to the participants. There
were 9 respondents (21%). All ranked it either 9 out of 10 (55.6%) or 10 out of 10 (44.4%) for overall quality. The formal
talks were “of excellent quality and variety” and the informal parts of the meeting were “invaluable for sparking new research
ideas”.

Several comments indicated success in the quest to foster interactions between groups that do not normally interact. We
received one comment that “it was super intense for me as a biologist to understand the math talks”, a sign that our inclusion of
traditionally non-mathematical fields is working (the same respondent scored the overall workshop 10 out of 10). Another said
they “met a slice of the field that I don’t normally cross paths with at normal meetings.”

Suggestions for improvement on the scientific content included “synthesis sessions could be set aside for re-visiting related
talks, coming to common ground...”, and for posters, that there were “fewer than expected”. A valuable suggestion we received
in discussion with participants is the scheduling of a session dedicated to funding opportunities for mathematical cell biology.

Future impact
Of the many long-term goals of the field of Mathematical Cell Biology, the one identified by this workshop is to understand
cells as signal processing machines, where the machinery is based on the spatial organization of the cytoskeleton, membranes,
and the molecules with which they interact. We see evidence for future impact towards achieving this goal. This evidence
includes:

• The (≥ 9) new collaborations mentioned above are expected to have an impact beyond the participants themselves, by
promoting the idea of successful interdisciplinary collaboration. Many of these are examples of convergence across
traditional disciplines, e.g., from Mathematics departments and Biology departments.

• The incorporation of new communities were roughly prioritizes as: Control systems, medical diagnostics and therapeu-
tics, and bioinformatics/transcriptomics.

• The growing emphasis on multi-scale methods that connect single molecules to the behavior of groups of cells in tissues,
organs and organisms necessitated the development of mathematics that works “across scales”.

Beyond within this field, there are examples on both the mathematical side (e.g., asymptotic approximation methods) and ex-
perimental side (internal reflection microscopy) of progress in this field that we expect to have an impact in other areas of
mathematics and biology. This workshop continues to provide a potent instance of convergence across scientific and mathe-
matical disciplines.
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Chapter 21

Regularity and Blow-up of Navier-Stokes
Type PDEs using Harmonic and Stochastic
Analysis (18w5057)

August 19 - 24, 2018
Organizer(s): Hakima Bessaih (University of Wyoming), Peter Constantin (Princeton Univer-
sity), Jiahong Wu (Oklahoma State University), Kazuo Yamazaki (University of Rochester)

Overview of the Field
Mathematical analysis on the equations of fluid motion have evolved remarkably ever since the pioneering work of Leray [4]
in 1930s. While the fundamental question of the existence and uniqueness of a global solution with finite kinetic energy in the
three-dimensional case for the Navier-Stokes equations remains unsolved, over these decades mathematicians have contributed
to extraordinary advancement in the study of fluid dynamics.

Recent Developments and Open Problems
Very recently, two particular analysis tools have stood out prominently, namely harmonic analysis tools (e.g. [1]) to handle the
non-linear terms that involve derivatives, and stochastic analysis tools (e.g. [2, 5]) to study the same equations but forced with
noise. Using these tools, we have seen various different results, e.g. global existence of unique solution with dissipative term
replaced by a fractional Laplacian or only in selected directions, blow-up of a solution with the structure of the equation slightly
modified, and finally the stochastic effects such as whether the noise helps regularize the solution or not.

The objective of this workshop “Regularity and blow-up of Navier-Stokes type PDEs using harmonic and stochastic anal-
ysis” at Banff Scientific International Station (BIRS) was to invite various researchers in fluid dynamics working through
different approaches to share their work and provide favorable environment for discussion and collaboration among those with
complementary background and training who otherwise would not have had this opportunity to interact. The workshop brought
together the stochastic and the deterministic communities to share their finding and have a very open discussion on the future
research direction of fluid dynamics and in particular Navier-Stokes equations with the goal of helping each other shed some
light on how to be more successful in solving the open questions.

Presentation Highlights
The 5-days workshop was scheduled to run everyday. We had deterministic oriented talks by the following experts:

1. Prof. Buckmaster Tristan from Princeton University - Department of Mathematics,
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2. Prof. Chae Dongho from Chung-Ang University - Department of Mathematics,

3. Prof. Cheskidov Alexey, University of Illinois at Chicago - Department of Mathematics,

4. Prof. Constantin Peter, Princeton University - Department of Mathematics,

5. Prof. Córdoba Diego, Instituto de Ciencias Matemáticas - Consejo Superior de Investigaciones Cientficas,

6. Prof. Doering Charles, Department of Mathematics, University of Michigan,

7. Prof. Dong Hongjie, Brown University - Department of Mathematics,

8. Prof. Hmidi Taoufik, Université de Rennes1 - Equipe EDP, IRMAR,

9. Prof. Ignatova Mihaela, Princeton University - Department of Mathematics,

10. Prof. Ohkitani Koji, University of Sheffield - Department of Applied Mathematics,

11. Prof. Shvydkoy Roman, University of Illinois at Chicago, Department of Mathematics,

12. Prof. Tarfulea Andrei, University of Chicago - Department of Mathematics,

13. Prof. Titi Edriss, Texas A & M University, Department of Mathematics,

14. Prof. Vasseur Alexis F, University of Texas, Austin - Department of Mathematics,

and the stochastic oriented talks by the following experts:

1. Prof. Ferrario Benedetta, University of Pavia, Department of Mathematics,

2. Prof. Friedlander Susan, University of Southern California - Department of Mathematics,

3. Prof. Glatt-Holtz Nathan, Tulane University - Department of Mathematics,

4. Prof. Iyer Gautam, Carnegie Mellon University - Department of Mathematics,

5. Prof. Maurelli Mario, Technische Universitat Berlin, Institut fur Mathematik,

6. Prof. Romito Marco, Universitá di Pisa, Departimento di Matematica,

7. Prof. Schmalfuss Björn, University of Jena - Institute for stochastic.

It is very rare, if not the first time, to have such an opportunity to intentionally bring experts on the fluid partial differential
equations (PDEs) from complementary perspectives and somehow try to bridge our knowledge together. We deliberately
tried to order these talks mixed. The talks ranged over not only the Navier-Stokes equations but surface quasi-geostrophic
equation from geophysics, flocking models, Korteweg–de Vries equation, Boussinesq equation from oceanography, Muskat
equation, Lorenz equation, Kuramoto-Sivashinsky equation, Hele-shaw model, equation of mixing, point vortex model, as well
as Burgers equation. There were very good dialogues of what stochastic perspectives may be able to offer when speakers from
deterministic perspective gave talks, and similarly how some techniques from deterministic case is difficult but may be extended
to the stochastic case. In the direction of research of Navier-Stokes type fluid PDEs there are many results which exist in the
stochastic case but not the deterministic case and vice versa. It was very refreshing for many participants how the theory of
fluid PDEs, considered from a complementary point of view, lead to so many new techniques and remarkable results.

Between each talk, we typically had breaks of 30 minutes during which participants and speakers were able to engage
themselves in deeper discussions through the board outside the lecture rooms. For example, after a talk by a certain speaker, a
participant was able to share his progress in a very similar direction and they found out that they had very similar results but
proven through different perspectives. Due to their discussion, these two participants will be able to acknowledge each others’
works in their papers, which is important in the communication through journal publications.

Scientific Progress Made
We considered that it will be important to have time during which instead of one speaker gives a talk about his/her results,
every participant including speakers and non-speakers feel free to share anything, even non-significant computations within
their research which have given them concerns or questions. In the direction research of fluid PDEs, there remain so many open
problems and unexplored directions of research, which, only if they were shared, will catch much attention and we may quickly
see rapid developments. Therefore we reserved Tuesday 16:30 - 17:30, Thursday 16:30 - 17:30, as well as Friday 9:00 - 10:00
and 10:30 - 11:30 for the Discussion periods. During these four rare opportunities, we all sat together, allowed speakers to
give additional comments beyond their presentations, sometimes corrections, and also shared open problems as well as general
questions.

In particular, an expert in the deterministic PDEs in fluid raised a question of extending the well known result concerning
the ergodicity of the two-dimensional Navier-Stokes equations with a hypoelliptic noise on a two-dimensional torus ([3]) to a
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more general bounded domain. The group of experts on the fluid PDEs forced by noise were able to respond by elaborating
on the results which have been obtained, those which have not obtained but are possibly achievable, and finally those which
are very difficult and completely open. Again, this was a very good dialogue which was only possible because the groups of
researchers on fluid PDEs from complementary perspectives have come together and felt comfortable enough to share their
questions honestly and hear feedback directly with one another.

Moreover, on the Thursday 16:30 - 17:30 session, led particularly by the experts with much experience such as Prof. Peter
Constantin, Prof. Edriss Titi and Prof. Charles Doering, participants were encouraged to share their open problems, write them
on the board and hear thoughts from other participants. In particular, problems concerning exponential decay of a solution to an
equation in mixing by Prof. Gautam Iyer, point vortex dynamics by Prof. Marco Romito and numerical analysis by Prof. Adam
Larios were written on the board. There were many more problems proposed as very interesting, difficult but perhaps possible
candidates for research in the near future, and the board was filled completely and very quickly. Thereafter, many shared their
thoughts about relevant results, possible techniques to tackle such problems and difficulty in a very friendly manner. Such a
fruitful discussion of sharing problems rather than new results can give us all a better understanding of the directions of research
which will be of interest to a wide community of researchers.

Another noteworthy advantage of our workshop was that due to the prestige of the BIRS, its kind accommodation, and
the fact that this was not a conference over a few days but an entire week, we were able to attract many renown experts from
overseas outside the United States and Canada such as Asia and Europe. Even outside lectures times, during the tours by BIRS,
on our way to daily meals at the Vistas Dining Room, walks to the Town of Banff in the evening as well as the trip to Lake
Louise on the free Wednesday afternoon, the participants were able to interact with researchers in same field of study with
whom they are typically able to communicate only through E-mails or reading papers. In a very relaxed, friendly fashion,
every participant was able to share their research results, problems they are facing, and hear feedback from many others, all of
which have been extremely helpful and productive for not only research but also motivation and gaining wider perspectives. It
is actually very important to spend time together in such non-research activities and have conversations even outside research.
It may lead to long term collaboration as well as friendship, helping in particular the young participants build their careers as
mathematicians in this international community of fluid dynamics PDEs.

Outcome of the Meeting
This 5-day workshop has opened a new bridge between the deterministic and stochastic community of fluid PDEs. Every
participant has enjoyed their time at BIRS fully, as confirmed verbally directly from participants. Due to excellent presentations
and deep discussions which took place, many long-term collaborations among the participants who met each others for the first
time in this workshop are strongly expected.
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their applications (18w5025)
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Overview of the Field
The notion of tau-function was coined in the early days of the theory of integrable systems about 40 years ago in works of
Jimbo-Miwa-Ueno [JMU81], Segal-Wilson [SeWi1985], Sato[Sa1989] and many others. In the case of celebrated Kadomtcev-
Petviashvili (KP) equation the notion of tau-function proposed by Segal-Wilson can be viewed as an extension of the notion
of the multi-dimensional theta-function. In works of Jimbo, Miwa and their coworkers the tau-function was introduced as a
partition function of so-called holonomic quantum fields on a punctured Riemann sphere; the Jimbo-Miwa tau-function was
later proven by Malgrange [Ma1983] to play a primary role in the theory of Riemann-Hilbert problems whose solvability is
governed by vanishing properties of the tau-function.

Surprisingly enough, tau-functions of the most celebrated integrable systems like Korteveg de Vries (KdV), KP and Toda
equations were proven to appear in fundamental combinatorial models, in particular related to random matrices and geometry
of moduli spaces. The most famous example is Witten’s conjecture about intersection numbers of ψ-classes on moduli spaces
of Riemann surfaces; as it was proved by Kontsevich in 1991, their generating function is a partition function of a random
matrix model and, moreover, is a tau-function of the KdV equation. Furthermore, as it was later discovered by Okounkov
and Pandharipande [OkPa2005], generating functions of Hurwitz numbers are special tau-functions of Toda’s equation. These
results were extended to intersection numbers of an arbitrary combination of ψ and κ-classes (Kazarian), to Gromov-Witten
invariants (Pandharipande et al) etc.

Tau-functions play a central role in Dubrovin’s theory of Frobenius manifolds which formalizes the Witten-Dijgraaf-
Verlinde-Verlinde equation of associativity arising in topological field theory. From the point of view of symplectic geometry
tau-functions play the role of generating functions of commuting Hamiltonians of a completely integrable system.

Recent Developments and Open Problems
Among recent developments in the theory of tau-functions and their applications are:

– Series of works initiated by conjecture of Gamayun, Iorgov and Lisovyi [GaIoLi2012] who discovered that the coefficient
in expansion of Jimbo-Miwa tau-function of Painlevé IV equation coincide with conformal blocks of certain conformal
fiels theories.

– The analysis of Jimbo-Miwa tau function allowed to obtain a non-trivial new relation in the Picard group of the space of
admissible covers and the moduli space of holomorphic differentials on algebraic curves (Korotkin-Zograf)[KoZo2011]
.

– Appearance of tau-functions in the holomorphic factorization formulas for determinant of Laplacian on flat Riemann
surfaces with conical singularities (Kokotov, Korotkin), and in the theory of Lyapunov exponents of Teichmüller flow
on moduli spaces (Eskin-Kontsevich-Zorich) [EsKoZo2011].

Presentation Highlights
Tau-functions and geometry of moduli spaces.
The moduli spaces of interest to the workshop are associated to algebraic curves: these are moduli spaces of Riemann surfaces,
both pointed and non-pointed, Hurwitz spaces, moduli spaces of abelian, quadratic and n-differentials. Generating functions for
interesting quantities related to these moduli spaces (Hurwitz numbers, volumes, intersection numbers of various tautological
classes etc) coincide, in many instances, with tau-functions of various integrable systems (KdV, Toda, KP). Within this area
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we found the talks of Chaya Norton who spoke on the symplectic geometry of moduli spaces of projective connections; the
symplectic structures that were discovered are related to the geometry of the “double covering” curve, which is associated
in a natural way to any quadratic differential (a well known fact in Teichmüller theory). Here tau functions generate the
symplectic transformations between different sets of Darboux coordinates, called ”homological”. Giulio Ruzza discussed
the isomonodromic approach to the computation of intersection numbers in the moduli space of open pointed curves; the
approach is similar to the original one by Kontsevich [Kon92] starting from an appropriate matrix model with external source
[Ale15a]. Tau functions also appeared as generating functions of generalized Hurwitz numbers, counting the branched covers
of the Riemann sphere with various weights; in his talk, John Harnad explained a far reaching generalization of the result by
Okounkov and Pandharipande [OkPa2005] that identified the generating function for “double Hurwitz numbers” as a particular
tau function of the Kadomtsev-Petviashvili (KP) hierarchy. These weighted enumerations can be also represented graphically by
a diagram called “constellation”. The approach that was explained in the talk relies upon the topological recursion algorithm,
pioneered by Chekhov (who was one of the speakers as well), Eynard and Orantin. The algorithm hinges on the notion of
“quantum spectral curve”; this is essentially a differential equation whose symbol (the “spectral curve”) serves as initial datum
for the topological recursion. John explained how, using this approach, they can compute these weighted numbers in terms of
the classical objects of the theory of integrable systems.

Within this area we can also list Dimitri Zvonkine’s talk; he reported a new result on explicit constructions of classes in the
cohomology ofMg,n which are not “tautological”, i.e. not a combination of the Ψ-classes. A particularly enticing example is
the “simplest” non-tautological class, which appears in the moduli space of genus one surfaces (elliptic curve) with 11 marked
points. The main reason is due to a clever interpretation of the classical cusp form (of weight 12) or modular discriminant
provided by the twenty-fourth power of the Dedekind η function.

Tau-functions and asymptotics of correlation functions
Correlation functions of various exactly solvable quantum mechanical and statistical models are tau functions associated with
isomonodromy deformations of various linear systems. The main analytic issue in these applications of tau functions is their
asymptotic behaviour near the relevant critical points. Of a particular importance are the connection formulae between different
critical expansions and the evaluation of the constant factors appearing in these asymptotic formulae. These factors, very often,
contain the most important information of the models in question. The first rigorous solution of a “constant problem” for
Painlevé equations (a special Painlevé III transcendent appearing in the Ising model) has been obtained in the work of Tracy in
1991. Other constant problems have been studied in the works by Basor-Tracy (1992), Krasovsky (2004), Ehrhardt (2006), and
in several papers of Its, Deift, Lisovyy and their collaborators starting from 2005. The tau functions that appear in all these works
correspond to very special families of Painlevé functions and their extension to the general family of Painlevé transcendents
has been a long standing problem in the field . The first rigorous results concerning the general two-parameter families of
solutions of Painlevé equations have been obtained only recently in works of Its, Lisovyy, Tikhyy and Prokhorov (2013-2015),
and they are based on the combination of the (also recently discovered) conformal block representation of isomonodromic tau
functions and on the extension of the original Jimbo-Miwa definition of tau-function given by Malgrange and Bertola. One of
the important conceptual outcomes of these results is the realization that the constant factors in the asymptotics of tau functions
are the generating functions of certain symplectomorphisms.

Within this scope we found the talks of Gavrylenko, Prokhorov. In his talk Pavlo Gavrylenko explained that the stan-
dard principal minor expansion of a Fredholm determinant can be naturally interpreted as multiple sums over partitions (or,
equivalently, Maya diagrams). Isomonodromic tau functions of general Schlesinger systems have been expressed as Fredholm
determinants and the above expansion provides an explicit combinatorial formula for the general isomonodromic tau function.
Interestingly, this approach can be identified with the dual Nekrasov partition function. Gavrylenko also explained how to
represent N ×N isomonodromic tau functions as a vacuum expectation value in a vertex-operator-algebra of an N-fermionic
CFT; using the combinatorial interpretation alluded above it was explained the terms in the expansion of the combinatorial
formula can be identified series over conformal blocks at c = N − 1 of a WN algebra.

The talk by Andrei Prokhorov discussed the relationship between the isomonodromic tau functions of the classical Painlevé
equations (in particular Painlevé II and IV) with corresponding classical actions in the Hamiltonian theory (Okamoto) for all
Painlevé equations. The main outcome of these relations are certain differential identities which enter in the solution of the
“constant” problem in the asymptotic analysis of tau functions. General tau functions display analogous differential identities.
He then explained that it is possible to identify the Hamiltonian structure for the isomonodromic deformations corresponding
to Painlevé equations and conjecture a generalization thereof to more general cases of isomonodromic deformations.

Tau functions, Fredholm and Töplitz determinants
One of the prime source of tau functions, both in the integrable systems setting and the isomonodromic settings has been
determinants of finite or infinite dimensional operators. This was already explained by Segal-Wilson as a general setup to
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understand the Sato description of the KP hierarchy. In this optics we can frame both Lisovyy and Basor’s talks.
Lisovyy reviewed his recent breakthrough results on the general construction of tau functions for Riemann–Hilbert prob-

lems. The method relies upon the identification of the “Widom constant” with a tau function (an identification which was
originally found by M. Cafasso [Caf2008]). The Widom constant is the expression appearing in the formulation of the Strong
Szegö Theorem for either scalar or matrix-valued symbols on the unit circle. This constant is a Fredholm determinant involving
the Malgrange-Bertola forms for both the direct and dual Riemann–Hilbert problem. In those cases where either the dual or
the direct problem admits an explicit solution, then the Widom constant can be identified with the isomonodromic tau function.
This is precisely the setting of Lisovyy’s talk, especially in the case of the sixth Painlevé equation. The resulting expansion in
the standard Fourier basis yields interesting combinatorics that have been deeply exploited in the context of conformal blocks
(see also the talk by Gavrylenko above). The approach extends so far also to Painlevé V and III.

Of similar nature was the contribution by Estelle Basor; she recalled in a very informative way the original result by Widom
whereby the large-size asymptotics of determinants of finite–size (block) Toeplitz matrices leads to the strong Szegö theorem
(or Szegö-Widom theorem for the block case). As mentioned before, this constant can be described as a determinant of certain
operator that is a trace–class perturbation of the identity operator, and therefore admitting a Fredholm determinant expansion.
While in the scalar case the computation is explicit in terms of the Fourier coefficients of the logarithm of the symbol, in the
non-scalar (matrix) case it is not possible to express concisely the constant. Estelle focused on classes of nontrivial examples
of 2 × 2 matrix symbols where one can still provide an explicit formula; this relies on particular factorization properties of
the symbols that are called ”root subgroup factorizations”. In these cases the Widom constant’s computation reduces to finite
dimensional linear algebra.

Integrable structures of Quantum Field Theory (CFT)
In a 2012 paper by Iorgov-Gamayun-Lisovyi it was conjectured that the isomonodromic Jimbo-Miwa tau-function is closely
related to conformal blocks of certain c = 1 conformal field theories. These conjectural formulae have been extended to other
classes of theories and other tau-functions (Bershtein-Shchechkin, Marshakov-Gavrylenko and others) and, in the case of PVI,
proven by Gavrilenko and Lisovyy. Since the original definition of the Jimbo-Miwa tau-function was inspired by the theory of
holonomic quantum fields, this new development is naturally closing the circle of ideas originating from quantum field theory
which lie behind the notion of Jimbo-Miwa tau-function.

Shchechkin reviewed his recent result on the proof of a particular power series expansion for the discrete q–Painlevé III
tau function. This proof settles a conjecture on a q–deformation of the result by Gamayun-Iorgov-Lisovyy that interpreted the
coefficients of the expansion as conformal blocks. The idea of the proof is to exploit its equivalence with bilinear relations on
q-Virasoro conformal blocks.

The two talks of Marshakov and Bershtein were naturally linked to each other; Marshakov discussed the interpretation of
certain dimer models on bipartite graphs and their partition function in terms of cluster algebras. In this context particularly
crafted sequences of mutations of the cluster algebra can be viewed as a discrete integrable dynamical system of Painlevé type;
moreover he explained how to find their Lax representation.

Bershtein’s talk was the natural continuation of the previous talk, where he constructed special solutions of the discrete
equations obtained by deautonomization of certain discrete flows in cluster algebras. These solutions can be written in terms of
Riemann Theta functions.

Erik Tonni discussed some analytical results describing the entanglement of disjoint intervals in the context of two dimen-
sional conformal field theories (CFT). In particular, he considered the Renyi entropies and the moments of the partial transpose,
which provide respectively the entanglement entropy and the logarithmic negativity through some replica limits. These analytic
expressions are obtained as the partition function of the CFT model on some particular singular higher genus Riemann surface
constructed through the replica method. He presented explicit expressions in terms of Riemann theta functions for simple mod-
els like the compactified free boson and the Ising model and also numerical calculations on different lattice models which give
evidence of the correctness of the analytic results.

The talk by Kirill Krasnov was devoted to the discussion of the recently discovered colour/kinematics duality in Yang-Mills
theory (Bern, Carrasco and Johansson, 2008). This duality states that the Yang-Mills amplitudes at tree level can be represented
as ”squares” of the Lie algebraic colour structure. This property is intriguing because it suggests that he Yang-Mills theory
has some hidden structure which is invisible in its Lagrangian formulation. The duality is by now well understood in the the
self-dual (integrable) sector of the theory. Its role in the full theory is not yet completely known; however it is very encouraging
that the famous structure Drinfeld double of the Lie algebra of vector fields plays a central role there.

Tau-functions in the theory of topological recursion and cluster algebras
An alternative method to explore the asymptotic behaviour of matrix integrals (and also more general problems) was developed
by physicists and is called the method of topological recursion of Chekhov-Eynard-Orantin which allows to resolve recursively
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the so-called ”loop” equations. Remarkably, various terms arising in this expansion coincide with tau-functions from the theory
of Frobenius manifolds, and also encode important combinatorial quantities like Hurwitz numbers, Gromov-Witten invariants,
Hodge integrals etc.

Within this area we can list the talk of John Harnad (already reviewed), David Baraglia, Leonid Chekhov, David Baraglia
nicely reviewed the famous construction of Hitchin of an integrable system on the co-tangent space of stable vector bundles on a
Riemann surface. This is an algebraically integrable system (meaning that the tori are actually Abelian varieties). He explained
how the construction works starting from a spectral curve and how these data are precisely the necessary information to initiate
the scheme of topological recursion of Chekhov-Eynard-Orantin. However there is no easy interpretation of the outcome of
this procedure in terms of geometric invariant; indeed their meaning is not entirely clear. Nonetheless Baraglia explained that a
possible avenue is the theory of special Kahler geometry for the genus zero invariants and Bergman tau functions for the genus
one invariants. The interpretation of the higher genera invariants remains a mystery and open problem.

Leonid Chekhov discussed the quantization of the Goldman bracket in the context of SLk-representations on the moduli
spaces Σg,s,n of Riemann surfaces of genus g with s holes and n bordered cusps on the boundaries of the holes. His approach
used a certain coordinatization introduced by Fock and Goncharov [FoGa2006] for Teichmüller spaces.

Tau functions in random matrix theory and random processes.
The theory of random matrices and the asymptotical expansion of matrix integrals is an important topic in combinatorics and
physics. From a mathematical point of view most matrix integrals can be viewed as tau-functions of various integrable models;
this turns out to be true both for finite matrix and as the matrix size tends to infinity.

Rigorous asymptotics analysis of such matrix integrals is based on Deift-Zhou method of steepest descent applied to an
appropriate Riemann-Hilbert problem. The approach allows to obtain at the same time the asymptotic of the tau function (or
“partition function”) as well as the strong asymptotics of the corresponding orthogonal polynomials, and hence the method
is of interest for the two communities of mathematical physicists on one side as well as the community of approximation
theory, mostly focused on the asymptotics of the orthogonal polynomials proper. Additionally, the recurrence coefficients of
the orthogonal polynomials provide solutions for the Toda equations and also, when viewed in terms of the index, discrete
Painlevé equations.

Within this circle of ideas we had the talks of Percy Deift, Tamara Grava, Peter , Anton Dzhamay, Craig Tracy.
Deift tackled a specific problem of the large-n behaviour of the recurrence coefficients for orthogonal polynomials in a

L2((−1, 1), ln 2k/(1−x)
d

x). These weights (for k > 1) are at the center of a conjecture by Alphonse Magnus, which was thus
proved. The problem, while specific, has interesting connotations because its solution requires a slightly different technique
from the more standard nonlinear steepest descent. The technical reason is that a crucial step (known as the “parametrix”) near
the singularity x = 1 of the measure cannot be explicitly constructed in terms of known functions. Instead Deift showed how
to cleverly use an approximation scheme in terms of Legendre polynomials.

Grava revisited the problem of the asymptotic expansion of the partition function of the one–matrix model when the
asymptotic eigenvalue distribution has two connected components (”two-cuts”). While in the one-cut regime it is known that
the partition function and all the associated quantities (orthogonal polynomials, recurrence coefficients etc.) admit a regular
asymptotic expansion in inverse powers of the size N of the matrix model, when there are two-cuts or more we also find
oscillatory terms at every higher order of approximation. The partition function can be approximated using appropriate Theta
functions but also an important contribution of Grava and co-authors has been the explicit correct computation of the ”constant
problem”, i.e. the overall multiplicative constant (usually dependent on the size N alone) leading the asymptotic behaviour.
This is a notoriously difficult problem (see also the talks of Prokhorov and Lisovyy).

More directly related to the classical theory of integrable systems was the contribution of Peter Clarkson, where he ex-
plained how the τ function of certain Painlevé equations can be expressed as the Hankel determinant of so–called “semi-
classical” weights. His talk provides a concrete and specific realization of an existing framework that relates these Hankel
determinants to more general isomonodromic tau functions [BEH2006]. Moreover he showed how the recurrence coefficients
of the corresponding orthogonal polynomials can be interpreted as solving specific instances of discrete Painlevé equations.

Anton Dzhamay showed the connection of certain gap-formation probabilities with discrete Painlevé equations (and also
with biorthogonal polynomials). In fact these gap probabilities are also tau-functions of the appropriate type (KP or isomon-
odromic, depending on the model).

It is well-known that gap probabilities of some discrete probabilistic models can be computed using discrete Painlevé
equations. However, choosing correct Painlevé coordinates and matching the model with the standard Painlevé dynamics is
a highly non-trivial problem. In this talk we show how this can be done using the geometric tools of Sakai’s theory for the
model of boxed plane partitions with generalized weights suggested by Borodin, Gorin, and Rains. An important feature of our
result is its consistency with the degeneration schemes for the weights matching the degeneration scheme for discrete Painlevé
equations.
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Random point processes where the correlation are determinants (known therefore as determinantal random point processes)
are well known to be related to Fredholm determinants (and tau functions) because the gap-formation probabilities and gen-
erating functions of occupation numbers are expressible as such; however there are processes as the Asymmetric Exclusion
Process (ASEP) where Fredholm determinants still make a prominent appearance even if the correlations are not determinants;
this was the main message of the talk by Craig Tracy. The ASEP is a discrete point process on the line where a particle can
jump randomly to the nearest left/right unoccupied site. The probability that the m-th particle from the left is at site x at time
t was a breakthrough computation of Tracy and Widom of a few years back. These formulas were expressed in general as
sums of multiple integrals and, for the case of step initial condition, as an integral involving a Fredholm determinant. Tracy
reported on his more recent work where they obtained a generalization to the case where the m-th particle is the left-most
one in a contiguous block of L–particles. These explicit formulæ allow to compute asymptotic behaviour for large time in the
Kardar-Parisi-Zhang (KPZ) regime when the initial condition consist of “step-like” data, i.e. there are no particle to the right of
the origin and all sites to the left are occupied.

Tau functions, Integrable Systems and vector bundles.
Jacques Hurtubise explored in his talk the deformation theory of bundles. The key to understanding the development of
singularities in the solution of isomondromy problems on the Riemann sphere is whether the underlying bundle is trivial or
not: for isomonodromy problems over curves of higher genus, the analogous notion is that of stability of the bundle. Hurtubise
then showed that isomonodromy deformations provide a natural framework for the study of transverse deformations away from
the unstable loci, whether the connection in question is regular, or has regular or irregular singularities.

The talk of Alexander Bobenko focused on his particular brand of integrable discrete systems, which have found wide
applications in computer graphics and even, to some extent, architecture. He presented a procedure which allows one to
integrate explicitly the class of (checkerboard) incircular nets. This class of privileged congruences of lines in the plane is
known to admit a great variety of geometric properties. The parametrisation obtained in this manner is reminiscent of that
associated with elliptic billiards. Connections with discrete confocal coordinate systems and the fundamental QRT maps of
integrable systems theory were made.

Simonetta Abenda presented recent results (together with P.G. Grinevich) on the association between points of the totally
positive Grassmannian and real algebraic-geometric data in the spirit of Krichever that give algebro–geometric solutions to
the Kadomtsev-Petviashvili II (KP) equation. These solutions correspond to a certain finite dimensional reduction of Sato’s
Grassmannian and their asymptotic behavior is known to be classified in terms of the combinatorial structure of the totally
non-negative part of real Grassmannians GrTNN (k, n). Abenda and Grinevich used Postnikov’s classification of totally non-
negative Grassmannians which associates points of the positive Grassmannian with network graphs. They then made the explicit
the correspondence with the datum of a rational degeneration of an M–curve of genus g together with a real, non-special divisor
of degree g.

The construction of algebro–geometric solution of integrable hierarchies poses the challenge of effective numerical evalu-
ations of canonical data on Riemann surfaces; in this vein Christian Klein discussed a purely numerical approach to compact
Riemann surfaces starting from plane algebraic curves and introduced the necessary notions and approximation algorithms used
to carry out numerical computations (mostly using Matlab).

In Atsushi Nakayashiki’s talk we heard on a higher genus generalization of the classical Weierstrass σ–function. These
multi-variate sigma functions have a series expansion whose coefficients are polynomials of coefficients of the defining equation
of the curve which has the very desirable property that it behaves smoothly under degeneration of the curve. In his talk he
focused on the degeneration of a hyperelliptic curve of genus g to a curve of genus g − 1. Using the tau function formalism
in the context of Sato’s Grassmannian, he represented the limiting sigma function in terms of a sum of lower genus sigma
functions.

Another application of isomonodromic deformations to the theory of Frobenius manifolds was presented by Davide Guzzetti.
In this context it is necessary to consider particular degenerations of isomonodromic systems where the coefficients of the dif-
ferential equation become resonant (eigenvalues coincide). The system admits a well–defined limit (relevant then for the
application to Frobenius manifold theory) only for certain initial data, which he identified and studied.

Scientific Progress and Outcome of the Meeting
Talks and discussions which took place during the meeting have sewn the seeds of further developments and advances in all the
areas presented at the meeting. We only name a few of them.

In the past years it has become clear that there are still unexplored and deep connections between the now-classical theory
of isomonodromic deformations and the symplectic geometry of Painlevé equations; the talks of Prokhorov and Lisovyy are a
manifestation of this relationship. In fact, one of the outstanding problems in the area is the computation of the “connection
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constants”; the ratio of the asymptotic expansions of the tau function near its singular points is a function only of the monodromy
data (a “constant” relative to the isomonodromic parameters). Its computation poses significant challenges and result are only
recently becoming available in papers of Its, Lisovyy and collaborators. This constant appears also to be a generating function of
changes of Darboux coordinates. A novel interpretation that emerged during the discussion is that of this constant as transition
function of an appropriate line bundle over the monodromy manifold.

As a result of talk of Zvonkine it has become plausible that the Bergman tau function should be a useful tool in construction
of new non-tautological classes on moduli spaces of marked Riemann surfaces; until now very few explicit examples of the
non-tautological classes are known.

The unexpectedly important role played by the discrete Painlevé equations in conformal field theory was revealed in the
talks of Bershtein-Gavrilenko and A.Marshakov; this link allows to expect that rich geometrical structures associated to the
discrete Painlev’e equations can be applied to study correlators and conformal blocks of various conformal field theories.

As a result of the talk of Jacques Hurtubise and subsequent discussion involving Baraglia, Bertola, Korotkin, Norton,
Harnad, Ruzza, opened the way to generalization of the notion of isomonodromic tau functions to Hitchin integrable systems
including their non-autonomous counterpart and higher genus analogues.

Talks by Baraglia and Hurtubise lead also to elucidation of the link between moduli spaces of abelian differentials on
Riemann surfaces and spaces of spectral covers of generalized Hitchin systems. In particular, variational formulas on spaces of
spectral covers were derived which generalize the celebrated Donagi-Markman cubic to the meromorphic case. A relationship
to the topological recursion of Checkhov-Eynard-Orantin was also derived.
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Études Sci. No. 103 (2006), 1-211.

[GaIoLi2012] Gamayun, O.; Iorgov, N.; Lisovyy, O. ”Conformal field theory of Painlevé VI”. J. High Energy Phys. 2012, no.
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[Ma1983] Malgrange, B. ”Sur les déformations isomonodromiques. I. Singularités régulières. (French) [Isomonodromic de-
formations. I. Regular singularities] Mathematics and physics (Paris, 1979/1982), 401-426, Progr. Math., 37, Birkhäuser
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Affine Algebraic Groups, Motives and
Cohomological Invariants (18w5021)

September 16 - 21, 2018
Organizer(s): Nikita Karpenko (University of Alberta), Alexander Merkurjev (University of
California at Los Angeles), Anne Quéguiner-Mathieu (Université Paris 13)

Overview of the Field

The theory of affine algebraic groups is a well-established area of modern mathematics. It started as an algebraic version of
the massively successful and widely applied theory of Lie groups, pushed forward most notably by Chevalley and Borel. In the
hands of Serre and Tits, it developed into a powerful tool for understanding algebra, geometry and number theory (e.g. Galois
cohomology). In particular, it provides a way to unify seemingly distinct statements in algebra, geometry and number theory,
hence, suggesting new techniques and methods for solving problems in these areas.

For example, the Hasse-Minkowski Theorem and the Albert-Brauer-Hasse-Noether Theorem, which concern respectively
quadratic forms and central simple algebras over global fields, can be viewed as special cases of the celebrated Hasse Principle
in Galois cohomology of semisimple linear algebraic groups (due to Kneser, Harder, and Chernousov) which unifies these two
theorems and provides many new results that would not have been suspected before.

This philosophy has led to a vast number of new techniques that proved useful in many different areas of mathematics such
as: quadratic forms (Karpenko, Merkurjev, Vishik), essential and canonical dimensions (Reichstein, Merkurjev), local-global
principles (Hartmann, Harbater, Krashen, Parimala, Suresh), motives (Petrov, Semenov, Zainoulline), and torsors (Chernousov,
Gille, Panin, Pianzola). For instance, Karpenko proved that some results on isotropy of hermitian forms (related to affine
algebraic groups of type A) induce analogous results for symplectic and quadratic forms (groups of types B, C, D), via the
theory of algebraic cycles and and the study of Chow motives of projective homogeneous varieties.

Further applications recently emerged in more arithmetic topics, such as the study of arithmetic groups and arithmetic
locally symmetric spaces (Prasad, Rapinchuk) and pseudo-reductive groups (Conrad). In the opposite direction, another trend
has been using results from finite group theory to prove theorems about algebraic groups (Guralnick).

In this workshop, we brought together specialists and young researchers from these areas, to stimulate new advances and
developments, with particular emphasis on recent applications of algebraic groups in algebra, geometry and number theory
that establish new links between different areas of mathematics. For example, the following topics have been included: the
proof of the Grothendieck-Serre conjecture based on the theory of affine Grassmannians coming from the Langland’s program;
the breakthrough in the computation of cohomological invariants of degree 3 by Merkurjev based on new results concerning
motivic cohomology; Conrad’s proof of finiteness of fibers for fppf cohomology over global fields of prime characteristic; and
applications of representations with dense orbits inspired by Bhargava’s work.
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Recent Developments and Open Problems
During the last decade, we observed an explosion of research activity in the area of affine algebraic groups and applications.
Below, we describe some topics, where striking results were recently obtained.

The geometric case of the Grothendieck-Serre conjecture (Fedorov-Panin)
Fedorov and Panin have proved this conjecture, stated in the mid-1960’s, which says that if a G-torsor (defined over a smooth
algebraic variety X) is rationally trivial, then it is locally trivial (in Zariski topology), where G is a smooth reductive group
scheme over X . Their proof uses the theory of affine Grassmannians.

This conjecture has a long history: It was first proven for curves and surfaces for quasi-split groups by Nisnevich in the mid-
1980’s, and for arbitrary tori in the late 1980’s by Colliot-Thelene and Sansuc. If G is defined over a field, then the conjecture
is known as Serre’s conjecture and was proven by Colliot-Thelene, Ojanguren and Raghunathan in the beginning of the 1990’s.
Ojanguren-Panin-Suslin-Zainoulline proved it for most classical groups in the late 1990’s. Finally, Panin-Stavrova-Vavilov
gave a proof for isotropic groups. However, no general argument was known up to now. Recently Fedorov and Panin found a
new original approach that proves the conjecture in general, using the theory of affine Grassmannians coming from Langlands’
program.

