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Fusion rings

A fusion ring is a based Z-module F = ZB with B = {b1, ..., b/}
finite, together with fusion rules (generalizing the multiplication on
a finite group, or the tensor product on its representations):

r
bi-bj=>_ Nfb
k=1

with Nj € Zg such that:
o Associativity. b; - (bj - bx) = (b; - bj) - by,
@ Neutral. by - b; = b; - by = b;,
o Inverse/Adjoint/Dual. Vi 3!i* with N, = N ; = 5« x,

o Frobenius reciprocity. Nji = M., = Nigj--

It may be understood as a representation ring of a ‘virtual’ group. )




Frobenius-Perron dimension

The adjoint * induces a structure of finite dim. x-algebra on CB,

Frobenius-Perron theorem

3! x-homomorphism d : CB — C such that d(B) C (0, c0).

e the Frobenius-Perron dim (FPdim) of b; is d; := d(b;),
o the FPdim of Fis ) _; d,-2,
e the type of Fis [di,da, ..., d],

The fusion ring F is called:

FPdim(F)
d;

e of Frobenius type if for all i, is an algebraic integer,

o integral if for all i the number d; is an integer.

The “golden” fusion ring (Yang-Lee rules)
B = {b1, by}, with b3 = by + by, type [, ¢] with ¢ golden ratio.




Simple integral fusion rings

A fusion ring w/o proper non-trivial fusion subring is called simple.
The fusion ring of Rep(G) is simple iff the finite goup G is simple.

Theorem (Liu-P.-Wu, Adv. Math. 2021)

rank | <5 | 6 | 7 | 8 | 9 |10]al
FPdim < | 1000000 | 150000 | 15000 | 4080 | 504 | 240 | 132

With the above bounds, there are exactly 34 (perfect) simple
integral fusion rings of Frobenius type (4 of which Rep(G)).

# | rank | FPdim type group Rep

1 5 60 [1,3,3,4,5] PSL(2,5)

1 6 168 [1,3,3,6,7,8] PSL(2,7)

2 7 210 [1,5,5,5,6,7,7]

2 7 360 [1,5,5,8,8,9,10] PSL(2,9)

4 7 7980 [1,19,20,21,42,42, 57]

15| 8 660 [1,5,5,10,10,11,12,12] | PSL(2,11)

5 8 990 |[1,9,10,11,11,11,11,18]

2 8 1260 [1,6,7,7,10,15,20,20]

2 8 1320 | [1,6,6,10,11,15,15,24]




Fusion category (up to equivalence)

A fusion category C is a fusion ring and a solution of its pentagon
equations, where ;i € home(X; ® Xj, Xk) is represented as N/
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Such a fusion ring is called a Grothendieck ring (i.e. categorifiable).

In the pseudo-unitary case (FPdim = dim¢), it is equiv. to that
every (labeled oriented) trivalent graph admits a unique evaluation

by (l.0.) tetrahedrons A (complex numbers called F-symbols).

Two evaluations of the triangular prism A recovers the PE:

mPe) - A A= A A A

Unitary case: mirror image (of tetrahedron) = complex conjugate.




Categorification criterion from Quantum Fourier Analysis

Here is the Commutative Schur Product Criterion:
Theorem (Liu-P.-Wu, Adv. Math. 2021)

Let F be a commutative fusion ring, let (M;) be its fusion
matrices, and let (\;;) be the table given by their simultaneous
diagonalization, with A; 1 = ||M;||. If 3(j1, j2,j3) such that

Aija Aip Al js
Z i1 <0

then F admits no unitary categorification.

This criterion rules out 28 among the 30 non group-like simple
integral fusion rings of the previous classification (more than 93%).

The remaining 2 are denoted F»19 and Feeo (according to FPdim)J

Fe60 is excluded (over any field) by the zero-spectrum criterion.
Note that F2109 cannot be excluded by known criteria (see why
later), this requires the use a localization strategy involving TPE.



