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Multidimensional Consistency

Multidimensional Consistency (MDC)[Nijhoff,Walker-2001]

With w, @, @, & given we would solve for 4, @, & from the three equations on the

left and then the three equations on the right should give the same value for a.
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Q(a, i, i, i p, q) = 0,
Q(it, @, @, i p, ) = 0,
Q(u, 1, @, u; q,r) = 0.



Multidimensional Consistency

Consistency around the cube (CAC) [ABS-2003]

CAC: MDC with some conditions (Linearity, Symmetry, Tetrahedron Condition)
ABS List (9 equations):

@ H-List:

Hi:(u—u)(t—1a)=p*—q¢
Hy : (u—a)(a—1a) = (

@ A-List:



Multidimensional Consistency

Consistency around the cube (CAC) [ABS-2003]

) = 6°palq — p)
)+pa(p— q)(u+i+a+a) =
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=@ _QQ)((fbﬁﬂ-uﬁ)—kéQ%)
Qu : p(uli + 0i) — q(ud + 4d) =

_ pQ—qP

1 — p2¢?

((aa +ud) — pg(1+ uami))

where P? :p4+7p2+1, Q* = q4 f'yq2+1.



Multidimensional Consistency

Consistent on a 4D cube [ABS-2012, IMRN]

Octahedron-Type Lattice Equations:

@ The bilinear lattice KP equation

Ul — Ut + utt = 0




Multidimensional Consistency

Octahedron-Type Lattice Equations [ABS-2012,

@ The lattice potential modified KP equation

i-4 a-d a-4
—+—+——=0
U U U
@ The asymmetric lattice modified KP
(@—a) -,1 1
a u(a ﬁ)

All these equations already appeared in the literature. [Hirota R-1981, Nijhoff
F W, Capel H W, Wiersma G L and Quispel G R W-1984, Dorfman |, Nijhoff F
W-1991, Bogdanov L V, Konopelchenko B G-1998]
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Aim: Algebro-geometric solutions
The finite-gap integration method was created for solving the Korteweg—de
Vries (KdV) equation with periodic initial value problem by Novikov, Matveev
and their collaborators Dubrovin, Its and Krichever in 1970s. The obtained
periodic solutions are called finite-gap solutions or algebro-geometric solutions.
After the original work, the theory has undergone a true development and had
a strong impact on the evolution of modern mathematics and theoretical
physics.
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Lattice potential modified KP equ
Spectral problems

@ Continuous type

\2/2 Au
Oz x = Urx, U1=< / )

Mo —A%/2

A2 (—uw) Mug — 2u?v)
Oyx =Uax, Us=NUr+
uX 2 T2 ' < AM—=vz — 2uv?)  =X*(—uw)

Ox = Usx,

Us = \2U, + ( A (—upv + 6uvy + 3uv? Mgz — 6uvuy + 6uv? )

AVze + 6uvvy + 60 v® =A% (—uzv + 6uvy + 3uv?)

@ Discrete type

)2 _ D(ﬁ)X7 D(ﬁ)()\’a’ b) _ < )\2(ab+ 1) — ﬁZ Aa )

Ab 1



Lattice potential modified KP equ
Soliton equations

Continuous type
@ (U1, Us), the derivative nonlinear Schrédinger (dNLS):

Uy — Uzs + (2u2v)z =0,

Vy + Vzz + (2uvz)z =0.

@ (U1,Us,Us), the potential modified Kadomtsev-Petviashvili

(PMKP)(W, = uv):

- 3 3
g6:0 = SWaaWy + T Wyy = Wer =0

] =



Lattice potential modified KP equ
Soliton equations

Discrete and semi-discrete type

@ (U, D)), the semi-discrete dNLS
(a=2u/(14++V1—4uv), b=20/(1++1—4uv)):

o + ({05 — uv)u — %(1 VT = dud) (it + B2u) = 0,
B + (40 — uv)d + %(1 + V1 —4ud) (v + Bi9) =0
@ (DWW DB2)) the lattice dNLS:
%(1 VT =) (i + BPu) — %(1 + I = 4up) (@ + 2u) — (@5 — av)u = 0,
%(1 + /1 — 40 (5 + B25) — %(1 + V1 = 49 (5 + B25) — (b — av)s = 0



Lattice potential modified KP equ
Soliton equations

The lattice potential modified KP (LpMKP) with 1, 2, 3 discrete

arguments:

(Z=ab+1,W -W=ZOW-W=mz® W -W =1Inz®)
® (Uh,Uz, DY)

=D = (W Woa — (W2 — W2) — 282 VW), — (W — W), =0
Y (Ul,D(B”,D(ﬁ?)):
502 = (W=W)o+ (e 7 —e W) g3 (e W _e V) —
o (D(ﬁl)yD(ﬁ2)’D(ﬂ3)):
E(0,3) Eﬂ%(e—w+w _ e—W+W) + Bg(e_WH/V _ E—W+W)+
+ ﬁ§(67W+W _ €7W+W) -0

[Nijhoff F W, Capel H W, Wiersma G L and Quispel G R W-1984]
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Continuum limit

@ In the neighborhood of € ~ 0

2 2
=221 _ 56024 2 + O(a?’)7

=02 = 5o a(@ @) s | o)

@ol
3

—=(0,3)

[crea(c1 — ¢2) + cacs(ca — ¢3) + czca(es — 01)]53 + 0(54).