Computation of the group of degree 3 cohomological invariants, using motivic cohomology
(Merkurjev)
According to J.-P. Serre, by a cohomological invariant, one means a natural transformation from the first Galois cohomology
with coefficients in an algebraic group G (the pointed set which describes all G-torsors) to a cohomology functor h(−), where
h is, for instance, some Galois cohomology group with torsion coefficients, a Witt group, or a Chow group with coefficients in a
Rost cycle module M . The ideal result here would be to construct enough invariants to classify all G-torsors under some affine
algebraic groupG. The question was put on a firm foundation by Serre and Rost in the 1990’s, allowing the proof of statements
like ”the collection of cohomological invariants of G is a free module over the following cohomology ring” for certain groups
G; this theory is expounded in the 2003 book by Garibaldi-Merkurjev-Serre.

Using this theory one obtains a complete description of all invariants landing in degree 1 Galois cohomology for arbitrary
G, in degree 2 if G is connected, and in degree 3 if it is simply connected and semisimple (Rost). In a breakthrough recent
development, which is the starting point of important research activity, Merkurjev provided a complete description of degree 3
invariants for semisimple groups, solving a long standing question. The full power of his entirely new methods, based on new
results in motivic cohomology, still have to be understood. Moreover, even though he describes the finite group of degree three
invariants, we often lack a complete description of generators of this group, that is, new invariants have been discovered, that
still have to be described.

Length spectra of locally symmetric spaces (Prasad and Rapinchuk)
The answer to the question “Can you hear the shape of a drum?” is famously no. Nevertheless, some variations of the
problem where one strengthens the hypothesis or restricts the collection of spaces under consideration has led to situations
where the answer is yes. In a remarkable 2009 Pub. Math. IHES paper, Prasad and Rapinchuk introduced the notion of weak
commensurability of semisimple elements of algebraic groups and of arithmetic groups and used this new concept to address the
question of when arithmetically defined locally symmetric spaces have the same length spectrum. In this paper they also settled
many cases of the long-standing question of when algebraic groups with the same maximal tori are necessarily isomorphic.
This paper, and the stream of research stemming from it, connects algebraic groups and their Galois cohomology – the central
subject of this conference – with arithmetic groups, geometry, and even transcendental number theory.

Applications of algebraic cycles and Grothendieck gamma filtration to invariants of tor-
sors and algebras with involutions (Baek-Garibaldi-Gille-Queguiner-Zainoulline)
Let X be the variety of Borel subgroups of a simple linear algebraic group G over a field k. In a series of papers it was proven
that the torsion part of the second quotient of Grothendieck’s gamma-filtration on X is closely related to the torsion of the
Chow group and hence to the group of cohomological invariants in degree 3 computed recently by Merkurjev. As a byproduct
of this new striking connection one obtains an explicit geometric interpretation/description of various cohomological invariants
in degree 3 as well as new results concerning algebraic cycles and motives of projective homogeneous spaces.
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Genericity theorems for the essential dimension of algebraic stacks and their applications
(Brosnan-Reichstein-Vistoli)
Techniques from the theory of algebraic stacks can be used to prove genericity theorems, that bound the essential dimension of
those stacks. As an application, new bounds for the more classical essential dimension problems for algebraic groups, forms
and hypersurfaces are obtained. These genericity theorems have also been used in particular by Biswas, Dhillon and Lemire to
find bounds on the essential dimension of stacks of (parabolic) vector bundles over curves.

Some classification results (simple stably Cayley groups, by Borovoi-Kunyavskii-Lemire-
Reichstein, and finite groups of low essential dimension, Beauville and Duncan)
A linear algebraic group is called a Cayley group if it is equivariantly birationally isomorphic to its Lie algebra. It is stably
Cayley if the product of the group and some torus is Cayley. Cayley gave the first examples of Cayley groups with his Cayley
map back in 1846. Over an algebraically closed field of characteristic 0, Cayley and stably Cayley simple groups were classified
by Lemire-Popov-Reichstein in 2006. In 2012, the classification of stably Cayley simple groups was extended to arbitrary fields
of characteristic 0 by Borovoi-Kunyavskii-Lemire-Reichstein.

On a different topic, Duncan used the classification of minimal models of rational G-surfaces to provide a classification of
finite groups of essential dimension 2 over an algebraically closed field of characteristic 0. Beauville recently used Prokhorov’s
classification of rationally connected threefolds with an action of a simple group to classify the finite simple groups of essential
dimension 3.

Motivic decompositions
Karpenko and Merkurjev gave a description of the motivic decomposition of equivariant compactifications of reduced norm
varieties of central simple algebras of prime degree over a field. This result generalizes the classical motivic decompositions of
norm quadrics due to Rost, as well as partial results on the case of prime degree 3 obtained by Semenov.

In a different direction, Neshitov, Petrov, Semenov and Zainoulline recently described motivic decompositions of twisted
flag varieties in terms of representations of Hecke-type algebras. This creates a link between two different worlds: - the world
of motives of generically split twisted flag varieties (i.e, projective homogeneous varieties under an action of a semisimple
affine algebraic group such that the group splits over the function field of the variety) on one side and - the world of finitely
generated projective modules over certain Hecke-type algebras on the other side.

Presentation Highlights and Scientific Progress Made

Alexander Vishik
In the talk of A.Vishik the idea of anisotropy was used to introduce the isotropic motivic category DM(k/k;Fp), which is
obtained from the Voevodsky category by (roughly speaking) ”killing” the motives of all anisotropic (mod p) varieties over k.
This ”local” version of the Voevodsky category is much simpler than the ”global” one and has many remarkable properties. As
its global counterpart, it has the pure part (the analogue of the Chow motivic category) where the classical (”global”) Chow
groups Ch = CH /p are substituted by their quotient Chk/k obtained by moding out the anisotropic classes. The notion of flex-
ible fields was introduced for which the description is particularly simple, and by passing to which no information is lost. The
Conjecture was formulated claiming that, over a flexible field, Chk/k coincides with Chow groups modulo numerical equiv-
alence (mod p). And so, the ”local” Chow motivic category Chow(k/k) coincides with ChowNum(p)(k). This Conjecture
was proven for varieties of dimension ≤ 5, for divisors and for cycles of dimension ≤ 2. In particularly, hypothetically (and
in the above cases firmly), the ”local” Chow groups are finite-dimensional, and any correspondence vanishing over algebraic
closure (or even in the topological realization) is zero locally. This provides a natural environment to approach questions like
Rost Nilpotence and the (mod p) analogues of the Standard Conjectures. The ”local” motivic cohomology of a point (with
F2-coefficients) over a flexible field were computed. Quite unexpectedly, these encode in themselves the Milnor’s operations,
which should explain, to some extent, why these operations played such a crucial role in the Voevodsky’s proof of Milnor’s
Conjecture.

Mathieu Florence
In his talk, Mathieu Florence addressed the question of lifting vector bundles to Witt vector bundles. More precisely, let p be
a prime number, and let S be a scheme of characteristic p. For any n ≥ 2, denote by Wn(S) the scheme of Witt vectors of
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length n, built out of S. The closed immersion S ↪→Wn(S) can be thought of as a universal thickening of S, of characteristic
pn. Let V be a vector bundle over S.

Question: is V the restriction to S of a vector bundle defined over Wn(S)?

He gave a positive answer for line bundles: every line bundle L admits a (canonical and elementary) lift to a Wn-bundle: its
n-th Witt lift. Next he considered the case of the tautological vector bundle on the base S = PX(V ), the projective space of a
vector bundle V , defined over an affine base X . The answer is positive again. He also gave an example of a non-liftable vector
bundle. Global sections of Witt lifts of line bundles can be naturally described as noteworthy algebraic objects: Pontryagin
duals of divided powers of modules over Witt vectors. He ventured to explore connections between Witt vectors and divided
powers. In particular, he gave a new functorial description of Witt vectors “by generators and relations”, [5].

Skip Garibaldi
Let G be a simple algebraic group over an algebraically closed field k. In case k = C, it has been known for 40+ years which
irreducible representations V of G are generically free, i.e., have the property that the stabilizer in G of a generic v ∈ V is the
trivial group scheme. Recent applications of this to the theory of essential dimension have motivated the desire to extend these
results to arbitrary k. We did this in [6], [7], and [8] except for a handful of cases addressed in [9], completing the solution to
the problem.

Philippe Gille
This is a report on [10]. Let K be a discretly valued henselian field with valuation ring O and residue field k. We denote by
Knr the maximal unramified extension ofK and byKt its maximal tamely ramified extension. IfG/K is a semisimple simply
connected groups, Bruhat-Tits theory is available in the sense of [13, 14] and the Galois cohomology set H1(Knr/K,G) can
be computed in terms of the Galois cohomology of special fibers of Bruhat-Tits group schemes. This permits to compute
H1(K,G) when the residue field k is perfect. On the other hand, if k is not perfect, “wild cohomology classes” occur, that is
H1(Kt, G) is non-trivial. Such examples appear for example in the study of bad unipotent elements of semisimple algebraic
groups. Under some restrictions on G, we would like to show that H1(Kt/Knr, G) vanishes (see Corollary 3.3). This is
related to the following quasi-splitness result.

Theorem. Let G be a semisimple simply connected K-group which is quasi-split over Kt.
(1) If the residue field k is separably closed, then G is quasi-split.
(2) G×K Knr is quasi-split.

This theorem answers a question raised by Gopal Prasad who found another proof by reduction to the inner case of type A
[14, th. 4.4]. Our first observation is that the result is quite simple to establish under the following additional hypothesis:

(*) If the variety of Borel subgroups of G carries a 0-cycle of degree one, then it has a K-rational point.

Property (*) holds away of E8. It is an open question if (*) holds for groups of type E8. For the E8 case (and actually for
a strongly inner K-group G) of Theorem, our proof is a Galois cohomology argument using Bruhat-Tits buildings. We can
make at this stage some remarks about the statement. Since Knr is a discretly valued henselian field with residue field ks,
we observe that (1) implies (2). Also a weak approximation argument reduces to the complete case. If the residue field k is
separably closed of characteristic zero, we have then cd(K) = 1, so that the result follows from Steinberg’s theorem. In other
words, the main case to address is that of characteristic exponent p > 1.

Igor Rapinchuk
Let K be a field. The purpose of this talk was to present new results of [15] in the framework of the following general problem:

(*) (When) can one equip K with a natural set V of discrete valuations such that for a given absolutely almost simple simply
connected algebraicK-groupG, the set ofK-isomorphism classes of (inner)K-forms ofG having good reduction at all v ∈ V
(resp., at all v ∈ V \ S, where S ⊂ V is an arbitrary finite subset) is finite?

While the analysis of abelian varieties defined over a global field and having good reduction at a given set of places of the
field has been one of the central topics in arithmetic geometry for a long time, particularly since the work of G. Faltings [4],
similar questions in various situations involving linear algebraic groups have received less attention so far.
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Kirill Zainoulline
This is a report on [18]. Consider a root system Φ together with its geometric realization in RN , that is we look at Φ as a subset
of vectors in RN which is closed under reflection operators rv for each v ∈ Φ. A basic example of such a realization is given
by the vectors

Φ = {αij = ei − ej ∈ R2n | i 6= j, i, j = 1 . . . 2n, n ≥ 1},
where {e1, . . . , e2n} is the standard basis of R2ne. This corresponds to the root system of Dynkin type A2n−1. Note that R2n

admits an involutive symplectic linear operator τ(ei) = −e2n−i+1 which preserves Φ. Taking averages over orbits in Φ under
τ one obtains a new subset of vectors

Φτ = {1

2
(αij + τ(αij)) | αij ∈ Φ}

which turns out to be a geometric realization of the root system of Dynkin type Cn. There are other similar examples of root
systems (such as Dn+1 and E6) and involutive operators τ induced by automorphisms of the respective Dynkin diagrams. The
procedure of passing from Φ to Φτ by taking averages via τ is called folding of a root system.

In the present paper we are weakening the assumption τ2 = id by considering an arbitrary linear automorphism T of RN
that satisfies a separable quadratic equation

p(T ) = T 2 − c1T + c2 = 0, c1, c2 ∈ R.

Hence, introducing the notion of a twisted (quadratic) folding. It would be interesting to extend our construction to affine root
systems and higher degree equations.

Our motivating example is the celebrated projection of the root system of type E8 onto the subset of icosians of the
quaternion algebra which realizes a finite non-crystallographic root system of type H4. This projection has been studied by
many authors, among them by Moody-Patera [12] in the context of quasicrystals. More precisely, in this case one considers
an operator T that satisfies the quadratic equation x2 − x− 1 = 0 of the golden section and then takes the projection onto an
eigenspace. We formalize such a procedure by looking at a root system |phi as a subset of the Weil restriction Rl/kU of a free
module U over l where l = k(x)/(p(x)) is a quadratic separable algebra over an integral domain k. Then our operator T is
the multiplication by a root τ of p that preserves the root lattice of Φ and partitions the subset of simple roots of Φ. Such data
give us a folded representation of Φ. We then introduce a notion of τ -twisted folding as the projection of the root system Φ to
the respective τ -eigenspace of T . Observe that for an involution T this projection coincides with the usual averaging operator.

As an application we use the twisted foldings and moment graph techniques to construct maps from equivariant cohomology
of flag varieties to their virtual analogue for finite Coxeter groups. Observe that this follows Sorgel’s philosophy to use virtual
geometry to investigate combinatorics of Coxeter groups [17].

Nicole Lemire
For a central simple algebra A of degree n over a field F , the generalized Severi-Brauer variety SB(d,A) is a twisted form of
Gr(d, n), the Grassmannian of d-dimensional planes in n-dimensional affine space. It is well-known that the variety SB(d,A)
has a rational point over an extension K/F if and only if ind(AK)|d. We can extend this question to ask about other closed
subvarieties of SB(d,A). In particular, we may ask: Under what conditions does SB(d,A) contain a closed subvariety which
is a twisted form of a Schubert subvariety ofGr(d, n)? We show in [11] that this happens exactly when the index of the algebra
divides a certain number arising from the combinatorics of the Schubert cell, using a variation on Fulton’s notion of essential
set of a partition.

In the classical setting, these Schubert subvarieties are of particular interest as they form the building blocks for the
Grothendieck group and Chow group of Gr(d, n). The Chow groups, in the case of homogeneous varieties, and Severi-
Brauer varieties in particular, have been much studied, and related to important questions about the arithmetic of central simple
algebras. Although the Chow groups of dimension 0, codimension 1 and to some extent codimension 2 cycles on Severi-Brauer
varieties have been amenable to study, the other groups are in general not very well understood at all. Algebraic cycles on and
Chow groups of generalized Severi-Brauer varieties are even more subtle and less understood. For example, the Chow group
of dimension 0 cycles on such varieties are only known in the case of reduced dimension 2 ideals in algebras of period 2. In
our work we make some first steps towards developing parallel methods as currently exist for the Severi-Brauer varieties, to
compute the codimension 2 Chow groups for the generalized Severi-Brauer varieties of reduced dimension 2 ideals in certain
algebras of small index.

Theorem. Let X = SB(2, A) with ind(A)|12. Then CH2(X) is torsion-free.

This computation is done first by using the explicit descriptions of Schubert classes obtained in the first half part of the
paper together with other geometric constructions to show that the graded pieces of theK-groups with respect to the topological
filtration are torsion free for degree 4 algebras. This quickly gives the result for codimension 2 Chow groups for such varieties.
Finally, the theorem follows by an analysis of the motivic decomposition of the Chow motive of SB(2, A) due to Brosnan.



Affine Algebraic Groups, Motives and Cohomological Invariants 241

Rostislav Devyatov
For details see [3].

LetG be a simple algebraic group over C with a simply laced Dynkin diagram. Consider the generalized flag varietyG/B,
where B ⊂ G is a Borel subgroup. We are going to study the Chow ring of G/B.

The Chow ring of G/B is generated (as a Z-algebra) by the classes of Schubert divisors in G/B (actually, to define the
Schubert divisors canonically, we need to first fix a maximal torus in B, which canonically defines the root system, the Weyl
group, and its action on G/B, so we assume that a maximal torus in B is fixed). Denote the classes of Schubert divisors by
D1, . . . , Dr , where r = rkG. We will be particularly interested in monomials in classes Di. Let us say that a monomial
Dn1

1 . . . Dnr
r is multiplicity free if there exists a Schubert class X (this is the class of a Schubert variety, not necessarily of a

Schubert divisor) such that Dn1
1 . . . Dnr

r X = [pt]. Our goal is to answer the following question: What is the maximal degree
(in the Chow ring) of a multiplicity-free monomial in D1, . . . , Dr (i. e., what is the maximal value of the sum n1 + · · · + nr
over all n-tuples n1, . . . , nr of nonnegative integers such that Dn1

1 . . . Dnr
r is a multiplicity-free monomial)? This question

is particularly interesting in the case when G is of type E8, because the answer may be used to compute upper bounds on the
canonical dimension of G/B.

The answer to this question for E8 is 34. More generally, we answer this question for any simple groupGwith simply-laced
Dynkin diagram.

Nikita Semenov
In the present talk we discuss an approach to cohomological invariants of algebraic groups over fields of characteristic zero
based on the Morava K-theories, which are generalized oriented cohomology theories in the sense of Levine-Morel. We
show that the second Morava K-theory detects the triviality of the Rost invariant and, more generally, relate the triviality of
cohomological invariants and the splitting of Morava motives. We describe the Morava K-theory of generalized Rost motives,
compute the Morava K-theory of some affine varieties, and characterize the powers of the fundamental ideal of the Witt ring
with the help of the Morava K-theory. Besides, we obtain new estimates on torsion in Chow groups of codimensions up to 2n
of quadrics from the (n+2)-nd power of the fundamental ideal of the Witt ring. We compute torsion in Chow groups ofK(n)-
split varieties with respect to a prime p in all codimensions up to pn−1/(p − 1) and provide a combinatorial tool to estimate
torsion up to codimension pn. An important role in the proof is played by the gamma filtration on Morava K-theories, which
gives a conceptual explanation of the nature of the torsion. Furthermore, we show that under some conditions the K(n)-motive
of a smooth projective variety splits if and only if its K(m)-motive splits for all m ≤ n.

This is a report on [16].

Maksim Zhykhovich
The classical Hasse–Minkowski theorem says that a non-degenerate quadratic form q over a number field F is isotropic if and
only if it is isotropic over all completions of F . This assertion can be reformulated in the language of algebraic cycles and
Chow motives. Namely, for the projective quadric Q given by the equation q = 0, the Tate motive Z(0) is a direct summand of
the motive of Q if and only if it is a direct summand of the motive of QFv for each completion Fv of F .

Moreover, the Hasse–Minkowski theorem readily implies that for every non-negative integer m, the Tate motive Z(m) is a
direct summand of the motive of Q over F if and only if it is a direct summand of the motive of Q over all completions of F .
Indeed, this is equivalent to the condition that the Witt index of q is greater than m.

We prove a generalization of the above assertion replacing the Tate motive Z(m) by a binary motive.
We say that a motive N over an arbitrary field F is a split motive (resp. a binary split motive) if it is a direct sum of a finite

number of Tate motives over F (resp. if it is a direct sum of two Tate motives over F ). We say that N is a binary motive over
F if becomes binary split over an algebraic closure F̄ of F.

We work in the category of Chow motives with F2-coefficients. We consider only non-degenerate quadratic forms. For a
non-degenerate quadratic form q over a field F we denote by M(q) the Chow motive of the corresponding projective quadric
given by the equation q = 0. For a number field F and a place v of F , we denote by qv the corresponding quadratic form over
the completion Fv of F at v. Our main result is the following theorem:

Theorem, [2]. Let q be a quadratic form over a number field F . Let N be a binary split motive over F . Assume that for every
place v of F there exists a direct summand vM of M(qv) that is isomorphic to N over an algebraic closure F̄v of Fv . Then
there exists a direct summand M of M(q) that is isomorphic to N over F .

It follows from our proof of the above theorem that every indecomposable binary direct summand of quadric over a number
field is a twist of a Rost motive. Recall that the motive of a Pfister form π over an arbitrary field is isomorphic to a direct sum
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of twists of one binary motive, which is called the Rost motive of π. Rost motives over an arbitrary field appear in the proof of
the Milnor conjecture by Voevodsky.

We remark that over every completion of a number field, all quadratic forms are excellent, and therefore, the structure of
their Chow motives is known. Moreover, every motivic decomposition of a quadric with F2-coefficients can be uniquely lifted
to a motivic decomposition with integer coefficients. Therefore, the above theorem holds for motives with integer coefficients
as well.

Finally, as an application of the Hasse principle for binary motives we obtain a complete motivic decomposition of the
motive of a quadric over any number field with at most one real embedding, for example, over the field of rational numbers Q:

Corollary. In the case when the fieldF has at most one real embedding, Theorem holds for every split motiveN (not necessarily
binary).

Nivedita Bhaskhar
Let K be a field and T , a commutative linear algebraic group defined over K. Given L/K, a finite separable field extension,
one can define the norm homomorphism NL/K : T (L) → T (K) which sends t  

∏
γ γ(t) where γ runs over cosets of

Gal(Ksep/L) in Gal(Ksep/K). The definition of the norm homomorphism can be extended to K-étale algebras in a similar
manner. Note that if T = Gm, then NL/K : T (L)→ T (K) is precisely the usual norm NL/K : L∗ → K∗.

Now let G be a linear algebraic group defined over K and let f : G → T be an algebraic group homomorphism defined
over K. We say that the norm principle holds for f : G → T over a finite separable field extension (or étale algebra) L/K if
NL/K(Imf(L)) ⊆ Imf(K). We say that the norm principle holds for f : G→ T if for every finite separable field extension
(equivalently for every étale algebra) L/K , NL/K(Imf(L)) ⊆ Imf(K).

Suppose further that the commutator subgroup G′ of G is defined over K. Then every homomorphism f : G→ T factors
through the natural homomorphism f̃ : G → G/G′ and it is an easy check that the norm principle for f̃ (over L/K) implies
the norm principle for f (over L/K). We say that the norm principle holds for G (over L/K) if it holds for f̃ (over L/K).

Let Q be a quadratic form over K. The classical norm principle of Scharlau which asserts that norms of similarity factors
ofQL are themselves similarity factors ofQ can be restated in this context to say that the norm principle holds for the multiplier
map M : GO(Q) → Gm. Similarly Knebusch’s norm principle which states that norms of spinor norms of QL are spinor
norms of Q can be reformulated as the norm principle holding for the spinor norm map µ : Γ+(Q)→ Gm.

Norm principles have been previously studied in especially in conjunction with the rationality or the R-triviality of the
algebraic group in question. It was established that the norm principle holds in general for all reductive groups of classical
type without Dn components. The Dn case was investigated later and a scalar obstruction defined up to spinor norms, whose
vanishing would imply the norm principle, was given. However, the triviality of this scalar obstruction is far from clear and the
question whether the norm principle holds for reductive groups with type Dn components still remains open.

If K is a number field, the norm principle was proved in full generality for all reductive groups by P. Gille , so the first
widely open and very interesting case is when K is the function field k(C) of a curve C defined over a number field k and
the group G in question is of classical type with the semisimple part G′ = Spin(Q). As we show, the validity of the norm
principle over K is closely related to the triviality of the kernel of the natural map H1(K,G′) → ∏

vH
1(Kv, G

′) where v
runs through a set of discrete valuations of K. Therefore the (traditional) local-global approach leads us first to look in detail
over completions Kv .

With this motivation in mind, we investigate the Dn case over an arbitrary complete discretely valued field K with residue
field k and char(k) 6= 2, restricting ourselves to typeDn groups arising from quadratic forms. In the main result, we show that
if the norm principle holds for such groups defined over all finite extensions of the residue field k, then it holds for such groups
defined over K (see [1, Theorem 5.1]). This yields examples of complete discretely valued fields with residue fields of virtual
cohomological dimension ≤ 2 over which the norm principle holds for the groups under consideration (see [1, Corollary 6.3]).
As a further application, we also relate the possible failure of the norm principle to the nontriviality of certain Tate-Shaferevich
sets.

Stefan Gille
Let R be a regular semilocal ring containing 1

2
with fraction field K, and (A, τ) an R-Azumaya algebra with involution of the

first or second kind. By second kind we mean that R is a quadratic Galois extension of the fix ring of the involution τ . For
ε ∈ {±1} there is a complex of ε-hermitian Witt groups, the so called ε-hermitian Gersten-Witt complex

0 −→Wε(A, τ) −→Wε(AK , τK)
d
0,ε
A,τ−−−→

⊕

htP=1 ,τ(P )=P

Wε(Ak(P ), τk(P ))
d
1,ε
A,τ−−−→ . . . ,
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where k(P ) is the residue field at the prime P of R, and where we have set (Ak(P ), τk(P )) := k(P )⊗R (A, τ) and analogous
(AK , τK) := K⊗R (A, τ). We consider this as a cohomological complex with the term Wε(AK , τK) in degree 0, and denote
its cohomology groups by Hi(A, τ, ε).

It is known that this complex is exact if R contains a field. We extended this recently to regular semilocal rings of (very)
small dimension.

Theorem A. If R is a semilocal Dedekind domain then the ε-hermitian Gersten-Witt complex

0 −→Wε(A, τ) −→Wε(AK , τK)
d
0,ε
A,τ−−−→

⊕

htP=1 ,τ(P )=P

Wε(Ak(P ), τk(P )) −→ 0

is exact for all ε ∈ {±1}. This sequence is split if R is a complete discrete valuation ring and τ is of the first kind.

This implies by induction that HdimR(A, τ, ε) = 0 for all regular semilocal rings R, from which we then deduce purity for
regular semilocal rings of dimension two.

Theorem B. If the regular semilocal ring R is of dimension two then the complex

0 −→Wε(A, τ) −→Wε(AK , τK)
d
0,ε
A,τ−−−→

⊕

htP=1 ,τ(P )=P

Wε(Ak(P ), τk(P ))

is exact for all ε ∈ {±1}.

There are analogous exact sequences forR-orders in central simple algebras. LetB be a central simple algebra over the fraction
field K of the discrete valuation ring R, and ∆ a maximal R-order in B. Assume that 1

2
∈ R, and that B has an involution of

the first kind which maps ∆ into itself. Then there is an exact sequence of ε-hermitian Witt groups (ε ∈ {±1})

0 −→Wε(∆, τ) −→Wε(B, τ)
∂−→Wε(∆/rad∆, τ̄) ,

where τ̄ is the by τ induced involution on ∆/rad∆. In case R is complete the ’residue map’ ∂ is onto, and this should hold
more general for arbitrary discrete valuation rings R.

Outcome of the Meeting
The workshop attracted 40 leading experts and young researchers from Belgium, Canada, France, South Korea, Germany,
Israel, Russia, Switzerland, USA. There were 25 speakers in total: 15 talks were given by senior speakers, 9 talks by young
researchers and postdocs and 2 talk by a doctoral student.

The lectures given by senior speakers provided an excellent overview on the current state of research in the theory of
algebraic groups, their cohomological invariants, and motives. Young speakers were provided a unique opportunity to present
their achievements. Numerous discussions between the participants after the talks have already led to several joint projects, e.g.
by Auel-Suresh, Chernousov-P.Gille, Karpenko-Merkurjev.

The organizers consider the workshop to be a great success. The quantity and quality of the students, young researchers
and the speakers was exceptional. The enthusiasm of the participants was evidenced by the frequent occurrence of a long line
of participants waiting to ask questions to the speakers after each lecture. The organizers feel that the material these participants
learned during their time in BIRS will prove to be very valuable in their research and will undoubtedly have a positive impact
on the research activity in the area.

Below is a feedback of a young participant and speaker from Yale University Asher Auel.
The participants assembled was a great mix of LAG, quadratic forms, motivic, and broader arithmetic geometry people. The

lectures (and choice of thematic groupings) were all great. For me, the most inspirational lectures (where I learned something
new or surprising) were by Haution, Hoffmann, Bayer-Fluckiger, Garrel, Semenov, and Bhaskhar (in order of the schedule).

For me, the most important part of the workshop is the interactions.
- I had some very useful interactions with Tignol, Saltman, Duncan, Pevtsova, and Karpenko concerning the index of Weil

restrictions of Severi–Brauer varieties related to a project I am working on concerning del Pezzo surfaces (one of my questions
was fully resolved, and for another, Tignol pointed me to a construction in his book with Wadsworth, which helped provide an
example of the phenomenon I was looking for).

- I also had some great conversations with Bayer-Fluckiger and Duncan about the fields of definitions of exceptional curves
on del Pezzo surfaces, motivated by her lecture on cubic surfaces (with Duncan, we figured out the easy cases of del Pezzo
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surfaces of degree 5 and 6, though it’s not clear if this will go anywhere until Bayer-Fluckiger and Serre make their work
public).

- I had a long discussion (during the Banff airporter ride from the airport) with Lemire about her work on Schubert varieties
on twisted flag varieties, where we came up with a host of interesting questions.

- After my talk, there seemed to be a flurry of attempts to prove the nontriviality of unramified cohomology in degree 3
on the product of three elliptic curves over a finite field (a major open question due to Colliot-Thelene). Both Florence and
Chernousov had ideas. Actually, Florence had two ideas. His first idea seemed very promising until Parimala and Suresh found
a flaw later in the day, but his second idea (using some of the theory he has developed on local systems) is still potentially
viable, though I get the feeling that it will be hard to get him sufficiently interested in the questions again to flush the details
out. I am sorry that I never circled back to Chernousov to inquire about his idea, so this is reminding me to write to him (which I
just did). Then later in the week, Suresh and I came up with yet another strategy based on the some of the work we did together
that I reported on during my talk. We are now working out the details together. If this works out, it will be great!

- However, the most sustained interaction was with Krashen. We spent the majority of Wednesday together (both of us
fasting because of the Jewish holiday and therefor not hiking) working on several topics. The first was about constructing
some kind of algebraic structure that explains when a central simple algebra over a degree 3 extension has trivial corestriction
(analogously to an involution of the second kind over a quadratic extension). Asking Tignol, he pointed to some old work of
Haile, which turned out to be relevant but not exactly what we needed. The second was about the problem of splitting Brauer
classes by genus 1 curves, which I had spoke about at the last LAG meeting in Banff. I had an idea for proving several new
cases, and together with Krashen, we managed to get quite a lot! So far only classes of index up to 5 are known, but we were
able to prove it for all indices dividing 60. We are writing up the results now. Also, on Wednesday evening, we found ourselves
discussing this question also with Hoffmann, with whom we also realized that the question of whether a quadratic form can be
made hyperbolic over the function field of a genus 1 curve is also very interesting, and so likely we will write another paper
with the three of us.

- I’m sure there were many other interactions of mathematical content.
- Also, after discussing with Andrei Rapinchuk, I decided to apply for a permanent position at UVA.
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Chapter 24

The Traveling Salesman Problem:
Algorithms & Optimization (18w5088)
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la Svensson (Ecole Polytechnique Federale de Lausanne) September 23 - 28, 2018

Overview of the Field
The Traveling Salesman Problem (TSP) is one of the central and well-known problems in combinatorial optimization. It has
been a source of inspiration and intrigue for decades. In the words of Schrijver [8, Ch. 58], “it belongs to the most seductive
problems in combinatorial optimization, thanks to a blend of complexity, applicability, and appeal to imagination”. Also see
Vazirani [12] and Williamson & Shmoys [13]. TSP has several applications in planning, logistics, and manufacturing. Slightly
modified, it appears as a sub-problem in many other areas, such as genome sequencing.

The problem has been studied intensely for over 60 years. Almost all of the emerging new ideas and techniques in the
areas of algorithms and optimization have been applied to the TSP. In turn, these efforts have given rise to important new
sub-disciplines such as survivable network design.

Despite the attention paid to this problem, its tractability from the point of view of approximation remains poorly under-
stood. For example, the best known approximation algorithm for the symmetric case is a 3/2-approximation algorithm due to
Christofides from 1976. On the other hand, existing results on its hardness of approximation seem to be loose (i.e., far from
tight), and there is a substantial gap between upper bounds and lower bounds.

Recent Developments and Open Problems
Over the past decade, deep new ideas have been applied to the TSP and closely related problems, and there have been major
recent advances. Many of these advances are based on new and beautiful connections with probability theory, coupled with
technically difficult exploitation of methods and structures that are studied in combinatorial optimization.

Oveis Gharan, Saberi, and Singh [7] used properties of strongly Rayleigh measures coupled with an elaborate analysis of
the structure of near-minimum cuts to obtain the first improvement on the 3/2-approximation guarantee for a key special case
called the graphic TSP. Currently, the best result known on this special case is a 7/5-approximation algorithm of Sebő and
Vygen [9] that hinges on a probabilistic lemma of Momke and Svensson [5] coupled with an in-depth and novel analysis of
structures that are well known in combinatorial optimization.

At the workshop, there was an evening session on open problems, led by Goemans.

Open problem 1: Find a 4/3-approximation algorithm for symmetric TSP. The integrality ratio of the subtour LP relaxation
of TSP is at least 4/3.
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An, Kleinberg, and Shmoys [1] improved on a 20-year old 5/3-approximation guarantee of Hoogeveen [4] for the s-t path
TSP, which is a variant of the TSP; they use a randomized rounding algorithm, and their improvement uses probabilistic meth-
ods coupled with an analysis of near-minimum cuts. Very recently, the combination of results by Traub and Vygen [11] and
Zenklusen [14] gave a 3/2-approximation algorithm for this problem. Although the approximation factor of 3/2 matches the
known lower bound on the integrality ratio (of a well-known LP relaxation), the analysis does not imply an upper bound on the
integrality ratio.

Open problem 2: Prove an upper bound of 3/2 on the integrality ratio of the s-t path TSP.

For the Asymmetric TSP (ATSP), Asadpour et al. [3] gave an O(logn/ log log n) approximation algorithm by exploit-
ing a connection to thin trees. This connection was further advanced by Oveis Gharan and Saberi [6], and later by Anari and
Oveis Gharan [2]. The latter made very interesting connections to the Kadison-Singer problem and proved anO(poly log log n)
integrality ratio for the problem. It is conjectured that there is a factor 2 approximation algorithm for the ATSP. A key recent
breakthrough comes from a fascinating result of Svensson et al. [10] that finally gave a constant factor approximation for the
ATSP. The constant factor achieved in that paper is far from the conjectured lower bound of 2.

Open problem 3: Design and analyze a factor 2 approximation algorithm for ATSP. A more modest goal is an approximation
algorithm for ATSP with double-digit approximation ratio.

Despite decades of research by some of the best researchers in algorithms and optimization, there are many other tantaliz-
ing open questions. We refer the interested reader to Bill Cook’s talk in the workshop (see the video posted on the workshop
web page) for a comprehensive list and mention only a few here:

Open problem 4: Determine whether there exists a polynomial-time simplex algorithm for optimally solving the subtour-
elimination polytope of the TSP. A related question is to determine if there exists a polynomial-time cutting-plane algorithm
for this polytope.

Open problem 5: Design and analyze an algorithm for sampling near-optimal node-separators, similar to Karger’s method
for sampling near-optimal edge-cuts. Such an algorithm would be useful in identifying structures that could be exploited in the
cutting-plane method for the TSP.

Open problem 6: Design an algorithm that given an n-city instance of TSP, finds an optimum solution in time O∗((2− ε)n).

Presentation Highlights
Bill Cook gave a plenary talk on “Open Problems on TSP.” A plenary talk was given by Jakub Tarnawski on his recent break-
through result (joint with Svensson and Vegh) on a “Constant-factor approximation algorithm for the Asymmetric Traveling
Salesman Problem.”

Variations of the TSP problem
Stephan Held presented a talk on vehicle routing with subtours, and Zachary Friggstad gave a presentation on linear programs
for orienteering and regret-bounded vehicle routing. Viswanath Nagarajan gave a fascinating talk on Stochastic k-TSP. The
stochastic version of the k-TSP assumes independent random rewards at vertices and the objective is to minimize the expected
length of a tour that collects total reward at least k. Nagarajan discussed both adaptive and non-adaptive solutions. Katarzyna
Paluch presented new approximation algorithms for (1,2)-TSP which is a well-studied variant of the TSP where all distances
between cities are either 1 or 2. Tobias Moemke presented a talk on the maximum scatter TSP in doubling metrics. This
variation has applications in manufacturing and medical imaging.

Thin trees and Asymmetric TSP
Neil Olver, Shayan Oveis Gharan, and Nima Anari presented the thin tree conjecture, its relationship with the ATSP, and
different approaches for solving it. The thin tree conjecture is due to Luis Goddyn, and it implies a constant factor approximation
for ATSP; see [3] for details. Olver’s talk was on pipage rounding, pessimistic estimators and matrix concentration. Anari and
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Oveis Gharan presented their approach using “rounding by sampling,” as well as geometric methods for solving a weaker
version of the conjecture.

Path TSP
Martin Naegele, Vera Traub, and Jens Vygen gave presentations on recent exciting advances on the path TSP. Naegele gave
an excellent presentation of Zenklusen’s beautiful 3/2-approximation algorithm for path TSP [14], that resolves an intriguing
open problem. Traub presented a remarkable recent result (joint with Vygen) on the graphic special case of the s-t path TSP
where they achieve an approximation factor of 1.497, thus beating the 3/2 lower bound on the integrality ratio of the general
(i.e., non-graphic) problem.

Andras Sebő presented deep connections between the TSP, the postman problem and matroids.

Related problems
There were several presentations on topics related to network design, scheduling, and integer programming. Tom McCormick
presented results on strongly polynomial algorithms for problems related to “parametric global minimum cuts,” and Thomas
Rothvoss presented results on a matroid version of the Santa Claus problem which is a well-known problem in the area of
scheduling.

Scientific Progress Made and Outcome of the Meeting
The schedule of the workshop provided ample free time for participants to work on joint research projects. A number of new
research projects were initiated during the workshop, while some other researchers used the opportunity to continue to work on
projects started earlier. The research talks and the plenary talks were very well received.

Marcin Mucha and Anupam Gupta collaborated on rounding 1/2-integral points of the Held-Karp linear programming
relaxation of the TSP. Inspired by Andras Sebő’s talk, they focused on the special case where the underlying graph is a 2-cycle
and solved that case.

Shayan Oveis Gharan continued his research project with Nima Anari. They had several new insights and resolved some
questions they had about approximation algorithms on problems related to counting bases of matroids. Several talks of the
workshop also gave them new directions for future research, such as Ravi’s talk.

R. Ravi reports that the talks in the workshop gave him a clear overview of the state-of-the-art techniques in designing
approximation algorithms for the TSP. This in turn helped him develop and submit (for funding) a new research proposal based
on studying some of these techniques in detail and identifying new open problems.

Viswanath Nagarajan reports that the presentations on directed network design problems at the workshop inspired him to
focus on the directed Steiner tree problem and the orienteering problem. After the workshop, jointly with a graduate student,
he obtained a simple and tight quasi-polynomial-time algorithm for the directed tree orienteering problem.

Hyung-Chan An reports that during the workshop he was able to engage in valuable discussions with his colleagues. He
also reports that Naegele’s talk on the path TSP [14] was particularly helpful and inspired some new research ideas.