Zero-Spectrum Criterion

It is about the existence of a PE of the form xy = 0 with x,y # 0:

Zero-spectrum criterion (Liu, P., Ren, in preparation)

For a fusion ring F, if there are indices i;, 1 < j <9, such that
N N2 N3 NT. NB. NB. are non-zero, and

I4,I1’ I5,I4’ I5716' 17, Ig’ IQ,I7’ Ig,lg
E : I4 I7 15 Ig ’6,’9 :0’
NE. =1
12,11 ’

E k k _ E k k § —
N15,14NI3 I* 1 or le II NI3I 1 or 15 i ’67’1 = 1,

E le,/v ,37*_1or§ ngl ,3,*_1orE N, 5 ,17,9:1,

then F cannot be categorified (at all) over any field.

It excludes Fgo. |dem for "0 = xyz" (one-spectrum criterion).



Localization strategy

In general, the system of pentagon equations is too big to be
attacked head-on, but the TPE framework reveals some
symmetries allowing us to get local subsystems.

Theorem (Liu-P.-Ren, in preparation)

Let C be pseudo-unitary fusion category over C (so spherical). Let
x be a self-adjoint simple object such that for all simple object

a < x?, then a* = a and (x?,a) < 1. Let S, be the set of simple
components of x2 and S/, be a subset of S, such that for all
a,b,c € S) then (bc,a) < 1. Then we can consider the subsystem
E, of PE, with variables X(/,/) and Y(i,j) with (i,j) € Sx x S
such that for all a,b € S,

Sap=db Y _ diY(i,a)Y(i,b),

i€Sx
X(a,b) =Y diY(i,a)Y(i,b)?
i€Sx
Y(a,b)> = diY(i,a)X(i,b)
iE€Sx

with X(a, x) = Y(a,x)% X(a, b) = 0if (b?,a) = 0; Y(a, b) = Y(b,a); Y(L, b) = d 1 X(1, b) = (dpdx) ">



Application to F51g

Let call 1,51,55,53,61,71, 72 the simple objects of F»19. Consider
EX where x = 51, SX = {1,51,53,71,72} and 5)/( = {1,51,53}. It
has 10 variables and 12 equations:

Sup + Tuy + Tux —4/25 =0,

5vo +5vi + 7Tvs + 7vs + 1/5 = 0,

25v¢ + 25v{ 4 35v3 + 35v2 —4/5 =0,

5vg +5vi 4+ 7vi + 7ve — v§ 4+ 1/125 =0,
5vov? + 5vave + Tvavi + Tvsve + 1/125 =0,
Supvi — v12 + Turvs + Tuavs + 1/125 = 0,

5vi +5vo+7wvs +7vs +1/5 =0,

25vovi + 25vavo + 35vavs + 35vsv6 + 1/5 = 0,
5v§v1 + 5v12vz -|-7V32V4 -|-7V52V5 — v12 +1/125 =0,
25v7 + 25v3 + 35v; +35v —4/5 =0,

5v¢ +5v5 +7v; +7ve — up + 1/125 = 0,
Supvo — v22 +Tuiva + Twpve +1/125=0

It admits 14 solutions in char. 0, which can be written as a Grobner basis.



Theorem (Liu-P.-Ren, in preparation)

(assumption of previous theorem) Let x, Sy, S, and E; as above,
and let z € S, with S;, S, and E; as above. Then there is an extra
equation linking the two independent subsystems Ey and E,:

XX(Z,Z): Z din(iaz)XX(i7Z)

i€SxNS;

Let us apply above theorem to F»19 with Ex as above, z = 53,
S, ={1,52,53,71,72} and S, = {1,55,53}. By putting together
the Grobner bases of Ey, E, and the extra, we quickly show the
absence of solution in char. 0; and so p > 0 (in the pivotal case)
by lifting theorem (below) and a quick check on p|210.

Theorem (ENO, 2005)

Let C be a fusion category over Fy,. If dim(C) # 0 then it lifts into
a Grothendieck-equivalent fusion category in char. 0.

Note that dim(C) = 0 iff p divides FPdim(C), by pseudo-unitarity.



