On generic ABV-packets

The Enhanced Shahidi's conjecture

Some consequences of KL

ABV-packets and generic representations

Qing Zhang

Huazhong University of Science and Technology

Nov. 9, 2023

Based on joint work with Cunningham, Dijois, Fiori and with Hazeltine, Liu, Lo ABV-packets ABV-packets for G₂

On generic ABV-packets

The Enhanced Shahidi's conjecture

Some consequences of KL $_{\rm OOOO}$

Outline

- 2 ABV-packets for G₂
- On generic ABV-packets
 - Some consequences
 - Generic ABV-packets
- 4 The Enhanced Shahidi's conjecture
- 5 Some consequences of KL

 ABV-packets
 ABV-packets for G2
 On generic ABV-packets
 The Enhanced Shahidi's conjecture
 Some consequences of KL

- *F*: a *p*-adic field; *W_F* its Weil group;
- *G*: a connected quasi-split reductive group over a *p*-adic field *F*;
- G: complex dual group of G and ^LG = G ⋊ W_F the L-group of G;
- A local Langlands parameter is a conjugacy class of group homomorphisms φ : W_F × SL₂(ℂ) → ^LG satisfying certain properties.
- Equivalently, a local Langlands parameter is a conjugacy class of pairs (λ, N) where λ : W_F → ^LG and N ∈ ĝ is a nilpotent element such that Ad(λ(w))N = |w|N.
- λ is called the infinitesimal parameter of ϕ .

Arthur parameter

• An Arthur parameter is a homomorphism

$$\psi: W_{\mathsf{F}} \times \mathrm{SL}_2(\mathbb{C}) \times \mathrm{SL}_2(\mathbb{C}) \to {}^{\mathsf{L}}G$$

satisfying certain properties; (among others, one requires that $\psi|_{W_F}$ is bounded.)

Associated with ψ, we consider the corresponding local parameter φ_ψ : W_F × SL₂(ℂ) → ^LG by

$$\phi_{\psi}(\boldsymbol{w}, \boldsymbol{x}) = \psi \left(\boldsymbol{w}, \boldsymbol{x}, \begin{pmatrix} |\boldsymbol{w}|^{1/2} & \\ & |\boldsymbol{w}|^{-1/2} \end{pmatrix}
ight).$$

• A local Langlands parameter ϕ is of Arthur type if $\phi = \phi_{\psi}$ for some ψ .

$$\Phi_{temp} \subset \Phi_{Arthur} \subset \Phi(G).$$

- For classical groups, Arthur, Mok, et.al., constructed an Arthur packet Π_ψ(G) ⊂ Irr^{pure}(G) and a group homomorphism Π_ψ(G) → Â_ψ : π ↦ ⟨ , π⟩_ψ.
- Π_ψ should classify local components of L²-automorphic representation (generalized Ramanujan).

• $\Pi_{\phi_{\psi}} \subset \Pi_{\psi}$ and $\Pi_{\psi} \to \widehat{A}_{\psi}$ is compatible with $\Pi_{\phi_{\psi}} \to \widehat{A}_{\phi_{\psi}}$.

$$\Theta_{\psi} := \sum_{\pi \in \Pi_{\psi}} \langle \boldsymbol{s}_{\psi}, \pi \rangle_{\psi} \Theta_{\pi}$$

is stable.

• Each representation in Π_{ψ} is unitary.

Π_ψ is characterized by endoscopic character identity.

Problem

Find alternative description of Π_{ψ} ; or even better, generalize it to other groups and L-parameters of non-Arthur type.

- Moeglin, Bin Xu, Atobe gave quite concrete description of Π_ψ for Sp_{2n}, SO_{2n+1}...
- Adams, Barbasch and Vogan proposed a geometric construction of Π_ψ for any real reductive group in 1992. Adams, Arancibia, and Mezo proved the equivalence of those ABV-packets and Arthur packets in 2021.
- Inspired by ABV's work, Cunningham et.al proposed a geometric construction of Π_ψ for *p*-adic reductive groups.

