
Simple integral fusion categories

Sebastien Palcoux

BIMSA (Beijing)

September 20th, 2021

1/14



Fusion rings

A fusion ring is a based Z-module F = ZB with B = {b1, . . . , br}
finite, together with fusion rules (generalizing the multiplication on
a finite group, or the tensor product on its representations):

bi · bj =
r∑

k=1

Nk
ij bk

with Nk
ij ∈ Z≥0 such that:

Associativity. bi · (bj · bk) = (bi · bj) · bk ,

Neutral. b1 · bi = bi · b1 = bi ,

Inverse/Adjoint/Dual. ∀i ∃!i∗ with N1
i ,k = N1

k,i = δi∗,k ,

Frobenius reciprocity. Nk
ij = N j

i∗k = N i
kj∗ .

It may be understood as a representation ring of a ‘virtual’ group.
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Frobenius-Perron dimension

The adjoint ∗ induces a structure of finite dim. ∗-algebra on CB,

Frobenius-Perron theorem

∃! ∗-homomorphism d : CB → C such that d(B) ⊂ (0,∞).

the Frobenius-Perron dim (FPdim) of bi is di := d(bi ),

the FPdim of F is
∑

i d
2
i ,

the type of F is [d1, d2, . . . , dr ],

The fusion ring F is called:

of Frobenius type if for all i , FPdim(F)
di

is an algebraic integer,

integral if for all i the number di is an integer.

The “golden” fusion ring (Yang-Lee rules)

B = {b1, b2}, with b22 = b1 + b2, type [1, φ] with φ golden ratio.
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Simple integral fusion rings
A fusion ring w/o proper non-trivial fusion subring is called simple.
The fusion ring of Rep(G ) is simple iff the finite goup G is simple.

Theorem (Liu-P.-Wu, Adv. Math. 2021)

rank ≤ 5 6 7 8 9 10 all

FPdim < 1000000 150000 15000 4080 504 240 132

With the above bounds, there are exactly 34 (perfect) simple
integral fusion rings of Frobenius type (4 of which Rep(G )).

# rank FPdim type group Rep

1 5 60 [1, 3, 3, 4, 5] PSL(2, 5)

1 6 168 [1, 3, 3, 6, 7, 8] PSL(2, 7)

2 7 210 [1, 5, 5, 5, 6, 7, 7]

2 7 360 [1, 5, 5, 8, 8, 9, 10] PSL(2, 9)

4 7 7980 [1, 19, 20, 21, 42, 42, 57]

15 8 660 [1, 5, 5, 10, 10, 11, 12, 12] PSL(2, 11)

5 8 990 [1, 9, 10, 11, 11, 11, 11, 18]

2 8 1260 [1, 6, 7, 7, 10, 15, 20, 20]

2 8 1320 [1, 6, 6, 10, 11, 15, 15, 24]
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Fusion category (up to equivalence)
A fusion category C is a fusion ring and a solution of its pentagon
equations, where µ ∈ homC(Xi ⊗ Xj ,Xk) is represented as µi j

ki5 i4 i7 i9

i0

i6

i3

µ7

µ9

µ3

i5 i4 i7 i9

i1

i6

i3

µ4

µ1

µ3

i5 i4 i7 i9

i0

i8

i3

µ7

µ8

µ6

i5 i4 i7 i9

i2 i1

i3

µ2 µ4

µ0

i5 i4 i7 i9

i2

i8

i3

µ2

µ5

µ6

Such a fusion ring is called a Grothendieck ring (i.e. categorifiable).

In the pseudo-unitary case (FPdim = dimC), it is equiv. to that
every (labeled oriented) trivalent graph admits a unique evaluation

by (l.o.) tetrahedrons • •

••

• (complex numbers called F-symbols).

Two evaluations of the triangular prism • •

•

•

•

• recovers the PE:

(TPE)
∑
· · ·

• •

••

•

• •

••

• =
∑
· · ·

• •

••

•

• •

••

•

• •

••

•

Unitary case: mirror image (of tetrahedron) = complex conjugate.
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Categorification criterion from Quantum Fourier Analysis
Here is the Commutative Schur Product Criterion:

Theorem (Liu-P.-Wu, Adv. Math. 2021)

Let F be a commutative fusion ring, let (Mi ) be its fusion
matrices, and let (λi ,j) be the table given by their simultaneous
diagonalization, with λi ,1 = ‖Mi‖. If ∃(j1, j2, j3) such that∑

i

λi ,j1λi ,j2λi ,j3
λi ,1

< 0

then F admits no unitary categorification.

This criterion rules out 28 among the 30 non group-like simple
integral fusion rings of the previous classification (more than 93%).