Vera Traub and Jens Vygen made progress on their TSP book project, by learning new techniques during the talks and by
discussions with many other participants in the breakout sessions. For example, during one of the discussions, Michel Goemans
found a much shorter proof of a result of Henke-Traub-Vygen that says that certain LP relaxations for ATSP are equivalent.

Following Kent Quanrud’s talk on fast algorithms for (approximations of) the Christofides heuristic for TSP, Neil Olver
and Quanrud investigated whether they can develop even faster algorithms. They are still in the early stages of this research
project and they are optimistic.

During the workshop, Hung Viet Le and Vincent Cohen-Addad discussed several research problems on planar graphs and
minor-free graphs. They are now working together on designing a PTAS for one of these problems on planar graphs. They
report that the workshop provided an invaluable opportunity to learn the state-of-the-art techniques in approximation algorithms
for ATSP.

Tobias Moemke started work on a project with Zachary Friggstad to obtain bounds on the integrality ratio for a specific
flow problem. The discussions at the workshop led to fresh ideas worth exploring and might lead to substantial improvements.

Vincent Cohen-Addad, Kamyar Khodamoradi, and Zachary Friggstad began joint work on local search algorithms. Inspired
by Vygen’s talk, Friggstad and Chaitanya Swamy are focusing on an improved approximation algorithm for a well-known
problem related to the TSP.

Acknowledgment: It is a pleasure to thank the BIRS staff for their support. In particular, we appreciate the help of Chee Chow,
Brent Kearney, and Jacob Posacki.
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Overview of the Field
The topic of this workshop was Hessenberg varieties, which is an exciting area of research lying in the rich intersection of
geometry, combinatorics, and representation theory. These varieties were first introduced by De Mari and Shayman in 1988 in
the context of computational linear algebra, and more specifically, for applications to the QR algorithm for finding eigenvalues
of a complex matrix. Since then, Hessenberg varieties have become important objects in a variety of research areas. The
workshop was a great opportunity for mathematicians in disparate fields to share recent results and consider together various
interesting open problems and new directions.

In their greatest generality, building on the ideas of De Mari and Shayman, Hessenberg varieties were defined in a 2006
paper by Goresky, Kottwitz and MacPherson [9] for applications to the computation of the orbital integrals that arise in rep-
resentation theory. Let G be a reductive algebraic group defined over a field F and let V be an F[G]-module. Fix s ∈ V , a
parabolic subgroup P ofG, and a P -invariant subspaceM of V . The Hessenberg varietyX(s,M,P ) is defined to be the set of
points gP in the partial flag variety G/P such that g−1(s) ∈ M . In most of the discussion below, P will be a Borel subgroup
B ≤ G, V will be the Lie algebra g of G with the adjoint action of G, and M = m will be a subspace of g containing the Lie
algebra b of B. We write X(s,m) in this case.

In what follows, we provide a brief overview of past and current work on Hessenberg varieties. We do not claim to be
exhaustive.

First, note that X(s, b) consists of all cosets gB satisfying sgB ⊆ gB. The varieties X(s, b), also called Springer
fibers, received much attention from representation theorists during the 1970s and 1980s in the case where s is nilpotent. A
highlight of this activity was Springer’s description in [Spe79] of irreducible representations of Weyl groups using actions on
the cohomology of X(s, b).

In the original paper on Hessenberg varieties, De Mari and Shayman analyzed X(s,m) when G = GLn(C) and s is a
generic (i.e. regular semisimple). The history of and motivation for this enterprise is discussed by De Mari and Shayman in the
introduction to [7]. In the same paper, the Betti numbers for such X(s,m) are determined for a large class of m. It turns out
that in each case the sum of these Betti numbers is n!, the order of the Weyl group Sn. The associated Poincaré polynomial
is the generating function for a naturally defined statistic on Sn, determined by m. These permutation statistics interpolate
between two well-studied statistics on Sn, the descent number and the length. Here one can see productive interaction between

252



Hessenberg Varieties in Combinatorics, Geometry and Representation Theory 253

geometry and combinatorics. It is not obvious a priori that the generating functions for the combinatorial statistics in question
should be palindromic and unimodal, but this becomes obvious upon applying the Hard Lefschetz Theorem to the Hessenberg
varieties. Additional productive interactions followed.

Key results in [7] were generalized by De Mari, Procesi and Shayman in [6]. There, the authors showed that for arbitrary
semisimple G, generic s ∈ g and arbitrary m, the variety X(s,m) is smooth, the sum of the Betti numbers of X(s,m) is the
order of the Weyl group W , and the Poincaré polynomial is the generating function for a nice statistic on W .

If s is in the subset grs of regular semisimple elements, then the centralizer CG(s) is a maximal torus in G and acts on
X := X(s,m). In [21], Tymoczko showed that this torus action satisfies the conditions necessary for the application of the
theory developed by Goresky, Kottwitz and MacPherson in [8]. From this, one obtains a combinatorial description of the
equivariant and and ordinary cohomology rings of X in terms of the moment graph of X . Using this description, Tymoczko
showed that H∗(X,C) admits a representation of W .

Recent work has allowed the determination of the cohomology representations in question whenG = GLn(C). Shareshian
and Wachs conjectured in [14, 15] that the Frobenius characteristic of the graded Sn-representation

∑
j≥0 H

2j(X,C)tj ten-
sored with the sign character, is the chromatic quasisymmetric function Fm(t) of a graph determined by m. The chromatic
quasisymmetric functions refine Stanley’s chromatic symmetric functions, which are generating functions for proper colorings
of graphs. (By setting t = 1, one gets the chromatic symmetric function originally defined by Stanley in [17].) The conjecture
was proved first by Brosnan and Chow in [3] by studying the sheaves on g obtained from the cohomology groupsH∗(X(s,m))
by varying s. (This sheaf is a local system on the set grs, and the attached monodromy representation factors through Sn.)
Another completely independent proof was given by Guay-Paquet in [10] who used a beautiful theorem of Aguiar, Bergeron
and Sottile on Hopf algebras and quasisymmetric functions. When combined with the Brosnan-Chow-Guay-Paquet (BC-G-P)
theorem, combinatorial results of Shareshian-Wachs in [15] and Athanasiadis in [2] provide formulas for both the irreducible
decomposition and character values of the cohomology representations.

The BC-G-P Theorem gives the possibility of attacking a longstanding combinatorial conjecture using geometry. The
Stanley-Stembridge conjecture in [17] asserts that the symmetric function obtained from Fm(t) by setting t = 1 is e-positive,
that is, a nonnegative integer combination of elementary symmetric functions. (This conjecture arose from an equivalent conjec-
ture of Stanley and Stembridge in [18] on immanants.) Shareshian and Wachs conjectured in [14, 15] that in fact the coefficient
of each tj in Fm(t) is e-positive. Given the BC-G-P Theorem, this is equivalent to the conjecture that the representation of Sn
on H2j(X,C) arises from a permutation representation in which each point stabilizer is a Young subgroup. Attempts to settle
the Stanley-Stembridge and Shareshian-Wachs Conjectures on e-positivity using this equivalence are ongoing. Connections of
all of this work with the representation theory of the type A Hecke algebra are described by Haiman in [7] and by Clearman,
Hyatt, Shelton and Skandera in [5].

For generic s ∈ g, the varieties X(s,m) are paved by affines. This is easily seen using the theorem of Bialynicki-Birula,
and it is the key to the computation of the Betti numbers in [6]. In her 2003 PhD thesis, Tymoczko generalized this result to all s
in the case G = GLn and used the result to compute the Betti numbers of all the Hessenberg varieties X(s,m) for GLn [20].
This result, which is a crucial input to [3], was generalized recently by Precup to arbitrary reductive groups (for a large class of
elements s) [12]. We note that, while the structure of H∗(X(s,m)) as a graded vector space is essentially known by the above
results of Tymoczko and Precup, the ring structure is still somewhat mysterious. Recently, much work has been done in this
direction by H. Abe, Harada, Horiguchi and Masuda [1]. Moreover, Horiguchi, Masada, T. Abe, Murai, and Sato have proved
that the following three rings are isomorphic: the cohomology of a Hessenberg variety for regular nilpotent s, the Weyl group
invariants of the cohomology of a generic s, and the quotient of the polynomial ring by the ideal coming from the logarithmic
derivation module of certain hyperplane arrangements. The isomorphism between the first two rings generalizes Theorem A
of [1] where it was first proved for G = GLn. (Theorem 2.1 of [1] was a major influence on the work of Brosnan-Chow who
generalized it in a different direction.)

The varieties considered by Goresky, Kottwitz and MacPherson are smooth for generic s, but are not in general paved by
affines even when s is generic. Their cohomology is, however, conjectured to be motivated (in the sense used by Arapura) by
hyperelliptic curves; this means that for any such Hessenberg variety X , there should exist a surjective morphism Y → X
where Y is a product of hyperelliptic curves. In particular, the Hodge structure on the cohomology of the Hessenberg varieties
considered by GKM is supposed to lie in the full tensor subcategory generated by the cohomology of hyperelliptic curves. This
has been proved in an interesting special case by Chen, Vilonen and Xue (CVX) [4]. Moreover, CVX compute the sheaves
obtained by varying the element s. This is analogous to the work of Brosnan-Chow. However, while the monodromy of the
sheaves considered by Brosnan and Chow factor through the symmetric group, the CVX sheaves have infinite monodromy.

Recent Developments and Open Problems
As already noted, the workshop was an excellent opportunity for interaction between mathematicians with disparate interests
and expertise. The workshop was successful in facilitating this interaction.
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Some of the most exciting recent developments were already summarized in the previous section. Additionally, the follow-
ing are some specific open problems, in part motivated by these recent developments, that currently drive this research area.
Some of these were brought up during a problem session held during the workshop.

1. There are basic geometric questions about Hessenberg varieties which are still open. For example, during our Open
Problems Session, Erik Insko asked to describe the singular locus of X(N,m) in the important case that N is a regular
nilpotent.

2. While the theorem of Brosnan-Chow and Guay-Paquet opens the door for a geometric approach to the Stanley-Stembridge
and Shareshian-Wachs Conjectures on e-positivity, this has yet to be carried out successfully.

3. Almost all of the combinatorial and geometric work on the varieties X(s,m) has been in the Lie type A case. The
problem of formulating and proving the right conjectures for other simple Lie algebras is currently wide open. For
example, there is no known analogue of the chromatic quasisymmetric function Fm(t) for other Lie types. There
is a natural analogue of the Stanley-Stembridge Conjecture that should be investigated. Work of Stembridge in [19]
shows that the most obvious analogue of the more general Shareshian-Wachs Conjecture is false, but it is possible that
something of this nature is true in many cases. In particular, in the Open Problem Session, Shareshian asked: when is
the Weyl group action on the cohomology of a Hessenberg variety a permutation module?
In connection with this, we mention that, recently, Hiraku Abe and Naoki Fujita have announced results which can be
described as a “Weyl character formula for Hessenberg varieties”.

4. The representation ofW on the cohomology ofX(s,m) described above is determined by an action ofW on the moment
graph provided by GKM theory. Except in a few specific cases, notably the case of toric Hessenberg varieties, it is not
known if this representation arises from an action of W on the variety itself.
On the other hand, while e-positivity is known in the toric case one would like to have an explicit basis in the equivariant
cohomology groups of the Hessenberg variety which is permuted by the Weyl group. This was the subject of a conjecture
stated by Chow in the Open Problems Session: he gave a combinatorially defined subset of the equivariant cohomology
(in the type A toric case) which is manifestly permuted by the symmetric group and asked whether or not it forms a
basis.

5. While the beautiful results of Chen, Vilonen and Xue compute the motive of GKM Hessenberg varieties in one interesting
example, the conjecture that all such smooth varieties have cohomology motivated by hyperelliptic curves still seems
very hard. Schoen has defined a numerical invariant τX based on the Mumford-Tate groups of a variety X with the
following property: if X is dominated by a product of curves then τX ≤ 1 [13]. It may be interesting to compute τX
for GKM Hessenberg varieties as a way of gaining evidence for the conjecture. It would also be interesting to try to
come up with a conjectural description of the sheaves obtained from the cohomology groups H∗(s,M,P ) by varying
s. This is done explicitly by CVX in their special case, where the sheaves give rise to representations of the braid group.
Perhaps there is a description of these sheaves analogous to the combinatorial description provided by Brosnan-Chow in
their proof of the Shareshian-Wachs conjecture.

Presentation Highlights
To start the week, Dr. Hiraku Abe gave a beautiful overview talk on the subject of Hessenberg varieties, setting the stage for
the week to come. His main goal was to convey that Hessenberg varieties are a subject lying at an exciting intersection of
geometry, algebra, and combinatorics, and that they can be studied from multiple different perspectives. Delving into more
detail, he explained how the study of Hessenberg varieties touches upon subjects such as the representations of symmetric
groups, hyperplane arrangements, the Stanley-Stembridge conjecture, Schubert polynomials, toric degenerations, integrable
systems, (holomorphic) symplectic/Poisson geometry, and the Toda lattice.

Dr. Julianna Tymoczko discussed some of the state-of-the-art techniques for describing and computing the cohomology
and K-theory rings of Hessenberg varieties. Two of the techniques which she discussed were the famous Goresky-Kottwitz-
MacPherson theory, as well as some known generalizations of the Tanisaki ideal (which describes the cohomology rings of
type A Springer varieties as quotient rings). In addition, she discussed her recent work joint with Erik Insko and Alexander
Woo, which gives an explicit formula – in terms of Schubert polynomials – for the cohomology and K-theory class of regular
Hessenberg varieties in the cohomology of the flag variety.

Dr. Chow presented his recent results joint with Dr. Brosnan which proved the Shareshian-Wachs conjecture. This is
a conjecture which links the famous Stanley-Stembridge conjecture in combinatorics, stating that the chromatic symmetric
polynomial XG of an indifference graph G is e-positive. (In fact, Stanley and Stembridge’s original conjecture was stated
more generally, but Guay-Paquet reduced it to this case.) In the setting of positivity conjectures of this type, it is natural to ask
whetherXG is in fact chρ of a naturally occurring representation ρ, where ch is the standard characteristic map. Shareshian and
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Wachs had conjectured several years ago that (essentially) the desired representation is the symmetric group representation on
the cohomology ring of a regular semisimple Hessenberg variety defined by Tymoczko. The main result of Dr. Chow’s recent
work, joint with Dr. Brosnan, is a proof of this Shareshian-Wachs conjecture, and Dr. Chow explained the basic ideas of their
proof, the most crucial part of which is the identification of the fixed subspaces of ρ by a Young subgroup with the cohomology
of a ‘smaller’ regular Hessenberg variety.

Dr. Guay-Paquet presented his new insights into the role that Hopf algebras play in the theory of the symmetric group
representations on the cohomology rings of regular semisimple Hessenberg varieties, and in particular, can explain certain
linear relations arising between q-chromatic symmetric functions. Specifically, he explained that there is a (graded connected)
Hopf algebra constructed from Dyck paths, and that there exists a natural graded Hopf algebra map from it to the Hopf algebra
of quasisymmetric functions. He then explained how this map agrees with the map considered by Shareshian-Wachs and
Brosnan-Chow in connection to the Stanley-Stembridge conjecture.

To start the discussions on the second day, Dr. Martha Precup gave an overview of the known results on the Betti numbers of
Hessenberg varieties. She explained how combinatorial formulas for the Betti numbers, given in the language of permutations,
can be obtained through strategically chosen affine pavings of Hessenberg varieties. As an example application, she presented
her theorem that the Betti numbers of regular Hessenberg varieties are palindromic; this is a property of the Betti numbers
which is relevant in the study of the Stanley-Stembridge conjecture. Finally, she presented her joint work with Dr. Harada on
the cohomology rings of abelian Hessenberg varieties, which gives inductive formulas for the symmetric group representations
which appear. In particular, Dr. Precup explained how this result yields a proof of the graded Stanley-Stembridge conjecture in
the abelian case.

Dr. Erik Insko followed with a talk whose theme was the study of the singularities of Hessenberg varieties. Much of this
study is based on the foundational work of Tymoczko on paving Hessenberg varieties by affines. Building on this, Insko and
Yong described the singular locus of Peterson varieties and showed that it is a local complete intersection. Dr. Insko also
sketched the follow-up work of Abe-DeDieu-Galetto-Harada showing that regular nilpotent Hessenberg varieties are also local
complete intersections. Finally, Dr. Inkso explained his recent joint work with M. Precup which explores the smoothness and
the irreducible components of semisimple (not necessarily regular) Hessenberg varieties for the special case when h(i) = i+1.
In particular, they are able to show that the only singularities that occur are at the intersections of the irreducible components.

In the afternoon, Dr. Mikiya Masuda told us about his joint work with H. Abe and T. Horiguchi on a presentation, by
generators and relations, of the cohomology rings of regular semisimple Hessenberg varieties in type A of the form h =
(h(1), n, n, . . . , n). Dr. Masuda began his discussion by reminding the audience of the well-known Borel presentation for the
cohomology rings H∗(Flags) of flag varieties, and also stating that, in general, the ring H∗(Flags) does not surject onto
the cohomology of the Hessenberg variety. Dr. Masuda then recalled the framework of Goresky-Kottwitz-MacPherson theory,
which describes in an explicit combinatorial fashion the equivariant cohomology of flag and Hessenberg varieties. Using this
perspective, Dr. Masuda explained how to construct the necessary ‘extra classes’ which generate the cohomology ring, and
proceeded to derive the correct relations among them.

Building on the above work of Abe-Harada-Horiguchi-Masuda (AHHM) on a generators-and-relations presentation of the
cohomology ring of regular nilpotent Hessenberg varieties in type A, Dr. Horiguchi presented his results which interpret the
generators in the AHHM presentation as a linear combination of Schubert polynomials.

Dr. James Carrell’s talk was about the cohomology and equivariant cohomology groups of varieties X equipped with a
faithful action of the Borel subgroup B of SL2. A beautiful theorem of Carrell and Akyildiz says the following: If X is a
smooth, projective complex variety and if B acts on X with a unique fixed point, then the fixed point scheme XB is just the
affine scheme Spec H∗X associated to the cohomology groups of X (with complex coefficients). Later M. Brion and Carrell
used this result along with a deep surjectivity result of D. Peterson to compute the cohomology of regular nilpotent Hessenberg
varieties. This result played a large role in many of the talks in the workshop. In particular, part of M. Precup’s talk consisted
of an extensive generalization of the Brion—Carrell theorem.

In talks delivered on Wednesday, October 24, Andy Wilson, Jim Haglund, and Mark Skandera discussed connections
between regular semisimple Hessenberg varieites of type A and various combinatorial phenomena. These connections are
realized through examination of the chromatic quasisymmetric functions of unit interval orders, which were conjectured by
Shareshian and Wachs, and proved by Brosnan and Chow (also independently by Guay-Paquet) to be (essentially) Frobenius
characteristics of representations of symmetric groups on the cohomology of the varieties in question.

Drs. Haglund and Wilson discussed LLT polynomials, which were introduced in a 1997 paper of Leclerc, Lascoux and
Thibon. These polynomials play a considerable role in the very active study of Macdonald polynomials. Moreover, certain
LLT polynomials are closely related to chromatic quasisymmetric functions. Indeed, the chromatic quasisymmetric function
of a unit interval graph is a generating function for proper colorings of the graph with the positive integers, while some LLT
polynomials are generating functions for all colorings of unit interval graphs. In addition, there are LLT analogues of key ques-
tions about chromatic quasisymmetric functions of unit interval graphs (or, equivalently, representations of symmetric groups
on the cohomology of regular semisimple Hessenberg varieties). The longstanding Stanley-Stembridge conjecture, already
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discussed above, also has an LLT analogue, which states that the LLT polynomials under consideration become nonnegative
integer combinations of elementary symmetric functions after a simple linear change of variables.

Dr. Skandera discussed his work with Clearman, Hyatt and Shelton on characters of type A Hecke algebras. In this work,
the authors address the problem of evaluating such characters on elements of the Kazhdan-Lusztig basis. This basis is indexed
by permutations. The main result of Clearman et al. solves this problem for basis elements indexed by permutations avoiding
certain patterns. The key result is a combinatorial formula for character values when the permutation avoids the pattern 312.
There is a nice bijection between such permutations in Sn and regular semisimple Hessenberg varieties of type A contained
in the flag variety GLn(C)/B. It turns out that knowing the values of the irreducible characters of the Hecke algebra on a
Kazhdan-Lusztig basis element C′w, with w ∈ Sn 312-avoiding, is the same as knowing the irreducible decomposition of the
representation of Sn on the cohomology of the corresponding Hessenberg variety. Clearman et al. obtain their results using
combinatorial objects called “descending star networks”. These descending star networks inspired some informal discussion
among the workshop participants, to be detailed in the next section.

In a pair of coordinated talks, Drs. Satoshi Murai and Takuro Abe explained the broader context of the recent work of
Abe-Horiguchi-Masuda-Murai-Sato on Hessenberg varieties and hyperplane arrangements. It was shown by Sommers and
Tymoczko that the Poincaré polynomials of certain regular nilpotent Hessenberg varieties admit a factorization, the factors
of which are parametrized by certain exponents of the Hessenberg ideal. As Drs. Murai and Abe explained, this can be
understood in the broader context of free hyperplane arrangements and the Terao factorization of the Poincaré polynomial of the
complements of free hyperplane arrangements. They also explained that the cohomology ring of regular nilpotent Hessenberg
varieties can be identified with the Solomon-Terao algebra of the hyperplane arrangement corresponding to the Hessenberg
ideal. This allows them to derive several interesting consequences, including a computation of the volume polynomial of the
Hessenberg variety; moreover, it was pointed out that it seems natural in this context to expect generalizations of these ideas to
Schubert varieties and other related varieties.

Dr. Peter Crooks touched upon a different aspect of Hessenberg theory, namely, in its relation with the theory of integrable
systems. Completely integrable systems are Hamiltonian systems which exhibit a maximal number of symmetries (in a sense
which can be made precise); the symmetries allow us to reduce the number of variables and to build explicit solutions. Dr.
Crooks described recent joint work with H. Abe, in which they show how a famous holomorphic integrable system, the Kostant-
Toda lattice, can be related to a family of Hessenberg varieties, using Mischenko-Fomenko theory. This work raises the question
of whether, and how, this Abe-Crooks construction can be related or altered to a construction of real integrable systems on single
Hessenberg varieties (as opposed to families thereof).

Dr. Ting Xue’s talk was based on joint work with K. Vilonen and T-H. Chen, which proves an analogue of the Springer
correspondence for the symmetric pair (SL(N), SO(N)). The result can be applied to the family of Hessenberg varieties over
the space p of trace-free symmetric N ×N matrices: it shows that the monodromy action factors through the Hecke algebra at
q = −1. This gives an efficient way to compute the cohomology of Hesssenberg varieties associated to the symmetric pair.

Scientific Progress Made and Outcomes of the Meeting
The small size of the workshop meant that all the participants had the opportunity to interact with one another in substantial
ways, and many productive informal conversations took place as a result. Below we describe a small sample of some of the
mathematical developments that occurred as a result of these interactions. Two are described in some detail in Section 25
and 25, while Section 25 briefly summarizes additional developments.

Hessenberg varieties over finite fields
Brosnan and Shareshian began work on a conjecture relating point counting for regular semisimple Hessenberg varieties,
defined over finite fields, and representations of Weyl groups on the cohomology of such varieties defined over C. To explain
the conjecture, we need some preparation. Given a field F, a Hessenberg variety defined over F is determined by the following
data: a reductive algebraic group G defined over F (and therefore over the algebraic closure F); a Borel subgroup B of G;
a subspace h of the Lie algebra g of G that contains the Lie algebra b of B and is Ad(B)-invariant; and an element x of g
such that ad(x) has entries in F with respect to some basis for g. Note that all of these ingredients other than x can be defined
uniformly, independent of F. Indeed, one can choose a root datum and from this, one obtains G = GF, g, B and b by then
choosing F. Moreover, h is determined by an appropriate choice of negative roots in the associated root system, which does not
depend on F. Assume that the root datum and negative roots have been fixed. When F = C and x ∈ g is assumed to be regular
semisimple, the isomorphism type of the associated Hessenberg variety does not depend on the particular choice of x. Thus,
given a prime power q, we may assume that x has been chosen to have coordinates (say, with respect to a Chevalley basis for
g arising from our root datum) in a ring R of algebraic integers with an ideal I satisfying R/I ∼= Fq . Now we can reduce x
modulo I and use the resulting xq to define a Hessenberg variety over Fq .



Hessenberg Varieties in Combinatorics, Geometry and Representation Theory 257

We have now defined (smooth, projective) regular semisimple Hessenberg varietiesXC andXq , over C and Fq respectively.
On the one hand, we can consider Tymoczko’s “dot action” representation of the Weyl group W of GC on H∗(XC), as already
mentioned above. On the other hand, wne can count, for each finite extension Fqr of Fq , the numberNr of Fqr points onXq and
store this information in the zeta function Z(Xq; t) := exp(

∑
r≥1 Nr

tr

r
). According to the the celebrated Weil Conjectures

(as proved by Dwork, Grothendieck and Deligne), Z(Xq; t) is determined by the eigenvalues in Q` of the Frobenius map σq
on the `-adic cohomology of the Fq-variety Xq . Moreover, the eigenvalues of σq on Hi(Xq;Q`) are algebraic integers of
norm q

i
2 . The connected component T of the identity in the centralizer of xq under the adjoint action of GFq is a σq-invariant

maximal torus. There is a standard bijection between the set of conjugacy classes of such tori and the set of conjugacy classes
in W . Pick w in the conjugacy class of W corresponding to the class of T in GFq . Assume that w has order n and fix any

isomorphism between the group of nth roots of unity in Q` and the group of complex nth roots of unity. We can now state the
conjecture.

Conjecture 1 Under this identification, the multiplicity of a complex nth root α as an eigenvalue of w in the dot action on
Hi(XC) is the multiplicity of q

i
2α as an eigenvalue of σq on Hi(Xq;Q`).

Permutation bases for the dot action
As explained in previous sections, we know from the Brosnan-Chow-Guay-Paquet proof of the Shareshian-Wachs conjecture
that, in order to prove the Stanley-Stembridge conjecture, it is sufficient to show that the dot-action representation on the
cohomology of regular semisimple Hessenberg varieties is a permutation representation in which each point stabilizer is a
Young subgroup. This then motivates the natural question: if it is a permutation representation, then can we explicit build a
permutation basis for it?

The work of Harada and Precup on abelian Hessenberg varieties shows that, in these cases, the dot action representation is
indeed a permutation representation of the appropriate type. Based on these ideas and the question above, Harada, Precup, and
Tymoczko began working on the following problem during the BIRS workshop:

Problem 25.0.1 Let h : {1, 2, . . . , n} → {1, 2, . . . , n} be an abelian Hessenberg function. Find an explicit basis of the
cohomology H∗T (Hess(S, h)) that is permuted by the dot action. In addition, for h an arbitrary Hessenberg function, find an
explicit basis of the Sn-invariant subspace of H∗T (Hess(S, h)) (i.e. the trivial subrepresentation).

One of the reasons this problem is non-trivial is that the dot action does not permute cohomology bases that satisfy upper-
triangular vanishing conditions (which are natural in terms of the Goresky-Kottwitz-MacPherson description of the equivariant
cohomology). Thus, any basis permuted by the dot action represents an unusual and interesting new basis for the equivariant
cohomology of Hessenberg varieties. Moreover, an explicit such basis will also provide new intuition for proving the Stanley-
Stembridge conjecture in the non-abelian case.

As is stated in Problem 25.0.1, our goal has two components: namely, the construction of a complete basis for the full
representation H∗T (Hess(S, h)) in the abelian case, and, a construction of a basis for the Sn-invariant subspace (i.e. the
“trivial part of the representation”) H∗T (Hess(S, h))Sn in the general case. We address these separately below.

We know that GKM theory gives an explicit description of the T -equivariant cohomology H∗T (Hess(S, h)) using the mo-
ment graph for the T -action. Specifically, in this theory, an equivariant cohomology class in H∗T (Hess(S, h)) is obtained by
assigning a polynomial in C[t1, . . . , tn] (satisfying certain conditions) to each vertex of the moment graph, which is a permu-
tation. Given w ∈ Sn, the dot action of w maps the polynomial fy(t1, . . . , tn) assigned to y ∈ Sn to fwy(tw(1), . . . , tw(n)).

Tymoczko already has a conjectured method for building an explicit basis, as follows. Let X be a matrix with a single
nilpotent Jordan block. In [1] it is shown that the cohomology ring of Hess(X,h) is isomorphic to the Sn-invariants in the
cohomology ring ofHess(S, h). Moreover, work of Mbirika shows that the cardinality of the set of monomials

{tα1
1 tα2

2 · · · tαnn : 0 ≤ αi ≤ h(i)− i for all i}

gives the Betti numbers of the Hessenberg variety Hess(X,h) when X consists of a single nilpotent Jordan block. Braden
observed that for each α = (α1, . . . , αn) we obtain a GKM cohomology class pα by setting

pαe = tα1
1 tα2

2 · · · tαnn and pαw = tα1
w(1)t

α2
w(2) · · · t

αn
w(n)

for each permutation w. Moreover, the class pα is Sn-invariant by definition. Thus, we know that these classes are a set of
Sn-invariant cohomology classes. If we restrict to those α with 0 ≤ αi ≤ h(i) − i for each i there are exactly the expected
number of them, in each degree. This leads us to the following concrete conjecture.

Conjecture 2 The set {pα : α = (α1, . . . , αn), 0 ≤ αi ≤ h(i)− i for all i} forms an equivariant permutation basis for the
trivial representations appearing in the dot action representation on H∗T (Hess(S, h)).
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What remains is to prove that the above set of classes is linearly independent; this is one of the main goals of the project
undertaken by Harada, Precup, and Tymoczko.

We now describe the second part of the solution to Problem 25.0.1. In the abelian case, the only nontrivial permutation
representation which appear in the decomposition of the dot-action representation are the Mλ’s where λ has exactly two parts.
Combining Conjecture 2 and the inductive description of Harada and Precup yields the necessary tools for defining an explicit
permutation basis in the abelian case. The first step is to decompose the moment graph for the T -action on H∗T (Hess(S, h))
in order to obtain a decomposition analogous to the one given by Harada and Precup. We begin by defining a subset of
permutations associated to each maximum independent subset of vertices in Γh denoted by WV for V ∈ I2(Γh). The work
of Harada and Precup proves WV ' Sn−2 and that the induced subgraph of the moment graph corresponding to WV can be
identified with the moment graph for the smaller Hessenberg variety H∗T (Hess(S, hV )).

The next important step is to define a permutation basis of equivariant cohomology classes in H∗T (Hess(S, h)) using this
inductive structure. Indeed, as in the case of the trivial part of the representation as discussed above, we already have a candidate
basis for the permutation representations corresponding to partitions of at most two parts. What remains to be shown is that
this basis is linearly independent, and is also linearly independent when considered together with the permutation basis for the
trivial representations given in Conjecture 2 above. Although computations of this form can be non-trivial, the Lie theoretic
tools developed by Harada and Precup give us new tools with which to attack this problem.

Harada, Precup, and Tymoczko will work on this problem in June-July 2019 through their participation in the MSRI
Summer Research for Women in Mathematics program.

Other interactions
One idea for further study, discussed at the workshop by Skandera and Shareshian, is to try to define analogues of the “descend-
ing star networks”, discussed by Dr. Skandera in his talk, for Weyl groups other than symmetric groups. Regular semsimple
Hessenberg varieties are defined in all Lie types. The main obstacle to developing a combinatorial approach to such varieties is
the lack of an analogue to the chromatic quasisymmetric function. One can hope that appropriately defined descending star net-
works will stand in for chromatic quasisymmetric functions in the development of such an approach. In addition, such networks
might shed light on connections between Hessenberg varieties and Hecke algebra representations in arbitrary Lie type.

In another development, Dr. Tymoczko asked during the meeting whether or not every Schubert variety in the flag variety
is a Hessenberg variety. Since the meeting, Drs. Shareshian and Precup, together with their collaborator Dr. Laura Escobar,
have shown that this question has a positive answer in Lie type A.

Finally, based on Dr. Horiguchi’s presentation on his work relating Schubert classes and the elements fij defining the ideal
in the AHHM presentation of the cohomology rings of regular nilpotent Hessenberg varieties, Martha Precup gave an conjecture
for an explicit formula – in terms of Schubert classes – for these generators fij . The advantage of Dr. Precup’s conjecture over
the known formula is that, firstly, it would generalize to other Lie types, and secondly, it gives an interpretation of the relations
fij in terms of Schubert calculus. If her conjecture can be proven, it would open the door for more investigations into the
relationship between Schubert calculus and the cohomology rings of Hessenberg varieties.
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Chapter 26

WOA: Women in Operator Algebras
(18w5168)

November 4 - 9, 2018
Organizer(s): Sara Arklint (University of Copenhagen), Astrid an Huef (Victoria University of
Wellington), Karen Strung (Radboud Universiteit), Dilian Yang (University of Windsor)

Overview
This report summarizes the organization and scientific progress made at the first workshop for women in operator algebras at
the Banff International Research Station in Banff, Canada. The main purposes of the workshop were

1. for women in operator algebras to conduct cutting-edge collaborative research, and

2. to build a network of women working in the field to drive future research collaborations and to alleviate the commonly
reported feeling of isolation.

We think that we have achieved both of these aims by using the format from the BIRS workshops “Women in Numbers” where
the focus is on research in groups on current problems.

Our workshop had 8 groups, each led by 1 or 2 researchers. Prior to the workshop, the leaders designed a broad outline of a
research project, and provided background reading and references for their group. On the first day of the workshop each group
briefly outlined the research project they would be working on, and on the last day each group reported on progress made and
future directions for the work. See Section 26 below for a report from each group. Several of the groups are planning to meet
again this year or are preparing articles for publication.

The workshop had 37 participants from 15 countries (Australia, Brazil, Canada, China, France, Germany, India, Israel,
Italy, Korea, Denmark, Netherlands, New Zealand, USA, UK). Unfortunately, 5 woman had to cancel at the very last moment
due to visas not being issued, caring responsibilities or illness.

To avoid inviting only researchers we already knew well, we initially invited 28 participants, and then filled the remaining
places via an application process. The participants initially invited included the project leaders and researchers whose expertise
would enable progress on the projects. The call for applications was very broad via social media; email lists for women in
mathematics, women in operator algebras and related fields; e-mail lists for major conferences of interest to operator algebraists.
We requested a CV, ranked preferences of 2–3 projects of interest, and a short statement about how their expertise fit with the
projects and how they would benefit from participating.

Outcomes of the workshop
The immediate outcomes of the workshop include several new collaborations, a new network of women in operator algebras
supported by a website1 hosted by the Association for Women in Mathematics (AWM) and articles in preparation. Several

1https://awmadvance.org/research-networks/woa/
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groups reported that they are planning to meet again this year and one group reported that they are preparing a journal article
for publication (see the reports from the groups in Section 26 below). The feedback from the participants via an AWM survey
and testimonials was overwhelmingly positive (see Section 26).

Scientific progress made: reports from the research groups
The study of operator algebras is a very active branch of functional analysis dealing with problems that are intrinsically infinite-
dimensional. Such problems arise in quantum mechanics where, for example, a famous theorem of von Neumann says that
the only solutions of Heisenberg’s commutation relations are families of operators on an infinite-dimensional Hilbert space.
Operator algebras have a rich and remarkably rigid structure, and there is a powerful general theory which makes this precise
and applicable. Over the past few decades, operator algebras have influenced diverse areas of mathematics, including number
theory, harmonic analysis, knot theory, dynamical systems and ergodic theory.

During the workshop, our groups worked on current research problems in the field. Each group’s work is reported below.

Cartan subalgebras of twisted groupoid C∗-algebras
Group members

Anna Duwenig (University of Victoria), Elizabeth Gillaspy (group co-leader, University of Montana), Rachael Norton (North-
western University), Sarah Reznikoff (group co-leader, Kansas State University), Sarah Wright (Fitchburg State University).

Research synopsis and progress

Let A be a C∗-algebra and let B ⊆ A be a Cartan subalgebra. That is, B is a maximal abelian sub-C∗-algebra of A that
contains an approximate unit for A, such that there exists a faithful conditional expectation from A onto B, and the normalizer
of B generates A as a C∗-algebra. In 2008, building on earlier work of Kumjian [27], Renault proved [46] that every Cartan
pair (A,B) is of the form (C∗r (G; Σ), C0(G(0))), where C∗r (G; Σ) denotes the reduced C∗-algebra of a twisted, topologically
principal, Hausdorff étale groupoid (G; Σ), andG(0) denotes the unit space ofG. (A groupoidG is a generalization of a group,
in which every element has an inverse but multiplication is not globally defined. Thus, each g ∈ G has two associated units,
namely, its source s(g) and its range r(g). Two elements g, h ∈ G can be multiplied if and only if the source of g equals
the range of h. When the only elements in G with s(g) = r(g) are the units themselves, we say G is principal; we say G is
topologically principal if G comes equipped with a topology such that the set {u ∈ G(0) : s(g) = r(g) = u ⇒ g = u} is
dense in G(0).)

However, even if G is not topologically principal, the twisted groupoid C∗-algebra C∗r (G; Σ) may have Cartan subal-
gebras. This is the case for the rotation algebras Aθ , for example, which can be realized as a twisted group C∗-algebra,
Aθ ∼= C∗r (Z2; cθ). For any group G, we have G(0) = {e}, so if G is nontrivial then G cannot be topologically principal.
Despite this, other descriptions of the rotation algebras enable one to check that C∗r (Z) ∼= C(T) is a Cartan subalgebra in Aθ .

The goal of this project is to identify Cartan subalgebras of twisted groupoid C∗-algebras when the groupoid in question
is not topologically principal. In the untwisted case, a similar question was investigated by Brown et al. in [13]. Inspired by
the Cartan pair (Aθ, C(T)), we have identified sufficient conditions on a subgroupoid S of a twisted groupoid (G; Σ) that
ensure C∗r (S; Σ|S) is a Cartan subalgebra of C∗(G; Σ). When restricted to the case of a trivial twist, our theorem recovers [13,
Corollary 4.4].

Benefits of the WOA format

The ten-minute presentations given on the first day were extremely beneficial to our group; we recruited a new group member
on the strength of that presentation.

Another of our group members was able to join the project thanks to the pre-conference application process. Obtaining
her group assignment three months in advance of the workshop gave this team member enough time to familiarize herself with
groupoids and Cartan subalgebras, which were new topics for her. This consequently enabled her to contribute to the research
during the week at BIRS.

Future plans

Although we proved our main theorem during the week at BIRS, there are still many open questions which we plan to explore,
such as the uniqueness of the subgroupoid S and/or the Cartan subalgebra that it generates. Several of these questions are
also still open in the untwisted case. We are planning to meet at Northwestern University for a week in May 2019 to continue
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working on this project, and we will also apply to MSRI’s Summer Research Program for Women in the hopes of spending two
weeks in July 2019 working on this project at Berkeley.

