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The least action principle

The statement: The system will evolve in time along the path, that the action

functional is “critical”, from an initial point to a final point on the configuration
space 2..

6S = Splg + 691 — Srlql = J
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The configuration space 2:: {q(f) = {q(?), g,(?), .., gn(1)}. where g(1) is a
set of good coordinates and N is a degree of freedom.

Note: There is only one true path called a classical path for a system to
evolve from the initial point to the final point.



All possible paths

INn quantum Mmechanics, a particle will take all possible paths from the initial

point to the final point at once, with different prob weight ~ 675 .

The propagator K(q,, b 4y, ) = (g2 | Ut — 1) | 1)
is a function that specifies the prob amplitude for a
particle to get from the initial point to the final point.

oS

Here U(T) = e 7 is nothing but the time evolution
operator with condition UTU = I

9

In the case of * :

one can derive

" 4> .

K(gy, tr:q1,t) = | Dlgle™® .

“q1

where D[qg] denotes integration over all

path ¢ from ¢ to ¢,.




Integrability as Multidimmensional consistency

Liouville-Arnold theorem: The integrability is defined in terms of the existence
of the invariances, implying the existence of Action-Angle variables.

Theorem: If, in a Hamiltonian dynamical system with n degrees of freedom,
there are also known 7 first integrals of motion F' = (F, F5, ..., F,) € F(T*X)

which are independent and in involution: {Fi,Fj} = 0, i #J, then there exists a

canonical transformation to A.A. variables (I, 8), where I; = I](H) in which the

transformed Hamiltonian is dependent only upon the action variables and the
angle variables evolve linearly in time. Thus the equation of motion can be

solved in quadratures: I = 0 and 9 = Q(I).



Integrability as Multidimmensional consistency

Liouville-Arnold theorem: The integrability is defined in terms of the existence
of the invariances, implying the existence of Action-Angle variables.

Theorem: If, in a Hamiltonian dynamical system with n degrees of freedom,
there are also known 7 first integrals of motion F' = (F, F5, ..., F,) € F(T*X)

which are independent and in involution: { £, F;} = 0, i # j, then there exists a
canonical transformation to A.A. variables (I, 8), where I; = IJ(H) in which the

transformed Hamiltonian is dependent only upon the action variables and the
angle variables evolve linearly in time. Thus the equation of motion can be
solved in quadratures: [; = 0 and HJ- = Qj(I).

Hamiltonian commuting flows: Since all invariances are defined on cotangent
bundle (F, F5,...,F,) € F(T*X), we now may treat them as a set of
Hamiltonians(Fy, Iy, ..., F,) = (H,H,,...,H,)

which is known as the Hamiltonian hierarchy equipped with the property

{H;, H;} = 0 (involution)



Integrability as Multidimmensional consistency

From the standard structure, the Hamiltonian can be treated as the “time generator” s.t.
o ={o,H} where o € F(IT*X). Then we, in this context, have a multi-time structure:

t = (tl’ tz,. ,tn)

dF dF
Now given F' € F(T*2) and o = {F,H,} oy = {F, H;}, we have

I g

L (FHYHY ara 2 = ((F.H 1)

— ) ) an = . , .
dt, dt, L dt, dt, S
Next, we consider
L A \(F.HY.H) — ((F.H).H) = {F. (H. Hy}) (acobi ia

— = . . — : . = , . acobi identity was
dt, dt, dt, dt, S ek Pk d
used.)

d dif d dF

Therefore, = (). This means that the order of evolution does not matter.

dt, dt,  dt, dt,



Integrability as Multidimmensional consistency

Fquivalently, one can write 6 = { o ,H} = X;; o, where Xy is a Hamiltonian vector field.

Then the relation

d dF _d dF
dt, dr, dt, dy,

can be re-expressed as [ Xy, Xy 1F = 0 or [Xy, Xy 1=0
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Lagrangian 1-from and the closure relation

Given a set of Lagrangians {L;, L,, ..., Ly}, an action functional is given by
5lg(?)] = J Z
I
N

where &£ = ZLl-dti is a Lagrangian 1-form and I’ is a curve defined on the space of
=

independent variables.