=
=

where 6,22 = cke, k = 1,2, 3, with distinct non-zero constants ¢, ¢z, c3.
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Integrable symplectic map

Consider the Lax matrix

(21)

L(X;p,q) = ( 2T Qg —AAn) )

AQ)\(A(L Q) 7% - QA(AQP, q)

where Qx(&,1) =< (A2 — A?)71¢, 9 >. It satisfies the r-matrix Ansatz

LV @ L} =[r( p), L) © 1] + [\ 1), T @ L)),

with
2 2
) = 35— m P o) = 55 B = (e )
A0 0 O
P 00 u 0
oo o4 00
0 0 0 A
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Integrable symplectic map

Suppose that the roots of F'(\) = det L(\) are (; = A%, j =1,..., N, then we

have the factorization

[5C-2) RO
4a(C) S 4e2(Q)’

where a(¢) = va (C=a?),R(¢) = a(Q) H;V:l(g — A2). Thus a hyperelliptic

curve
N
2
R : H —ad) (¢ -,

j=1

F(\) = —

with genus g = N — 1, is defined. The Riemann surface where ( is consists of
two sheets, and the curve R is of hyperelliptic involution in the sense that
7:((, &) = (¢, —&) maps R to itself. For a non-branching point ¢ on the

Riemann surface, we have

p+(Q) = (¢, €= VR(C)), »-(Q)= (¢, &= —VR(Q));

and in particular, for the infinity co on the Riemann surface, we denote the two

corresponding points on R by ooy, co_.
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Integrable symplectic map

Based on the relation L(X; p,§) D% (\;a,b) = D (X\;a,b)L(X; p,q), we
assert that the map

55 IRQN — R2N7 (p7 q) = (ﬁ7 6)7

D) = DD (a0 t) (V). 1<j<N
qj /a2 — p2 qj

is an integrable symplectic map under the constraint

— < Ap,p > -1

a = ) =
1+ < Ap,p>b B2Qs(Ap, p)

(5 +Qs(A%p.0) £ ().
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Algebro-geometric solutions

Using the integrable symplectic map, we define discrete phase flow
(p(m), g(m)) = S5 (p(0),q(0)) with initial point (p(0),¢(0)) € R*", then the
discrete KN spectral problem and the discrete Lax equation along the S3'-flow

are rewritten as
h(m 4+ 1,A) = Dy (A)h(m, \) (2.2)

and
Lunis(N)Din(A) = Din(N) Lun (M), (23)

where the Darboux matrix D,, () is

A2Zm — B2 Amum
B v > (2.4)

DA = D (X; am, bm) =
) ( ) Movmin .

M21 A{ZZ
M (0, \) being the unit matrix I.

Let M(m,\) = (Mu Mlz) be a fundamental solution matrix of (2.2) with



Lattice potential modified KP equ
Algebro-geometric solutions

Equation (2.3) indicates that the solution space of equation (2.2) is invariant
under the action of the linear map L., (\). From (2.1), the traceless L, (\)
allows two opposite eigenvalues, denoted as £H(\) = +1/—F(A), which are
independent of the discrete argument m. Denoting the corresponding

eigenvectors by hy(m,\) = (h(il), hf))T, we have
Ly (AN ht(m, X) = £H(A)ht(m, ), (2.5a)

and
ht(m+1,A) = Dy (A)ht(m, N), (2.5b)

simultaneously.



Lattice potential modified KP equ
Algebro-geometric solutions

Noting that the rank of L,,(\) F #(A) is 1, which means in each case the
common eigenvector is uniquely determined up to a constant factor, we select

two eigenvectors h4 (m, \) defined through M (m, ), as the following,

Ky ot
h:l:(m’ )‘) = (h(2)> = M(m7 /\)< 1)\>7 (26)
+

where the constants cf are determined by

ol -G L)
—H)

i.e. taking m = 0 in equation (2.5a). It turns out that

+_ L' (V) £HOD —L*(\)

N LS I S SV TT6VE 27)
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Algebro-geometric solutions

Introduce the meromorphic functions on R,

b (m, ps (A7) = A (m, 2), 5D (m,p- (A7) = AL (m, ),
6% (m,pr(\) = B (m,2), 5@ (m,p-(A%)) = (m, \).