Index theory and K-theory with applications to arithmetic groups
Group members

Sara Azzali (University of Potsdam), Sarah Browne (The Pennsylvania State University), Maria Paula Gomez Aparicio (group
co-leader, Université Paris-Sud 11), Lauren Ruth (Vanderbilt University), Hang Wang (group co-leader, East China Normal
University).

Format

Since we had formed a group before the BIRS workshop, on arrival we all introduced ourselves and discussed our connections
to the potential research avenues on connections between K-theory, the Baum–Connes conjecture and representation theory.
From these discussions we decided on a format which involved us all giving talks connected to the topic (we list the titles and
abstracts below). On the first day we presented our plans to the others at the conference. This generated a lot of interest. In
particular, Jacqui Ramagge gave us a guest talk on connected joint work by herself, G. Robertson and T. Steger.

Sara Azzali, Discrete groups, counterexamples to the Baum–Connes conjecture, and a localised assembly
map

We describe the counterexamples to the Baum–Connes conjecture with coefficients, given by Higson, Lafforgue and Skandalis
in [22]. We follow Puschnigg’s Bourbaki seminar [42] and focus on the case of discrete groups Γ. The counterexamples are
based on the different behaviour of the left and right hand sides of the Baum–Connes map with respect to exact sequences of
Γ-algebras: the left hand side is exact in the middle, whereas the right hand side can fail exactness. The discrete group Γ in the
counterexample is the so called Gromov “Monster group”, in whose Cayley graph one can suitably embed an expander graph.

In the second part of the talk, we report on joint work with P. Antonini and G. Skandalis where we use KK-theory with
coefficients in R to study discrete group actions on C∗-algebras and to give a localised form of the Baum–Connes conjecture
[3]. We start with the definition of (equivariant) KK-theory with coefficients in R, which is constructed by means of an inductive
limit over II1-factors [2]. We see how the standard group trace defines a class [τ ] ∈ KKΓ

R (C,C) which is shown to be an
idempotent. The image of [τ ] acting on KKΓ

R (A,B) by exterior product is called the “τ -part” of KKΓ
R (A,B). A Baum–

Connes type morphism µτ is naturally defined between the τ -parts of the usual left and right hand sides of the Baum–Connes
map (where on the right hand side the τ acts via descent). One can show that the τ -form of the Baum–Connes conjecture is
weaker2 than the classical one, but the injectivity of µτ still implies the strong Novikov conjecture.

Sarah Browne, E-theory and the Baum-Connes conjecture

We introduced the notion of E-theory and gave properties and understood the relations with both K-theory and KK-theory.
After we gave a definition of equivariant E-theory in the papers of Guentner-Higson-Trout [20] and Guentner-Higson [23] and
talked about the technicality of composition of elements. There after we described the Baum-Connes conjecture in terms of
E-theory and in particular with coefficients to relate to crossed product C∗-algebras. The talk finished with a connection to the
speakers’ current joint work which may be useful for future avenues.

Maria Paula Gomez Aparicio, Property (T) as an obstruction to prove the Baum-Connes conjecture

The Baum-Connes conjecture gives a way of computing the K-theory of the reduced C*-algebra of a locally compact group.
This C*-algebra encodes the topology of the temperate dual of the group and its K-theory is a topological invariant of this
topological space. This conjecture, and some generalizations, are still open for some groups having property (T) (e.g SL3(Z)),
a rigidity property on groups representations. In this workshop I explained how property (T) appears as an element in the
maximal C*-algebra of the group and how it prevents the use of the Dirac-dual Dirac method to succeed. I also explained why
a stronger version of property (T) is an obstruction to all the methods that have been used so far to prove the conjecture and that
a direction that is still open concerns applying the ideas of Bost, who defined a version of Oka principle in Noncommutative
Geometry. Indeed, for higher rank Lie groups, there is a statement that says that proving the Baum-Connnes conjecture is
equivalent to prove a Bost’s kind of Oka principle for some group algebras. References included [11], [10], [26], [30], [31].

2(more precisely, it is verified by a Γ-algebra A if the classical Baum–Connes is verified by A ⊗ N for every II1-factor N with trivial
Γ-action)
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Lauren Ruth, Von Neumann dimension and lattices in algebraic groups

First, we give background on discrete series representations and lattices in algebraic groups. Then we explain the coupling
constant, or von Neumann dimension, and how it measures the size of the commutant of a finite factor. Importantly, represen-
tations of II1 factors are classified up to unitary equivalence by their von Neumann dimension, which assumes a continuum of
values. In the main part of the talk, we explain a theorem that has its roots in Atiyah’s work on L2-index in [8], which was
used by Atiyah and Schmid to realize discrete series representations in [9]; another proof is given in [19]. Let G be a simple
algebraic group, with trivial center and no compact factors, having square-integrable irreducible unitary representations; let
(π,H) be such a representation of G; and let Γ be a lattice in G. The theorem states that the restriction of π to Γ extends to a
representation of the II1 factor RΓ onH, and this representation of RΓ has von Neumann dimension dpi · vol(G/Γ), where dπ
is the formal dimension of (π,H). We conclude by discussing two results from our dissertation, [47]: calculating the formula in
a p-adic setting by dealing carefully with Haar measure, and obtaining representations of II1 factors on spaces of automorphic
functions.

Hang Wang, Elements in the Baum-Connes assembly map

We introduce for a locally compact second countable group, the universal example of proper actions, the equivariant K-
homology and the precise definition the Baum-Connes assembly map. We describe in details the examples of finite groups,
free groups, fundamental group of Riemann surfaces, where the Baum-Connes conjecture is true. Using the fact that SL(2,Z)
is the Z/2-amalgamated product of Z/4 and Z/6 we are able to label the precise map of the Baum-Connes isomorphism for
SL(2,Z), and the generators all come from finite dimensional representations. For SL(3,Z), the difficulty is that we no longer
have a nice amalgamated product structure as in SL(2,Z). Therefore, infinite dimensional representations of the group have
to be investigated in order to understand the generators of K-homology and K-theory associated to those representations. The
references we used here are Valette’s “Introduction to Baum-Connes conjecture” Chapters 5, 6 and Natsumi’s paper in year
1985 calculating K-theory of the group C∗-algebras of SL(2,Z).

Jacqui Ramagge, Property (RD) for Ã2-groups, including cocompact lattices in SL3(Qp)

We proved property (RD) for Ã2-groups using a geometric argument to prove a Haagerup inequality. That is, we showed that
the the operator norm of a group element under the left regular representation on `2(Γ) is polynomially bounded by the two-
norm of the element, where the polynomial is a function of the length of the element with respect to a length function on the
group. We began by giving a geometric reinterpretation of the proof of result of Haagerup on free groups from [21]. By adding
one extra idea, we then generalised this to a result on Ã2-groups as in [45]. By the results of Lafforgue in [29], this proves the
Baum-Connes Conjecture for Ã2-groups.

Outcomes

From all of the discussions and talks for the first half of the week, we then came up with some questions to tackle and ways to
attack these together. The project now has a clear structure and we hope to meet again in Shanghai in June 2019.

Semigroup C∗-algebras and simplicity
Group members

Zahra Afsar (group co-leader, University of Sydney), Nadia S. Larsen (group co-leader, University of Oslo), Carla Farsi (Uni-
versity of Colorado, Boulder), Judith Packer (University of Colorado, Boulder).

Description of project and outcomes

The project took aim to investigate simplicity of the boundary quotient C∗-algebraQ(S) associated to a right LCM semigroup
with identity (right LCM monoid) S. Simplicity of Q(S) is proved in [51, Theorem 4.12] under additional assumptions
imposed so as to use the characterization of simplicity of étale Hausdorff groupoid C∗-algebras from [12]. We have thatQ(S)
is constructed as the tight groupoid C∗-algebra of an inverse semigroup, which should correspond to a “reduction groupoid”
of the left inverse hull Il(S) whose C∗-algebra C∗(Il(S)) models the universal semigroup C∗-algebra of S, see for example,
[34, Theorem 5.17].

We started investigating the proof of simplicity from [51, Theorem 4.12], and in particular the construction of the tight
groupoid from S. Then we moved on to understand how the conditions on S securing the Hausdorff property can be relaxed
if we instead invoke the recent simplicity result for non-Hausdorff groupoids from [15], see in particular their Theorem 4.10.
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One reason why it would be interesting to explore this more general, non-Hausdorff universe, is that for arbitrary right LCM
monoids without right cancellativity one does not expect their tight groupoids to be Hausdorff. For the class of right LCM
semigroups arising from self-similar actions, there is a very interesting simplicity result in [15, Theorem 5.21] which identifies
ω-faithful as condition for simplicity of the reduced groupoid C∗-algebra. This should admit useful generalizations.

Our efforts during the workshop concentrated on understanding the various ingredients that go into the construction of
Q(S), and the new subtle points that go into the proof of simplicity from [15]. We have agreed on a plan to move forward with
our project. We are grateful to Lisa Orloff Clark who joined our group one morning and gave a short, expert lecture on her
recent work in [15].

Quantum majorization in infinite-dimensional Hilbert Space
Group members

Priyanga Ganesan (Texas A & M University), Sasmita Patnaik (Indian Institute of Technology), Sarah Plosker (project leader,
Brandon University), Emily Redelmeier.

Project description

The research project related to an open problem in quantum information theory (QIT). In QIT, a quantum system is described
by a Hilbert space H. The predual of B(H), the set of all bounded linear operators acting on H, is the ideal of trace class
operators T (H), i.e., T (H) = B(H)∗. Note that ifH is finite dimensional, then T (H) = B(H). The study of quantum states
and quantum channels is central in QIT. Quantum states, also called density operators, are positive (semi-definite) trace-one
operators ρ ∈ T (H). We will focus on bipartite states: let HA and HB be two Hilbert spaces and ρAB ∈ B(HA ⊗ HB) be
a state. For two Hilbert spaces H and K, a quantum channel Φ : B(H) → B(K) is a completely positive, trace preserving
(CPTP) linear map.

Entanglement is one of the key resources that sets QIT apart from its classical counterpart. It is therefore important to
quantify this resource, and particular attention is paid to when it is maximal. It should be noted that maximally entangled states
do not exist in infinite dimensions as the Schmidt coefficients are an infinite set of nonnegative numbers summing to one, which
has no minimal element with respect to majorization, whereas maximally entangled states are minimal elements with respect
to majorization in finite dimensions.

Majorization has become an important tool in QIT since Nielsen’s theorem (1999) which states that a pure state |ψ1〉 shared
by two parties can be transformed by LOCC into another state |ψ2〉 (that is, |ψ1〉 is at least as entangled as |ψ2〉 ) if and only if
λψ1 ≺ λψ2 , where λψ1 and λψ2 are the Schmidt coefficient vectors of |ψ1〉 and |ψ2〉 , respectively, and≺ denotes majorization.
This result has become a springboard for various generalizations giving rise to related comparison relations in various contexts.

Many results in QIT are given in the context of bounded operators acting on finite-dimensional Hilbert spaces, and as
such these results reduce to results about matrices. The context of infinite-dimensional Hilbert space is of interest to e.g.
theoretical physicists, so if a result can be generalized to infinite dimensions it is of interest to do so. Solutions to such open
problems are often of independent interest from a pure math standpoint. There are questions of closure and convergence that
need to be addressed, issues related to the existence of certain objects in infinite dimensions, and gaps in the literature. In
particular, generalizing the various versions of the majorization relation to infinite-dimensional Hilbert space is more than
merely incremental in nature. The techniques used during the week relied heavily on operator theory, including comparisons
of various norms, and the understanding of small but important details about tensor products of trace-class operators.

Unfortunately, due to a variety of factors (visa issues, family issues, etc.) I. Beltita, P. Ganesan, L. Ismert, and S. Srivastava
could not attend. Genesan was able to meet via video chat for a few hours each day, so she was able to be involved remotely.
Originally seven group members, the group wound up being three present at BIRS, plus an additional member (Ganesan) via
Skype. This setup had its advantages and disadvantages. By the end of the week, we had identified a number of major issues
that need to be addressed before attempting to solve the main open problem, and we developed a clear picture of what approach
to use.

Twisted Steinberg algebras
Group members

Becky Armstrong (University of Sydney), Lisa Orloff Clark (group leader, Victoria University of Wellington), Kristen Courtney
(University of Münster) , Ying-Fen Lin (Queen’s University Belfast), Kathryn McCormick (University of Minnesota) and Jacqui
Rammage (University of Sydney).
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Description of project and outcomes

Jean Renault introduced the notion of a twisted groupoid C∗-algebra in his 1980 thesis and these C∗-algebras have been used
in a variety of contexts over the years. Non-twisted groupoid C∗-algebras are themselves a broad class of algebras that includes
a number of interesting subclasses, like graph and higher-rank graph C∗-algebras. The class of twisted groupoid C∗-algebras
is even broader and there are a few results in particular highlighting this.

Results of an Huef, Kumjian and Sims [24, Theorem 5.2] say that every Fell algebra is isomorphic to a twisted groupoid
C∗-algebra. More generally, Renault shows in [46, Theorem 5.9]: If a C∗-algebra contains a Cartan subalgebra, then it is
isomorphic to a twisted groupoid C∗-algebra. This result, along with recent progress in the classification program, has placed
twisted groupoid C∗-algebras at the forefront of C∗-algebraic research.

In this project, we considered ample groupoids, which are étale groupoids that have a basis of compact open sets. In this
case, sitting inside of the groupoid C∗-algebra is a dense subalgebra called the Steinberg algebra [52]. As an analogy, the
Steinberg algebra sits inside the groupoid C∗-algebra like the algebra generated by a Cuntz-Krieger family (no closure) sits
inside the graphC∗-algebra. Steinberg algebras are gaining popularity as they 1. give rise to a lot of interesting purely algebraic
examples and 2. give insight into groupoid C∗-algebras in surprising ways.

Up until now, twisted Steinberg algebras have not been considered. Our first task was to define twisted Steinberg algebras.
We took into account the various notions of twisted groupoid C∗-algebras in the literature, and formulated a unified treatment
in the purely algebraic setting. From there, we began considering the an Huef-Kumjian-Sims result and Renault’s result and are
making progressing on proving a purely algebraic version.

Our group will reconvene for 2 weeks in March 2019 at the University of Sydney to continue work on this project.

Quantum principal bundles and their C*-algebras
Group members

Francesca Arici (group leader, Max Planck Institute for Mathematics in the Sciences), Erin Grisenauer (Eckerd College), Chiara
Pagani (group leader, Università del Piemonte Orientale).

Noncommutative fiber bundles and spaces

This is project lies at the interface of two important research directions in operator algebra: the theory of C∗-algebras, and
Connes’ approach to noncommutative geometry (NCG), including the algebraic approach to quantum groups.

The focus of this project is the study of noncommutative spaces and principal bundles over them, starting from the analysis
of relevant examples in the literature, with the aim of giving a C*-algebraic description of such objects.

In the purely algebraic setting, a principal bundle over a noncommutative space B consists of an algebra extension B ⊆ A
of the algebraB which isH-Galois with respect to a certain Hopf algebraH . The base spaceB is the subalgebra of (co)invariant
elements for the coaction of H on A.

It is less clear how to describe a principal bundle in the C∗- algebraic context. Deepening our knowledge about bundles in
the analytic framework is one of the goals of this research project.

Some partial results in this direction were obtained in [7, 6], where the authors described quantum principal circle bundles
in terms of Cuntz–Pimsner algebras [41] of self-Morita equivalence bimodules. Prototypical examples of this construction are
the inclusions C(CPnq ) ⊆ C(S2n+1

q ), as well as more general algebra extensions coming from U(1)-actions, such as those
involving weighted lens and projective spaces [14].

Inspired by these results, we look for a C∗- algebraic characterisation of quantum principal bundles with non-Abelian
structure group, inspired by [38]. Current work in progress in a parallel project by the first author suggests that the setting
of subproduct systems [49, 57] will help describing Hopf–Galois extensions at the C∗- algebraic level. A relevant class of
fundamental examples to be studied are deformations of the SU(2))-Hopf bundle.

A C∗-algebraic version of the symplectic instanton bundle

The q-deformed instanton bundle O(S4
q ) ⊆ O(S7

q ) of [32] is an important example of a Hopf–Galois extension which is
genuinely noncommutative, in that the structure group is Woronowicz’s quantum SU(2) and the total space is a quantum
homogeneous spaces of symplectic quantum groups. The total space of this bundle is the symplectic seven-dimensional sphere
S7
q , which is obtained as a quantum homogeneous space for symplectic quantum groups.

During the first days of the WOA week, we have recalled the classical construction of projections that described the modules
of sections of the associated vector bundles coming from the representations of SU(2), in order to address the analogous
computation for the symplectic sphere S7 and the corepresentations of the quantum group SUq(2). These corepresentations
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are labelled by integers. The projection p(1) for the module of sections of the associated bundle coming from the fundamental
corepresentation E1 was constructed in [32].

We have performed lengthy explicit computations and were able to construct the projection p(2) for the module E2, i.e., the
module of sections of the associated bundle coming from the weight two corepresentation. In order to do so, we were lead to
introduce a suitable ten-dimensional vector subspace of C4 ⊗ C4 that can be thought of as a quantum analogue of the second
symmetric power of C4, and that we have denoted by Sym2

q(C4).

Future plans and open questions

1. We plan to construct higher q-symmetric powers of C4 as maximal standard subproduct systems of Hilbert spaces with
prescribed fibres C, C4, Sym2

q(C4) in the sense of [49, Sec. 6.1]:

Symn
q (C4) =

⋂

i+j=n

Symi
q(C4)⊗ Symj

q(C4).

To any such product system, one can associate a Cuntz–Pimsner like algebra, as described in [57]. We expect to be able
to interpret the resulting algebra as the C∗- algebra of the noncommutative symplectic seven-sphere, much as the C∗-
algebra of the standard symmetric product system over C4 is the commutative C∗- algebra C(S7).

2. Motivated by the study of SU(2)-gauge theories, a parallel goal is that of inductively constructing all projections p(n)

for n ≥ 2, possibly giving a unified description, using the higher symmetric tensor powers defined in the previous point.
Since the projection p(n), is determined by the quantum analogues of the totally symmetric n-th tensors products of
ψ1, ψ2. We expect powers of q to appear in their expression.

One should observe that, in principle, one could also construct the modules En as maximal standard subproduct systems
of Hilbert C∗- modules over C(S4

q ) with prescribed fibres C(S4
q ), E1, E2. This, however, does not immediately yield the

projections, therefore we plan to adopt the more explicit approach described in the two previous points.

Acknowledgments

We would like to thank the organisers of the WOA workshop for this great opportunity. FA was partially supported by the
Deutsche Forschungsgemeinschaft (DFG) under the grant GZ AR 1292/1-1.

Nuclearity of C∗-algebras of quasi-lattice ordered groups
Group members

Astrid an Huef (group leader, Victoria University of Wellington), Camila F. Sehnem, Brita Nucinkis (Royal Holloway, Univer-
sity of London), Dilian Yang (University of Windsor).

Description of project and outcomes

A C∗-algebra A is nuclear if for every C∗-algebra B there is a unique C∗-norm on the algebraic tensor product A � B.
Nuclearity is an important hypothesis of the classification program for C∗-algebras, and so it is important to be able to decide
if a C∗-algebra is nuclear. For example, the C∗-algebra of a group is nuclear if and only if G is amenable.

The question of when the C∗-algebra of a semigroup is nuclear also has deep connections with notions of amenability.
In [33, Theorem 6.1] Li studied a subsemigroup P of a discrete group G. He showed, under some hypotheses, that the full
C∗-algebra C∗(P ) of P is nuclear if and only if, whenever a C∗-algebra A admits an action of G, the reduced and full crossed
products ofA by the semigroup P are isomorphic. Li’s theorem applies, for example, to the quasi-lattice ordered groups (G,P )
introduced by Nica in [39]. The project was to find sufficient and checkable conditions for the Toeplitz algebra C∗(P ) of a
quasi-lattice ordered group to be nuclear.

The existence of generalised length functions, called “controlled maps”, from G to an amenable group K is sufficient
to ensure that (G,P ) is amenable [28, 16, 25]. Given the deep connections between amenability and nuclearity, it seemed
reasonable to explore this circle of ideas for nuclearity as well. Indeed, [55] used ideas from [33, Theorem 6.1] to show that a
C∗-algebra of a doubly quasi-lattice ordered groups admitting such a controlled map is nuclear.

The Toeplitz algebra is also the C∗-algebra of a Fell bundle extended from P . Properties of controlled maps into (Z,N)
were implicitly used in [48] to prove that Fell bundles extended from free semigroups and from Baumslag–Solitar semigroups
are amenable. So it is natural to ask how we might deduce nuclearity of Toeplitz algebras from the amenability of those Fell
bundles.
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By [50, Example 2.2] every (G,P ) gives a category of paths Λ = Λ(G,P ). Spielberg associated a groupoid GΛ to a
category of paths in such a way that C∗-algebra of GΛ is isomorphic to C∗(P ) [50, Theorem 6.3]. So it is possible that
nuclearity could be deduced from the results in [50, §9]. To this end, we wanted to know if a “controlled map” of [25,
Definition 3.1] satisfies the hypotheses of [50, Theorem 9.8].

During the week at Banff we explored the above strategies and made significant progress. We currently have one paper in
preparation and ideas for another.

Generalized Crossed Products
Group members

Maria Stella Adamo (University of Catania), Dawn Archey (group co-leader, University of Detroit Mercy), Magdalena Georgescu
(Ben Gurion University), Ja A Jeong (Seoul National University), (Maria Grazia Viola (Lakehead University), Karen Strung
(group co-leader, Radboud University).

Description of project and outcomes

The crossed productsC∗-algebras by group actions have long been a source of interesting and elegant examples in the theory of
C∗-algebras. One of the most well-studied cases is the case of the crossed product of C(X), for X a compact metric space, by
an action of the integers (which is, necessarily, determined by a single automorphism). One reason that these crossed products
have been so valuable as examples is that while they are are in some ways complicated, they also have a lot of concrete structure.

There are some interesting generalizations of this construction, one of which is to take a crossed product by a Hilbert
A-A-bimodule [1]. This is a generalization in the sense that every crossed product by an action of Z has a natural Z-grading
which allows one to express the crossed product using bimodules instead. In the broadest possible terms, our project is to
study structural properties of these generalized crossed products. Of particular interest are those generalized crossed products
which are simple, as this allows us to make links to the Elliott classification program. Groupoid C∗-algebras arising from
minimal principal étale groupoids provide a different approach to generalizing crossed products of commutative C∗-algebras
by the integers. Indeed, the orbit equivalence relation of a minimal dynamical system gives rise to such a C∗-algebra, which is
isomorphic to the crossed product.

When studying simple crossed products by group actions, a technique that is frequently used is to find a suitable C∗-
subalgebra of the crossed product which is “large enough” to retain most of the structural information of the crossed product
while at the same time having a more tractable, recognizable structure. Putnam was the first to use this technique in his work
on crossed products arising from Cantor minimal systems, by examining the construction of what we now call orbit-breaking
algebras [43]. These have been used successfully in many places to understand the structure of their containing crossed prod-
ucts (see, for example, [37, 54, 56, 35, 36, 53, 18]) and have also been of interest in their own right, as they can also be viewed
as C∗-algebras of minimal principal étale groupoids [17, 44].

Definition. Let X be an infinite compact metric space and ϕ : X → X a minimal homeomorphism. Put A := C(X) oϕ Z.
Let Y ⊂ X be a closed nonempty subset meeting every ϕ orbit at most once. The orbit-breaking algebra at Y is given by

AY := C∗(C(X), uC0(X \ Y )) ⊂ C(X) oϕ Z,

where u is the unitary implementing ϕ, that is, u ∈ C(X)oϕZ is the unitary satisfying ufu∗ = f ◦ϕ−1 for every f ∈ C(X).

In 2011, Phillips introduced a generalization of orbit-breaking algebras which he called large subalgebras [40]. In this
more general setting, many properties have been shown to pass between the large subalgebra and its containing C∗-algebra
[40, 5, 4]. Although there are cases where this more general setting has proven useful, there is so far a dearth of examples
of large subalgebras and their containing algebras that do not come from orbit breaking subalgebra in a crossed product of a
commutative C∗-algebra. The goal of this project is to find other examples of large subalgebras, with an aim to exploit the
preservation of known structural properties. Our starting point is to look at C∗-algebras which are very similar to crossed
products by group actions, namely the two generalizations mentioned above.

Our time at WOA was spent sharing knowledge about Hilbert A-A-bimodules, groupoid C∗-algebras, labeled graph C∗-
algebras, and large subalgebras until a candidate for a setting where we might apply the large subalgebra framework emerged.
By the end of the week we had identified a (type of) subalgebra of bimodule crossed products which is similar, in spirit, to an
orbit breaking algebras of a crossed product C(X) oϕ Z, where the orbit is broken at a single point x ∈ X , the prototypical
large subalgebra. We were able to confirm that our candidate is simple if the crossed product is simple, which is known to be a
necessary condition for a large subalgebra of a simple algebra.
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The next step in our project is to prove that our candidate subalgebras truly are large in the bimodule crossed product. We
also hope to find the corresponding large subalgebra in minimal principal étale groupoid C∗-algebras. With these examples in
hand, we will then look to prove results on structural properties of generalized crossed products using the properties of the large
subalgebras we identified and known results about properties which pass from a large subalgebra to the containing algebra. We
are planning to meet again in early spring in Germany or the Netherlands. Exact details are pending confirmation by the host
institutions. We have also applied for a two week stay at MSRI during summer of 2019.

Feedback
The Association for Women in Mathematics ADVANCE evaluation team surveyed the WOA participants to provide feedback
for the organisers. Of the 37 workshop participants, 31 responded to the survey, yielding an excellent response rate of 84
percent. Of the 31 survey respondents, most (87%) had earned a doctorate degree, and the vast majority (97%) were employed
in academia. Graduate students and post-doctorates (39%) were balanced with academics in tenure-track positions (45%),
below. This workshop was a new experience for most; almost all (94%) of the participants were newcomers to the Research
Conference Collaboration Workshop model. Overall, the survey showed that the workshop was very successful: all participants
would attend this conference again. Below are some of the open ended comments from the survey and testimonials supplied to
BIRS:
• This was a phenomenal workshop. It was unusually effective in generating meaningful mathematical conversations

and results. It also provided a great opportunity to bring together researchers with diverse specialties and to introduce
researchers to related fields and questions.

• As far as research goes, I am kind of isolated at my current institution. This workshop was very beneficial for me. It
helped me make connections with several people and really make progress on a research project. I am very grateful to
the organizers, AWM, and other funding sources for this opportunity.

• It was a great workshop and one of the most friendly conferences/workshops I have been to.
• The workshop was fantastic. The collaborative and supportive atmosphere was totally different than any other workshop

I’ve attended, in the most wonderful way. I think we all felt comfortable, respected and valued as mathematicians. [?]
Many of us felt simultaneously that the week was too short, and that a two-week workshop wouldn’t be practicable.
Maybe a 9-day workshop, including weekends? Or an optional first week that had more of a mini-course structure,
followed by the workshop? I also think it’s important to support/fund mixed gender collaborations, in addition to the
WOA collaboration network.

• The workshop allowed me to have the confidence to ask questions and make the most of a conference unlike any other
conference. Being a women only conference it gave me the opportunity to communicate mathematics without having
to prove myself. It gave me also a new foresight on job prospects, and actually made me rethink my capabilities as a
researcher. I can be a successful researcher! I now have new collaborators with whom I feel comfortable working with.

• This workshop was absolutely remarkable. It provided me with an opportunity to meet and talk maths with outstanding
researchers from around the world. During the week, I joined a new collaboration with researchers that I would have
never normally had an opportunity to work with. The composition of our group and the structure of the workshop enabled
us to prove several preliminary results, which we will develop into a paper in the coming months. Most importantly,
this workshop brought together many women in a field with strikingly poor representation of women. The connections
formed here, both mathematical and personal, will positively impact the diversity and, consequently, the mathematical
developments in our field.

• The meeting was a unique opportunity to meet colleagues that I would not meet at regular workshops and offered me the
chance to start a new research collaboration.

• Participating in this BIRS workshop has broadened my knowledge in the research field which I study, as well as new
fresh insight of some research questions which I am interested. It was quite an unique experience that in the workshop
not only I could have new contacts, but also we started a new collaboration on a research project. It is really good that we
could just focus on our research problems during the whole week and achieved some results. On the top of all scientific
aspects, I feel very much supported in our discipline through the workshop and the colleagues whom I got to know,
which is very valuable for me.

Thanks
We are grateful to BIRS for hosting our workshop. We thank the Compositio Foundation and the Association for Women in
Mathematics (NSF-HRD 1500481 – AWM ADVANCE grant) for travel funds for some participants.
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[29] V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Invent. Math. 149 (2002),
1–95.

[30] V. Lafforgue, Un renforcement de la propriété (T), Duke Math. J. 143 (2008), 559–602.
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(1998), 702–731.

[46] J. Renault, Cartan subalgebras in C∗-algebras, Irish Math. Soc. Bulletin 61 (2008), 29–63.

[47] L. Ruth, Two new settings for examples of von Neumann dimension, PhD thesis, UC Riverside, 2018.

[48] C. F. Sehnem, On C∗-algebras associated to product systems, PhD thesis, Georg-August-Universität Göttingen, 2018.

[49] O. M. Shalit and B. Solel, Subproduct systems, Doc. Math. 14 (2009), 801–868.

[50] J. Spielberg, Groupoids and C∗-algebras for categories of paths, Trans. Amer. Math. Soc. 366 (2014), 5771–5819.

[51] C. Starling, Boundary quotients of C∗-algebras of right LCM semigroups, J. Funct. Anal. 268 (2015), 3326–3356.



WOA: Women in Operator Algebras 273

[52] B. Steinberg, A groupoid approach to inverse semigroup algebras, Adv. Math. 223 (2010), 689–727.

[53] K. R. Strung, On the classification of C∗-algebras of minimal product systems of the Cantor set and an odd dimensional
sphere, J. Funct. Anal. 268 (2015), 671–689.

[54] K. R. Strung and W. Winter, Minimal dynamics and Z-stable classification, Internat. J. Math. 22 (2011), 1–23.

[55] I. Tolich, C∗-algebras generated by semigroups of isometries, PhD thesis, University of Otago, 2017.

[56] A. S. Toms and W. Winter, Minimal dynamics and K-theoretic rigidity: Elliott’s conjecture, Geom. Funct. Anal. 23
(2013), 467–481.

[57] A. Viselter, Covariant representations of subproduct systems, Proc. London Math. Soc. 102 (2011), 767–800.



Chapter 27

Mathematical and statistical challenges in
bridging model development, parameter
identification and model selection in the
biological sciences (18w5144)

November 11 - 16, 2018
Organizer(s): Ruth Baker (University of Oxford), Daniel Coombs (University of British Columbia),
Matthew Simpson (Queensland University of Technology)

Overview of the field
Using mathematical models to assist in the design and interpretation of biological experiments is becoming increasingly im-
portant in biotechnology and biomedical engineering research; yet fundamental questions remain unresolved about how best to
integrate experimental data within mathematical modelling frameworks to provide useful predictions. Traditional approaches
incorporating mathematical and computational models in the design and interpretation of biological experiments often rely
heavily on heuristic methods that vary from user to user, and from application to application. Not only is the selection of mod-
elling frameworks often subjective, the integration of these modelling frameworks with experimental data is largely driven by
individual preferences on a case-by-case basis. Such variability in scientific practices is at best undesirable, and at worst
leads to issues associated with research reproducibility. Novel mathematical, statistical and computational tools are needed
to provide a standardised pipeline that enables experimental data to be used effectively in the development of models, and in
model parameterisation and selection.

One key challenge in using mathematical modelling to interpret biological experiments is the question of how to integrate
multiplex, multi-scale quantitative data generated in experimental laboratories to improve our understanding of a specific bio-
logical question. These data might, for example, include time-series data for the concentrations of key intracellular biological
signalling molecules, time-lapse microscopy data visualising the distribution of key cytoskeletal components, or tissue- and
organism-scale data describing cell rearrangements or fluid flows. A standard protocol, that includes the design of experiments
targeted towards parameterising models, validating specific model hypotheses and inference of underlying mechanisms based
on quantitative data, is lacking.

To a large extent these issues are compounded by the fact that attempts to connect quantitative data with mechanistic
models are being made in disparate fields of biology that function on a range of spatio-temporal scales: from the study of
biochemical signalling networks within individual cells; to tissue-scale models of development, disease and repair; to ecological
models of animal populations. At present, a major barrier to progress is a lack of cross fertilisation of ideas, or an awareness
of the techniques and methodologies being developed in other fields of specialism. Our observation is that the lack of
cross fertilisation of ideas is because this area of research falls between many established disciplines, such as applied
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mathematics, applied statistics and computational mathematics, and this makes the development of consistent practices
and protocols inherently difficult. As such, the broad aim of this workshop was to bring together researchers working in
different areas of mathematics and statistics, and on different biological applications, to share and develop their research ideas
towards bridging mechanistic model development, parameter identification and model selection using quantitative data.

Recent developments and open problems
Novel mathematical, statistical and computational tools are required to enable models to be developed, parameterised and
validated as part of the predict-test-refine-predict cycle essential within biology. The overarching goal of the workshop was to
work towards developing the mathematical, statistical and computational tools needed for a standardised pipeline that integrates
multiplex, multi-scale quantitative biological data and mathematical and computational modelling. It is extremely timely
because the recent explosion in the amount of quantitative biological and ecological data available means that the current
disconnect between experimental sciences and mechanistic modelling will widen without interdisciplinary intervention. In
addition, international meetings to discuss mathematical and statistical challenges in bridging model development, parameter
identification and model selection in the biological sciences have been limited. The workshop focussed on tackling three main
problem areas in the field.

Key challenge one: model coarse graining.
In order to resolve the conflict between requirements for including detailed descriptions of multi-scale biological processes into
models and being able to efficiently simulate and/or subject models to analytical exploration, coarse graining can be performed.
However, with biological data being generated on increasingly fine-grained scales, a significant challenge is to develop coarse
graining approaches that retain descriptions of key processes happening across spatio-temporal scales [1, 13]. A relevant
example is how to include detailed descriptions of tissue perfusion, that include descriptions of flow within blood vessels, into
models that aim to understand tumour growth and, ultimately, determine optimal cancer treatment protocols.

Key challenge two: efficient methods for computational inference.
Computational inference methodologies target the posterior distribution (probability of the parameters given the observed data
for a specific model), and are required when estimating models of biological systems as the likelihood function is generally
analytically intractable (see e.g. [20]). There are significant challenges associated with computational inference that were
discussed within the workshop. A key challenge, that was the focus of many discussions, is the development of understanding
of when and where it is appropriate to use different types of inference methodologies, and how to quantify the errors associated
with them.

Key challenge three: experimental design, model selection and uncertainty quantification.
Experimental design and data collection need to be optimised with respect to the specific biological or ecological question of
interest and the model used to interrogate it [12]. The field currently lacks standardised approaches to model-driven experi-
mental design. In addition, existing methods for model selection (encoding different biological hypotheses) can return different
outcomes [18], and become difficult to interpret in the context of complicated models and noisy data, which is fast becoming the
norm in the field. Methods for quantifying uncertainty include those that aim to understand how system outputs are affects by
uncertainties in inputs such as parameter values (forward uncertainty propagation), and those that aim to measure discrepancies
between data collected from a given experiment and the predictions of a mathematical model of that experiment (inverse un-
certainty quantification). Uncertainty quantification is not routinely performed, however, the development and standardisation
of methods to report and discuss uncertainty is key to the integration of modelling within the biological toolbox.

Presentation Highlights
The participants of the workshop included representation from Australia, Canada, New Zealand, Norway, United Kingdom, and
the United States, with a range of career stages represented, from early-stage doctoral students, through postdoctoral research
assistants, research fellows, tenure-track faculty and principle investigators. The participants were united by the use of common
methodologies and ideas, that bring with them the same key challenges, on very different biological applications. As such, none
of the participants, knew more than a handful of others in advance of the meeting. This common bond, and the small-scale
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nature of the workshop ensured that many new links and collaborations were formed; the meeting has really stimulated the
development of a new research community.

Darren Wilkinson kicked off the meeting with an excellent talk outlining methods for Markov process parameter infer-
ence [21]. Darren compared some of the different “likelihood free” algorithms that have been proposed, including sequential
ABC and particle marginal Metropolis Hastings, paying particular attention to how well they scale with model complexity.

Mattias Chung continued this theme, discussing the challenges in parameter inference for biological systems with noisy
data, model uncertainties, and unknown mechanisms. Here, parameter and uncertainty estimation problems are typically ill-
posed, meaning solutions do not exist, are not unique, or do not depend continuously on the data. Furthermore, experimentalists
face a dilemma between accuracy and costs of an experiment. Mattias discussed new developments for parameter and uncer-
tainty estimation for dynamical systems [8], as well as novel techniques for optimal experimental design [7], using three
example applications.

Adelle Coster gave a very focused presentation about building models of glucose tolerance [6], with an emphasis on con-
structing useful mathematical models that capture biological processes at the level of a cell. In particular Adelle wishes to
create models and compare predictions to experimental data so that she can rank the importance of various features and pro-
cesses encoded in the data, and to make informed decisions about which model provides the “best” description of observations,
by combining mean-field experimental data as well as observations of experimental noise.

Gary Mirams presented recent work regarding mathematical models of ion channel modelling with application to cardiac
modelling [10]. Gary explained that to make progress in the field he needs to propose models, undertake an identifiability
assessment to be sure that the models are identifiable given the types of data available and this leads to questions of optimal
experimental design and questions of parameter inference, all of which feedback into the original question of model proposition.
Gary’s talk was used as the basis for a longer group discussion on the following day (see below).

Adam MacLean spoke about models of kidney development and inference, with a focus on branching processes during
morphogenesis [11]. A key tool to connect models and experiments is approximate Bayesian computation, with a focus on
identifying the key parameters in relatively complicated experimental data. Adam’s model takes the form of an individual based
model simulating stochastic cell migration and cell proliferation, with a continuous field of growth factor, which influences cell
proliferation into neighbouring lattice sites giving rise to branching structures. Experimental data are movies from explants,
giving rise to questions about comparing images from movies with images from simulations. Summary statistics are the area
of the epithelia and the number of branches and ABC rejection is used to sample the posterior distribution. The main novelty is
to use ABC rejection to generate an intermediate result and then refine the result using AABC, finding that branching is most
sensitive to branching parameters.

Alex Browning spoke about identifying parameters in a continuum model of malignant invasion where malignant melanoma
cells migrate, proliferate and degrade surrounding skin tissues [4]. Alex presented a typical continuum PDE model and a set of
experimental data showing the invasion of the malignant population into the surrounding skin. Measurements of experimental
noise allow the construction of an exact likelihood and Alex showed that invasion depth versus time is insufficient to distinguish
between the three parameters in the model. Alternatively, Alex showed another two sets of experiments without skin tissues
that allowed him to simplify the model and use Bayesian learning to learn parameters from one experiment and apply them
to the next experiment. Overall, the new approach leads to well-formed posterior distributions that agree with some previous
parameter estimations.