Lagrangian 1-from and the closure relation

Given a set of Lagrangians {L;, L,, ..., Ly}, an action functional is given by
Slqg(?)] =J ff=[ ds ,
I I
N

where &£ = ZLl-dti is a Lagrangian 1-form and I’ is a curve defined on the space of
=
independent variables.

Imposing a critical condition 05[g(#)] = 0 and applying Stokes’ theorem, we obtain

5S[q(0)] = ﬂE N ﬂ d*S = 0.
oC C
and
d(ds) = d*S EN: dt. Adt. = 0 4L 0 f
— = a)--Al. . = U, N ), =— — — ———— — | i 1-
i ; where  w;; dt dtj (Lagrangian orm

i,j=1
closure relation].



Lagrangian 1-from and the closure relation

dL. JL
/ .
The condition r — r . = () indicates that the value of the action does not depends on
I l;
J

paths (sharing the same end points) on the space of independent variables.

e

1




Calogero-Moser systems

They are describing interacting system of N particles on a line (or circle). The Hamiltonians

are given by

H(p,q) = Zpk

il 1

Hy(p,q) = Zpk >

— )2
Lk= k;él (Qk q])
éa )

H3(p,q) = Zpk Z @ l_?l

>
9 — q))
e k=1 k1 »




Calogero-Moser systems

The Lagrangians are given by

There is no Ll(q°, q)

L2(qa Q) 2 Qk Z :

2
Lk=1 k£l (Qk q])

4 N 1 N qk )
L3(,4,q) = Z <5]i@i +Zél3> - Z

— )2
L k=1 k=1 k#l (@ = a) )

dq dq
Whereq_d_tandq_dt :
2 3



Nijhoff's proposal

In 2013, Frank Nijhoff proposed a new form of the propagator in “Discrete Integrable
Systems Fellow-up Meeting”, Isaac Newton Institute, Cambridge.

t(s,)=t, x(t,)=x,

D[t(s)] [ Dr[x(t)] o7 SIX():T]

x(t,)=x,

K(qba tba Sba qaa taa Sa) = J
t(s,)=t,

Dependent and independent variables are treated on the same equal footing!



Rovelli's idea, 2011

According to a view point of quantum gravity, one can work on background-independent
theory: g(t) — q(r) = g(t(r)). Then we have now x = (g, ).

Slg] = Jdtﬁf(q, q) — Jﬁff(q, glt) = [T(X,)'C) = S[x].

mq’2

For example, a single particle Lagrangian & = —— — V(g) will be rewritten as
)

z="L _ivg
il

The propagator reads

K(.X'N, T//’ x/, T/) - J@[x(f)]ef;:/dfg i J'@[t(f)] J@[q(f)]ej;:/dfg

Carlo Rovelli, 2011, “On the structure of a background independent quantum
theory: Hamilton function, transition amplitudes, classical limit and continuous
limit”,. arXiv: 1108.0832.



King and Nijhoff discrete propagator (Quadratic case) 2019

Given discrete KdV equation and then they imposed the
periodic condition resulting two discrete-time harmonic

oscillators.
1 (0q\° g’ 1 (0q\° wig’
Li=—{— ) — and Ly=—|— ] —
2 \ ot 2 2 \ ot 2

King and Nijhoff

The discrete propagator processes a path-independent feature.

K=Kr

-



Multi-timne propagator

N
. oq .
Definition: et £ = ZL]dtJ be a Lagrangian 1-form , where LJ = L] q. 0_q;] =1,2,....N p:t ]. On
= £
the space of independent variables (time variables) parameterised by a variable § such that t(s), where s’ < § < §”, the

multi-time propagator is given by

q(t(s") _
K(q(t(s")), s"; q(t(s")), s") = J Dlq(t(s)); T € RBle™ irrem <

q(t(s")

N
where & = ds Z Ljdtj/ds and J[D[q(S); [' € A] is the functional measure over all possible spatial-temporal paths.

j=1
Here I' € 9B, where A is a family of paths connecting the point t(s’) with the point t(s”) on space of time variables.