(2.8)

To associate them with the Riemann theta function, we investigate their
analytic behaviors and divisors. To this end, introduce elliptic variables p;, v;
in L'2 and L?! by

ATLE) =~ (pm).plm)) = 22 TT (¢ - idm), (299)
ALEO) = QuAgtman) = 25 TT (= i), @9b)
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Algebro-geometric solutions

It turns out that

M(m, ) = Dyn—1(\)Dm—2(X) - - - Do(N), (2.10a)
Lon(\)M(m, \) = M(m, \)Lo()\), (2.10b)

and we then have det M (m, \) = (¢ — %)™ due to det D.n(\) = ¢ — B2

When ¢ ~ oo, for m > 2 we have

MM (m,\) = ZoZ1 -+ Zna (™ + O™, (2.11a)
MM (m,N) = uoZoZ1 - -+ Zn—1 (™ + O™, (2.11b)
MM (m, N) = v ZoZ1 - -+ Zn1 (™ + O™, (2.11c)
M*(m, \) = uovmZoZ1 - Zm—1C™ "+ O™, (2.11d)

and for m = 1 they are still valid except M??(1,\) = 1.
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Algebro-geometric solutions

From equation (2.6) we obtain

N—-1 2
1 m — 4m C - My
6 (b (1) 5 (m,p- (M%) = C(C = 5%)" = 11 ¢ —/if((rg)),

(2.12a)
N— 2 )
6@ (m,p4 (A)) -5 (m,p-(A?)) = U—’” _H g . (212b)
and asymptotic behaviors (¢ = A% ~ c0),
H™ (m,pr (V%)) = izoz1 "1 OCTY), (2.13a)
(1) 2\\ _ —2um -1

b (m,p-(\%)) = ZodZos (1+0(™), (2.13b)

5@ (m,ps (V) = ;’T’"OZOZ1 T (14 0(CTY), (2.13¢)

5 (m,p-(\?)) = Zozl~-2~ 7 (1+0(™). (2.13d)
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Algebro-geometric solutions

Now we are able to write down divisors of h(1>(m, ), h<2)(m,p) on R, which

are, respectively,

Dy (m (p(2m)) = p(20) ) + {0} + m{p(5*)} — (m + 1){oor ),

Jj=

—

(2.14a)

Q

DO (m,p) = > (p(v () = p(3(0)) ) +m{p(8*)} — m{oor ),

Jj=

-

(2.14b)

where o_ = (( =0,&=—y/R(0)),g=N — 1.



Lattice potential modified KP equ
Algebro-geometric solutions

Next, introduce the Abel-Jacobi variables

Bm) = A(LIip(m)), dm) = A(Sip (i (m)),  (215)

by using the Abel map A. Employing Toda's dipole technique, from (2.15) and
(2.14) we have

P(m) = ¢(0) + ms + o,  (modT), (2.16a)
é(m) = ¢(0) + mSs, (modT), (2.16b)
9] e o /OO+ 3 (2.16¢)
= w, = w. .10c

’ p(82) ’ o_
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Algebro-geometric solutions

Then, by comparing divisors we obtain the meromorphic functions in terms of

the Riemann theta function:

—&-I?;B
+K;

h(l)(m p) = oW 0(=Alp) + 7/2(771)
+

: eXp/ " (mewlp(8), 004] + wlo—, 004,
6(—A(p) + 6(0)

B) Po
(2.17a)

6 (m, ) = €@ FCAR) + 6(m) + K5 B)

p
0 AM) + 0 1 KiB) T / malp(§7), 001, (217)

where Cfrp and C,(f) are constant factors and the Riemann constant vector K

is defined as

=% [/akAwkf (%+Ak(qk))§k}, (2.18)

k=1
= 1+Bj; < ,
Ry= =220 5 [ 4wy G=1,000, (2.19)
2 a
k=1 k
k]

Here, wip, q] is the dipole, a meromorphical differential that has only simple
poles at p and q with residues +1 and —1, respectively.
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Algebro-geometric solutions

Our purpose is to derive explicit expression of Z,, in terms of the Riemann
theta function. To achieve that, first, we take p — oo_ in equation (2.17b).

This gives rise to

o = gty WO B AT oy ™ mafp(), 0041, (220
Z0Z1 - Zim—1 0[p(m) + K + Foo_] co_
where 7joo . = —A(co_). Next, we consider the second row in equation (2.5b),
i.e.
6 (m +1,p) = bib™ (m,p) + 5 (m, p), (2.21)
which reads
6 (m+1,0-) = 5@ (m,0-) (2.22)

at the point o_ since h ™) (m, 0_) = 0. Substituting (2.17b) with p = o_ into
(2.22) immediately yields

c®  0(dm+1)+ K+, ;B o
o= MO DR D) g [T (o], (229
Cm+1 O(¢(m) + K +1j,_; B) ro
where 7, = —A(o_).
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Algebro-geometric solutions

Now, substituting (2.20) into the above equation, we arrive at an explicit

expression of Z,, in terms of theta function, i.e.