Michael Plank presented a stochastic birth-death model developed to describe populations of plants with no movement,
and the key effect is to incorporate spatially-driven competition so that individuals undergo a constant birth rate, but a density
dependent death rate to reflect the impact of competition for nutrients and space. Stochastic simulations reveal how the spatial
competition affects the model outcomes and standard mean-field arguments do not account for such spatial effects. The con-
struction of a spatial moment model, whereby interactions between pairs of individuals are accounted for, was presented and
the numerical solution of the governing equations provides a good match to the stochastic simulations [2]. A key aspect of the
presentation was to explain how the ecology-based model with no movement might be extended to apply to a model of cells in
which cells are able to undergo proliferation, death and movement events.

Rob Deardon spoke about building discrete time S-I-R models of disease spreading with the key aim of working in real
time. Working in a Bayesian framework with an explicit likelihood, the main aim is that key features are not observed since
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real cases give no idea of the infectious period. Instead there are measurements of reporting time or notification time. This
means the simulation times are an issue since the MCMC algorithm needs to cover the joint posterior of the model parameters,
incubation periods, delay periods and parameters describing the delay periods. The main idea is to speed-up using a simpler
simulation framework called an emulator, which Rob explained and showed promising results leading to significantly faster
computation times [14].

Dennis Prangle gave a presentation about inference on stochastic differential equations using methods from machine
learning, called variational inference, with the aim of obtaining results faster than MCMC [17]. The key features of the
approach is to take a Bayesian approach with partial observations with the main goal of inferring the parameters in the model,
making use of the fact that the likelihood is tractable. Example calculations confirm the computational efficiency of these
methods.

David Campbell gave a presentation starting with a case study in parameter estimation from the Dow Chemical company
in 1981 with serious identifiability problems. With a poorly defined relationship between data and potential model structures
Dave proposed several methods to learn about the problem by relaxing the proposed model structure, using the data to learn
about how best to model the data and provide quantitative information about when parameters are identifiable or not [16].

Alexandre Bouchard-Cote spoke about difficulties with high-dimensional problems by focusing on well-known ODE
models and MCMC Bayesian inference, discussing case studies of benchmarking MCMC methods, most of which fail except
for a technique called parallel tempering, which is a novel method with the input of a Markov Chain where the output is a
higher performance Markov Chain [3]. Examples, observations and implementation rules of thumb follow.

Thomas Prescott presented recent work that takes a multi-fidelity approach to approximate Bayesian computation for
stochastic models of biochemical processes [15]. The key advance in the presented method is the use of a low-fidelity model to
try and make an early accept or reject decision for a given parameter sample from the posterior. In the context that simulation
of the high-fidelity model is instead required for this decision, the use of a common noise input to correlate output from the
low- and high-fidelity models (using ideas from the multi-level Monte Carlo literature) allows for computational savings.

Ramon Grima gave a presentation motivating the kinds of data of interest reflecting single cell level signals of underlying
gene networks, focusing on temporal snapshots so that measurements of temporal moments is the key quantity of interest. Grima
shows that the posterior mode using moment-based inference methods is fast and accurate, and some analysis comparing the
approximate results and exact results suggests a form of the systematic error in the likelihood approximation [9].

Simon Cotter gave a presentation about accelerated importance sampling to deal with MCMC sampling that are curved and
thin (“banana shaped”) and that often arise when variables cannot be easily observed. Without good ideas of the manifold, issues
arise in standard methods, such as Metropolis Hastings or Importance Sampling. The idea is to work with Parallel Adaptive
Importance Sampling (PAIS) and Transport Maps to Importance sampling, these ideas borrowed from applying Transport Maps
to MCMC algorithms [5]. In general the transport maps are multidimensional Gaussians that can be sampled very simply.
Implementations are discussed.

Barbel Finkenstädt Motivated her work by considering observations of a circadian oscillator with a delay and explores
challenges associated with experimental measurements of such oscillators and demonstrates how to use an adaptive MCMC
algorithms to estimate model parameters and then outlines methodologies that might be relevant to exploring spatial structure
and spatial patterns [19].

Scientific Progress Made
Daily discussion sessions were used to isolate key problems / challenges faced by a range of the attendees, and to attempt to
make progress towards tackling them. We focussed on a different problem, and used a different format each day, to stimulate
discussion, new ideas and collaborations.

Day 1 discussion – “Burning questions”?
The meeting was perhaps fairly unique in the sense that it brought together researchers from a range of different application
fields, and so no attendee was familiar with all others in advance of the meeting. As such, the meeting began with an introductory
session, where participants introduced themselves, their research interests, and a “Burning question for the workshop”. These
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questions provided the basis for the group discussions during the rest of the week. A sample of the points raised during this
session are listed below.

• What can the process of model inference in biology learn from other disciplines? What makes biology unique, and
where can biology borrow?

• We have two versions of the same model: a deterministic parametric model, data and inference; or a stochastic parametric
model, internal noise, data, inference. What are sensible criteria for model choice?

• When selecting between models encoding different hypotheses, how do we cope with all our models being ‘wrong’?

• How can / should we learn from imperfect models?

• Is there a role for benchmark data(/model) analysis tasks in this field?

• How can we leverage machine learning tools for inference?

• How can mathematical models be applied clinically to directly inform treatments for individual patients?

• How can we construct fast and accurate inference methods for single-cell data?

• How do we combine modern machine-learning approaches with mechanistic models?

• When, and how much, should we care about identifiability for biological models?

• How can we develop appropriate inference schemes for models that cross multiple scales?

• Which classes of model assumption can be assessed? Can assumption impact be measured / quantified?

• What are the best ways to balance objectives in optimization problems with mixed types of data?

The questions outlined above were the subject of many talks, and of subsequent discussions (both formal and informal). Im-
portantly, we are aware that such discussions between participants are continuing well after the workshop, and these
discussions have the potential to lead to new scientific discoveries and the establishment of new scientific partnerships
that would not have been created without the workshop.

Day 2 discussion – “What should Gary do”?
Within his talk on Day 1, Gary Mirams posed lots of questions relevant to the workshop participants, centered around model
development, parameter identifiability and optimal experimental design in the context of ion channel modelling. As a basis
for concrete discussions, the Day 2 discussion involved participants working in small groups to suggest avenues for Gary to
explore. Themes and ideas relevant to a range of projects that came out of the discussion were

• Would using a correlated error structure be appropriate? To what extent is heteroskedasticity an issue? Can cross
validation help in exploring the noise structure?

• Can input signals be designed and / or modified to discriminate between different models (i.e. is model-guided exper-
imental design possible)? Can the number of possible models be reduced iteratively by variation of the input signal?
When should we use the simplest adequate model in place of the “best” model?

• Can we learn anything by attempting to fit a mixture of all postulated models? Can machine learning help with model
design?

• What metrics are useful in comparing models and data?

Day 3 discussion – “Best practices for reporting”
The discussion on day 3 entered around best practices for reporting. The discussion involved participants working in small
groups to identify the current practices, and how those could be improved in the future. The discussions were divided into five
areas:

Benchmark experimental data sets. In field such as image analysis and machine learning, the availability of experimental
data sets that can be used to test new algorithms has been vital to progress in the field. However, no such data sets exist
for problems in parameter inference and model selection. Issues that were discussed in this respect included the lack of
a repository where authors could submit data, access to high quality data (with a clear description of any pre-processing
steps taken), whether different models and implementations would provide similar results. A recommendation going
forward is that authors should post full data sets (wherever possible) within a publicly accessible repository, and provide
a link to it within any published research article.
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Bench-marking problems. Discussions were centered around the different types of problems for which algorithm bench-
marking is necessary, including those associated with parameter estimation, model selection, approximations and mod-
els. The creation of synthetic data sets was recommended, along with the use of modular approach for different aspects
of modelling and inference.

Software best practices. With increasingly sophisticated models, data sets and inference approaches now routinely in use, the
use of software best practices is vital, yet not generally adopted. The group recommends that all software should be
modular, well-documented and developed using version control.

Repositories / software packages / Journals. One issue raised is the current lack of an obvious “home” for papers in this
newly emerging field, and the potential for a Special Issue was discussed as a means to raise the profile of the field.
Github was widely viewed as a good platform for hosting software / code arising from research projects, but the group
suggested that code / software should also be included within publications (and deposited in a journal repository, as is
currently the case for Supplementary Material).

Publication best practices. The group recommended publishing at least pseudo-code to accompany (where relevant) all re-
search papers, and that any code submitted with a manuscript should also be peer-reviewed. They recognised that there
needs to be a greater awareness of the contributions of researchers in developing code / software, and that all code should
be published with papers, as should data (experimental and synthetic).

The overwhelming point that came out of the Day 3 discussion, was the importance of building a new research community
for the field, to promote collaboration and the sharing of ideas and best practices.

Day 5 discussion – “All models are priors” debate
The discussion on Day 4 took the form of a lively debate over whether “All models are priors”. This raised some interesting
points over how to approach modelling and inference!

Outcome of the Meeting
The meeting has seeded a new community in the broad field of quantitative approaches to biology and ecology, that is focussed
on connecting models and quantitative data using statistical techniques. Going forward, it will be important to maintain this
momentum, by having a similar meeting perhaps every 2-3 years that brings together the community to share and recent results
and developments, and establish new collaborations, by having small focussed meetings to work on key problems, and by
putting together a special issue for publication in an interdisciplinary journal (such as Journal of the Royal Society Interface
Focus or Bulletin of Mathematical Biology).

Participant response
Alex Browning. I am a fairly new PhD student, who has only undertaken a few research projects in the past. The BIRS
workshop gave me a fantastic opportunity to present and discuss my work and ideas with a large number of new connections
that I made. I believe it aided me enormously in terms of future prospects, as well as future research ideas.

Simon Cotter. It was one of the most productive and gratifying workshops that I have ever been on. The scientific pro-
gramme was superb, and the organisation by everyone at BIRS was top-notch. It was also a stunning location and I thoroughly
enjoyed my trip. In short, it was well worth the long journey, and I hope that I will get a chance to visit again in the future.

John Fricks. The BIRS workshop was especially helpful in providing insights on which computational frameworks and
tools to use in order to move my research forward. I made a lot of great contacts and met potential collaborators with whom I
expect to keep in contact. One of the important takeaways from the meeting was a plan for this to be a first step in building a
broader community.

Priscilla Greenwood. This was an outstanding workshop for me in terms of making important new contacts: Adelle Coster
from Sydney, whom I was able to help with a problem she presented in her talk, also had time to get acquainted and plan to
meet again. In addition, after my talk, we found many points of common interest with Ramon Grima from Edinburgh, and
discussed for several hours. We have already exchanged several of our papers and also other references. This contact may well
lead to joint work. Will keep you posted. The workshop, in general, was excellent. It brought together people who had several
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different approaches (a number centered around approximate Bayesian computation, a rather new version of MCMC which
reduces computing time in complex models with much or little data) to inference for ODE, SDE and SPDE-type models arising
in all sorts of math-bio settings, cell biology (very important current topic) and epidemiology, various medical applications, and
so on. Most of the participants, mostly from UK, North America and Australia-New Zealand, had not met. So the group tended
to assemble as a whole, rather than breaking into small circles of old buddies as sometimes happens. I felt that I left with lots
of new friends! An outstanding contributor was one of the organizers, our own Dan Coombs, who set a number of discussion
topics which drew lively, inclusive, sometimes heated discussion, one of these sessions each day. I was lucky and very much
pleased to be part of this workshop!

Participants
Baker, Ruth (University of Oxford)
Barnes, Chris (University College London)
Bouchard, Alexandre (University of British Columbia)
Browning, Alexander (Queensland University of Technology)
Campbell, David (Simon Fraser University)
Chkrebtii, Oksana (The Ohio State University)
Chung, Matthias (Virginia Tech)
Coombs, Dan (University of British Columbia (Vancouver))
Coster, Adelle (University of New South Wales)
Cotter, Simon (University of Manchester)
Deardon, Rob (University of Calgary)
Dowd, Mike (Dalhousie University)
Dushoff, Jonathan (McMaster University)
Finkenstadt, Barbel (University of Warwick)
Francois, Paul (McGill University)
Fricks, John (Arizona State University)
Gallaher, Jill (Moffitt Cancer Center)
Greenwood, Priscilla (University of British Colombia)
Grima, Ramon (University of Edinburgh)
Harrison, Jonathan (University of Oxford)
Holland, Barbara (University of Tasmania)
King, Aaron (University of Michigan)
Lewis, Mark (University of Alberta)
Lutscher, Frithjof (University of Ottawa)
Maclaren, Oliver (University of Auckland)
MacLean, Adam (University of Southern California)
Mirams, Gary (University of Nottingham)
Pak, Thomas (University of Oxford)
Peacock, Stephanie (University of Calgary)
Plank, Michael (University of Canterbury)
Prangle, Dennis (Newcastle University)
Prescott, Thomas (University of Oxford)
Röblitz, Susanna (University of Bergen)
Simpson, Matthew (Queensland University of Technology)
Umulis, David (Purdue University)
Wilkinson, Darren (Newcastle University)
Wilkinson, Richard (University of Sheffield)
Woodhouse, Francis (University of Oxford)
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Chapter 28

Unifying Themes in Ramsey Theory
(18w5180)

November 18 - 23, 2018
Organizer(s): Claude Laflamme (University of Calgary), Jaroslav Nesetril (Charles University,
Prague), Slawomir Solecki (University of Illinois), Stevo Todorcevic (University of Toronto)

Overview of the Field
Ramsey Theory has its official origins in the work of Frank Ramsey almost 100 years ago, showing that order can be found in
large enough structures. But the idea was also present at about the same time in the work of Issai Schur and Bartel Leendert
van der Waerden for example. This was followed by a long and intensive period of research in this direction, notably by
Béla Bollobás, Paul Erdös, Ronald Graham, Alfred Hales, Robert Jewett, Jarik Nešetřil, Vojtěch Rödl, Bruce Rothschild, Joel
Spencer among many others.

Then Timothy Gower’s positive solution to the homogeneous space problem of Banach in the early 90’s triggered renewed
interest in Ramsey Theory of structures. This was followed by the work of Alexander Kechris, Vladimir Pestov and Stevo
Todorcevic uncovering close connections between the Fraissé theory of amalgamation classes and homogeneous structures,
Ramsey theory, and topological dynamics of automorphism groups of countable structures, leading to surprising results by
connecting the study of continuous actions of topological groups on compact spaces, usually referred to as compact G-flows.

More recently, Ramsey Theory has further expanded throughout Mathematics and there is an intense level of broad activity
based on Ramsey Theory connecting various areas and techniques throughout Mathematics. This includes new and continued
research to universal structures and graphs, geometric and Euclidean spaces, Banach spaces, topological dynamics, metric and
Polish spaces, logic and set theory, using varied techniques from probability to group theory and model theory.

This activity is exemplified by the following recent conferences and workshops:

• Homogeneous Structures, BIRS, 2015

• Sesquicentennial Ramsey Theory Conference, Devnver University, 2014

• Hausdorff Trimester Program on Universality and Homogeneity, Hausdorff Institute, Bonn 2013

• Workshop on the Concentration Phenomenon, Transformation Groups and Ramsey Theory, Fields institute, Toronto
2010

• Workshops on Homogeneous Structures, Leeds 2011 and Prague 2012

And the following current workshop specifically for highly qualified personnel:

• Modern Methods in Ramsey Theory, Ramsey DocCourse, Prague 2016
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Recent Developments and Objectives
Mathematicians typically work with fundamental objects containing very rich structures. These include for example the rational
numbers, the Rado graph, and the Urysohn space just to name a few, each exhibiting deep symmetry and universality. Indeed
all countable linear orders will be found inside the rational numbers, all countable graphs will be found in the Rado graph, and
similarly all countable metric spaces will appear as subspaces of the Urysohn space. The process of finding nice substructures
within such large structures is a central theme of Ramsey Theory, and it is thus natural and the purpose of this workshop to
study these methods and impact to other mathematical areas.

The principal objectives were to first promote continued interactions between different fields of mathematics affected by
these recent developments, including researchers in the areas of analysis, combinatorics, dynamical systems, geometry, group
theory, measure theory, metric and Polish spaces, model theory and logic in general. However we aimed at an important
development and formally pursue the ongoing efforts at unifying Ramsey Theory themes into the mature subject area and
theory that it has become.

This was a major undertaking and thus we also proposed to focus on specific unifying goals, including:

• Understand when a Ramsey-theoretic pigeon-hole principle allows a density version.

• Explore the relationship between axiomatizations of different parts of Ramsey theory such as the finite and infinite.

• Investigate a categorical approach that could explain the relationship between dualities in Ramsey theory; in particular
we are still missing a finite dual Ramsey theory when we add forbidden configurations.

Some of the mainstream recent themes and methods that have emerged include:

• Universal objects
Examples include the Fraı̈ssé theory in logic and generalizations in model theory, universal graphs in combinatorics, the
universal Urysohn space in topology, universality in algebraic geometry.

• Homogeneous structures
Automorphism groups of homogeneous structures, Polish groups and topological dynamics, structural Ramsey theory,
constraint satisfaction, omega-categoricity and amalgamation constructions, metric homogeneous structures, and classi-
fication results.

• Ramsey spaces and the underlying abstract theory of Ramsey Theory
This work constitutes major efforts in formalizing and unifying in infinite-dimensional Ramsey theory, bringing together
deep combinatorial methods which have had tremendous impact over the last 80 years in areas as diverse as functional
analysis, dynamical systems, set theory, topology and much more.

Presentation Highlights
In November 2018, 41 of the top researchers in Ramsey theory met at the BIRS in Banff for the Unifying Themes in Ramsey
Theory conference. The workshop was another formidable opportunity to regroup these specialists, learn about the latest
developments, work together and exchange ideas. Moreover we had an unusually large cohort of young people including
graduate students and postdoctoral fellows, a major success in itself.

What makes Ramsey theory so special is that it has wide ranging impacts in diverse fields in mathematics. The participants
gave talks showing how Ramsey theory has impacted fields like graph theory, topological dynamics, set theory, model theory,
operator algebras, logic and statistics. To facilitate open discussion in the spirit of a workshop, every “speaker” was given 45
minutes, with instructions to talk only for 30 of these and reserve at least 15 minutes for interactions with the audience; this
worked quite well as it stressed the message of audience participation.

Here are four talks we selected as particularly important representatives of the workshop and worth watching for any
mathematicians:

• Aleksandra (Ola) Kwiatkowska: “Universal minimal flows of the homeomorphism groups of Wazewski dendrites“.
Watch it because: Ola presents a nice structure that answers two big problems in the field.

• Jordi Lopez-Abad: “Approximate Ramsey properties of Banach spaces”.
Watch it because: Jordi is doing cutting edge research on important open problems, and explains his thinking with clear
examples and computations.

• Jaroslav Nešetřil: “Unifying Themes in Ramsey Theory”.
Watch it because: This gives an important unifying perspective on the place of Ramsey theory in mathematics.
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• Stevo Todorcevic: “Concluding Remarks – Unifying Themes in Ramsey Theory”.
Watch it because: Stevo gives very deep and insightful perspectives on the connections of Ramsey theory to other fields.

Monday – Day 1A – Combinatorics and Ramsey classes

To kick off the conference, Jaroslav Nesetril gave a nice overview of the types of Ramsey theorems, problems and perspec-
tives we are likely to see this week. He told us about how Mendel (the biologist) was the first to use the

(
n
k

)
notation. Of the

many important questions related to Ramsey theory, Nešetřil mentioned two:

• Are there other good tools for showing that a graph has high chromatic number?

• Does the class of graphs that forbid C4 have a Ramsey expansion?

The second talk was supposed to be given by Michael Kompatscher, but he was unable to travel to Canada because of
illness. So Mike Pawliuk gave the second talk in his place, about connections to data science, big data, statistics and machine
learning. Coincidentally Pawliuk could have presented Kompatscher’s talk since it was about joint work.
Ramsey theory is a natural perspective to use when studying the structure of large data sets. Big data, machine learning, and
neural nets can all be profitably seen through this lens. Pawliuk followed on recent work of Calude and Longo (”The Deluge of
Spurious Correlations in Big Data”) by providing meaningful interpretations of basic Ramsey results in the setting of statistics.
His first example was to interpret Goodman’s Theorem in this context. He further layed out some of the current research in the
area, presenting open problems relevant to researchers in Ramsey theory, and advertising some soon to be published work in
these fields. Hopefully this will spur even more sophisticated connections of Ramsey theory with big data. This contained joint
work with Michael Waddell, Columbia University.

Matej Konecny gave the final talk of the morning, showcasing new results that capture the completion algorithms of many
different classes of metric spaces. Completing large cycles to a complete metric graph is an important step in showing that a
class has a Ramsey expansion. This technique has become more and more explicit in recent years.
A large portion of the known Ramsey classes are essentially classes of ordered binary symmetric structures, for example the
Kn-free graphs, Sauer’s S-metric spaces, Cherlin’s metrically homogeneous graphs, Braunfeld’s Lambda-ultrametric spaces
or Conant’s generalized metric spaces. All of these can be shown to be Ramsey using the Hubicka–Nesetril Theorem and
some variant of the shortest path completion. Konecny studied the limits of the shortest path completion and introduced the
semigroup-valued metric spaces — a general framework which includes all the aforementioned classes. He found their Ramsey
expansions and proved EPPA. Konecny conjectured that every primitive strong amalgamation class in a finite binary symmetric
language can be understood as a semigroup-valued metric space. This is joint work with Hubicka and Nešetřil.

Monday – Day 1B – EPPA/Hrushovski property

Natasha Dobrinen started the afternoon with a chalkboard talk showcasing new results about big Ramsey degrees. She
showed how she overcame the difficulties with the random graph to find the big Ramsey degrees for graphs that forbid small
complete graphs. At its core she was able to sidestep a difficulty that the Sauer construction presented by starting where the
Sauer construction ends.
In this talk, Dobrinen used techniques of logic, particularly set theory, to determine upper bounds on the big Ramsey degrees
of the universal homogeneous k-clique-free graphs, for each k greater than two.

Jan Hubicka highlighted exciting work that he’s been doing about general methods of proving the EPPA (Hrushovski
property) for various classes of metric spaces. He was able to breathe life into the idea of valuations first presented elsewhere.

Finally, Marcin Sabok presented work showing that the class of hypertournaments does not have EPPA. It uses natural
generalizations of the ideas present in Herwig-Lascar. It does not say anything about the (very hard) prized problem “Does the
class of tournaments have EPPA?”
It is an open problem whether the Hrushovski extension property holds for tournaments. Sabok showed that it is equivalent to
a problem concerning a profinite topology and a characterization of closed f.g. subgroups in this topology. During the talk he
discussed a generalization of the latter problem to a family of profinite topologies.

The day ended with a small group of us going on a fast hike of Tunnel mountain.

Tuesday – Day 2A – Dynamics
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The morning session focused on the fruitful connections that topological dynamics has had with Ramsey theory through
the KPT correspondence.

Friedrich Martin Schneider gave the first talk which presented the “Gromov-Milman” perspective on the KPT correspon-
dence. We saw a Gromov result that is a concentration of measure result, which corresponds to a Ramsey result through the
KPT correspondence. Martin then showed us a stronger version of Gromov’s result, answering a question of Pestov.
The work of Kechris, Pestov and Todorcevic has revealed a close connection between Ramsey theory of model-theoretic
structures and topological dynamics of their automorphism groups, providing a rich source of examples of extremely amenable
topological groups. Next to Ramsey theory, there is a second pathway to extreme amenability of topological groups: the
phenomenon of measure concentration, which was exhibited in the 1970s by Milman (extending an idea going back to the
work of Levy) and linked with extreme amenability in Milman’s groundbreaking joint work with Gromov. In the late 1990s,
Gromov offered a far-reaching generalization of the measure concentration phenomenon: the concentration topology on the
space of metric measure spaces. Inspired by the striking applications of measure concentration in topological dynamics, Pestov
suggested to study manifestations of Gromov’s concentration to non-trivial spaces in the context of transformation groups.
In the talk, Schneider reported on his recent progress in that direction, focusing on automorphism groups of metric model-
theoretic structures and connections with Ramsey theory. Whereas for discrete structures dissipation and reasons related to
ergodic theory prevent any kind of concentration, the situation is quite different in the continuous case.

Colin Jahel, a graduate student, gave an impressive talk about the semigeneric directed graph, answering an open problem
from Pawliuk’s thesis. Colin presented results that unified techniques for proving unique ergodicity, and sidestepped using
probabilistic arguments.
A Polish group G is said to be uniquely ergodic when every minimal G-flow admits a unique invariant probability measure.
For various examples of amenable automorphism groups of Fraı̈ssé structures, it has been shown that this property holds. Jahel
proved that this is also true in the only remaining case in Cherlin’s classification for directed graphs: the semigeneric directed
graph. This work follows from the papers of Angel-Kechris-Lyons and Pawliuk-Sokic, however it uses a new method not
relying on the probabilistic method. Jahel also discussed the fact that the class of uniquely ergodic groups is closed under
extension.

Andy Zucker rounded out the morning by giving an alternate perspective on the work of Colin (who is a coauthor). He
discussed the dynamical perspective of the amenability and metrizable flows. This work is another step in Andy giving a very
clear picture of what is happening with the universal minimal flows. This is one of the clearest, most straightforward talks about
this topic I’ve ever seen.
From the audience, Stevo Todorcevic mentioned a nice (classical) result that if the product of two spaces contains a copy of
βN, then one of the factors must contain a copy of it. In this way, βN is an “irreducible” space.
Zucker showed that for Polish groups, the property of having metrizable universal minimal flow is preserved under group
extensions; if G is Polish, H is a closed normal subgroup of G, and both M(H) and M(G/H) are metrizable, then M(G) is
metrizable. In the case that G is non-Archimedean, this theorem has consequences in structural Ramsey theory for which we
do not know a combinatorial proof. This is joint work with Colin Jahel.

Tuesday – Day 2B – Applications of Ramsey theory

The afternoon session featured subtle uses of Ramsey theory underlying key theorems. This made many of the results
possible, even if they didn’t directly invoke Ramsey results.

Wieslaw Kubis started the afternoon by presenting results about uniform homogeneity, Katetov functors and mixed sums of
Fraı̈ssé classes. The mixed sum construction is a type of “bipartite” construction where each part is a Fraı̈ssé structure. While
he used this construction to provide a counterexample, it is also a broadly useful construction.
A model M of a fixed first-order language is called homogeneous if every isomorphism between its finitely generated submodels
extends to an automorphism of M. Theory of homogeneous models was developed by Fraı̈ssé (1954) and now belongs to
the folklore of model theory. Kubis discussed a stronger version of homogeneity, where extending partial isomorphisms is
functorial, in the sense that it preserves compositions. He calls it “uniform homogeneity”. This property implies that the
automorphism group of M contains isomorphic copies of all automorphism groups of its finitely generated submodels. It turns
out that most of the well known countable homogeneous models are uniformly homogeneous, which is implied by the existence
of so-called Katetov functor, studied recently by Masulovic and the author. Nevertheless, there exist finite homogeneous models
that are not uniformly homogeneous. Kubis presented an example of such a model which has 6 elements. It is not clear whether
there exists a smaller model with this property. We shall also present countable infinite homogeneous models that are far from
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being uniformly homogeneous. One of the examples has the property that its automorphism group is torsion-free, while among
the automorphism groups of its finite submodels one can find arbitrarily large finite products of finite cyclic groups. The talk is
based on two works, one joint with S. Shelah, another one joint with B. Kuzeljevic.

Milos Kurilis followed up with a proof of Vaught’s conjecture in the case of monomorphic functions. This result quietly
uses the fact that chainable uses Ramsey type-results. It was a remarkably understandable talk (to me a non-expert in model
theory), despite the technical nature of the material. In his talk Milos produced one of the most beautiful diagrams ever seen in
a math talk.
A complete first order theory of a relational signature is called monomorphic iff all its models are monomorphic (i.e. have all
the n-element substructures isomorphic, for each positive integer n). Kurilis showed that a complete theory T having infinite
models is monomorphic iff it has a countable monomorphic model, and confirmed the Vaught conjecture for monomorphic
theories.

The final talk of the afternoon was David Hartman, who ended the day with a high-energy punch. David separated two
closely related embedding properties with lots of examples and constructions. The final payoff for the day was a nice construc-
tion of the Rado graph partitioned into finitely many pieces.
This talk provided a story of equality of homomorphism-homogeneous classes. Cameron and Nesetril [1] suggested a novel
notion of homomorphism-homogeneity for relational structure that requires every local homomorphism between finite induced
substructures extends to homomorphism to the whole structure extending thus a classical notion of ultrahomogeneity in sense
of Fraı̈ssé. Depending on types of local homomorphism as well as the extending one it is possible to define various types
of homomorphism-homogeneity, e.g. monomorphism-homogeneity extending local monomorphism to homomorphism. Men-
tioned work was an onset of wide classification program attempting to describe corresponding homogeneity classes. Already in
this work there was a question about equality of classes HH and MH which was answered by Rusinov and Schweitzer 4 years
later for countable undirected graphs. Later, with Hubicka and Masulovic [3], Hartman studied L-colored graphs, graphs having
their edges as well as vertices colored by partial ordered set L, and showed conditions under which classes HH and MH are
equal for finite L-colored graphs. Hartman extended this result by considering countably infinite P,Q-colored graphs, graphs
coloring vertices and edges by two different partially ordered sets P and Q, and showed that necessary as well as sufficient
condition for equality of classes MH and HH is that Q is a linear order [4]. This was joint work with Andres Aranda.

1. P. J. Cameron, J. Nesetril (2006), Homomorphism-homogeneous relational structures, Combinatorics, probability and
computing 15(1-2): 91-103.

2. M. Rusinov, P. Schweitzer (2010), Homomorphismhomogeneous graphs, Journal of Graph Theory 65(3):253-262.

3. D. Hartman, J. Hubicka, D. Masulovic (2014) Homomorphism-homogeneous L-colored graphs, European Journal of
Combinatorics 35: 313-32.

4. A. Aranda, D. Hartman (2018), Morphism extension classes of countable L-colored graphs. Preprint at arXiv:1805.01781.

After the presentations we had a problem session, where participants in the conference shared problems of interest. Here
are the mostly-complete notes I took.

Ending the day, Wieslaw Kubis lead us in a problem session about the weak amalgamation property. About half the
participants showed up and many people contributed to the discussion. Finally, at 8:30 (almost 12 hours after starting) we
called it a day.

Wednesday – Day 3A

Wednesday contained only talks in the morning.

Martin Balko explained the project of ordered Ramsey numbers. He started by surveying the classical results about (usual)
Ramsey numbers and contrasting them with the ordered versions. In many cases the bounds on the ordered/unordered Ramsey
numbers are very different, even in the case of paths.
An edge-ordered graph is a graph with linearly ordered set of edges. Balko introduced and study Ramsey numbers of edge-
ordered graphs, called edge-ordered Ramsey numbers. We prove some basic properties of these numbers for general edge-
ordered graphs and we provide some stronger estimates for special classes of edge-ordered graphs. Balko also posed some new
open problems and compare edge-ordered Ramsey numbers with the standard Ramsey numbers of graphs and with ordered
Ramsey numbers, which are Ramsey numbers for graphs with linearly ordered vertex sets. This was joint work with Mate
Vizer.
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Lionel Nguyen Van Thé followed up by reminding us about Erdos-Rado type results about canonical colourings and equiv-
alence relations. Big Ramsey results would become a recurring theme in this workshop. This talk stirred the most discussion
about how it relates to canonical functions in other areas (like algebra).
One of the numerous strengthening of Ramsey’s theorem is due to Erdös and Rado, who analyzed what partition properties can
be obtained on m-subsets of the naturals when colourings are not necessarily finite. Large monochromatic sets may not appear
in that case, but there is a finite list of behaviors, called ”canonical”, to which every coloring reduces. The purpose of this talk
was to remind certain not so well-known analogous theorems of the same flavor that were obtained by Prömel in the eighties
for various classes of structures (like graphs, hypergraphs, or Boolean algebras), and to show that such theorems can in fact be
deduced in the more general setting of Fraı̈ssé classes.

The final talk of the morning was Sam Braunfeld, who gave an overview of the classification of homogeneous finite-
dimensional permutation structures. Sam compared and contrasted his results with Cameron’s 2002 classification. This type
of work is of particular interest to people in structural Ramsey theory, who use these catalogues as a source of interesting
examples.
Braunfeld discussed the classification of homogeneous finite-dimensional permutation structures, i.e. structures in a language
of finitely many linear orders, recently completed in joint work with Pierre Simon. After constructing the catalog of such
structures, Braunfeld presented some of the key concepts in the classification, primarily coming from Simon’s work on linear
orders in omega-categorical structures. Braunfeld also touched on the Ramsey property for these structures, which may be
viewed as Ramsey expansions of certain metric-type structures. This was joint work with Pierre Simon.

In the afternoon, some of us hiked up to Sundance Canyon, others went up Tunnel mountain, and others up Sulfur mountain.

Thursday – Day 4A – Set Theory and Logic

Thursday’s schedule was anticipated to be rather heavy, but the speakers were very gentle to the audience and it ended up
being one of the best days of the conference.

Martino Lupini started us off by explaining his intuition for his recent results about the generalized Tetris operations relating
to Gower’s theorem. In particular he showed us how he used a perspective from non-standard analysis and the idempotent
ultrafilter proof of Hindman’s theorem.
Lupini presented an ultrafilter proof of the infinitary version of the Gowers theorem for multiple tetris operations. Bartosova
and Kwiatkowska previously gave a constructive proof of the corresponding finitary version, which has applications to the
dynamics of the Lelek fan.

Francisco Guevara Parra gave a talk about Tukey orders and local Ramsey theory. This was one of the few talks to show
the application of Ramsey theory to topological groups, and infinite combinatorics.
In [4] the authors used the Local Ramsey theory to prove that a countable Frechet group is metrizable if, and only if, its topology
is analytic. Guevara Parra used this result together with the connections between the Tukey ordering and topology found in [2]
to give a characterization of separable metrizable groups. Guevara Parra also proved that a separable group is metrizable if, and
only if, it is Frechet and the the ideal of converging sequences to the identity is Tukey below some basic order that is analytic.
Results in this direction have been obtained before in [1].

1. S. Gabriyelyan, J. Kakol and A. Leiderman. On topological groups with a small base and metrizability. Fundamenta
Mathematicae, 229 (2015) 129-157.

2. S. Solecki and S. Todorcevic. Cofinal types of topological directed orders. Ann. Inst. Fourier, Grenoble, 54, 6 (2004),
1877-1911.

3. S. Todorcevic. Introduction to Ramsey spaces. Annals of Mathematics Studies, No 174, Princeton, 2010.

4. S. Todorcevic and C. Uzcategui. Analytic k-spaces. Topology and its applications, 146-147 (2005) 511-526.

David Chodounsky ended the morning with a problem motivated by set theoretic forcing, but of independent interest to
those studying Ramsey theory. David stirred up interest in his question about Halpern-Lauchi ideals. He also gave us a survey
of the landscape of HL ideals including a very nice map of the known implications.
A special case of the Halpern–Lauchli theorem implies that for a given 2-coloring of a perfect binary tree there exist a perfect
subtree and an infinite set A of levels such that the coloring is monochromatic on nodes of the subtree coming from levels in
A. We say that a collection of infinite sets R is (HL) if the statement can be strengthened by requiring that the set of levels
A is in R instead of just infinite. This HL-property of R is equivalent with R being a reaping family (of subsets of omega)
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indestructible with Sacks forcing, or equivalently some forcing adding a real. We are primarily interested in indestructible
ultrafilters, Chodounsky proved the HL-property for various classical co-ideals. Thsi was joint work with O. Guzman and M.
Hrusak

Thursday – Day 4B

Jordi Lopez-Abad gave us a very nice presentation of various approximate Ramsey properties. He put special effort in
to give examples and pictures and it was very appreciated. We saw that some of the studied objects were “shapes” where
the boundary is kind of blurry, but you can still tell the difference between a square and a hexagon. This context is “almost
Euclidean”. There was a lot of motivating intuition here.
Lopez-Abad discussed the Ramsey and other related properties in the context of Banach spaces and similar categories.

Michael Pinsker described canonical functions but, funny enough, not the “canonical functions” he originally wanted to
talk about! The motivation for his talk is a nearly complete paper he wrote in 2002 that contained a critical false lemma. This
lemma is an (infinite) Ramsey theory problem, and Michael was hoping to spark some renewed interest in it.
A function from one first-order structure into another first-order structure is called canonical if it sends tuples of the same type
in the first structure to tuples of the same type in the second structure. This regularity notion for functions has found numerous
applications in model theory, universal algebra, and theoretical computer science since its invention 7 years ago. In particular,
it facilitates the understanding of self-embeddings, endomorphisms, and polymorphisms of structures, and has been applied,
for example, in the classification of reducts of structures and in the study of certain computational problems related to them.

Any function between two countable structures gives rise to canonical functions in a natural way, provided its domain
structure has the Ramsey property, and its goal structure is ω-categorical. Pinsker outlined a new proof of this fact using the
framework of topological dynamics, and presented the recent discovery that under certain conditions also the converse holds,
i.e., the possibility of obtaining canonical functions in that way implies the Ramsey property for the domain. He moreover
outlined the main applications mentioned above, and the most important open problems connected to canonical functions.

Aleksandra (Ola) Kwiatkowska gave the final talk for the day, and it was one of the best of the conference. Ola showed that
an obscure (but natural!) Fraı̈ssé class (the Weiewski dendrites) negatively answers two fundamental (and related) questions in
the field (Does every omega-categorical structure have a precompact Ramsey expansion?). David Evans had given an answer
to this in 2016, but Ola’s example is more natural, and provides a counterexample to some other conjectures as well.
For each P ⊆ {3, 4, ..., ω}, Kwiatkowska considered Wazewski dendrite WP, which is a compact connected metric space that
can be constructed in the framework of the Fraı̈ssé theory. If P is finite, Kwiatkowska proved that the universal minimal flow
of the homeomorphism group H(WP) is metrizable, and she computed it explicitly. This answers a question of Duchesne. If
P is infinite, Kwiatkowska showed that the universal minimal flow of H(WP) is not metrizable. This provides examples of
topological groups which are Roelcke precompact and have a non-metrizable universal minimal flow with a comeager orbit.

After dinner, Michael Hrusak led a working session about Ramsey-type problems on Borel Ideals, including several open
questions. You can watch the video of it.

Friday – Day 5A – New Frameworks

The final day, like Wednesday, only had talks in the morning. The theme of the morning was new frameworks and directions
for Ramsey theory.