Multi-timne propagator

q(t(s™)) N N N q(€;,0,...,0)
[ Dlq(t(s)::T € Bl = lim Yoo ) > /Vr[ 2lq(1))]

— 0
t(s’ N Ns N 3 35,3 y) 2 2
q( ( )) 61 ) N N O ./V—IZ”.GQ Zal ZO aﬂ_lz...GZZal ZO a/V—IZ"'QZZal ZO q(0,0, ,0)

) N
q(j€1,a €,...0; Ey)

N—1 poo
X (H [ dNQ(jela aj2_1€27 cees a;ileN)“ ‘gj @[q(t2)]a '@[q(t3)]9 B @[Q(tN)]

Q(j€1,(xj.2_1€2, .. -a}ileN)
00 - , q((j+1)€1,aj2€2,...ajN€N)
. Y
X [ d”q(je,, &€y, ..o O GN)[ 2q(t)]
— 00

q(je 1,6¥j2€2,- : -05]N %)

00 q(Ne,Ney,...,.Ney)
N 2 N
XJ dq(Ney, o€, ""aﬂ—leN)J
—00

j=1

P 1 2D[q(H)], DIq3)], -+, D[q(Ey)]

q(Ne,a%_€,....0% _€n)

+ (all symmetric terms)

where

P 1 D[q)], Dq(t3)], -+, Dlq(ty)]

2
Jq(]el,aj €9, . - .,aJNeN)

(l(j€1a05j2_1€2a---90‘ﬂ1€1v)
1 N
= (Summation of all possible p@rmutations) and r; = Z 0,




Multi-time propagator (2D)

To get a favour on constructing the multi-time propagator, we shall illustrate the case in the
2D space

N
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Multi-time propagator (2D)
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Multi-time propagator (2D)
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Multi-time propagator (2D)

(nla/’/)
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Multi-time propagator (2D)
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Multi-time propagator (2D)

N, N)
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X J Dlq(t, N)le N
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N=1 =1 rq(n,,0)
+ J/

c0 q(ny,m,)
9[‘1(1‘170)]'[ dNQ(npO)J QZ[q(nl, tz)]
—0 q(l/ll,O)

m=1 =1 24(0.0)

q(N,my) 0
[ 9[(l(fla”"ll)]‘[ dNq(WN,my)

0
X J qu(nl, )
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—Qo0
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Multi-time propagator (2D)

N, N)
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Multi-time propagator (2D)
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Multi-time propagator (2D)
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Multi-time propagator (2D)

N, N)
EEEEENEEEEENY
EEEEEEEEEEEEE
EEEEEEEEEEEES
T T T IALF
EEEEEENENNEEE
TR T -
EEEEEEEEEEEEE < ' %
EEEEEEEEEEEEE
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EEEEESEEEEEEE

0,0) N q(1,0) N=1 poo
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where m[ — m1m2°°°m/,/_1.



Multi-time propagator (2D)

Employing the symmetry of the lattice, we finally obtain

q(t(s”)) .
K(q(t(s")), s"; q(t(s")),s’) = J Dlq(t(s)); T € Ble? wrem
q(t(s’))
where
q(t(s”)) N q(e,0) N=1 o0
J Dlq(t(s):: T € B] = lim » /Vm,J @[q(rl,on( I1 J dq(ie;, m;_,e,)
q(t(s") o0 e zmyem 0 q(0,0) i=1 =00
nq(igl,ml.ez) o0 q((i+1)€1’mi€2)
X DIq(ie;, )] [ dNCI(iGp m;e,) J Dq(7, mﬁz)])
Y q(ie;,m;_i€,) —0 q(ie;,m;e;)
~q(ie;,m;e,) 0 q((@+1)e;,m;e,)
X DIq(iey, 1,)] J d"q(ie;, me,) [ Dq(t, mi€2)]>
Y q(ie;,m;_;€;) —0o0 q(ie;,m;e;)

N q(0,¢,) N=1 (oo
+ Z N HIJ 2 [q(O,tz)]< H [ dVq(n,_,e,,ie,)

My 120 2N,2>1 20 q(0,0) =
rq(neq,ie,y) 00 q(ne,(i+1)e,)
X Dq(1, i€2)][ dNQ(niGp iez)J Dlq(ne, fz)])
Y q(n_1€1,i€) —00 q(n;e;,iey)

r OO

X a’Nq(n/V_lel, /1/62)[
q(ny_€,8 €)

q(./’/€1 ,./V€2)

Dlq(ty, Ve,)] }

J—o00



Multi-time propagator - semiclassical approximation

Effectively, one can put the propagator as a function of a single time §

q(s”) ,
K(q(s"), s";q(s"), s") = J Dlq(s); T € Blenlirres 7
q(s’)

Therefore, we have

K(q”a S”; q,’ S/) . e%S[qC(S)] C(2((1”9 S,,a q,a S/) [1 + @(h)]
where (.. is a classical solution and

y(S//):O LJ-S,N dTJ.s’N d0<y(T)My(0)>
6(q’,s",q,s) = J Dly(s);Tle” ™ e
y(s)=0

is a smooth function of end points.