— - —

$(m +1) + K +17js_; B) - 0((m) + oo s B)
$(m +

(
(p(m +1) + K + fio_; B) - 0(3(m) + K + o_; B)

9 o_
Lm = P exp/ w[p(B?), co4].
 (224)
With Z,, in hand, for a function W, that obeys equation
Wmt1 — Wi = In Z,,, where Z,, is given in (2.24), one can obtain an explicit

solution by “integration”,

= ne[(;(m)+le+ﬁ°*]'6[_‘(0)+_‘"'_’oo,] m 07w ) 00
W e o S em) + R 4 e ] 01000) + K+ 70 ] [ elbs 17225*)1
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Algebro-geometric solutions

The above discussions and results are valid for (m, 8) = (m., 3:), i = 1,2, 3.
Thus, we have three integrable symplectic maps Sg,, S, and Sg,. This
enables us to derive algebro-geometric solutions to IpmKP equation, namely

9(2:2:1 mkﬁﬁl« + $(0> 0, 0) + K + 770, ) B) )
08 meQp, + 6(0,0,0) + K + f_; B)
0(4(0,0,0) + K + fjne_; B)
0($(0,0,0) + K +j,_; B)

W(mi,mae,m3) =1In

3 o_
# 3 [ wlp(B),004] + W(0,0,0), (220
k=1 [

where the dipole differential w{p(57), 0o ] is defined as

2 _ £+ VR(B}) d¢
wlp(Br), 004] = <C+ - ) 2RO (2.27)
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An example: g = 1 case

The algebro-geometric solution (2.26) in the case of g = 1 can be expressed as

D3 (35— miQs, + ¢(0,0,0) + K1 +1o_|Bi1)

193(Zi:1 miQs, + ¢(0,0,0) + K1 + Neo_ | B11) '
793(‘75(07 O?O) + K1 + Moo _ |B11)

" 95(6(0,0,0) + K1 + 1o_|Bi1)

W (mi,ma2,ms) =In

3 o0_
#3 o m [ (o] 1 W0.0.0, (226)
k=1 oo _
where
o+ 1+ B
Qp,, = , K= ——, 2.29
B /p(ﬁg)WI 1 5 ( a)
Mo = f/ Wi, M = f/ o, (2.29b)
Po Po
R(32
wlp(Bi), 004] = Cl <C+ w> wi. (2.29¢)
11 ¢—PB;
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An example: g = 1 case

Note that due to the arbitrariness of ¢(0,0,0) we can always vanish
¢(0,0,0) + K1 and thus we come to

W (ma1, ma, m3) = Wa(m1, ma, ms) + Wi(mi, ma, ms) (2.30a)
with
Wo(ma, s, ms) = In 793(22:1 miQs, + 0o |Bi1) - U3(0oo |B11)’ (2.30b)
93D 1 Mg, + Noo_ |B11) - 93(ne_|B11)
Wi(ma,ma, ms) = imk /o_ w[p(Bk), 004] + W(0,0,0), (2.30¢)
= Jel

where Qg, ,10_,Moo_ and w[p(B2), 00+] are computed from (2.29b), and

Wi1(m1,ma, ms3) acts as a linear background of W (mq, ma, ms).
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An example: g = 1 case

The quasi-periodic evolution of Wa(m1,m2, m3) is shown in Figure.

]
[
|
i
|
|
|
|
|
|
|
i
|
|
|

Figure: Shape and motion of Wa(my, mo, m3) given in (2.30b) for
po = (—3.0,45.9565). (a) 3D plot of Wa(mq,mso,0). (b) 2D plot of
Wa(mq,0,0). (c) 2D plot of W2(0, mg,0). (d) 2D plot of W5(0,0,ms3).
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An example: g = 1 case

One can see a periodic wave coupled with an apparent linear background that
is different from Wi (m1,mao, ms). This is because in our example all {Q2x} and
Bi1 are pure imaginary and Jacobi’s function ¥3(z|B11) has a z-dependent

periodic multiplier e~ "*B11¢727% with respect to By, i.e.
793(2’ + Bi1 ‘ Bn) = 677\-“3116727”.%93(2 | Bn).

It is the periodic multiplier to give rise to the linear background when

Wa(m1, ma, ms3) evolves with respect to {my} via the formula (2.30b).



Concluding remarks

@ Extending solutions to full space

@ Constructing algebro-geometric solutions containing two soliton

parameters for 3D lattice equations

@ Applying the scheme to other ABS equations and 3D lattice equations
that are 4D consistent

@ Finite-gap integration based on theory of trigonal curves for discrete
integrable systems



Thanks for your attention !
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