Construction of ABV

- Let φ : W_F × SL₂(ℂ) → ^LG be a local Langlands parameter and λ_φ : W_F → ^LG be its infinitesimal parameter.
- Fix a λ : W_F → ^LG, the set {φ ∈ Φ(G) : λ_φ = λ} is parametrized by

$$V_{\lambda} := \{ x \in \widehat{\mathfrak{g}} : \operatorname{Ad}(\lambda(w))x = |w|x, \forall w \in W_{F} \} \\ = \left\{ x \in \widehat{\mathfrak{g}}^{I_{F}} : \operatorname{Ad}(\lambda(\operatorname{Fr})) = q^{-1}x \right\}.$$

Let H_λ = {g∈ Ĝ: gλ(w) = λ(w)g, ∀w ∈ W_F}. Then H_λ acts on V_λ by conjugation and

$$\{\phi \in \Phi(G) : \lambda_{\phi} = \lambda\} / equivalence \cong V_{\lambda} // H_{\lambda}.$$

• V_{λ} is called **Vogan variety** of λ .

ABV-packets occose ABV-packets for G₂ On generic ABV-packets occose the Enhanced Shahidi's conjecture Some consequences of KL

- The action of H_λ on V_λ has finite number of orbits, a unique closed orbit (zero orbit C₀) and a unique open orbit (denoted by C^o).
- Fix notation $\{\phi : \lambda_{\phi} = \lambda\} \ni \phi \leftrightarrow C_{\phi} \in V_{\lambda} // H_{\lambda} \text{ and } \phi_{C} \leftrightarrow C.$
- For an orbit *C*, let $A_C = \pi_0(Z_{H_\lambda}(x))$ for any $x \in C$.
- One has $A_C \cong A_{\phi_C} := \pi_0(Z_{\widehat{G}}(\phi)).$
- Characters of A_C classifies H_λ-equivariant local systems on C, namely, Rep(A_C) ≃ Loc_{H_λ}(C).
- Associated with each *C*, one can define a group $A_C^{\text{\tiny ABV}}$, whose characters classifies *H*-equivariant local system on some space Λ_C^{sreg} .
- If ϕ_C is of Arthur type, say $\phi_C = \phi_{\psi}$, then $A_C^{ABV} = A_{\psi} = \pi_0(Z_{\widehat{G}}(\psi)).$

 ABV-packets
 ABV-packets for G2
 On generic ABV-packets
 The Enhanced Shahidi's conjecture
 Some consequences of KL

 Let Rep_λ be the category of smooth admissible representations of *G*(*F*) and its pure inner forms with infinitesimal character λ. Then

$$\operatorname{Rep}_{\lambda}^{simple}\cong \coprod_{\phi:\lambda_{\phi}=\lambda} \Pi_{\phi}^{\operatorname{pure}}(G).$$

LLC gives a bijection

$$\iota: \Pi^{pure}_{\phi} \to \widehat{A_{\phi}},$$

and thus

$$\iota: \operatorname{Rep}_{\lambda}^{simple} \to \coprod_{\phi: \lambda_{\phi} = \lambda} \widehat{A_{\phi}}.$$

• *ι* might not be unique; it depends on Whittaker datum.

ABV-packets 000000000 ABV-packets for G2 On generic ABV-packets 0000 The Enhanced Shahidi's conjecture Some consequences of KL

- Let Per_{H_λ}(V_λ) be the category of H_λ-equivariant perverse sheaves on V_λ.
- For an orbit C and a local system L ∈ Loc_{H_λ}(V_λ), one can associate a simple perverse sheaf IC(C, L) ∈ Per_{H_λ}(V_λ).
- There is a bijection

$$\coprod_{C \in V_{\lambda} /\!\!/ H_{\lambda}} \widehat{A_{C}} \to \coprod_{C \in V_{\lambda} /\!\!/ H_{\lambda}} \operatorname{Loc}_{H_{\lambda}}(C)^{simple} \to \operatorname{Per}_{H_{\lambda}}(V_{\lambda})^{simple}$$