Noé de Rancourt opened the talks with a discussion about Ramsey spaces, and specifically, what kind of results can you
get if you don’t have a pigeonhole principle in that space. Ramsey spaces are very nice combinatorial objects that capture the
essential Ramsey behaviour of many geometric objects; it is related to combinatorial forcing. Noé showed us how to relate
these to games and local Ramsey theory.
Strategical Ramsey theory was developed in the nineties by Gowers in the setting of Banach spaces; it is an alternative to
standard infinite-dimensional Ramsey theory in this setting where the natural pigeonhole principle does not always hold. In this
talk, de Rancourt presented an abstract formalism for strategical Ramsey theory, which also allows to recover more standard
results relying on a pigeonhole principle, like Galvin-Prikry’s theorem. As an application, de Rancourt explained how we can
deduce, from this formalism, new Banach-space dichotomies. These dichotomies are part of a common work in progress with
Wilson Cuellar-Carrera and Valentin Ferenczi.

Dragan Masulovic showed us how the tools of category theory can be used to view and prove dual results in Ramsey theory.
He showed us the value and type of isomorphism of categories in the Ramsey context. There was a special attention to making
the results usable and practical for the non-category theorist.
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Generalizing the classical results of F. P. Ramsey from the late 1920’s, the structural Ramsey theory originated at the beginning
of 1970’s. We say that a class K of finite structures has the Ramsey property if the following holds: for any number k ≥ 2 of
colors and all A,B ∈ K such that A embeds into B there is a C ∈ K such that no matter how we color the copies of A in C
with k colors, there is a monochromatic copy B′ of B in C (that is, all the copies of A that fall within B′ are colored by the
same color).
Showing that the Ramsey property holds for a class of finite structures K can be an extremely challenging task and a slew of
sophisticated methods have been proposed in literature. These methods are usually constructive: given A,B ∈ K and k ≥ 2
they prove the Ramsey property directly by constructing a structure C ∈ K which is Ramsey for B, A and k.
In this talk, Masulovic explicitly put the Ramsey property and the dual Ramsey property in the context of categories of finite
structures. He uses elementary category theory to generalize some combinatorial results and using the machinery of very
basic category theory provide new combinatorial statements (whose formulations do not refer to category-theoretic notions)
concerning both the Ramsey property and the dual Ramsey property. Masulovic stressed that it was Leeb who pointed out
already in early 1970’s that the use of category theory can be quite helpful both in the formulation and in the proofs of results
pertaining to structural Ramsey theory.

Stevo Todorcevic gave concluding remarks for the conference, in particular stressing Dual Ramsey results. Stevo also
put in perspective the development of Ramsey expansion, with its roots in the work of Ramsey himself, followed by that
of Baumgartner, Galvin and Laver, and all the way to the general Fubini problems on Polish spaces with Baire measurable
colourings.

And with that, we wrapped up this iteration of the Ramsey theory meeting.

Open Problems
A list of open problems was collected, including the following.

Andy Zucker
Note. This question was solved at the conference after the problem solving session, please contact Andy for more details.

Definition: Let F be a Fraı̈ssé class, F = Flim(F), A ∈ F . We say that A has Big Ramsey Degree (BRD) k < ω iff

1. ∀r > k, we have F→ (F)Ak,r , and

2. There is an f : Emb(A,F)→ k which is “unavoidable’.’

Let F be the class of finite sets with an equivalence relation and a convex linear order. So F is a convex ordered 2-distance
ultrametric space, which has infinitely many infinite classes, each class densely linearly ordered, and teh set pf classes also
densely linearly ordered.

Question. Does F have finite BRD?
It was suggetsed by the audience to look at Laver’s construction and infinite dimensional Halpern-Lauchli.

Matĕj Konečný
Say that we want to prove Ramsey for a class C (with binary relationE, which is a complete graph). We study which incomplete
structures have completion in C. (This is motivated by Herwig–Lascar and Hubička–Nešetřil.) There is often a finite class F
(possibly after eliminating imaginaries) such that as long as no elements of F have a homomorphism into your structure, then
you can complete your structure into C.

This usually comes along with automorphism preservation, stationary independence relation (SIR), coherent EPPA, APA.
Note that coherent EPPA and APA imply ample generics. The class of “two-graphs” is interesting.

Definition: The class of “two-graphs” is triple systems where each collection of 4 vertices contains an even number of
triples.

Note two-graphs do not have APA (easy example) and SIR. Their Ramsey expansion is adding back the graph and a linear
order. However we still can prove the following theorem (not using Herwig–Lascar).

Theorem: They all have EPPA.
(But we cannot prove coherent EPPA.)
Question 1. Do two-graphs have ample generics?
Question 2. What about other reducts (of the random graph)? E.g. do “complementing graphs” have EPPA?
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Mike Pawliuk
Definition: The statement “Permutation Hales-Jewett for a template abc” is the statement:

Fix a size t. For any number of colours r, there is a large enoughN such that for every colouring of the words in {a, b, c}N
there is a variable word w(x, y, z) with disjoint variable parts I1, I2, I3 ⊂ [0, N ] such that

1. |I1| = |I2| = |I3| = t, and

2. The words w(a, b, c), w(a, c, b), w(b, a, c), w(b, c, a), w(c, a, b), w(c, b, a) all have the same colour. (Note that each
letter can only be used once!)

Note that a, b, c could contain repetitions, and there’s nothing special about three elements and variable sets. This question
makes sense for more general templates. This is special because the size t is given in advance of theN . In regular Hales-Jewett,
this is an impossible demand; For example, take the colouring of words given by:

χ(f) =

⌊∑
i<N f(i)

t

⌋
mod2

Some known facts:

• Template 11 . . . 122 . . . 2. This is a straightforward application of Ramsey’s Theorem (for cliques of size t times the
number of letters in the alphabet).

• Template 11 . . . 122 . . . 23. This is the major Ramsey result in the Leader-Russell-Walters 2012 paper [1]. This uses
VdW’s theorem in a sophisticated manner.

These are the two simplest problems that are open (and were asked in LRW 2012).
Question 1. Permutation Hales-Jewett for the template 1234.
Question 2. Permutation Hales-Jewett for the template 112233.
The proof of either of these would immediately imply that a certain structure in Euclidean space is “Euclidean Ramsey”.
Theorem: [Leader-Russell-Walters, 2012] Permutation Hales-Jewett for all templates 123 . . . n implies “all transitive

(Euclidean) sets are (Euclidean) Ramsey”.
[1] Leader, I., Russell, P. A., & Walters, M. (2012). Transitive sets in Euclidean Ramsey theory. Journal of Combinatorial

Theory, Series A, 119(2), 382-396.

Noé de Rancourt
Let X be countable. Consider a set S(X) ⊆ P (X) \ {∅} Borel. Here P,Q,R denote elements of S(X).

This is meant to model concrete situations, where X is a structure and S(X) is the set of subspaces of X . To avoid
pathological counterexamples1, we suppose that the following condition is satisfied: for every P ∈ S(X), there existQ,R ⊆ P
such that Q ∩R = ∅.

Examples:

1. X = N, S(X) = [N]∞.

2. X = E \ {0}, where E is a countably infinite dimensional vector space over a countable field F, and S(X) is the set of
infinite dimensional subspaces of X .

Definition: The space (X,S(X)) satisfies the pigeonhole principle (PHP) if for all A ⊆ X, ∀P,∃Q ⊆ P such that
either Q ⊆ A or Q ⊆ Ac

Example 1. above satisfies PHP (this is the usual pigeonhole principle) and example 2. satisfies PHP if and only if F = F2

(the “if” part is Hindman’s theorem).
With a little bit more structure, you can prove an infinite dimensional Ramsey-type result in such a space, even without

PHP (with PHP, you will get the results you are used to, e.g. Galvin-Prikry for example 1.). But with PHP these results are
valid for Suslin sets, whereas whitout it, you cannot go beyond analytic. The counterexamples in the case without PHP are built
by a coding method. More generally, there seems to be a link between PHP and questions of complexity. (See Noé’s talk for
more context.) Noé’s question is about a possible new example of this phenomenon.

Definition: A set A ⊆ X is dense if for all P , there is a Q ⊆ P such that Q ⊆ A.
Note that this is a Π1

2 property.
Theorem: Suppose PHP holds. Then A is dense iff for all P , P ∩A 6= ∅.

1After the problem session, such a counterexample was found by Marcin Sabok: take X = N and S(X) = {N} (this is not his original
counterexample, but his idea was similar).
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Proof: If A is dense, then in particular ∀P P ∩ A 6= ∅. To prove the converse, remark that “A is not dense” means
∃P ∀Q ⊆ P Q * A; but using PHP, ∀Q ⊆ P Q * A implies ∃Q ⊆ P Q ⊆ Ac. The result follows.

This result shows that under PHP, the property “being dense” is Π1
1.

Question 1. Do we have the equivalence between

1. (X,S(X)) satisfies PHP.

2. The property “being dense” is Π1
1.

Question 2. Furthermore, in case PHP does not hold, what can be the complexity of “dense”?

Question 3. Can it be Π1
2-complete?

Martino Lupini
Assume all metric spaces are complete with unique geodesic. Hardeman spaces ar such structures equiped with a function
symbol assigning the midpoint between two given points.

Fact. Hardeman spaces have amalgamation (along convex sets).
So you should have a Fraisse limit if it is separable, and if so it would be a “non-positive curvature” Urysohn space.
Question. Is there a universal object for this class?
This appears to be a question in geometry. You can’t always write these (finite) spaces as the convex hull of finitely many

points, and we know Hilbert spaces don’t work.

Participants
Balko, Martin (Charles University)
Bartosova, Dana (Carnegie Mellon University)
Ben Yaacov, Itaı̈ (Université Lyon 1)
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Chapter 29

Model Theory and Operator Algebras
(18w5155)

November 25 - 30, 2018
Organizer(s): Ilijas Farah (York), Isaac Goldbring (UC Irvine), Dimitri Shlyakhtenko (UCLA),
Wilhelm Winter (Münster)

Overview of the Field
Operator algebra has developed into a field of its own since the time of von Neumann. C∗-algebras and von Neumann algebras
can be represented as algebras of bounded operators on a Hilbert space and although the relevant topology is different in the
study of these algebras (the operator norm for C∗-algebras and the weak-∗ topology for von Neumann algebras), both classes
have interesting ultraproduct constructions. The class of C∗-algebras is closed under the usual norm ultraproduct while the class
of II1 factors is closed under the tracial ultraproduct. Although it took 40 years to notice, the existence of these ultraproduct
constructions highlights that model theory has a role to play in the subject. There are many interesting current directions to
pursue but we concentrated on three general themes:

• Interaction with the Elliott classification programme

• Relationship with free probability

• Model theoretic considerations

There are several things that model theory brings to the table in this endeavour. First of all, the theory of an algebra is
an invariant which is complementary to many of the operator algebraic invariants on offer. The utility and consequences of
recognizing when two algebras do not have the same theory will be highlighted below. Second, model theory provides methods
of constructing examples which are different from those in operator algebra. The primary example is model theoretic forcing
which plays a prominent role in [8]. Although to date the examples constructed have been modest, refocusing attention on the
construction of specific examples with this technique in mind could pay dividends. Third, the notion of an elementary class in
continuous logic is a common generalization of both the class of C∗-algebras and II1 factors. Model theory can be used for
both clarifying concepts and identifying good questions to ask. The key is to identify at an abstract level what role the language
is playing and what model theoretic properties are present. Two examples of this appear in [9] where model theoretic properties
of strongly self-absorbing algebras are discussed and [10] where isomorphism classes of ultrapowers are considered.

The Elliott classification programme

Elliott had conjectured that the category of separable, simple, nuclear C∗-algebras is equivalent to the category of certain K-
theoretic invariants. The original conjecture had generated an impressive body of work, some of which (notably [25] and [28]),
necessitated its reformulation. After a succession of spectacular technical breakthroughs, (notably [20], [19], [26], [27], [4],
and [6]), a restricted version of Elliott’s conjecture has been confirmed. The regularity properties that distinguish ‘classifiable’
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and ‘non-classifiable’ C∗-algebras are only to a limited extent detectable by K-theoretic invariants or by any well-behaved
functorial invariants. Interestingly all known counter-examples to classification by K-theoretic invariants are distinguished by
their continuous first order theories. Z-stablity (perhaps the most prominent regularity property of nuclear C∗-algebras) is an
elementary property ([8]), and the existence of a nuclear C∗-algebra without the UCT (perhaps the most mysterious regularity
property of nuclear C∗-algebras) is equivalent to the existence of a particular first-order theory of C∗-algebras omitting certain
types. One of the highlights of [8] is the insight that many regularity properties related to the classification programme are
equivalent to a particularly nice form of omitting types in continuous logic. The properties include nuclearity, nuclear dimension
n, decomposition rank n and many more; conspicuous by its absence is exactness. This raised the intriguing possibility
that model theory could play a role in the resolution of the Toms-Winter conjecture and a complete resolution of the quasi-
diagonality conjecture (although substantial progress on this has already been made; see [27]). More specifically, the technique
of model theoretic forcing could be used to construct examples with given regularity properties and provide counter-examples
to certain conjectures. In the positive direction, in [17] it was proved that weaker versions of the UCT problem and the quasi-
diagonality problem imply that all nuclear, stably finite, C∗-algebras are quasidiagonal; this purely C∗-algebraic result was
proved using model theoretic forcing.

Free probability and model theory

Free probability theory provides a probabilistic framework for understanding free groups factors. Some of its most powerful
tools come from the connection to random matrix theory, which can be naturally placed into the context of ultraproducts of
matrix algebras and the quantitative study of matricial approximations. Among interesting free probability approaches is one
called linearization, where a matrix trick replaces non-commutative rational functions of n-tuples of variables by corners of
matrices whose entries are linear in the variables. It would be instructive to explore this in connection with model-theoretic
ideas.

For a free group Fn on n generators, L(Fn) is the corresponding group von Neumann algebra. The celebrated free group
factor problem asks if all non-abelian free group factors on finitely many generators are isomorphic. It is known that they are all
either isomorphic or all not isomorphic. A model theoretic variant of this problem is to ask if all of the L(Fn)’s for n > 1 have
the same theory as II1 factors. Of course, if they don’t then one has a very strong answer to the free group factor problem. On
the other hand, if they do have the same theory then this provides a partial explanation for why the free group factor problem
is difficult. There are no known examples of explicitly given, elementarily equivalent, C∗-algebras or II1 factors which are not
isomorphic.

A related problem asks whether L(Fn) is pseudo-finite for n > 1. That is, is L(Fn) elementarily equivalent to an
ultraproduct of matrix algebras viewed as von Neumann algebras. All of the free group factors and ultraproducts of matrix
algebras have the same universal theory (they areRω-embeddable). Property Γ is an elementary property ([11]) and all of these
examples fail to have Γ so they agree on at least one highly interesting sentence with two quantifiers. Little else is known. It is
also not known if the theories of ultraproducts of matrix algebras are all the same. It is known that there is either 1 such theory
of ultraproducts or continuum many. Understanding the answer to this question requires an understanding of the asymptotic
behaviour of formulas in large matrix algebras. A potential strategy for resolving the model theoretic version of the free group
factor problem would be to show that every free group factor is pseudo-finite and that all ultraproducts of matrix algebras have
the same theory.

Model theoretic considerations

In [10], the model theory of operator algebras resolved the McDuff problem regarding the isomorphism types of ultrapowers of
separable II1 factors and their relative commutants. The question was (slightly rephrased): given a separable II1 factor M , are
all ultrapowers ofM by non-principal ultrafilters on N necessarily isomorphic and also are the relative commutants isomorphic.
The answer is no but the reason is very interesting. One shows that the relevant concept is the model theoretic notion of stability
and when one transports this notion to the class of C∗-algebras and asks the corresponding question, one gets exactly the same
answer although of course for different local reasons. Since [10], the model theory of operator algebras has matured and it
became a subject in its own right.

Much work in classification has gone into analyzing Connes’ work [5] on injective factors and transferring the techniques
into the study of C∗-algebras. With the long term goal of feeding into this programme, a model theoretic study of the hyperfinite
II1 factor and strongly self-absorbing algebras was initiated.

On the II1 factor side of the equation, much is known about the model theory of the hyperfinite II1 factor R. R is a prime
model of its theory (it embeds elementarily into any other model of its theory; interestingly it embeds into any II1 factor and if
that factor is a model of the theory of R, then the embedding is automatically elementary; [3]). The theory of R is not model
complete ([15], [11]). Although it is possible that the theory ofR is ∀∃-axiomatizable there is speculation that this theory could
be undecidable [13].
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On the C∗-algebra side, the corresponding algebras are the strongly self-absorbing algebras. We say that a separable and
unital A is strongly self-absorbing if A ∼= A ⊗ A and any two unital *-homomorphisms from A to A ⊗ A are approximately
unitarily conjugate. There are only a handful of known strongly self-absorbing algebras: Z , UHF∞ (any UHF algebra of
infinite type), O∞, O∞ ⊗ UHF∞ and O2. It is an open question if this list is exhaustive; potentially, if there is a missing
strongly self-absorbing algebra, model theoretic forcing could help to find one. In any case, the model theory of strongly self-
absorbing algebras is well understood ([9]). As with the hyperfinite II1 factor, they are the prime models of their theory in the
language of C∗-algebras. They again have the automatic elementarity mentioned above. Little is known about the theories of
strongly self-absorbing algebras except that two non-isomorphic strongly self-absorbing algebras have distinct theories.

One intriguing issue that arises in the study of strongly self-absorbing algebras in either context is the role played by
the relative commutant inside an ultrapower or the central sequence algebra. That is, for a separable algebra A, one considers
A′∩AU for a non-principal ultrafilter U on N. Model theoretically, the role of the ultrapower is clear: it is a countably saturated
model. This saturation implies that the central sequence algebra is always quantifier-free saturated and in important instances
is actually an elementary submodel (as it is in the case that A is strongly self-absorbing). There is no general model theoretic
construct similar to the relative commutant and it would be extremely interesting to investigate the exact formal properties
which makes this such an important tool in the study of operator algebras.

The role of the notion of saturation in the general model theoretic study of operator algebras cannot be overstated. As
mentioned above, full saturation and quantifier-free saturation play their usual roles as in any model theoretic study. In [7],
a very weak form of saturation (countably degree-1 saturated) is discussed. This level of saturation is shared by all coronas
of separable C∗-algebras like the Calkin algebra which is known not to be quantifier-free saturated. This provides simplified
proofs of Kasparov’s technical lemma among other things. This theme was also picked up in [29] where it is shown that certain
C∗-algebras, rough analogues of the Calkin algebra, are also countably degree-1 saturated. This restricted form of saturation
should play a key role in the construction of a K-theory reversing automorphism of the Calkin algebra.

There is value in continuing the study both of general elementary properties of C∗-algebras and II1 factors. It was widely
believed amongst those working in the area that there should be continuum many distinct theories of II1 factors. This sus-
picion was confirmed in [2] where it was shown that McDuff’s original family of continuum many pairwise non-isomorphic
separable II1 factors were indeed not elementarily equivalent. The proof proceeded by showing that any two ultrapowers of
distinct members of the family were nonisomorphic. It would be interesting to isolate particular sentences that distinguish these
factors. In [14], Ehrenfeucht-Fraı̈ssé games were used to at least give upper bounds for the quantifier complexity of sentences
distinguishing these factors. A related problem would be the study of the model-theoretic fundamental group of a II1 factor.
In particular, finding an example of a II1 factor with proper first-order fundamental group would give another proof of the
existence of continuum many non-elementarily equivalent II1 factors.

Recent Developments and Open Problems
The following list of problems highlights some of the aspects of the interaction between model theory and operator algebras.

Ilijas Farah

LetQ be the universal UHF algebra and letR be the hyperfinite II1 factor. AreQ andR elementarily equivalent in the language
of C∗-algebras? In other words, doQ andR have isomorphic ultrapowers (again, as C∗-algebras)? Note that a positive answer
implies thatR is an MF-algebra.

Related questions are: Is there a unital map from the Jiang-Su algebra Z to the (norm)central sequence algebra ofR? Does
the theory ofR in the language of C∗-algebras have a nuclear model?

A positive answer to this question would imply that R is quasidiagonal, answering a prominent open problem. More
precisely, the quasidiagonality ofR is equivalent toR andQ having the same universal theory.

Another related question, asked by Chris Schafhauser, is whether R has a theory of a Z-stable C∗-algebra? Although R
itself cannot absorb Z tensorially, a positive answer is equivalent to every separable elementary submodel of R absorbing Z
tensorially.

Ben Hayes

Call a tracial C∗-algebra (A, τ) Hayesian if there is a trace-preserving embedding A ↪→ ∏
UMn(C), where the latter ultra-

product is the C∗-algebra ultraproduct equipped with the trace obtained by taking the U-ultralimit of the normalized traces on
the Mn(C). Call a discrete group Γ Hayesian if the tracial C∗-algebra (C∗r (Γ), τΓ) is Hayesian, where τΓ is the canonical
trace. Which groups are Hayesian? By standard arguments, this is equivalent to an assertion about the universal theory of
(C∗r(Γ), τΓ) ([?]). Here are some facts about Hayesian groups:
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• Amenable groups are Hayesian. ([27]).

• F2 is Hayesian. ([18]).

• Free products of Hayesian groups are Hayesian (Reference?)

• Direct products of exact Hayesian groups.

Are there any non-Hayesian groups? Is the amalgamated free product of Hayesian groups over an amenable amalgam once
again Hayesian?

N. Christopher Phillips

Fix p ∈ (1,∞). A unital Lp-operator algebra is a Banach algebraA such that there is an Lp-space Lp(X,µ) and an isometric
unital Banach algebra homomorphismA ↪→ B(Lp(X,µ)). They appear to be closed under ultraproducts and are clearly closed
under ultraroots (in fact substructures), so form an axiomatizable class in the language of unital Banach algebras. What are
natural axioms?

Alessandro Vignati

A result of K.P. Hart implies that if X and Y are two nontrivial continua, then C(X) embeds into an ultrapower of C(Y ). It
is also known that there is no metrizable continuum X such that C(Y ) embeds into C(X) for all other metrizable continua Y .
In particular, this implies that for every metrizable continuum X , there is a metrizable continuum Y such that C(X) ≡ C(Y )
but X 6∼= Y . For specific X , find examples of such Y . For example, find Y such that C([0, 1]) ≡ C(Y ) but [0, 1] 6∼= Y .

In another direction, suppose that X and Y are locally compact spaces such that C(βX \X) ≡ C(βY \Y ). What can we
say about C0(X) vs. C0(Y ). Also, under the same assumption, if one assumes CH, do we know that in fact C(βX \ X) ∼=
C(βY \ Y )?

Isaac Goldbring

Call a McDuff II1 factor strongly McDuff if it is isomorphic to one of the form M ⊗ R for M a non-Gamma II1 factor. Can
an existentially closed (e.c.) II1 factor ever be strongly McDuff? As partial progress, if the non-Gamma factor M is bc-good
(to be defined shortly), then M ⊗ R is not e.c. Here, M is bc-good if it has a w-spectral gap subfactor N (meaning that
N ′ ∩MU = (N ′ ∩M)U for which (N ′ ∩M)′ ∩M 6= N . This leads to the question: is every non-Gamma factor bc-good?

Wilhelm Winter

By [?], a separable, nuclear, C∗-algebra satisfies the UCT if and only if it has a Cartan masa. A major open question is whether
or not all strongly self-absorbing (ssa) algebras satisfy the universal coefficient theorem (UCT). Towards that goal, here are
some intermediate questions. View the set of ssa algebras as a category whose morphisms are unital ∗-homomorphisms up to
approximate unitarily equivalence. This category has an initial object, namely the Jiang-Su Z , which has a Cartan masa. Can
you prove that the initial object has a Cartan masa without actually knowing that it is Z? Also, one can ask the same question
for the category of ssa algebras of the form A ⊗M2∞ where A is ssa. This also has an initial object, M2∞ , which also has a
Cartan masa.

Questions on opposite algebras

It is a major open problem whether every simple, separable, nuclear C∗-algebra A is isomorphic to its opposite algebra, Aop.
(The answer is positive if simplicity is dropped, if nuclearity is relaxed to exactness, and nonseparable examples exist.) Every
C∗-algebra that is classifiable by its Elliott invariant is isomorphic to its opposite algebra. The following two questions are
about C∗-algebras not isomorphic to their opposites.

Ilan Hirshberg

Is there a C∗-algebra A such that A 6≡ Aop? (If yes, how ‘nice’ can A be? Can it be unital, simple, . . . ?) Nonseparable
examples given in [?] are elementarily equivalent to Elliott-classifiable C∗-algebras, and therefore elementarily equivalent to
their opposites.
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N. Christopher Phillips

Suppose that A is a unital, simple, purely infinite C∗-algebra. Is there a state ϕ on A which can be distinguished up to unitary
equivalence in the sense that for every automorphism α of A there is a unitary u in A such that ϕ ◦ α = ϕ ◦ adu? (If A is a
unital C∗-algebra with a unique tracial state τ , then one has τ ◦ α = τ for every automorphism α of A.)

The motivation for this question comes from the argument in [23], where it was proved that if M is a II1 factor not
isomorphic to its opposite andA is a separable, weakly dense, elementary submodel ofM (considered as a C∗-algebra), thenA
is not isomorphic to Aop. A positive answer would provide a purely infinite, simple, C∗-algebra not isomorphic to its opposite.

Ilan Hirshberg

Is there any natural model-theoretic meaning to looking at structures that resemble ultrapowers except one uses βX for X an
arbitrary locally compact space (e.g. R+, which shows up in practice) rather than just βI for I a discrete set? Is there a corre-
sponding logic for which this is well-behaved? Are there parallels to usual model-theoretic facts about ordinary ultrapowers?
What uses does this construction have?

Other problems
One of the most prominent open problems in the theory of operator algebras is whether all II1 factors associated with nonabelian
free groups (the so-called ‘free group factors’) are isomorphic. A variant of this question is whether all free group factors are
elementarily equivalent. (Or equivalently, whether they have isomorphic ultrapowers.) The answer to this question is positive if
and only if the free group factors L(F2) and L(F3) (or any other L(Fm) and L(Fn), for m 6= n) are elementarily equivalent.

The C∗-variant of this question has a negative answer. The reduced group C∗-algebra C∗r(Fm) has the K1-group equal to
Zm, and therefore these algebras are pairwise nonisomorphic. But the following is open.

Dimitri Shlyakhtenko

Are all reduced group C∗-algebras associated with finitely generated free nonabelian groups elementarily equivalent?
One approach to giving a negative answer to this question would be to show that the K1-groups of the ultrapowers of free

group C∗-algebras are nonisomorphic. Since each C∗r(Fm) has stable rank 1, itsK1-group is equal toU(C∗r(Fm)/U0(C∗r(Fm)).
Thus the question reduces to the followig:

Is the homotopy relation on the unitary group of C∗r(Fm) definable?
Or even more specific: Is there n ∈ N such that every unitary in C∗r(Fm) homotopic to 1 can be approximated in norm up

to < 2 by a product of n exponentials of self-adjoints, each of norm at most π? A positive answer to this question would imply
that the K1 group of C∗r(Fm) belongs to the eq of this algebra ([?]), and in turn give a negative answer to the above question.

Presentation Highlights
This workshop brought together experts in operator algebras and model theory. The first two days of the meeting were domi-
nated by three tutorials that provided a fresh look at the background material.

Gabor Szabo, Introduction to C∗-algebras

I will give an introduction to the theory of C∗-algebras. Starting from the basics, we will treat spectral theory in some detail,
culminating in the Gelfand-Naimark theorem. We will cover the GNS construction, with highlight being that every abstract
C∗-algebras can be realized as a C∗-algebra of bounded operators on a Hilbert space. We will then discuss other construc-
tions/examples such as certain universal C∗-algebras or inductive limits. If there is time, I will give a rough outline of the
Elliott classification program.

Adrian Ioana, Tutorial on von Neumann algebras

In the first lecture, I will review basic notions and constructions of von Neumann algebras. The second lecture will be devoted
to property Gamma and McDuff’s property for II1 factors. In the third lecture, I will discuss the isomorphism problem for
ultrapowers of II1 factors.

Lecture 1: Define vN algebras and state the bicommutant theorem. Introduce tracial vN algebras and the hyperfinite II1
factor. Group and group measure space vN algebras.
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Lecture 2: Define property Gamma and discuss the connection with inner amenability of groups. Define McDuff’s property.
Examples of II1 factors that are Gamma but not McDuff.

Lecture 3: The ultrapower construction for tracial vN algebras. Discuss dependence on the choice of the ultrafilter and
examples of II1 factors with non-isomorphic ultrapowers.

Martino Lupini, Tutorial on model theory

Lecture 1: Structures, ultraproducts, and formulas
I will introduce the fundamental notions of logic for metric structures, such as formulas and ultraproducts. I will then

explain how C∗-algebras and von Neumann algebras fit into this framework.
Lecture 2: Axiomatizability and definability
I will present the crucial model-theoretic concepts of axiomatizability and definability, and then provide many examples

from the theory of operator algebras.
Lecture 3: Nuclearity and omitting types
I will discuss how nuclearity can be captured model-theoretically, and how this opens up the possibility to use constructions

from model theory to produce interesting new examples of nuclear C∗-algebras.

Leonel Robert, C∗-algebras of stable rank one and their Cuntz semigroups

I will talk about recent joint work with Antoine, Perera, and Thiel. We have shown that the Cuntz semigroup of a separable
C∗-algebra of stable rank one is inf-semilattice ordered, i.e., has finite infima and addition is distributive over infima. We use
this to gain new insights into the structure of these Cuntz semigroups and to answer a number of questions on C∗-algebras of
stable rank one. We are able to remove the assumption of separability in some of these applications using model theoretic tools.

Christopher Schafhauser, On the classification of simple, nuclear C∗-algebras

I will discuss some recent joint work with José Carrión, Jamie Gabe, Aaron Tikuisis, and Stuart White, which provides a new
abstract approach to the classification of simple, nuclear C∗-algebras.

Aaron Tikuisis, The Toms-Winter conjecture and complemented partitions of unity

The Toms-Winter conjecture postulates that three very different-looking regularity-type conditions coincide for separable sim-
ple infinite-dimensional amenable unital C∗-algebras. The different conditions are (i) finite nuclear dimension, (ii) Z-stability,
and (iii) strict comparison of positive elements. In the first half of my talk, I will say some things about this conjecture and its
important connections to the classification of C∗-algebras.

In the second half of the talk, I will discuss a key concept used in the proof that (ii) implies (i), called complemented
partitions of unity (CPoU). As I will explain, this concept provides a method for gluing local witnesses of open types in tracial
GNS representations to global witnesses (satisfying the type uniformly over all traces). I will explain complemented partitions
of unity in the context of this local-to-global type satisfaction device.

This is joint work with Jorge Castillejos, Sam Evington, Stuart White, and Wilhelm Winter.

Stefaan Vaes, Classification of regular subalgebras of the hyperfinite II1 factor

I present a joint work with Sorin Popa and Dimitri Shlyakhtenko. We prove that under a natural condition, the regular von
Neumann subalgebras B of the hyperfinite II1 factor R are completely classified (up to conjugacy by an automorphism of R)
by the associated discrete measured groupoid. The key step in proving this result is the vanishing of the 2-cohomology for
cocycle actions of amenable discrete measured groupoids and the approximate vanishing of the 1-cohomology. This leads us to
a new notion of treeability for equivalence relations. I also discuss (non-)classification results for amenable discrete measured
groupoids.

Bradd Hart, Correspondences and model theory

In joint work with Goldbring and Sinclair, for tracial von Neumann algebras M and N , we show how to capture the notion of
an M -N correspondence model theoretically. We use this correspondence framework to study σ-finite von Neumann algebras
and the uniform 2-norm on a C∗-algebra with respect to a collection of states. The role of the ultraproduct will be highlighted
for its guidance in determining the correct languages in these cases.
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Eusebio Gardella, Equivariant model theory and applications to C∗-dynamics

The use of (central) sequence algebras in the theory of operator algebras has a long history, dating back to McDuff’s characteri-
zation of those factors which absorb the hyperfinite II1-factor. Applications in the context of C∗-algebras are both abundant and
far-reaching, and they often appear in connection with classification of C∗-algebras. Central sequence algebras are fundamental
tools in the study of strongly self-absorbing C∗-algebras, which themselves have tight connections with the Elliott classification
programme. This has prompted a deeper study of ultrapowers and (central) sequence algebras, where model-theoretic methods
have become predominant. Ultrapowers and relative commutants have also been a crucial tool in the study of group actions
on operator algebras, dating back to the classification of amenable group actions on the hyperfinite II1-factor. A more recent
instance of their use in the equivariant setting is the study of strongly self-absorbing actions. As such, equivariant (central)
sequence algebras are interesting objects whose systematic study is justified by their wide application in the literature. In this
talk, we report on joint work with Lupini, where we consider actions of a compact group on a C∗-algebra as a structure in the
framework of continuous model theory. The realization that the continuous part of the ultrapower of a G-C∗-algebra is just its
ultrapower as a structure in the new equivariant language, allows us to establish interesting properties, including saturation and
Łoś’s theorem. We give various applications to C∗-dynamics, including to strongly self-absorbing actions as well as to Rokhlin
dimension.

Mikael Rørdam, Non-closure of quantum correlation matrices and certain factorizable maps, traces on free
product C∗-algebras, and Connes Embedding Problem

We show that the convex set of factorizable quantum channels on a fixed matrix algebra of size at least 11 which factor through
finite dimensional C∗-algebras is non-closed, and that there exist factorizable quantum channels on matrix algebras that require
an ancilla of type II1. We also give a new and simplified proof of the result by Dykema, Paulsen and Prakash that the set of
synchronous quantum correlations Csq (5, 2) is non-closed. One can describe factorizable quantum channels on a given matrix
algebra in terms of traces on the unital free product of that matrix algebra with itself. We give a description of which of these
traces correspond to factorizable maps that can be approximated by ones with finite dimensional ancilla, and we relate this to
the Connes Embedding Problem.

This is a joint work with Magdalena Musat.

Ilan Hirshberg, On C∗-algebras not isomorphic to their opposites.

For each C∗-algebra A, one can construct its opposite Aop, which is the same as a Banach space, only with the order of
multiplication is reversed. It is a long-standing and difficult open problem whether there exists a simple separable nuclear
C∗-algebra which is not isomorphic to its opposite. I will survey some of the known results and techniques, focusing on the
nuclear case, and discuss a joint paper with Ilijas Farah ([?]) in which we construct a simple nuclear non-separable example.

N. C. Phillips, The Continuum Hypothesis implies existence of outer isometric automorphisms of the lp Calkin
algebra

Let p ∈ (1,∞). We show that the Continuum Hypothesis implies that the lp Calkin algebra Q(`p) = L(`p(Z))/K(`p(Z))
has isometric automorphisms which are not given by conjugation by invertible isometries inQ(`p). Depending on what is done
between now and the time of the talk, we will describe progress towards proving that it is consistent with ZFC that there are no
such isometric automorphisms.

This is joint with with Andrey Blinov.

Scientific Progress Made
During the breaks and evenings, the participants worked in smaller groups. Only time will tell what progress resulted from this
meeting, and we will list only the progress that we are aware of.

Inspired by Robert’s talk and recent Thiel’s construction of ultraproducts of Cuntz semigroups, several participants gave a
rough outline of a formal model-theoretic framework for Cuntz semigroups. Giving a model-theoretic framework for the study
of Cuntz semigroup is a major challenge.

A group of participants worked on the early 1970’s problem of Brown, Douglas, and Fillmore, asking whether the Calkin
algebra can have a K-theory reversing automorphism. By a 2011 work of Farah, it is known that forcing axioms imply a negative
answer. A new alley of attack on this prominent open problem, combining KK-theory with some set-theoretic considerations,
has been outlined.



Model Theory and Operator Algebras 301

The recent major progress in Elliott’s classification programme, reported in talks by Schafhauser and Tikuisis, inspired
many conversations. In particular, the principle CPoU (Central Partitions of Unity) can be restated as a transfer principle from
the theory of type II1 von Neumann algebras to the theory of the so-called strict closures of C∗-algebras. (The latter comes
from a generalization of the seminal work of Ozawa on W∗-bundles, [22].) The independently developed model theory of
correspondences, reported in Hart’s talk ([16]), appears to be tailor-made for studying strict closures of C∗-algebras.

Vaes reported a major breakthrough in our understanding of regular subalgebras of the hyperfinite II1 factorR ([24]). The
Connes Embedding Problem, one of the most famous problems in the theory of operator algebras, was the subject of Rørdam’s
talk (see [21]).

Connections to set theory were addressed on the last day of the meeting, in the talks by Hirshberg and Phillips.

Outcome of the Meeting
The talks at this meeting were of an exceptionally high quality. All speakers were given a full hour, and the majority of the talks
were given in the old-fashioned way, using chalk and blackboard. This encouraged lively discussions that always continued
well past the end of the talk and throughout the meeting.
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Elliott, George (University of Toronto)
Farah, Ilijas (York University)
Fox, Alec (University of California, Irvine)
Gabe, James (University of Glasgow)
Gardella, Eusebio (University of Muenster)
Goldbring, Isaac (University of California at Irvine)
Hart, Bradd (McMaster University)
Hayes, Ben (University of Virginia)
Henson, C. Ward (University of Illinois at Urbana-Champaign)
Hirshberg, Ilan (Ben Gurion University of the Negev)
Houdayer, Cyril (Université Paris-Sud)
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Overview of the Field

The mathematical and computational analysis of shape and shape changes has, over the last few years, been at the center
of focused research efforts, driven by a wide range of applications, from biological imaging to fluid dynamics. Problems in
areas as diverse as shape optimisation, functional data analysis and computer graphics can all be formulated in terms of shape
analysis.

Mathematically, shape analysis combines ideas from infinite-dimensional Riemannian geometry, geometric mechanics,
fluid dynamics and, recently, also sub-Riemannian geometry and stochastic analysis. This interplay of different areas continues
the historically very fruitful exchange of ideas between geometry, mechanics and applications.

In many instances, shape spaces can be endowed with the structure of an infinite-dimensional Riemannian manifold. Ex-
amples include the shape space of curves or surfaces in Euclidean space, the space of densities as well as more general spaces
of mappings. The diffeomorphism group in particular plays a central role in the field of shape analysis and medical imaging.

The main objective of the workshop was to bridge the gap between shape analysis, stochastic geometric mechanics and
applied optimal transport communities and to advance research that crosses the boundaries of the three fields in addition to
communicating important challenges in shape analysis to researchers in stochastic geometric mechanics and optimal transport.

Shape analysis and medical imaging

The space of images is acted upon by the diffeomorphism group and, in the spirit of Grenander’s pattern theory [1], differ-
ences between images can be encoded by diffeomorphisms. In this way medical images can be investigated with the help of
Riemannian metrics on the diffeomorphism group. One of the major applications of Grenander’s pattern theory is in com-
putational anatomy [2], a field that uses modern imaging techniques, such as magnetic resonance, computed tomography and
positron emission tomography, to perform a precise computational study of functional and anatomical morphology. Currently,
the extension of statistical tools such as kernel PCA and regression, that are well understood in the linear setting, to finite and
infinite-dimensional Riemannian shape manifolds is of great interest to the medical imaging and computer vision communities.
This in addition provide links with geometric statistics [3], statistical analysis of data taking values in geometric spaces.