The remaining 2 are denoted F210 and F660 (according to FPdim)

F660 is excluded (over any field) by the zero-spectrum criterion.
Note that F210 cannot be excluded by known criteria (see why
later), this requires the use a localization strategy involving TPE. 6/14



Zero-Spectrum Criterion

It is about the existence of a PE of the form xy = 0 with x , y 6= 0:

Zero-spectrum criterion (Liu, P., Ren, in preparation)

For a fusion ring F , if there are indices ij , 1 ≤ j ≤ 9, such that

N i6
i4,i1

, N i2
i5,i4

, N i3
i5,i6

, N i1
i7,i9

, N i8
i2,i7

, N i3
i8,i9

are non-zero, and∑
k

Nk
i4,i7N

k
i∗5 ,i8

Nk
i6,i∗9

= 0,

N i3
i2,i1

= 1,∑
k

Nk
i5,i4N

k
i3,i∗1

= 1 or
∑
k

Nk
i2,i∗4

Nk
i3,i∗6

= 1 or
∑
k

Nk
i∗5 ,i2

Nk
i6,i∗1

= 1,∑
k

Nk
i2,i7N

k
i3,i∗9

= 1 or
∑
k

Nk
i8,i∗7

Nk
i3,i∗1

= 1 or
∑
k

Nk
i∗2 ,i8

Nk
i1,i∗9

= 1,

then F cannot be categorified (at all) over any field.

It excludes F660. Idem for “0 = xyz” (one-spectrum criterion).
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Localization strategy
In general, the system of pentagon equations is too big to be
attacked head-on, but the TPE framework reveals some
symmetries allowing us to get local subsystems.

Theorem (Liu-P.-Ren, in preparation)

Let C be pseudo-unitary fusion category over C (so spherical). Let
x be a self-adjoint simple object such that for all simple object
a ≤ x2, then a? = a and 〈x2, a〉 ≤ 1. Let Sx be the set of simple
components of x2 and S ′x be a subset of Sx such that for all
a, b, c ∈ S ′x then 〈bc, a〉 ≤ 1. Then we can consider the subsystem
Ex of PE, with variables X (i , j) and Y (i , j) with (i , j) ∈ Sx × S ′x
such that for all a, b ∈ S ′x

δa,b = db
∑
i∈Sx

diY (i , a)Y (i , b),

X (a, b) =
∑
i∈Sx

diY (i , a)Y (i , b)2,

Y (a, b)2 =
∑
i∈Sx

diY (i , a)X (i , b)

with X (a, x) = Y (a, x)2; X (a, b) = 0 if 〈b2, a〉 = 0; Y (a, b) = Y (b, a); Y (1, b) = d−1
x ; X (1, b) = (dbdx )

−1.
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Application to F210

Let call 1, 51, 52, 53, 61, 71, 72 the simple objects of F210. Consider
Ex where x = 51, Sx = {1, 51, 53, 71, 72} and S ′x = {1, 51, 53}. It
has 10 variables and 12 equations:

5u0 + 7u1 + 7u2 − 4/25 = 0,

5v0 + 5v1 + 7v3 + 7v5 + 1/5 = 0,

25v 2
0 + 25v 2

1 + 35v 2
3 + 35v 2

5 − 4/5 = 0,

5v 3
0 + 5v 3

1 + 7v 3
3 + 7v 3

5 − v 2
0 + 1/125 = 0,

5v0v
2
1 + 5v1v

2
2 + 7v3v

2
4 + 7v5v

2
6 + 1/125 = 0,

5u0v1 − v 2
1 + 7u1v3 + 7u2v5 + 1/125 = 0,

5v1 + 5v2 + 7v4 + 7v6 + 1/5 = 0,

25v0v1 + 25v1v2 + 35v3v4 + 35v5v6 + 1/5 = 0,

5v 2
0 v1 + 5v 2

1 v2 + 7v 2
3 v4 + 7v 2

5 v6 − v 2
1 + 1/125 = 0,

25v 2
1 + 25v 2

2 + 35v 2
4 + 35v 2

6 − 4/5 = 0,

5v 3
1 + 5v 3

2 + 7v 3
4 + 7v 3

6 − u0 + 1/125 = 0,

5u0v2 − v 2
2 + 7u1v4 + 7u2v6 + 1/125 = 0

It admits 14 solutions in char. 0, which can be written as a Gröbner basis.
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Theorem (Liu-P.-Ren, in preparation)

(assumption of previous theorem) Let x , Sx , S ′x and Ex as above,
and let z ∈ S ′x with Sz , S ′z and Ez as above. Then there is an extra
equation linking the two independent subsystems Ex and Ez :

Xx(z , z) =
∑

i∈Sx∩Sz

diYz(i , z)Xx(i , z)

Let us apply above theorem to F210 with Ex as above, z = 53,
Sz = {1, 52, 53, 71, 72} and S ′z = {1, 52, 53}. By putting together
the Gröbner bases of Ex , Ez and the extra, we quickly show the
absence of solution in char. 0; and so p > 0 (in the pivotal case)
by lifting theorem (below) and a quick check on p|210.

Theorem (ENO, 2005)

Let C be a fusion category over Fp. If dim(C) 6= 0 then it lifts into
a Grothendieck-equivalent fusion category in char. 0.