Classification of unitary simple integral fusion categories

Previous classification -+ criteria 4+ localization leads to:

Corollary (Liu-P.-Ren, in preparation)

A unitary simple (perfect) integral fusion category of Frobenius
type, rank < 8 and FPdim < 4080 is Grothendieck equivalent to
Rep(PSL(2, q)) with 4 < g < 11 prime power.

The existence of a non group-like (unitary) simple integral fusion
category is related to a famous open problem of the theory:

A fusion category is weakly group-theoretical if its Drinfeld center is
equivalent to the one coming from a sequence of group extensions.

Theorem (ENO, 2011)

A weakly group-theoretical simple fusion category is Grothendieck
equivalent to Rep(G), with G a finite simple group.

Question (ENO, 2011)

Is there an integral fusion category not weakly group-theoretical?




Formal table characterization of commutative fusion ring

Let F be a commutative fusion ring. Let (M;) be its fusion
matrices, and let D; = diag(); ), be their simultaneous
diagonalization. The eigentable of F is the table given by ().

Theorem (Folklore?; Liu-P.-Ren, under review )

Let (\;;) be a formal r x r table. Consider the space of functions
from {1,...,r} to C with some inner product (f, g). Consider the
functions (A;) defined by Ai(j) = Ajj, and assume that

(Ai, Aj) = 6;j. Consider the pointwise multiplication

(fg)(i) = f(i)g(i), and the multiplication operator My : g — fg.
Consider M; := M), and assume that for all i there is j
(automatically unique, denoted i*) such that M* = M;. Assume
that My is the identity. Assume that for all /,j, k,

Nf; := (AiXj, M) is a nonnegative integer. Then (Nf;) are the
structure constants of a commutative fusion ring and (; ) is its
eigentable. Moreover, every eigentable of a commutative fusion
ring satisfies all the assumptions above.




In previous Theorem, the inner product can be taken of the form

(F.8) =3 2F()e0)

— C
JJ

with ¢; = 3. |\ij|? (formal codegrees). So (Verlinde-like formula)

s

AishisAks AisAishks
k i,s\j,s\k,s i,s\j,s\k,s
Nfj =D = Z

>
Generic character table of Rep(PSL(2, q)), g even
| k _
[ et Py = |
{1t 1 1 1 1
{,..., g qg—1 —il 0 72cos(2q"—jf)
{1} q 0 1 =
{L,..., 552y q+1 1 2 cos(22kc) 0
‘ class size H 1 ‘ q> — 1 ‘ q(qg+1) ‘ q(g — 1) ‘
There are also tables for g =1 or 3 mod 4. Above Theorem

applies on these tables (even when g is not a prime-power)



Interpolated simple integral fusion rings of Lie type

Theorem (Liu-P.-Ren, under review)

The ring of Rep(PSL(2, q)) interpolate to g non prime-power as

a non group-like simple integral fusion ring (co family). If g even:
Xg—1,61Xq—1,cp = Ocy,crX1,1 + > Xg—1,c3 + (1 = 8¢y ,0p)Xq,1 + qu+1,53,
c3 such that 3

c1+ep+c3#g+1 and 2max(cy ,¢p,¢3)

Xq—1,c1%q,1 = Sa- ey ,cp)Xq—1,cp T Xq,1 + > xat1ieps
2y 2

Xqg—1,c1 Xg+1,cp = qufl,q + Xq,1 + qu+1,C3a
G G8)
Xq,1%q,1 = X1,1+ D Xg—1,c +Xq,1 + D Xgt1,cs
5 g

Xq,1%Xq+1,¢c = Z Xg—1,cp T Xq,1 + Z(l +0cy,¢p )Xq+1,c2 ’
@2 2]

Xg+1,¢1 Xq+1,cy = Ocp,cpX1,1 + zxq—l,63 +(1+ 8cy,cp)%q,1 + S Xgt+l,c3 + > 2Xq+1,c3>

<3 c3 such that c3 such that
cpt+ep+e3#q—1 c1+ept+ez=g—1
and 2max(cy ,¢p,c3) or 2max(cy ,¢p,¢3)

They automatically check all the known categorification criteria,
and F>1p corresponds to ¢ = 6. ldem g odd (and all Lie families?).

Project: application of the localization strategy to others g (all?). |