304
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Stochastic geometric mechanics
Shapes observed in nature exhibit variations that are often best described stochastically. Thus there is a need, arising from
applications, for stochastic shape models, that would enable statistical analysis of shape populations and describe stochastic
nonlinear shape variations in a geometrically intrinsic way. The diffeomorphism group, which describes shape variations
through its action on shape space [4], allows us to transfer developments happening in the new and growing field of stochastic
geometric mechanics to problems in stochastic shape analysis.

Recent work has shown that the Euler-Poincaré equation on the diffeomorphism group has a stochastic analog [5], derived
from a stochastic variational principle, that yields natural stochastic models of shape evolution. The diffeomorphism group
can be equipped with a Lie group structure giving rise to Brownian type flows that are mapped from the Lie algebra to the
group. Lagrangian Navier-Stokes flows [6] also constitute an alternative approach to stochastic flows. In very recent work, it
has been shown how such flows can induce stochastic shape evolutions [7] but very little is known about their properties, such
as existence, invariant distributions or ergodicity. Stochastic geometric mechanics is still a new field, and the similarity between
stochastic flows on finite-dimensional Lie groups and stochastic flows on shape spaces induced by the diffeomorphism group
enables developments in both fields to be transferred between them. For example, Riemannian stochastic models in shape
analysis are used to construct stochastic models in geometric mechanics, whose definition relies on the affine connection. The
workshop had as an objective to introduce in the shape community models from stochastic geometric mechanics, and to link
ideas from shape analysis back to geometric mechanics.

Optimal transport
Independently, optimal transport has seen significant development as an area of pure mathematics. One can consider optimal
transport as a special case of Riemannian shape analysis, with shapes being probability densities. Improved numerical methods,
such as Monge-Ampère type solvers and entropic regularization schemes, have recently expanded the applications of optimal
transport to include computer vision, biomedical imaging, machine learning and statistics. Compared to optimisation problems
encountered in shape analysis, those in optimal transport often stand out by being convex, thus simplifying and speeding up
computations. Nevertheless, embedding optimal transport into the more general framework of shape analysis allows one to
consider possible extensions of optimal transport; for example the recently developed unbalanced optimal transport was partly
inspired by ideas in shape analysis.

In turn, stochastic variants of optimal transport such as the Schrödinger problem of minimizing the relative entropy with
respect to a Wiener process does not, at the moment, have a counterpart in stochastic shape analysis or stochastic geometric
mechanics. An important outcome of entropic regularization of optimal transport is the development of algorithms that allow for
fast computations of entropically regularized transport maps. For many problems in shape analysis, for example the computation
of geodesics on the diffeomorphism group, computational time is still prohibitive for large scale applications. Ideas from
optimal transport could prove useful in developing new numerical methods for these problems.

Presentation Highlights
We here discuss the topics presented in the range of excellent talks at the workshop. These highlights start with optimal
transport and related topics followed by geometry of diffeomorphisms and hydrodynamics, stochastic geometric mechanics
and stochastic shape analysis, and finally mathematical foundations of shape and image analysis.

Applied optimal transport and related topics
Talks concerned with optimal transport started with Ana-Bela Cruzeiro who presented an extension of the Schrödinger problem
to Lie group valued processes. The infinite dimensional case and its connection with fluid dynamics ([8]), currently an open
research area, was also touched upon. In particular it is not known how to obtain more regularity for the weak generalized flows
associated to the Navier-Stokes equations through optimal transport methods and how to approach compressible Navier-Stokes
equations.

On the space of probability densities, Christian Léonard presented a reformulation and a generalization of the so-called
entropic interpolation of Wasserstein geodesics in terms of Newton equations on the space of densities ([9]). He was able to
present a general contraction inequality for the Schrödinger problem on a Riemannian manifold with Ricci lower bound.

Other talks in optimal transport were centered on extensions of optimal transport and applications. Based on [10], semi-
discrete numerical solutions of unbalanced optimal transport were presented by Bernhard Schmitzer and interesting connections
and applications in fluid dynamic for the generalized Camassa-Holm equations were presented by Andrea Natale as in [11].
Unbalanced optimal transport appears to have applications not only in quantization but more surprisingly in crystallization.
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Tryphon Georgiou presented a numerical approximation to optimal transport using Gaussian approximations, and also
presented extensions of optimal transport to vector valued and matrix valued optimal mass transport. Based on a matrix
continuity equation, the Linblad equation known in quantum theory was obtained as a gradient flow of the Von Neuman entropy
which is a non-commutative counterpart of the pioneering result of Jordan-Kinderlehrer-Otto. An open question of interest in
this field consists in providing a unified framework to all these generalizations of optimal transport to cone valued measures.

Tom Needham introduced the Gromov-Monge quasimetric, which is a notion of distance between arbitrary compact metric
measure spaces that blends the Monge formulation of optimal transport with the Gromov-Hausdorff construction. He dis-
cussed applications to metric trees, which appear in shape analysis and data visualization. Alice Le Brigant spoke on optimal
quantization on Riemannian manifolds, which is the problem of finding the best (with respect to Wasserstein distance) finite
discrete approximation to a given probability distribution. She presented a new online algorithm as well as an application to
summarizing air traffic complexity in which she compared summaries using discrete optimal transport.

Carola Schönlieb has shown the use of the Wasserstein distance in unsupervised learning of regularizers in inverse imaging
problems such as tomography, the Wasserstein distance being here approximated via the dual formulation on the space of
1-Lipschitz functions. Another use of optimal transport was proposed by Jean Feydy in shape matching where a similarity
divergence [12] was built upon entropic regularization. Importantly, numerical advances on the computation of these metrics
for a large number of data were shown.

On the numerical side of optimal transport, Jean-David Benamou presented the extension of the Sinkhorn algorithm to a
multi-marginal setting as in [13] for the simulation of the generalized incompressible Euler equation which was introduced by
Brenier in the 90’s. The Sinkhorn algorithm is known to converge linearly with respect to a Hilbert norm in the case of standard
optimal transport with two marginals. Although the multimarginal scheme proposed by Jean-David Benamou is variational and
provably convergent, it is an open question to prove the linear convergence with respect to a modified Hilbert norm.

Related to these generalized incompressible Euler equations, Andrea Natale presented, as in [11], a generalized Camassa-
Holm equation based on the unbalanced optimal transport problem, which is related to Bernhard Schmitzer’s talk. He has
introduced a convex relaxation of the Camassa-Holm equation à la Brenier. The main open question is the tightness of this
relaxation in dimension greater or equal to 2. Andrea Natale showed that in a particular case this relaxation was tight and his
construction was similar to the one proposed by Cy Maor in his vanishing distance result on the diffeomorphism group.

These optimal transport talks have shown that generalizations of optimal transport are a very active topic of research in
connections with fluid dynamic, quantum theory and practical applications. In all these talks, the entropic interpolation stands
out and was a central tool for practical use and extensions, and also motivated theoretical developments.

Geometry of the diffeomorphism group and mathematical hydrodynamics
The first series of talks on infinite dimensional Riemannian geometry concerned the geometry of the diffeomorphism group
in the particular context of mathematical hydrodynamics. Boris Khesin focused in his talk on the geometry of the Madelung
transform, which is known to relate Schrödinger-type equations in quantum mechanics and the Euler equations for barotropic-
type fluids. He presented a recent result by himself, K. Modin and G. Misiolek [14] in which they showed that the Madelung
transform is a Kähler map (i.e. a symplectomorphism and an isometry) between the space of wave functions and the cotangent
bundle to the density space equipped with the Fubini-Study metric and the Fisher-Rao information metric, respectively.

Gerard Misiolek’s lecture centered around Arnold’s geometric picture [15] for the incompressible Euler equations as
geodesic equation on the group of diffeomorphisms of the fluid domain equipped with a L2-metric given by fluid’s kinetic
energy. Misiolek gave a detailed overview of the study of the exponential map of this metric and described several recent
results concerning its properties. These investigations of the geometric properties of the L2-metric on the group of volume pre-
serving diffeomorphisms date back to the seminal paper by Ebin and Marsden [16], in which they proved local well-posedness
and uniqueness of the solutions to the corresponding geodesic initial value problem. These techniques have been later extended
to the class of right invariant Sobolev metrics on the full diffeomorphism group. This observation lead to geometric interpre-
tations of many prominent equations of mathematical hydrodynamics, including for example the Camassa-Holm [17, 18] or
KdV-equation [19]. In his talk Stephen Preston discussed how many of these one-dimensional Euler-Arnold equations can be
recast in the form of a central-force problem

Γtt(t, x) = −F (t, x)Γ(t, x),

where Γ is a vector in R2 and F is a nonlocal function possibly depending on Γ and Γt. Angular momentum of this system is
precisely the conserved momentum for the Euler-Arnold equation. In the solar model, breakdown comes from a particle hitting
the origin in finite time, which is only possible with zero angular momentum. In his talk Preston discussed some conjectures
and numerical evidence for the generalization of this picture to other equations such as the µ-Camassa-Holm equation or the
DeGregorio equation. Klas Modin presented a recent result with Martin Bauer [20] in which they prove extensions of the
Ebin and Marsden result to higher order Sobolev metrics on diffeomorphism groups that are only invariant with respect to
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volumorphisms. This study reveals many pitfalls in going from fully right invariant to semi-invariant Sobolev metrics; the
regularity requirements, for example, are higher. Nevertheless the key results, such as no loss or gain in regularity along
geodesics, can be adopted.

While these previous talks focused mainly on properties of the geodesic spray (geodesic initial value problem resp.), the
lecture of Cy Maor studied a different geometric question that arises in this context: properties of the geodesic distance induced
by right invariant metrics on diffeomorphism groups and in particular the question whether it is positive between distinct
diffeomorphisms or not. In this talk he presented a recent preprint by him with Robert Jerrard [21] which shows that the
geodesic distance on the diffeomorphism group of an n-dimensional manifold, induced by the W s,p norm, does not vanish if
and only if s ≥ 1 or sp > n. The first condition detects changes of volume, while the second one detects transport of arbitrary
small sets. In particular he discussed how the failure of these two conditions enables the construction of arbitrarily short paths
between distinct diffeomorphisms. This work extends previous results on vanishing geodesic distance by Michor, Mumford
and others [22, 23, 24, 25].

Stochastics in geometric mechanics and shape analysis
The talks on stochastics in geometric mechanics and shape analysis concerned symmetry reduction for two different stochastic
models, the stochastic variational principle in Lie groups by Arnaudon, Chen, and Cruzeiro [6] and the variational model by
Holm [5], together with particle samplers for Feynman-Kac measures on path spaces.

Ana-Bela Cruzeiro’s presented the variational principle and Euler-Poincaré reduction of [6]. The setting is a left- or right-
invariant metric on a general Lie group. Noise is introduced in Stratonovich form through a set of vector fields on the Lie
algebra, and the resulting stochastic perturbations are transported by the push-forward of left-translation to the group. From
this, a stochastic action functional is derived. Critical points of this functional are then shown to be amenable to Euler-Poincaré
reduction in a setting resembling the deterministic case (see e.g. [26]). In particular, the motion can be described by

d

dt
u(t) = ad∗ũ(t)u(t) +K(u(t))

with
ũ(t) = u(t)− 1

2

∑

i

∆HiHi

and subsequently reconstructed to the group. In the reconstruction equation, a coupling term appears that comes from the Itô
to Stratonovich conversion terms.

Alexis Arnaudon discussed the stochastic model of [5] in the context of shape analysis. Stochastic perturbations are here
introduced by perturbing the Hamiltonian that before perturbation comes from a right-invariant metric on e.g. the diffeomor-
phism group. This leads to a different variational principle, again with Euler-Poincaré reduction for critical paths, however in a
different form than considered by Cruzeiro et al.. In coadjoint form, the reduced dynamics are governed by

dµ(t) + ad∗dXµ(t) = 0

with

dX = udt−
∑

i

∂µΦi(µ) ◦ dW i
t µ =

∂l(u)

u

where Φi constitute a basis for the noise and l is a reduced lagrangian. Arnaudon showed how the stochastic dynamics through
the action of the diffeomorphism group descend to shape spaces, e.g. the landmark shape space. Here, Arnaudon related the
model to Langevin dynamics in different forms, particularly the stochastic model of [27], and he introduced a dissipation term
on the Hamilton equations as a general link between the two stochastic landmark equations.

Marc Arnaudon discussed continuous time Feynman-Kac measures on path spaces. There equations are central in applied
probability, PDE theory, and quantum physics. Arnaudon presented a new duality formula between normalized Feynman-Kac
distributions and their mean field particle interactions. This allows rerversible particle Gibbs-Glauber samplers for continuous
time Feynman-Kac integration on path spaces. Arnaudon in addition discussed new estimates for propagation of chaos for
continuous time genealogical tree based particle models, allowing sharp quantitative estimates of the convergence rate of
particle Gibbs-Glauber samples.

Mathematical Foundations of Shape and Image Analysis
Several of the talks on Shape and Image analysis concerned new developments for the LDDMM-framework [28]. The first in
this direction was by L. Younes, who presented recent work on equivolumic layers estimation in the cortex. B. Gris described
a constrained version of LDDMM and showed how this approach can help to understand the variability within a population of
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shapes. A crucial ingredient for deformation based approaches such as LDDMM is the construction of efficient data attach-
ment terms. Towards this aim, N. Charon presented several deformation models on spaces of oriented varifolds, which embeds
many previously considered geometric structures like curves, surfaces but also orientation distribution fields. In particular he
discussed compressing/quantizing oriented varifold representations in order to numerically accelerate diffeomorphic registra-
tion procedures. D. Kuang presented a completely different method for nonlinear image registration using unsupervised neural
networks. This led to some discussion about the relative merits of, on one hand, data driven methods such as Kuang’s, and on
the other hand, variational and geometric methods such as LDDMM.

A central concept in LDDMM is the momentum vector field; in a related theoretical talk, T. Ratiu introduced a new
generalization of the momentum map concept: a group-valued momentum map, inspired by the Poisson Lie setting.

A second theme in this part of the workshop consisted in the study of intrinsically defined metrics on spaces of geometric
objects, such as curves or surfaces. E. Klassen presented a new Riemannian metric on the space of vector valued one-forms, that
has potential applications for the shape analysis of surfaces. The proposed metric is a direct generalization of the elastic metric
associated to the SRV framework [29], that has been proven successful for the analysis of unparametrized curves. Related to
this talk was the presentation of P. Harms, who showed that (fractional) Laplacians depend real analytically on the underlying
Riemannian metric in suitable Sobolev topologies. As an application he presented local well-posedness of geodesic equations
for (fractional) Sobolev metrics on the space of mappings. While these two talks focused mainly on the existence and form
of geodesic curves, M. Rumpf studied the existence and construction of spline curves in the context of Riemannian shape
spaces. In his talk he introduced a variational time discretization for the spline energy, that leads to a constrained optimization
problem over discrete paths on the manifold. Existence of continuous and discrete spline curves is established using the direct
method in the calculus of variations and the convergence of discrete spline paths to a continuous spline curve follows from the
Γ-convergence of the discrete to the continuous spline energy.

Outcomes of the Meeting
This meeting provided an excellent occasion to open discussions and develop connections between several related fields: Ap-
plied optimal transport, methods involving diffeomorphic matching, the so-called large deformation by diffeomorphisms, and
stochastic geometric mechanics. Different applications context have shown fundamental differences as well as similarities. In
addition, the link between these fields and fluid flows was discussed several times in the talks.

A central discussion topic at conference was the question of finite explosion time of Brownian motion on landmark spaces.
We consider the LDDMM landmark manifold [30] with metric inherited from a right-invariant metric on the diffeomorphism
group. This Riemannian manifold has a global representation as an open subset of Euclidean space. It is thus not compact,
which raises the question of finite time blowup of Riemannian Brownian motion. Several recent works use the landmark Brow-
nian motion in applied settings [31, 32] which underlines the interest in the existence question. Furthermore, understanding the
structure in the Brownian case may shed light on similar questions for stochastic shape models such as discussed in the talks
in this workshop. We made significant progress on this question by finding sharper conditions for finite time collision of the
landmarks. Current ongoing work evolves around evaluating these conditions to either prove or disprove finite time explosion.

In informal discussion about applications to medical image registration, tips and tricks were shared, and a divergence of
opinion appeared about the likelihood of large practical improvements over the current state of the art, given that the practical
registration problem isn’t entirely well-posed.

In addition several new projects and discussions have been initiated during the workshop, including: Cy Maor and Philipp
Harms on the physics of stress and strain in shape analysis; Martin Bauer, Nicolas Charon, Philipp Harms and Martin Rumpf
discussed a new collaboration to obtain a numerical framework for shape analysis of surfaces with respect to higher order
Sobolev metrics; Tryphon Georgiou and Tanya Schmah discussed the restriction of the Wasserstein metric to the space of
Gaussian mixtures. Martin Bauer, Klas Modin and Cristina Stoica discussed and started a new project related to the existence
of ‘peakon’ singular-suported solutions for non-Newtonian fluids.
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Chapter 31

Impact of Women Mathematicians on
Research and Education in Mathematics
(18w2043)

March 16 - 18, 2018
Organizer(s): Lillian Beltaos (Nikola Tesla Historical Society of Alberta), Amenda Chow
(York University)

Overview of the Field

It is well known that women in mathematics have historically been unrecognized and under represented in their significance to
the field. The extent of this social and historical oversight came to light at this workshop. The eminent women mathematicians
are not well known even among those who teach the material that is directly related to their work and are unaware of this failing
to credit them appropriately. The purpose of this workshop was to bring forward the lives and research of some – a small
number – of these women and to encourage the participants to engage in initiatives that would correct the history by giving
these women a prominence in curriculum and associated courses on the topic of women in mathematics.

Recent Developments and Open Problems

The workshops three working groups provided an opportunity for exploring recent developments and open problems. One
working group addressed the need to introduce courses that focus on women in mathematics, either through already existing
history of mathematics courses or developing specific courses on women in mathematics. Finally, reaching out to history and
science departments and collaborating with those departments to highlight and include the women in mathematics in appropriate
courses.

Another working group focused on mentorship and collaboration in research. To this end, a new collaborative research
model in mathematics, mostly geared to younger women mathematicians who are taking a leave of a year or two to raise chil-
dren, to enable them to carry out ongoing research without interruption, has emerged. This new model is now being considered
for implementation. It also recognized that a formal support from organizations that have access to funding beyond local levels,
should be explored to further access to women in mathematics and introduce associated programs and infrastructure.

The third working group focused on promoting women in mathematics through art based activities such as role playing,
music composing and creative writing including poetry and comics. Discussions on how to incorporate such an approach to
traditional mathematics courses such as calculus, statistics and algebra were explored.
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Presentation Highlights
The program included broad topics in mathematics, covering algebra, number theory, calculus, topography, statistics, math
biology, physics, cryptology, graph theory and education. It highlighted, repeatedly, the challenges and opportunities that these
women had to achieve to gain productive and distinguished status, at times many years later as the social fabric of the past did
not open the educational opportunities for women in general. The sample of these scientists, each having their own story, clearly
brings out strong and determined individuals who refused to be stopped by the blockages to their education and employment.
Some used men’s names to break through with their research. Some opposed their family stigmas of “girls not needing to be
educated”. Some experienced rejection for employment based on their gender, and were not granted degrees that they earned,
for many years after completion of the program.

Scientific Progress Made
This workshop acknowledges the need to recognize the contributions of women in mathematics and other science-related
disciplines. Some ways to do this are: developing mentorships and collaboration networks and/or designing a history of women
in mathematics courses. The networking opportunities with new professional links created has been invaluable to participants
for furthering research and developments.

Outcome of the Meeting
The workshop highlighted a need to examine, not just the past circumstances of the challenges that women have had pursuing
mathematics, but also, recognizing that even today, women are underrepresented in higher education institutions as researchers
and professors of mathematics. To this end, the workshop delivered a powerful message of engagement into carrying on with
what has been started at the workshop by considering organizing a similar workshop in two years and assessing the impact of
the workshop with identification of projects and research initiatives that will take place over this period.
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Chapter 32

Ted Lewis SNAP Math Fair Workshop
2018 (18w2221)

April 27 - 29, 2018
Organizer(s): Sean Graves (University of Alberta) Tiina Hohn (MacEwan University) Ted
Lewis (SNAP Mathematics Foundation & U of Alberta)

Introduction

The SNAP Foundation is a non-profit organization whose mandate is to encourage the development of mathematics learning
resources at the classroom level with very little retraining of the teaching staff, with very flexible budgets, and by utilizing the
energy and natural curiosity of the students themselves. The main theme of the BIRS workshop was, “What is a SNAP math
fair and how to organize a math fair in your classroom”. The presenters mostly consisted of teachers/educators who shared their
math fair experiences and success stories.

The first SNAP type math fair was designed in Edmonton by Mike Dumanski and Andy Liu in 1997-1998. Since then, a
large number of schools in Alberta and beyond have adapted the SNAP math fair to their needs. The SNAP program has been
spread through similar workshops and conferences, and mainly by teachers themselves.

SNAP received its initial funding from the Canadian Mathematical Society and from private donations. PIMS, the Pacific
Institute for the Mathematical Sciences, has been a long time financial supporter of our math fairs. BIRS, the Banff International
Research Station, has provided funding for the BIRS math fair workshops that have been held in Banff on a regular basis.
Currently, our major supporter is Thinkfun - a company that develops a variety of excellent puzzles.

Puzzle Resources

• www.mathfair.com

• www.galileo.org

• www.puzzles.com

• www.thinkfun.com

• www.classic.csunplugged.org
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2018 Workshop Highlights
A major theme of this year’s Ted Lewis SNAP Math Fair Workshop was to point out connection of puzzles with the Alberta
Education K-9 Mathematics Program of Studies. Puzzles and Math Connections, a new resource developed by Ted Lewis and
Teresa Sutherland, has recently been made available to teachers. The booklet connects various math fair puzzles to specific
outcomes in the Alberta curriculum as well as the American standards.

A second document resulted from the workshop pointing out how math fair addresses the front matter of the Alberta K-9
curriculum. Some of the ways that math fair fosters a child’s mathematics education are as follows.

Student will...

• gain understanding and appreciation of the contributions of mathematics as a science, philosophy and art,

• exhibit a positive attitude toward mathematics,

• engage and persevere in mathematical tasks and projects,

• contribute to mathematical discussions,

• take risks in performing mathematical tasks,

• exhibit curiosity.

A subsidary result of this year’s workshop was the realization that the idea of math fair is not as well known amongst
Alberta teachers as we originally thought. An area of improvement that we agreed to focus on is working to spread this idea to
larger audiences. Presenting at teachers conventions and targeting math consultants accross the Alberta districtics should help.

2018 Workshop Feedback
This workshop is so helpful for giving people the confidence to try something new. I found it helpful this year to hear how
different people do their Math Fairs. It’s validating to hear that there is no one way that is necessarily better than others, as long
as kids have choices and are engaged in the process. The other piece that I really enjoy is connecting with other teachers and
having opportunities to hold conversations, share ideas, etc. I always leave feeling motivated!

Participants
Andrea, Caitlin (preservice teacher)
Ashworth, Michelle (University of Alberta)
Brown, April (Peace Wapiti Schools)
Burrows, Andrew (Edmonton Public Schools)
Connor, Janessa (Grasslands School District)
D’Astous, Hélène (Edmonton Catholic Schools)
Desaulniers, Shawn (University of Alberta)
Graves, Sean (University of Alberta)
Henderson, Kari (UofA Grande Prairie Campus)
Hildebrandt, Maxine (Mother Earth’s Children’s Charter School)
Hoffman, Janice (Edmonton Public Schools)
Hohn, Tiina (MacEwan University)
Lewis, Ted (SNAP Mathematics Foundation & U of Alberta)
Lorway, Geri (Thinking 101/University of Alberta)
Mayer, Alyssa (Edmonton Public Schools)
McLeod, Vanessa (Edmonton Public Schools)
Miller, Leann (Peace Wapiti Schools)
Nichols, Ryan (Edmonton Schools)
Pasanen, Trevor (University of Alberta)
Persaud, Barbara (University of Alberta)
Pettipas, Erin (Edmonton Public Schools)
Polushin, Beth (Grasslands School District)
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Press, Lorraine (Edmonton Catholic Schools)
Radloff, Erin (Edmonton Public Schools)
Radtke, Jennifer (Edmonton Public Schools)
Raju, Bindya (Calgary Board of Education)
Sarango-Loayza, dalton (Edmonton Catholic Schools)
Shaw, Dolph (Edmonton Public Schools)
Strungaru, Nicolae (MacEwan University)
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Restructuring IEEE VIS for the Future
(18w2230)

June 15 - 17, 2018
Organizer(s): Hans Hagen (University of Kaiserslautern), Daniel Keim (University of
Konstanz), Tamara Munzner (University of British Columbia), Stephen North (Infovisible),
Hanspeter Pfister (Harvard University)

Introduction
IEEE VIS, the premier conference in the field of visualization, is at a crossroad: for many years it has been subdivided into the
SciVis, InfoVis, and Visual Analytics conferences. There is now considerable appetite to consider alternative structures, such
as a more unified conference, that may better enhance vibrancy and growth. Our goals are to preserve intellectual diversity
while promoting organizational consistency. A subcommittee (Hagen, Keim, Munzner, North, and Pfister) has been charged by
the VIS Executive Committee (VEC) to guide this decision-making process, which started in 2016.

Two similar workshops were held in the summer of 2018, at Dagstuhl in Wadern, Germany, and BIRS in Banff, Canada,
as the cornerstones that provided a broad cross-section of the community a voice into the set of options under consideration.
Invitees included the VEC, VIS Steering Committees, selected members of recent and upcoming VIS Organizing Committees,
and many earlier-career researchers. The recommendations that arose from these workshops will shape the future of our flagship
venue and thus the field of visualization for the coming decades.

Process
The organizers invited 144 visualization researchers and practitioners who held current and recent organizing and steering
committee positions and people who participated in the early career meet-up at VIS 2017, which was mainly tenure-track
faculty who are ultimately going to lead the future of the VIS conference. The notably high acceptance rate of about 70%
indicated that the topic of the workshops resonates with the community. Ultimately we had 43 attendees at Dagstuhl and 47
attendees at BIRS, including some last minute cancellations.

The participants wrote one-page statements that were shared before the meeting. The organizers gave an initial briefing
to frame the discussion regarding goals, scenarios, and lenses through which to evaluate them, and concerns and challenges.
Participants made short oral statements highlighting key points from their one-pagers. After a brainstorming session to propose
topics for breakout meetings, the organizers grouped the topics into themes. There was a series of breakout meetings, with
plenary sessions to discuss the results and iteratively re-organize the themes based on progress made. Participants submitted
one-page follow-up reflections a few weeks after each workshop.
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Unification
A vast majority of attendees were in favor of unifying the three conferences. Although the separation of V-I-S (VAST–InfoVis–
SciVis) has a historical basis, it raises many issues. Newer attendees of the VIS conference do not understand the separation
and find it confusing. Another problem is that the separation may not align well with paper submissions, in which multiple
aspects of visualization are involved that cross-cut the three historical areas. The discussion covered both internal and external
unification.

A first step towards external unification, primarily affecting authors, was to allow authors to submit to either V-I-S confer-
ence or VIS in general and in the latter case let the PC chairs decide by which of V-I-S conference sub-committees the paper is
reviewed. Another proposal was to immediately move to a uniform set of publication mechanisms across all three V-I-S tracks
so that they all have conference-only and short papers in addition to TVCG papers. A proposal for external unification, pri-
marily affecting attendees, was to have paper sessions integrated across all three V-I-S tracks. All three steps towards external
unification could be implemented immediately, and are independent from an internal unification of the reviewing process.

Proposals for internal unification focused on how the current three-part chairship for organizers from each of V-I-S could
be improved. A PC structure based on an area chair model was discussed, where the key questions are the number of areas,
exactly what the categories are, the right balance between continuity of existing categories and vibrancy from changing them,
and the governance process of how these decisions are made. There was debate over whether starting with the existing three
conference areas as the categories, possibly with the addition of a fourth multicategory track, would be a useful first step or a
counterproductive diversion from real change.

Publication Model
The publication model was extensively discussed. One major issue is that submission to V-I-S is possible only once a year.
Some attendees expressed a desire for a rolling submission model, with several deadlines throughout the year, to increase the
number of potential reviewing rounds with the goals of decreasing the burstiness of work for both authors and reviewers and
potentially increasing review quality due to less time pressure. However, concerns were raised that increasing the number of
submissions to the VIS conference in this way would very likely hurt the submissions to other conferences such as EuroVis and
PacificVis and the TVCG journal, to the detriment of the health of the field as a whole.

Another extensive debate revolved around a journal-only option, where journal papers would only be possible through the
TVCG umbrella (rather than the current dual-track policy that VIS runs its reviewing and publishes proceedings as a special
issue and in addition all TVCG papers have talks at VIS). Although there is substantial overlap between the pool of people who
review for both venues and are VIS papers chairs or TVCG associate editors, TVCG policies could be changed abruptly by
IEEE Computer Society dictate or by decisions made by its constituencies. Concerns were raised that relinquishing our flagship
publication track to an entity that is not under the direct control of the VIS community might be unwise.

There were also suggestions on improving the review process while reducing the burden on individual reviewers and the
appropriate target for acceptance rates. There was a desire to accommodate multiple levels of effort and quality under the VIS
umbrella because some attendees have goals that do not align with publishing TVCG journal papers. Some suggested adding
partnerships with other journals. A substantial majority of attendees were in favor of short papers with a later deadline than the
full papers (in the same spirit as EuroVis).

Attendees of the workshop also made several suggestions for new publication formats including explainer sites, online
demos, and open source contributions. There was also discussion about improving the quality of some of the presentations into
more TED-like talks that would be approachable by a general audience. In general, these new contribution formats need more
consideration.

Practitioners
There was strong agreement of the need to attract more practitioners, even as there was a great deal of controversy over who
these people are and how we might connect with them more effectively. There was discussion of the many different kinds
of practitioners that we might attract and what terms these non-academics might find appropriate for themselves. There was
also debate about what kinds of content and mechanisms would align with their incentives, and many noted that papers are
not rewarded outside of academia. The suggestion of an option to offer a lower-cost one-day ticket was made, in conjunction
with the idea that the technical program could be structured to make one-day attendance more attractive to various types of
participants.
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Growth in Size, Breadth, and Depth
For the ideal growth in size, there was no consensus. Suggestions ranged from keeping the current size (about 1,000 attendees)
to aiming for gradual increases up to double in current size, to massive expansion to the size of the CHI conference.

There was a clear wish to increase the range of VIS, both concerning increasing the breadth of targeted topics and the depth
of our impact on the world including adjacent fields. The suggestions included having more parallel sessions and including new
topics such as education.

Also, there was extensive discussion of how to increase the diversity of the community to keep it healthy, covering both
demographic diversity (increasing the participation of underrepresented groups including gender, race) and intellectual diversity
(increasing the participation of people from other fields and of non-academics). In this context, several significant issues were
raised: How to start something new in the ecosystem of the VIS conference? How does the entire VIS system relate to adjacent
fields such as scientific computing and data science? How can the field do more to recognize the practical successes we have
already had, and highlight them to attract practitioners?

Application Papers
There was a clear consensus that we need more application papers. Although the suggestions on this topic were varied, an
option that had strong support was to immediately establish a separate application track for papers, with appropriate reviewing
criteria that differ from the current call for research papers. This unified track would accept papers from all areas of V-I-S,
independently of any other unification efforts that might take more time to work out for the research papers. A suggestion about
having mini-symposia on designated topics also received positive feedback.

Governance
There was concern that the upper levels of the organization (VGTC ExCom) are not flexible enough to respond to changing
situations and needs by acting on them, due to insufficient turnover and a very top-down structure with a great deal of control
from the VGTC chair. For comparison, the SIGGRAPH ExCom has nine elected positions (not just one) and one seat for a past
chair (not seven). There was agreement that the VEC would need to change composition in a unified VIS, but no discussion of
concrete alternatives to the current structure. The participants generally agreed there should be a well-defined Code of Conduct
for the conference itself, not just for the preparation of submitted papers.

Divergence
The two workshops were designed to have many commonalities but also to allow divergent themes to arise from the different
sets of participants. The most obvious points of divergence were a much more detailed discussion of the journal-only option at
Dagstuhl and the area chair publication model at BIRS.

Next Steps
The committee will report these findings to the Visualization Executive Committee (VEC). This report constitutes an executive
summary; a more detailed version, including a set of committee recommendations, will be distributed to the VEC and the
community and discussed at an open meeting at the VIS 2018 Conference in Berlin. The committee would like to thank
Dagstuhl and BIRS for their hospitality and generous support of our endeavors.

Participants
Ahrens, James (Los Alamos National Laboratory)
Bertini, Enrico (NYU)
Brehmer, Matthew (Microsoft Research)
Bremer, Peer-Timo (LLNL)
Carpendale, Sheelagh (University of Calgary)
Chen, Jian (The Ohio State University)
Chevalier, Fanny (University of Toronto)
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Collins, Christopher (University of Ontario Institute of Technology)
Dou, Wenwen (UNC Charlotte)
Dykes, Jason (giCentre, CITY - University of London)
Elmqvist, Niklas (University of Maryland, College Park)
Endert, Alex (Georgia Tech)
Fisher, Brian (Simon Fraser University)
Forbes, Angus (UCSC)
Fujishiro, Issei (Keio University)
Hagen, Hans (University of Kaiserslautern)
Henry Riche, Nathalie (Microsoft Research)
Hong, Seokhee (University of Sydney)
Hullman, Jessica (University of Washington)
Isaacs, Kate (University of Arizona)
Keim, Daniel (University of Konstanz)
Lee, Bongshin (Microsoft Research)
Levine, Joshua (University of Arizona)
Lex, Alexander (University of Utah)
Lindstrom, Peter (Lawrence Livermore National Laboratory)
Liu, Shixia (Tsinghua University)
Ma, Kwan-Liu (University of California, Davis)
Marai, Liz (University of Illinois at Chicago)
Meyer, Miriah (University of Utah)
Munzner, Tamara (University of British Columbia)
North, Stephen (Infovisible)
Papka, Michael (Argonne National Laboratory)
Perer, Adam (IBM Research)
Pfister, Hanspeter (Harvard University)
Qu, Huamin (HKUST)
Rheingans, Penny (University of Maryland)
Scheidegger, Carlos (University of Arizona)
Shen, Han-Wei (The Ohio State University)
Silver, Deborah (Rutgers University)
Strobelt, Hendrik (IBM Research)
Szafir, Danielle (University of Colorado Boulder)
Tory, Melanie (Tableau Research)
Turkay, Cagatay (City, University of London)
Yoo, Terry (National Library of Medicine, NIH)
Yuan, Xiaoru (Peking University)
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Retreat for Young Researchers in
Stochastics (18w2239)

October 12 - 14, 2018
Organizer(s): Chris Hoffman (University of Washington), Yaozhong Hu (University of Al-
berta), Ed Perkins (UBC)

Overview
This was the fourth annual meeting of the PIMS Postdoctoral Training Centre in Stochastics (PTCS). The Retreat offers an
opportunity for young researchers in pure or applied probability from Western Canada and Washington state to interact, com-
municate their recent results and ongoing research programs and initiate new collaborations. Eight of the nine postdoctoral
fellows affiliated with PTCS spoke at the meeting. The 25 participants included postdoctoral fellows from U. Washington, U.
of Alberta and UBC, Ph.D. students from U. Saskatchewan, U. Calgary, U. Alberta and UBC, and faculty from U. Calgary, U.
Alberta, U. Victoria, U. Regina, and UBC.

The response from the participants after the retreat was hugely positive.

Presentation Highlights
Moumanti Podder (UW) spoke about her joint work [1] with Ander Holroyd, Avi levy and Joel Spencer on second order
logic and random trees. A sample problem is given by the logical complexity of the statement that a tree is finite, or infinite.
Infiniteness can be expressed by an ‘existential monadic second order (EMSO) sentence’, but finiteness cannot. This logical
result does not preclude the possibility that for a class of random trees, there exists an EMSO sentence that with probability
one does detect finiteness. Podder shows this is not possible for Galton-Watson trees with a Poisson offspring law. The proof
proceeds by an elegant mapping of the problem into a set of games. The result holds for more general offspring mechanisms
but the proofs require the offspring law to have full support, although it is expected to be true much more generally. After a
question of Yinon Spinka, a discussion ensued on whether or not there is an EMSO sentence that detects finiteness with positive
probability.

Sarai Hernandez (UBC) spoke about her ongoing joint work with Omer Angel, David Croyden and Daisuke Shiraishi on
scaling limits of Uniform Spanning Trees (UST) in 3 dimensions. In dimension 2 the scaling limit is SLE(8) and in high
dimensions it is believed to be super-Brownian motion, but in intermediate dimensions (like 3) the non-Gaussian limits that are
anticipated are notoriously difficult to find, let alone study. For Loop Erased Walk, Kozma [2] had shown that along dyadics
there is a scaling limit in 3 dimension as random sets with the Hausdorff metric but little is know about this non-Gaussian
limit. Given Wilson’s algorithm, there is a close connection here with limits of UST’s. The striking result of Sarai and her
co-authors is that rescaled UST’s in 3 dimensions converge in the space of paths (and so also in the space of random sets) to a
limiting object. This ancestral structure gives us some additional insight into this limiting object. They are currently working
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on extending this groundbreaking result to convergence in the space of metric spaces equipped with the Hausdorff-Gromov
topology.

Liping Xu (UW) presented some very recent work with Zhenqing Chen on pathwise uniqueness for finite-dimensional
stochastic differential equations (SDE’s) with multiplicative noise and non-Lipschitz drifts driven by a Lévy process. The clas-
sical results here for Brownian motion with additive noise were resolved some forty years ago by Zvonkin [4] and Veretennikov
[3]. The analogue of Zvonkin’s original transformation is still the tool being used but obtaining the required regularity of this
map for integral operators when dealing with multiplicative noise is a much more difficult problem. Xu first presented recent
work of Chen, Zhang and Zhao which establishes pathwise uniqueness for “α-stable-like” Lévy processes and β-Hölder con-
tinuous drift for β > 1 − α. The latter is sharp as classical results of Tanaka, Tsuchiya and Watanabe showed. However, the
rather specific nature of the noise should not be needed here. Dr. Xu’s recent result extends this work by allowing one to add
much more general Lévy processes which have an α-stable-like component. The result is intuitive but establishing the analogue
of Zvonkin’s transformation in this non local setting when α < 1 is quite interesting.

Yinon Spinka (UBC) spoke on the problem of determining whether or not a given translation-invariant random field on Zd
is a finitary factor of an i.i.d. process (ffiid). Spinka presented various sufficient conditions for a translation invariant process
on Zd to be ffiid. The conditions include a spatial mixing properties for Markov random fields, monotonicity and uniqueness
of the Gibbs measure. Quantitative results on the tails of the coding radius were also presented (exponential or polynomial
decay of tails). Here stronger mixing properties of the Markov random fields lead to faster decay of tails. Finally, he presented
applications to various well-known models from statistical physics such as the Potts model, proper colorings and the random
cluster model.