Multi-time propagator - semiclassical approximation

We now consider a path I’ connecting between end
points t” and t’ on space of time variables. Then what
we have now is

KR (q(t"), ¢ q(t), ) = emSTa0lg (g, ', t", t)[1 + O(h)]

where

F[qc(t)]

O (q// q/ t” t/) _ "Y(t”):()@ [y(t)]ezh ZJ 1fl“d”]frdv <Y( )W y(v )>
I YL, = r

y(t)=0

S;rla(] = J L,

)

The function @ can be reduced into

1

i 0°SHlq.] \
2nh dq(t”)oq(t’)

@F(q//, q/, t//, t/) — det (



Integrability

Theorem: Let L, L,,...,Ly} be a set of Lagrangians satisfying the Lagrangian

Y%
closure relation and Q?:ZLjd{]- be the Lagrangian 1-form, where
J=1
\
oq .
Lj=Lj q, a—;]= 1,2,....N p:t]. On the space of independent variables (time
.
J
)

variables), the multi-time propagator for any 1" € B, where AB is a family of paths

connecting between t’ and t”’, gives equally contribution leading to

C/Ig@(jzaos’[qa)]e% SemosZ =]

where & is an arbitrary surface bounded by a contractible loop C on the space of time
variables, and therefore the multi-time quantum system is integrable.



Integrability

Proof: Recalling the multi-time propagator for path I
Kr(q(t"), t; q(t), t') = eril90 g (q", @', ", )1 + 6()]
1

025 [q )]\’
@F _ det l F[qc( )]
27h oq(t")dq(t)
Kr'(q(t/,), t//; q(t,), t/) = e%Srf[qc(t)] @F/(q//, q/, t//, t/) [1 + @(h)]

— 3
2nh dq(t”)oq(t’)

The closure relation for the classical Lagrangian 1-forms fZ provides

oL
Srlq. (V)] — Splq.()] = <J — [ > 2, = H Z Z < p L _ ) d, Adt; =0
r Jr C=0S § I

k>1 =1

and for path I"”

which is nothing but the path independent feature on independent variables space. Here &
is an arbitrary surface bounded by a contractible loop C on the space of time variables.
Therefore, @ = @ and consequently we have

Kr(q(t"), t% q(t), t') = Kp(q(t"), t q(t), t')



Integrability

For a contractible loop C = 08 on space of time variable, the propagator can be captured as

1
0 0 . 2 2 2 7 . t// t//
KC:@S lim J qu//J qu/ det < < l > F[qc( )] ( I [qc( )]) > eh ( : ; ) .

(t—1)—0 2nh ) oq(t")oq(t) oq(t”)oq(f)

—Oo0

Then we write o
Sla,q9" 1= | &

S1q,q"1=: | &

Dropping out the subscripts I and I/ because of path independent feature, we obtain

t” t” N . ~ 7
S[q,q"] - S.[d, s,
t-H—-0 \ J¢ (t—H—0 = d; — q; oq

~

i
Therefore, we have

1\ [ ® 10S.\ _iseaay [T wosnes

—Oo0




Example

To verify the idea, we shall explore a simplest example: two-time harmonic oscillators, see
Kings and Nijhoff.

2 2
, _ 1 (%) _oiq ;o _Ll (o) _od
1 — ~ - — and = — — ,
2 \ar, 2 2 \ o, 2

where q(t;, 1) = (q,(f, 1), g5(1y, 1)) and @, , are constant.

The guantity that we need to focus on is

P2 528, g (t)] j o\ ., v\,
%Fl Lduj[rdvj (ym) 5q(u)dq(v) y(v)) " 2n Ldrl [(071) O <@_fz> -

Therefore, we have

gy
Qr = J Drly(, 1)]e
y(0,0)=0

2
(T1,7>) ady 2.2
oy dt2[<6_tz> _a’2y])



Example

The whole exponent term of the equation QF can be written as

(71,0 0
J dt, <—
0.0) _ ot,
(T',0) [
= J dtyy
(0,0) .