Note that dim(C) = 0 iff p divides FPdim(C), by pseudo-unitarity.
Sebastien Palcoux Simple integral fusion categories



Classification of unitary simple integral fusion categories

Previous classification + criteria + localization leads to:

Corollary (Liu-P.-Ren, in preparation)

A unitary simple (perfect) integral fusion category of Frobenius
type, rank ≤ 8 and FPdim < 4080 is Grothendieck equivalent to
Rep(PSL(2, q)) with 4 ≤ q ≤ 11 prime power.

The existence of a non group-like (unitary) simple integral fusion
category is related to a famous open problem of the theory:
A fusion category is weakly group-theoretical if its Drinfeld center is
equivalent to the one coming from a sequence of group extensions.

Theorem (ENO, 2011)

A weakly group-theoretical simple fusion category is Grothendieck
equivalent to Rep(G ), with G a finite simple group.

Question (ENO, 2011)

Is there an integral fusion category not weakly group-theoretical?
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Formal table characterization of commutative fusion ring

Let F be a commutative fusion ring. Let (Mi ) be its fusion
matrices, and let Di = diag(λi ,j), be their simultaneous
diagonalization. The eigentable of F is the table given by (λi ,j).

Theorem (Folklore?; Liu-P.-Ren, under review )

Let (λi ,j) be a formal r × r table. Consider the space of functions
from {1, . . . , r} to C with some inner product 〈f , g〉. Consider the
functions (λi ) defined by λi (j) = λi ,j , and assume that
〈λi , λj〉 = δi ,j . Consider the pointwise multiplication
(fg)(i) = f (i)g(i), and the multiplication operator Mf : g 7→ fg .
Consider Mi := Mλi , and assume that for all i there is j
(automatically unique, denoted i∗) such that M∗i = Mj . Assume
that M1 is the identity. Assume that for all i , j , k,
Nk
i ,j := 〈λiλj , λk〉 is a nonnegative integer. Then (Nk

i ,j) are the
structure constants of a commutative fusion ring and (λi ,j) is its
eigentable. Moreover, every eigentable of a commutative fusion
ring satisfies all the assumptions above.
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In previous Theorem, the inner product can be taken of the form

〈f , g〉 :=
∑
j

1

cj
f (j)g(j)

with cj =
∑

i |λi ,j |2 (formal codegrees). So (Verlinde-like formula):

Nk
i ,j =

∑
s

λi ,sλj ,sλk,s
cs

=
∑
s

λi ,sλj ,sλk,s∑
l |λl ,s |2

Generic character table of Rep(PSL(2, q)), q even
hhhhhhhhhhcharparam c

classparam k
{1} {1} {1, . . . , q−2

2
} {1, . . . , q

2
}

{1} 1 1 1 1

{1, . . . , q
2
} q − 1 −1 0 −2 cos( 2πkc

q+1
)

{1} q 0 1 −1

{1, . . . , q−2
2
} q + 1 1 2 cos( 2πkc

q−1
) 0

class size 1 q2 − 1 q(q + 1) q(q − 1)

There are also tables for q ≡ 1 or 3 mod 4. Above Theorem
applies on these tables (even when q is not a prime-power).

13/14



Interpolated simple integral fusion rings of Lie type

Theorem (Liu-P.-Ren, under review)

The ring of Rep(PSL(2, q)) interpolate to q non prime-power as
a non group-like simple integral fusion ring (∞ family). If q even:

xq−1,c1
xq−1,c2

= δc1,c2 x1,1 +
∑

c3 such that
c1+c2+c3 6=q+1 and 2max(c1,c2,c3)

xq−1,c3
+ (1− δc1,c2 )xq,1 +

∑
c3

xq+1,c3
,

xq−1,c1
xq,1 =

∑
c2

(1− δc1,c2 )xq−1,c2
+ xq,1 +

∑
c2

xq+1,c2
,

xq−1,c1
xq+1,c2

=
∑
c3

xq−1,c3
+ xq,1 +

∑
c3

xq+1,c3
,

xq,1xq,1 = x1,1 +
∑
c

xq−1,c + xq,1 +
∑
c

xq+1,c ,

xq,1xq+1,c1
=

∑
c2

xq−1,c2
+ xq,1 +

∑
c2

(1 + δc1,c2 )xq+1,c2
,

xq+1,c1
xq+1,c2

= δc1,c2 x1,1 +
∑
c3

xq−1,c3
+ (1 + δc1,c2 )xq,1 +

∑
c3 such that

c1+c2+c3 6=q−1
and 2max(c1,c2,c3)

xq+1,c3
+

∑
c3 such that

c1+c2+c3=q−1
or 2max(c1,c2,c3)

2xq+1,c3
,

They automatically check all the known categorification criteria,
and F210 corresponds to q = 6. Idem q odd (and all Lie families?).

Project: application of the localization strategy to others q (all?).
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