The lively Open Problems Session featured 5 problems from math finance and insurance, population genetics, and coding
theory. Noah Freeman asked for the distribution of the ordered excursion length of the sticky Brownian bridge–note that the
conditioning here is not singular as . Yinon Spinka asked Noah about considering the Brownian path up to the time when the
local time hits 1 (instead). Noah pointed out this law in the non-sticky case is different. Ed Perkins discussed it with Noah
hiking up Tunnel Mountain and felt Yinon’s model may be more relevant to the sticky case than the bridge case and they agreed
that conditional on the local time at 0, one should get a scaled Poisson-Dirichlet law and so it reduces to the law of this local
time which looks quite accessible. Spinka asked a follow up question from his lecture on finitary coding. Tony Ware asked
about ‘Hawaiian options’: this is an option which is traded in energy markets, where on exercise of the option (call or put) the
holder receives an option of the other type, put or call. The infinite time horizon causes some difficulty in valuation, and there
was a lively discussion on approaches to the problem.

Outcome of the Meeting
The level of talks at this Retreat was extremely high in terms of content and presentation. Five of the ten lectures were given
by outstanding young female probabilists from U. Alberta, U. Calgary, U. British Columbia and U. Washington. The Open
Problems Session was also particularly successful. For example, the day after his presentation Tony Ware announced that as a
result of the discussion he had made significant progress on the Hawaiian options problem.

A number of the participants wrote after the meeting, all expressing thanks for a stimulating meeting. Yaozhong Hu (CRCI
at U. Alberta) pointed to new connections made with faculty and young researchers at U. Calgary.

During the meeting it was agreed that after the funding for the Postdoctoral Training Centre for Stochastics stops, we should
continue these annual meetings featuring young researchers in Probability from PIMS sites. It was felt that a 3-day meeting
might be better to offer more time for informal discussion. With recent hires in Probability at U. Alberta and U. Victoria, both
those sites were discussed. Tony Ware suggested we meet for a day or two at U. Calgary and then move on to BIRS for another
two days.

Participants
Barlow, Martin (University of British Columbia)
Barrera Vargas, Gerado (University of Alberta)
Forman, Noah (University of Washington)
Foxall, Eric (U. Alberta)
Hernandez Torres, Sarai (University of British Columbia)
Hu, Yaozhong (University of Alberta)
Kozdron, Michael (University of Regina)
Liu, Shuo (University of Alberta)
Murugan, Mathav (University of British Columbia)
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Perkins, Edwin (University of British Columbia)
Podder, Moumanti (University of Washington)
Qi, Weiwei (University of Alberta)
Ray, Gourab (University of Victoria)
Schmirler, Matthew (University of Saskatchewan)
Sezer, Deniz (University of Calgary)
Shen, Zhongwei (University of Alberta)
Spinka, Yinon (University of British Columbia)
Swishchuk, Anatoliy (University of Calgary)
Wang, Xiong (University of Alberta)
Wang, Shirou (University of Alberta)
Ware, Tony (The University of Calgary)
Wei, Wenning (University of Calgary)
Xu, Liping (University of Washington)
Zeller, Gabriela (Technical Universitat Munchen)
Zhang, Junxi (Yaozhong Hu)
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CS-Can/Info-Can State-of-the-Discipline
and Planning Retreat (18w2240)

November 16 - 18, 2018
Organizer(s): Kellogg S. Booth (UBC), Yvonne Coady (University of Victoria), Doina Precup
(McGill University), Carey Williamson (University of Calgary)

A representative group drawn from the Canadian Computer Science (CS) community gathered in Banff in November 2018
to discuss the future of our discipline. The attendees included a diverse selection of about 30 Canadian CS academics, students,
and industry representatives, all of whom were extremely passionate about CS research, education, and innovation. The retreat
was organized by CS-Can/Info-Can [10], which is the new national organization for Computer Science in Canada. The retreat
helped foster a shared vision for the organization, and identified how it can better support the evolving needs of CS in Canada.

Overview of the Field
Computer Science as a discipline is about 50 years old, having emerged from its mathematical and engineering roots in the
late 1960’s and early 1970’s at most academic institutions in Canada, and subsequently coming to the forefront as a significant
scientific discipline within the past three decades.

Modern CS is typically characterized into three branches: Theory (e.g., algorithms, graph theory, complexity theory, numer-
ical analysis, optimization), Systems (e.g., operating systems, networks, distributed systems, computer architecture, databases,
programming languages), and Applications (e.g., artificial intelligence, computer graphics, human-computer interaction (HCI),
software engineering, gaming). Canada is a recognized world leader in several areas of CS, such as Artificial Intelligence (AI),
Theory, and HCI.

The CS discipline continues to grow and evolve, with Machine Learning (ML), Data Science, and Cyber-Security as three
examples of areas of significant growth at many Canadian universities [9]. There are also many emerging multi-disciplinary
areas based on important applications of CS that are increasingly receiving attention (e.g., augmented reality, digital humanities,
health informatics, and social computing).

Recent Developments and Open Problems
The most vexing problem for CS in Canada has been the lack of a visible and effective national organization. Although the
former CACS/AIC (Canadian Association of Computer Science/Association d’Informatique Canadienne [1]) had existed for
about 25 years, it was viewed as a “heads only” administrative organization based on a departmental membership model that
had minimal engagement with research funding organizations such as NSERC, and low visibility among faculty members
within its constituent departments. The recent transition from CACS/AIC to the new CS-Can/Info-Can organization (launched
in September 2016) is intended to help the organization have much more impact on the discipline and on the role of CS within
Canada. CS-Can/Info-Can is modeled in part on the 40-year-old Computing Research Association (CRA [6]) in the United
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States, as well as on other national academic organizations in Canada (e.g., Canadian Association of Physicists [2], Canadian
Mathematical Society [4]). Its mandate is CS research and education.

One general trend in CS globally right now is growing enrollments, especially at undergraduate levels, with a 20-50%
increase in students in recent years [7, 8, 11]. The same trend has occurred in CS departments across Canada, as students see
new opportunities in areas such as ML, data science, social networking, mobile computing, and entrepreneurship. While this
is great for our discipline, it is difficult to accommodate these students without additional budgetary resources, and many CS
departments in Canada are facing this challenge right now.

Another pernicious problem in CS and Engineering disciplines is achieving diversity, especially for female enrollment,
which is typically only 10-15% of the undergraduate student population at most institutions. Curiously, CS enrollment was
much closer to being gender-balanced in the 1980’s, but has seen a steep decline in female enrollment since then. While recent
efforts at remediating this problem are starting to have an impact, with female enrollments nearing 25-30% at some institutions,
there is still a long way to go to reach gender parity. Furthermore, the CS pipeline needs to consider all aspects of diversity,
not just gender (which itself is undergoing a significant transition from its historical binary dichotomy to a broader and more
nuanced understanding), since there are many other under-represented groups (e.g., First Nations). Addressing these diversity
issues is important for the long-term health of the discipline.

Another perennial issue for CS researchers is finding the right balance between fundamental (theoretical) research and
applied (practical or industry-oriented) research. The trend in our national funding agencies is toward partnership programs
featuring university-industry interaction. However, an over-emphasis on this type of applied research has the potential to
polarize our community into “haves” and “have-nots”. Furthermore, Canada’s Information and Communication Technology
(ICT) industry is uniquely characterized by a preponderance of Small and Medium Enterprises (SMEs), not all of whom have
the resources to undertake partnership programs like larger companies do. This is especially true of start-up companies that
do not have well established research groups that can partner with academic researchers. As a result, CS as a discipline feels
disadvantaged by some of these granting programs. While multi-disciplinary collaborative research programs are definitely a
viable opportunity for CS, oftentimes the focus is on using CS as a tool to advance research in other disciplines, rather than
focusing on CS research itself. As a result, CS researchers sometimes see themselves marginalized in these programs, which
is why CS is often under-represented in major grant applications. These issues have been well-documented [13] by the former
(2011-2016) NSERC CS Liaison Committee [12], which in turn helped spur the creation of CS-Can/Info-Can.

Presentation Highlights
The retreat was structured into a combination of plenary sessions for all attendees, and working breakout sessions for subgroups
of the attendees.

The opening plenary session helped set the general context and goals for the retreat. Specific highlights included the
perspectives shared by the representative from the US-based CRA (Andy Bernat), as well as the strategic views on governance
and policy articulated by Arvind Gupta (University of Toronto) from his senior leadership experiences at MITACS and UBC.
Other plenary sessions were used for brainstorming vision and mission statements for CS-Can/Info-Can, and to share results
from the breakout sessions.

The breakout sessions were designed to address particular issues identified prior to the retreat and refined on site. There
were six breakout sessions, with themes on Membership, Education, Research, Industry, Outreach, and Communication. Each
attendee participated in three of the six breakout sessions, which were run concurrently (two at a time). The breakouts allowed
deeper small-group discussions on the chosen topics, with results brought back for sharing with the group as a whole in
subsequent plenary sessions.

The notes and blackboard photos from all of the sessions have been collected and archived into the Google Documents
maintained by the leadership of CS-Can/Info-Can as resources for the working groups that will continue activities initiated at
the retreat. A summary of the discussions and recommendations will be shared with the Canadian CS research community at
the next CS-Can/Info-Can Annual General Meeting, which will take place at McGill University on June 3-4, 2019.

Progress Made
Substantial progress was made on new vision and mission statements for CS-Can/Info-Can. We need a vision statement that
is pithy, meaningful, and easy to articulate both within and outside of the CS community. The mission statement will make
this vision more concrete, by outlining the specific thrusts to address the needs of our CS stakeholder communities. A working
group was identified at the retreat and tasked with completing our vision and mission statements, which will then be shared
with the larger group.
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The retreat helped build a stronger sense of community for those in leadership positions within CS in Canada, who share a
similar vision for our discipline, and much passion for it as well. One tangible result was raising the collective awareness about
CS initiatives taking place across the country (e.g., outreach, K-12 CS education, industry collaborations, research funding op-
portunities, Can-CWiC [3], CUCSC [5], UCOSP [14]), several of which we believe can be brought together under the umbrella
of CS-Can/Info-Can. Another tangible result was the formation of a set of working groups to follow up on selected retreat
topics (e.g., Diversity Committee, Vision/Mission statement working group, Industry Advisory Board, mentoring network for
large research grant applications).

Outcome of the Meeting
The retreat was viewed as a success by the organizers, as well as the attendees. One major outcome was the set of initial steps
in defining a vision for CS in Canada, which will help CS-Can/Info-Can in its ongoing strategic planning. Another important
outcome was clearly identifying the many different stakeholder groups for CS in Canada (e.g., government, industry, K-12,
funding agencies, under-represented groups), and identifying strategies to address their specific needs. Last but not least, the
retreat helped build the “people network” of key CS leaders (past, present, and future) across the country, and identify resources
to help move our discipline forward.

As with any strategic planning exercise, the hard part still remains, namely identifying and carrying out an actionable plan
that makes a difference. As a group, however, we are extremely optimistic about the future of CS in Canada as a research-
based academic discipline and as an important contributor to the Canadian economy and society at large. Our retreat at BIRS
has helped galvanize a shared vision for CS that will allow CS-Can/Info-Can to become a much more effective and impactful
national organization.
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Chapter 36

The crystal structure of the plethysm of
Schur functions (18frg224)

April 1 - 8, 2018
Organizer(s): Mike Zabrocki (York University), Franco Saliola (Université du Québec à Montréal)

Our focused research group consisted of Laura Colmenarejo, Rosa Orellana, Franco Saliola, Anne Schilling and Mike Zabrocki.
We worked at the BIRS station from April 1 until April 8 (except Rosa Orellana who left on April 6).

The problem
The irreducible polynomial representations of GLn are indexed by partitions with at most n parts. Given such a representation
indexed by the partition λ, its character is the Schur polynomial

sλ =
∑

T∈SSYT(λ)

xweight(T ). (36.0.1)

Composition of these representations becomes composition of their characters, denoted sλ[sµ] and this operation is known as
the operation of plethysm. Composition of characters is a symmetric polynomial which Littlewood [Lit44] called the (outer)
plethysm. The objective of our focused research group project is the resolution of the following well known open problem.

Problem 36.0.1 Find a combinatorial interpretation of the coefficients aνλ,µ in the expansion

sλ[sµ] =
∑

ν

aνλ,µsν . (36.0.2)

In the last more than a century of research in representation theory, the basic problem of understanding the coefficients aνλ,µ
has stood as a measure of progress in the field. A related question that we felt was an important first step in the resolution of
Problem 36.0.1 is the following second approach to understanding the underlying representation theory.

Problem 36.0.2 Find a combinatorial interpretation for the multiplicity of an irreducible Sn module indexed by a partition λ
in an irreducible polynomial GLn module indexed by a partition µ.

We will discuss briefly below why the resolution of Problem 36.0.1 will also solve Problem 36.0.2, but we generally believe
that the second question we are considering can be used as a guide for the resolution of the first.

We arrived at Banff with two different approaches to this research. Some preparation for this meeting was carried out by email
in the weeks before in a discussion about how the different ways of looking at the underlying combinatorics and representation
theory are related.
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Overview of the direction of research
With five people working intensely on this problem we mainly focused on two different (but ultimately equivalent) approaches.
Working as two groups, we followed the main ideas of each others progress with the intention that ideas about what would be
successful from one approach could be translated to the other .

The first approach was to use the restriction coefficients from GLn to Sn as a guide to computing the coefficients aλ,(r) (a
subset of the full plethysm problem, but we expect that this base case could serve as a guide to the more general plethysm
problem). The Schur function sµ is the character of an irreducible polynomialGLn module and, since the symmetric group Sn
is embedded in GLn, it can also be considered as the character of an Sn module. We are then looking for the multiplicity of an
irreducible Sn module indexed by a partition λ in the irreducibleGLn module indexed by the partition µ. There is a theorem due
to Littlewood [Lit50] that this multiplicity is equal to the coefficient of sµ in the plethysm expression sλ[1+s1 +s2 +s3 + . . .].
Due to other combinatorial considerations, it suffices to understand the plethysm sλ[sr] to resolve this question.
An idea from a talk by Arun Ram [Ram2017] that we had discussed before arriving at BIRS encouraged us to look closely
at an insertion algorithm that combinatorially described the decomposition of V ⊗kn into Sn irreducibles. The decomposition
of V ⊗n into GLn irreducible modules is well understood combinatorially through crystals and the Robinson-Schensted-Knuth
insertion algorithm. We began with a new insertion algorithm (similar to, but not the same as, the insertion algorithm Ram
described in his talk) and then found that the dynamic reading word of Loehr and Warrington [LW12] could be used as a guide
to make it compatible with the usual crystal structure of V ⊗k. This approach looks extremely promising and it has been the
subject of two follow-up research meetings in April.

The second approach that we considered in parallel with the first was to put a crystal structure on combinatorial objects repre-
senting the monomial expansion of plethysms. The papers of Marc van Leuwen [vL99] extending the work of Carré and Leclerc
[CarLec95] describe the crystal structure of combinatorial objects representing the monomial expansion of s2[sλ] and s11[sλ]
known as domino tableaux. Our main focus here was to extend the known crystal structure on these domino tableaux to ribbon
tableaux to compute sµ[sλ] for partitions of µ larger or equal to 3. A note at the end of [vL99] indicated that this idea was tried
and was known to be difficult, but we had hoped that almost two decades of research and understanding of crystals might make
this approach amenable. In particular, the technique of tableaux switching, which recently also has played an crucial role in
Schubert calculus, seems to be an important ingredient in this approach.
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Figure 36.1: A connected component of the crystal structure on the set of domino tableaux of shape 4444. This
component corresponds to the Schur function s422 appearing in the plethysm s2[s22] = s2222 +s3311 +s422 +s44.
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Stability Indices for Nonlinear Waves and
Patterns in Many Space Dimensions
(18frg225)

June 17 - 24, 2018
Organizer(s): Margaret Beck (Boston University), Graham Cox (Memorial University), Christo-
pher Jones (UNC Chapel Hill), Yuri Latushkin (Missouri)

Overview of the Field
Assessing the stability of distinguished states of a nonlinear partial differential equation is a key step in understanding the
behavior of the physical system modeled by the equation. Stability here means the robustness of the dynamics to perturbations
in initial conditions from a particular state. The distinguished state may be a nonlinear wave, pattern or coherent structure
arising in applications such as optics, fluids, chemical reactions, neuroscience, and ecology. Its stability indicates its physical
realizability, while any instability suggests more complex dynamics, and understanding the nature of such instabilities can be
used as a jumping off point for understanding the organization of the nonlinear dynamics away from the unstable state.
For instance, consider a system of reaction-diffusion equations

ut = ∆u+ F (u)

on a bounded domain Ω ⊂ Rn, where u(x, t) ∈ RN and F : RN → RN . It is well known that the stability of a stationary
solution û is determined by the spectrum of the linearization

Lv = ∆v +∇F (û)v.

The case of a scalar ODE, where n = N = 1, is well understood. In this case Sturm–Liouville theory relates the stability of û
to its geometric properties (e.g. number of critical points). The Maslov index generalizes this theory to systems of ODEs in the
special case that the operator L is selfadjoint; see [3] for a recent application.
The Maslov index has also been used to obtain stability criteria for multi-dimensional problems, but in general is very difficult
to compute. Other methods that exist in multiple dimensions, such as the Evans function on channel domains, and variational
methods for Hamiltonian systems, apply only in special cases. For the above reasons, our workshop emphasized the following
generalizations of Sturm’s oscillation theory:

1. non-symmetric systems of ODEs—we focused on extending the definition of the Maslov index to non-Hamiltonian
systems, which allows us to study non-selfadjoint eigenvalue problems Lv = λv.

2. PDEs (selfadjoint or otherwise)—here we focused on developing new tools for multi-dimensional stability, as well as
finding new tools for efficiently computing the already developed Maslov index.
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Recent Developments and Open Problems
The following sections summarize the major topics discussed during our program, including recent developments, progress
made during the course of the workshop, and topics of future research.

The fat Lagrangian Grassmannian and the generalized Maslov index
Let (V, ω) be a symplectic vector space of dimension 2n. The Lagrangian Grassmannian is the submanifold of the Grass-
mannian of n-planes Λ ⊆ Grn(V ) consisting of n-planes that are isotropic with respect to ω. It is a homogeneous space
diffeomorphic to U(n)/O(n) and has fundamental group π1(Λ) ∼= Z. Therefore continuous loops f : S1 → Λ are classified
up to homotopy by an integer invariant, called the Maslov class.
Fix a P ∈ Λ and define Z := {W ∈ Λ | W ∩ P 6= {0}} to be the set of Lagrangian n-planes which intersect P non-
trivially. We call Z the “train” or the “Maslov cycle.” It represents a homology class which is Poincaré dual to a generator of
H1(Λ,Z) ∼= Z. Consequently, if a loop f : S1 → Λ intersects Z in a sufficiently generic way, the Maslov index of f is equal
to the geometric intersection number of f with Z (see [1, 12]).
An open problem is to construct a “Fat Lagrangian Grassmannian”; that is, a subspace F ⊆ Grn(V ) strictly larger than Λ
which satisfies

i) H1(F ;Z) ∼= Z so that one can assign a Maslov index to loops in F , which

ii) equals with the geometric intersection number with the train ZF := {W ∈ F |W ∩ P 6= {0}}.

In the case n = 2, such an F has recently been constructed; this was presented by Tom Baird at the workshop. Graham Cox
presented some work he had done relating the generalized Maslov index to the Turing instability phenomenon.
During discussions, it was observed that F inGr2(V ) is contains the complement of the Lagrangian Grassmanian of a different
symplectic structure. This works as follows: Identify V = H with a one dimension quaternionic vector space. In particular, H
admits three orthogonal complex structures I, J,K satisfying the quaternionic relations. Each of these determines a symplectic
form ωI , ωJ , ωK in the standard way. Suppose that P ⊂ V is Lagrangian with respect to both ωI and ωJ . Then the fat La-
grangian Grassmannian FI corresponding to I contains the complement of the Lagrangian Grassmannian ΛJ determined by J .
This observation implies that Hamiltonian flow with respect to ωJ will preserve a dense open subset of FI . Furthermore, given
appropriate initial conditions, it should be possible to violate the Hamiltonian property to some degree while still remaining
inside of FI . This hopefully will allow Maslov index methods to be applied in non-Hamiltonian situations.

Sturm oscillation theory for non-local operators
Non-local operators naturally appear in fluid mechanics, mathematical physics, mathematical finance, and in probability theory
(see, for example, [2, 4, 5, 9]). The spectral properties of such operators play an important role in the study of stability of
solitary waves for several nonlinear dispersive models, e.g., generalized Benjamin–Ono equation, Benjamin–Bona–Mahony
equation, and the fractional non-linear Schrödinger equation. One of the main open problems in the spectral theory of the
associated linearized operators is finding sharp estimates on the number of nodal domains of the eigenfunctions.
Several recent results (cf., e.g., [2, 5, 9]) rely on an elegant reformulation of the problem in terms of the Dirichlet-to-Neumann
maps for higher-dimensional local operators, the Courant nodal domain Theorem, and the combinatorics of noncrossing parti-
tions. The obtained bounds do not match their counterparts from the standard (i.e., local) Sturm oscillation theory and have not
been shown to be sharp.
Since most of the classical tools (such as Sturm comparison results, shooting argument) do not seem to be applicable in the
study of nodal domains for non-local operators, it is natural to approach this topic using the recently discovered symplectic
properties of the operators in question. We therefore propose to investigate the “Maslov-index” program for the fractional
Laplacian.
Problem 1. Reformulate the eigenvalue problem for the non-local operators in terms of the intersection of certain Lagrangian
planes (i.e., generalize [10, Theorem 3.2] to the case of fractional Laplacian).
Problem 2. Establish a relation between the eigenvalue counting function and the Maslov index of the Lagrangian planes (i.e.,
extend [10, Theorem 3.3] to the case of fractional Laplacian).
Problem 3. Investigate monotonicity of the crossings/conjugate points for a fixed spectral parameter.
Problem 4. Estimate the Maslov index to obtain a bound on the eigenvalue counting function in terms the number of zeros of
the eigenfunctions.
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The Souriau map and the Evans function
One of the main achievements of the workshop was realization of the fact that Maslov index computations are closely related
to a construction of the infinite dimensional Evans function. The Evans function is a Wronskian-type determinant which is an
analytic function of the spectral parameter λ. It is equal to zero at the points of the spectrum of the differential operator under
consideration. The Evans function is usually constructed by means of certain subspaces parametrized by the spectral parameter.
The intersection of these subspaces is nontrivial if and only if the respective value of the spectral parameter λ is a zero of the
Evans function. To detect if these subspaces indeed have a nonzero intersection we propose to employ the widely used in the
Maslov index theory Souriau map W (λ) (cf. [7, 8]). This is a unitary operator whose spectral flow through −1 is a count,
including both multiplicity and direction, of the number of times these subspaces intersect. We obtained some preliminary
results indicating that −1 belongs to the spectrum of W (λ) if and only if certain perturbation determinant, E(λ), constructed
by means of W (λ), is equal to zero. Thus, E(λ) may serve as an infinite dimensional Evans function. We stress that one of
many possible definitions of the Maslov index is given in terms of the spectral flow of eigenvalues of the Souriau map through
−1.

Geometric phase
An alternative approach to counting the eigenvalues inside a simple closed curve is given by a geometric phase defined in the
Hopf Bundle and its generalizations. The idea is that a stability index can then be determined by taking a curve that would be
known a priori to contain any potential unstable eigenvalues. The theory was developed in a paper by Grudzien, Bridges and
Jones [6] in the context of traveling waves. There is an alternative formulation of phase in terms of Stiefel bundles and one topic
discussed was whether this phase contains any extra information. The structure group of the bundle will be U(n) in this case
and not simply S1. There is therefore the potential for extra information. The geometric phase also offers the possibility of an
alternative index for stability in problems on multi-dimensional domains. This is the main focus of our effort for generalizing
the geometric phase. It is analogous to defining the Evans Function for a multi-dimensional domain, but offers the possibility of
circumventing some of the technical issues in defining the full Evans Function. The formulation of a geometric phase will then
be based on infinite-dimensional bundles. We considered the work of Quillen [11] and others as a basis for this formulation.
While we did not resolve the problem and, indeed it looks challenging, we were able to lay out a clear plan for moving forward.

The Spatial Evolutionary System (SES)
Another major topic of discussion was the spatial evolutionary system—a reformulation of a semilinear elliptic PDE as a first-
order infinite-dimensional dynamical system. In its simplest form it says that the PDE ∆u = F (u) on Rn is equivalent to the
system

df

dt
= g,

dg

dt
= F (f)− 1

t2
∆Sn−1f − n− 1

t
g,

where f and g are functions on Sn−1, parameterized by t. More generally, it describes the evolution of the Cauchy data

f(t) = u
∣∣
∂Ωt

, g(t) =
∂u

∂n

∣∣∣∣
∂Ωt

on a one-parameter family of hypersurfaces, where {Ωt} is a family of domains that shrinks to a point as t→ 0.
So far we have been able to prove the equivalence of the SES to the original PDE in a wide variety of settings. Moreover,
we have shown that the linearized equation admits an exponential dichotomy. This means at each time t0, the space of data
(f(t0), g(t0)) can be split into two complementary subspaces: one consisting of solutions that grow exponentially as t→ −∞,
and one of solutions that decay exponentially in the same limit. The latter of these two spaces, the so called unstable subspace,
arises in the construction of the multi-dimensional Maslov index and Evans function. Thus the SES gives a new dynamical
interpretation of this object, which we believe will be useful in linear stability computations.

Outcome of the Meeting
At the meeting we made significant progress on ongoing projects (the SES and the generalized Maslov index) and new projects
(the multi-dimensional Evans function), and started discussing new stability tools as well as new applications of our existing
machinery (the geometric phase, oscillation theory for non-local operators). Overall the meeting was very productive, and led
to many new ideas with the potential for significant impact on the study of dynamical stability in multiple spatial dimensions.
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Chapter 38

Investigating Linear Codes Via
Commutative Algebra (18frg220)

July 22 - 29, 2018
Organizer(s): Susan Cooper (University of Manitoba), Alexandra Seceleanu (University of
Nebraska–Lincoln), Stefan Tohăneanu (University of Idaho), Adam Van Tuyl (McMaster Uni-
versity)

Overview of the Field
The importance of coding theory to the digital era that we live in cannot be overstated. Our research meeting aimed to explore
the relationship between the theory of error-correcting codes and the more classically studied fields commutative algebra and
algebraic geometry, with the goal of establishing a toolset of joint relevance.
A linear code of length s is a linear subspace C of a finite dimensional vector space Ks over a finite or infinite field K. A linear
code of length s and dimension dimK(C) = n is often viewed as the row space of a n× s matrix G. The Hamming distance d
of C is the minimum number of nonzero entries in a nonzero element (codeword) in C. The numbers s, n and d are called the
parameters of C, and the code with these parameters is termed an [s, n, d]-code. A central theme to the study of codes is the
determination of their minimum Hamming distance, which is a measure of the code’s error correction capability.
Hamming distance has a nice geometric interpretation: if the columns of the generating matrix G are viewed as coordinates
for a set of points X = {P1, . . . , Ps} in projective space Pn−1 and if these points are distinct, then, setting hyp(X) = the
maximum number of points among P1, . . . , Ps that are contained in a hyperplane, gives d = n− hyp(X). This description of
Hamming distance gives a first glimpse at the crucial role that the geometry of zero-dimensional projective schemes plays in
coding theory.
It may be the case, however, that some of the columns of the generating matrix G are proportional vectors. Note that adding
proportional columns does not change the set of points X , however it does change the row space of G and hence the code
C. In this situation, one must keep track both of the set of distinct points arising from the columns of the generating matrix
and their respective multiplicities. This data is represented algebraically by means of a fat (non-reduced) point scheme Y =
m1P1 + · · · + msPs, where mi is the multiplicity of the point Pi, i.e., the number of columns of G proportional to the
coordinate vector of Pi.
Evaluation codes are a class of codes of great practical importance which can be defined in the language of polynomials. Let
S = K[t1, . . . , tn] = ⊕∞d=0Sd be a polynomial ring over K with the standard grading and let X be a finite subset of Pn−1

as above. The vanishing ideal of X is the ideal generated by the homogeneous polynomials vanishing on X . For each d ≥ 0
there is a linear map of K vector spaces

evd : K[t1, . . . , tn]d → Ks f 7→
(
f(P1)

f0(P1)
, . . . ,

f(Ps)

f0(Ps)

)
, where f0(t1 . . . , tn) = td1.
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The kernel of evd is precisely the set of degree d polynomials in I(X), denoted I(X)d, and the image of evd is a linear code
denoted by Cd(X) and termed an evaluation code. The case d = 1 gives the linear code associated to the matrix G whose
columns are the points in X; this represents the K-linear map ev1.

Recent Developments and Open Problems
The correspondence between reduced point schemes in projective spaces and codes has been established and studied from a
commutative algebra point of view in [7] and [5]. In [11], numerical invariants of point schemes are used to bound invariants
of the corresponding linear codes and vice-versa. Specifically Tohăneamu and Van Tuyl prove the following bounds hold true
in the case Y = m1P1 + · · · + msPs: d ≥ α(Y ) − m(Y ). Here α(Y ) is the smallest degree of a hypersurface passing
through P1, . . . , Ps with multiplicities m1, . . . ,ms respectively and m(Z) = max{m1, . . . ,ms}. A natural generalization is
the following

Problem 1 Investigate whether the stronger inequality d ≥ reg(X) −m(X) + 1 ≥ α(X)−m(X) holds, where reg(X) (the
Castelnuovo-Mumford regularity) is the least degree in which the Hilbert function of X agrees with the number of points of X
(counted with multiplicity).

The classical notion of Hamming distance, which is central to coding theory, has been generalized to a family of generalized
Hamming weights in [12]. One can ask

Problem 2 Is there a characterization for generalized Hamming distances for evaluation ideals in terms of the geometry of the
set of reduced points X or the fat point scheme Y analogous to the complement to the maximum number of points contained in
a hyperplane characterization given in section 1?

We have seen in section 1 how generator matrices and evaluation maps produce codes, but in turn these matrices and maps
respectively can be produced from graphs or, more generally, from simplicial complexes. Let G = (V,E) be a simple graph
on vertex set V = {1, . . . , n}, and with s = |E| edges. We assume that G is connected. A cutset of G is a set of edges in E
such that when it is removed it disconnects the graph. Consider the linear code with generating matrix of size n × s, where
each column corresponds to an edge [i, j] ∈ E(G) and the entries of that column are zeros, except for the i-th and j-th entries
which are 1 and -1 respectively. By [11], the minimum distance d of the linear code generated in this manner is equal to the
size of the smallest cutset of G. If G is a planar graph, then this is equal to the smallest size of a simple cycle in the dual graph
of G. We ask

Problem 3 1. When is the linear code constructed from the a graph as described above a minimum distance separable
(MDS) code? That is, when is d = s− n+ 2, where n is the number of vertices, s the number of edges and d is the size
of the smallest cutset?

2. Is the code associated to the dual graph G⊥ the dual to the code constructed from the graph G?

WhenK is a finite field, the basic parameters (length, dimension, and minimum distance) of the evaluation codes Cd associated
to the set Ts−1 = {[(x1, . . . , xs)] ∈ Ps−1 : xi ∈ K∗ for all i} are known for each d ≥ 0 (see [6] and [9]). The finite set Ts−1

is called the projective torus of dimension s − 1 over K and I(Ts−1) = (tq−1
2 − tq−1

1 , . . . , tq−1
s − tq−1

1 ). In general, when
considering evaluation codes for proper subsets X ⊂ Ts−1, the basic parameters of Cd, especially the minimum distance, can
be hard to determine even when d = 1. Let G be a simple graph with p vertices V = {1, . . . , p} and q edges, and let X be the
algebraic toric set parameterized by all monomials yiyj such that [i, j] is an edge of G, that is the coordinates of every point in
X are given by evaluating all the monomials yiyj corresponding to edges of the graph at a point in Ts−1. In this case, we say
that Cd(X) is the parameterized linear code of order d associated to X.

Problem 4 For certain families of graphs, determine the generators of I(X), the regularity of S/I(X), and the minimum
distance of the linear codes Cd(X) associated to the given graphs (the length of the codes, |X|, is already known by [8]).

Presentation Highlights
Susan Cooper introduced the paradigm that relates linear codes and the geometry of zero-dimensional schemes in projective
space, as described in the first section. The focus of her talk was on obtaining bounds of the Hamming distance for linear
codes using algebraic parameters of homogeneous ideals in polynomial rings. In particular, she highlighted two results from
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[11] which give bounds for a linear code with generating matrix G whose columns correspond to a fat point scheme Y =
m1P1 + · · · + msPs on a set of points X = {P1, . . . , Ps}. On one hand, if m1 ≥ m2 ≥ · · · ≥ ms then the following
inequalities hold for the Hamming distance d

m1 + · · ·+md(X) ≥ d ≥ mhyp(X) + · · ·+ms.

On the other hand, if m1 = · · · = ms = m (the case of a uniform fat point scheme), then d can be bounded in terms of α(X),
the minimum degree of a hypersurface passing through all the points in X and in terms of a homological invariant of I(X)
termed the minimum socle degree. The speaker proposed several strategies, such as trimming, a procedure originating in the
paper [1], which gives a good handle on the Hilbert function of a fat point scheme and asked how minimum distance behaves
under this operation.
Ştefan Tohăneanu talked about interpreting the Hamming distance of a code in terms of ideals generated by products of linear
forms. Let `1, . . . , `s ∈ R := K[x1, . . . , xn] be linear forms such that 〈`1, . . . , `s〉 = 〈x1, . . . , xn〉 and let C be the code
whose generating matrix has as columns the coefficients of the linear forms. For 1 ≤ a ≤ s, we define the ideal generated by
a−fold products of these forms to be the ideal of R

I(a) := 〈{`i1 · · · `ia |1 ≤ i1 < · · · < ia ≤ s}〉.
De Boer-Pellikaan [4, Exercise 3.25] noticed that d(C) = max{a|ht(I(a)) = k} (here ht denotes the height of an ideal), a
fact which can be extended to recover the generalized Hamming weights as well. The speaker presented a conjecture from
[10] which states that the ideals I(a) have linear graded minimal free resolutions, as well as partial results which support this
conjecture.
Maria Vaz Pinto talked about evaluation codes on toric sets. When K is a finite field and

X = { [(xv111 . . . x
v1p
p , . . . , xvs11 . . . x

vsp
p )] : xi ∈ K∗ for all i } ⊆ Ps−1,

one says that X is the algebraic toric set parameterized by yv1 , . . . , yvs (smonomials in n variables, yvi = yvi11 . . . yvinn , vij ∈
N). The speaker considered the parameterized linear code of order d associated to X, Cd(X). She highlighted some remarkable
properties of these parametrized linear codes, such as the dictionary establishing equivalences between the length of the code
and the degree (multiplicity) of the vanishing ideal I(X) or the dimension of the code and the value of the Hilbert function for
S/I(X) in degree d. She pointed out that a good description for the Hamming distance is still elusive in many important cases.
Rafael Villarreal proposed in his talk a broad generalization for the notion of Hamming distance. Instead of studying the
distance of a linear code by converting the generating matrix into a set of points X in projective space and using the linear
aspects of the geometry of these points, as encoded by the hyp(X), one can start with any homogeneous ideal I in a polynomial
ring and define a generalized hypI(d, r) function that encodes the maximum degree of a subscheme X ⊂ V (I) that is also
supported on the intersection of r hypersurfaces of degree d which are linearly independent modulo the ideal I . The talk was
dedicated to exploring properties of this new function and the way they generalize previously known results. The speaker also
presented a computer program designed to efficiently approximate the generalized Hamming distances for a code based on the
use of initial ideals (Gröbner bases).

Scientific Progress Made
A substantial amount of algebraic and homological techniques are available to commutative algebraists in order to analyze
properties of varieties embedded in affine or projective space. Familiarity with these techniques has allowed the participants
of this focused research group to bring their expertise to bear on several issues of current interest in coding theory introduced
in section 2. By recasting some central notions of coding theory into algebraic language we were able to strengthen and
generalize them to many new settings. Our main contributions consist of: (1) developing a notion of generalized minimum
distance functions motivated by the generalized Hamming weights of [12] and (2) analyzing several families of codes built
from graphs, which include linear codes whose generator matrix is a signed incidence matrix of a simple graph and toric codes
parametrized by monomials encoding edges of a graph.

Generalized minimum distance functions
This new notion generalizes the notions of distance existent in coding theory using the algebraic-geometric invariant of a scheme
called degree (or multiplicity). Let S = K[t1, . . . , tn] = ⊕∞d=0Sd be a polynomial ring over a fieldK with the standard grading
and let I 6= (0) be a graded ideal of S. We denote the degree of S/I by deg(S/I). The function δI : N+ × N+ → Z given by

δI(d, r) :=

{
deg(S/I)−max{deg(S/(I, F ))|F ∈ Fd,r} if Fd,r 6= ∅,
deg(S/I) if Fd,r = ∅,
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is called the generalized minimum distance function of I , where Fd,r is the set

Fd,r := { {f1, . . . , fr} ⊂ Sd | f1, . . . , fr are linearly independent modulo I, (I : (f1, . . . , fr)) 6= I}.

To compute δI(d, r) is a difficult problem, hence one of our aims is to introduce lower bounds for δI(d, r) which are easier
to compute. One of our main results shows that there exists a function fpI(d, r) termed the footprint function which is a
lower bound for δI(d, r) and is easier to compute. We also explore other notions of generalized minimum distance such as
the generalized minimum Loewy distance, which is better behaved with respect to non-reduced scheme structures and could
provide a satisfactory answer to problems 1 and 2 of section 2. Moreover, since we make use of computational algebra programs
in our research, we have programmed routines compatible with the computational algebra system Macaulay 2 for computing
and analyzing these new invariants.

Codes from graphs
In our second project, we analyze codes arising from graphs G = (V (G), E(G)) with n vertices and s edges. Let AG be the
matrix whose columns correspond to the oriented edges of G: if {k, l} is the j-th edge then the jth column of AG has zeros
in all of its positions, except in the entries (k, j) and (l, j) of AG, wich are equal to 1 and −1, respectively. If G is connected,
rank(AG) = n − 1 and the rows of AG span a [ q, n − 1, d1(C) ]-linear code C. We prove that, if G is a connected graph
that is not a tree and X is the set of points whose coordinates are given by the columns of AG, then the Castelnuovo-Mumford
regularity of I(X) is 2. We also classify the graphs that give rise to MDS codes, partially answering problems 3 and 4 of
section 2.

Outcome of the Meeting
Although there are many meetings devoted to general advances in coding theory, there have been no opportunities to date for
mathematicians specifically interested in commutative algebraic methods applied to coding theory to get together and exchange
ideas for collaboration purposes. We feel that our meeting has marked an important first step in this regard and we thank BIRS
for its support.
We expect that our collaboration will give rise to two research articles [2, 3], one for each of the projects described in sections
4.1 and 4.2 of this report.
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