(T19T2)

+ “
(Tlvo)

dby

(T),17) P 2
y
— iy’ | + J dt <g> - w3y’
| (71,0) L 2
. i
dy(1,,0)
> = 6012 y + y(71,0) tl
1
2 - —
0 a)’(71190)
2
— ] —w —v(7,,0 .
0t2> 5|1y —y(T,.0) o,




Example

(T1’T2)
For this particular path, we find that

(t;, 1)) E ) E —2 sin —nﬂt coS —nﬂt + —2 sin _mrt cos —nﬂt
’ = AnYn ’ = ay
MG YY) Yn,ally, o " Tll T22 3 T22 Tll

n n

where ) < 1 < Tl » and it is not difficult to show that the

orthonormality condition holds

'y

(Tl,O) (TlaTZ)
[ dtlyn,Aym,A = [ dtZYn,Aym,A = 5nm .

(X0) (11,0) (X0) (T,0)

Then, the QO function becomes

tr = [t (e (45



Example

(T1’T2)
For this particular path, we can still use

(t;, 1)) E ) E —2 sin —nﬂt coS —nﬂt + —2 sin _mrt cos —nﬂt
’ = AnYn ’ = ay
MG YY) Yn,ally, o " Tll T22 3 T22 Tll

n n

where O S tl,z S T1,2'

(0,0)

Then, the QO function becomes

2 2
] 2
53,10 (ot -of+ (%) + (£))

@FB = [@ [a,]e



Example

(1), T,)

For this particular path, the fluctuation y is
) —
y(t, 1) = Z a4, Yt 1) = | 2
n 2 hiidd 1 i
n T T,

(0,0) (7,0)

Then, the QO function becomes

e J @[an]ﬁznmnv(—w%—w% () + (;—g)z)

>, an\/;1 sin <%tl> oS <%t2> ; (E<tatt,=0)U(t; >tatt,=T,)

> an\/; cos (””q) sin ("”z‘2> ;. (, € [0,T5] at t; = 1)
1



Example

(T, T5) (T,, T,) (T,, T,)
rB
rA
(090) (7’-90) (090) (TI’O) (090)

Since C@FA — @FB = @FC and, with the closure relation, Sy = Sp = S, we have

K (q(Ty, T»), (T}, T); q(0,0), (0,0)) = Qe 7519 = @ e Shlde] = @ ewScla)

which is nothing but the path independent feature of the multi-time propagator in case of
quadratic Lagrangian 1-forms.



Summary

1) The propagator possessed the path independent feature on the space of time variables
is the one that comes with a special set of Lagrangians satisfying the closure relation. This
structure gives us an on top feature of the classical variational principle in the sense that
this special set of Lagrangians plays a role of critical point resulting path independent
propagator on the space of independent variables coined as the quantum variation, see
King and Nijhoff,



Summary

2) The interesting point is that this multi-time propagator comes with a new feature on sum
over all possible paths. One needs to take into account not only all possible paths on the

space of dependent variables, but also _on the space of independent variables(time

variables)

.
4

Of course, this idea is not new and it was first introduced by Nijhoff in 2013%*.

We point at this stage that what we come up for the formula of the continuous multi-time
propagator in the 1-form case is not the same with Nijhoff's proposal. However, they do
share the exactly the same interpretation. Moreover, loops will not contribute into the
propagator as consequence of the theorem.

King and Nijhoff

*This new perspective of treating the dependent and independent variables on the same equal footing was suggested in many places, see Atkinson and Rovelli, see further
discussion in King's thesis.



Summary

3) Beyond the quadratic cases ?

Sp@CUlathﬂ: The propagator for each Lagrangian in the hierarchy can be expressed in the

form (*]

(ot (5)se00)

K(Q(. . 15", )y8"5q( o B(8)), ), ') = J DIq(...,1(5), . ..)|erSaC-4().)]

oot (5")se)

where

SIq(. .., £(s"), ..} =J1dthj.

(*) Kazuyuki Jujit, 2011, "Beyond the Gaussian”, SIGMA, 7, 022.

Different from the quadratic ones
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