Since φ ↔ C_φ defines a bijection
 {φ : λ_φ = λ} / equivalence → V_λ // H_λ and A_φ ≅ A_{C_φ}, there
 is a bijection

$$\mathcal{P}_{\iota}: \operatorname{Rep}_{\lambda}^{simple}
ightarrow \operatorname{\mathsf{Per}}_{H_{\lambda}}(V_{\lambda})^{simple}.$$

For each orbit C ∈ V_λ ∥ H_λ, Cunningham et.al. defined a functor

$$\mathsf{NEv}_{\mathcal{C}}: \mathsf{Per}_{\mathcal{H}_{\lambda}}(\mathcal{V}_{\lambda})
ightarrow \mathsf{Loc}_{\mathcal{H}_{\lambda}}(\Lambda^{sreg}_{\mathcal{C}}) \cong \widehat{\mathcal{A}^{\scriptscriptstyle \mathsf{ABV}}_{\mathcal{C}}}$$

Definition of ABV-packets

$$\mathsf{\Pi}_{\phi,\iota}^{\scriptscriptstyle \operatorname{ABV}}(\mathcal{G}) = \left\{ \pi \in \operatorname{Rep}_{\lambda}^{\mathit{simple}} : \mathsf{NEv}_{\mathcal{C}_{\phi}}(\mathcal{P}_{\iota}(\pi))
eq 0
ight\}.$$

• There is a natural map

$$\Pi^{\scriptscriptstyle{\operatorname{ABV}}}_{\phi,\iota}({\boldsymbol{G}}) o \widehat{{\boldsymbol{A}}^{\scriptscriptstyle{\operatorname{ABV}}}_\phi} : \pi \mapsto \langle \ ,\pi
angle^{\scriptscriptstyle{\operatorname{ABV}}}_\phi.$$

ABV-packets

Basic expectations

- Π^{ABV}_{φ,ι}(G) is independent of ι.
- For classical group *G* and Langlands parameter of Arthur type $\phi = \phi_{\psi}$, one should have $\Pi_{\psi}(G) = \Pi_{\phi}^{\text{ABV}}(G)$, and the map $\Pi_{\phi}^{\text{ABV}} \to \widehat{A_{\phi}^{\text{ABV}}}$ should be the same as $\Pi_{\psi} \to \widehat{A_{\psi}}$ of Arthur, i.e., $\langle , \pi \rangle_{\phi_{\psi}}^{\text{ABV}} = \langle , \pi \rangle_{\psi}$.
- For general G and φ, Π^{ABV}_φ should behave pretty much like Arthur packets.

Remark

Recently, Cunningham-Ray established the above conjecture for GL_n .

ABV-packets occosed by a consequences of KL

- Given a reductive group *G* of adjoint type, Kazhdan-Lusztig and Lusztig established LLC for unipotent representations, which are parametrized by unramified local Langlands parameters.
- This was generalized to arbitrary group by Solleveld recently.
- In particular, we know the LLC for unipotent representations of the exceptional group G₂.
- Recently, LLC for *G*₂ was established by Aubert-Xu, and by Gan-Savin independently.
- Joint with Cunningham and Fiori, we explicated the ABV-packets for unipotent representations of *G*₂.

Theorem (Cunningham-Fiori-Z)

For each $\phi \in \Phi_{ur}(G_2)$, there exists an explicit finite set Π_{ϕ}^{ABV} of irreducible unipotent representations of $G_2(F)$ and a map $\Pi_{\phi}^{ABV} \to \widehat{A_{\phi}^{ABV}}$ such that they behave pretty much like the Arthur packets.

Remark

Gan-Gurevich-Jiang, Gan-Gurevich, Alonso-He-Ray-Roset constructed A-packets of G_2 using exceptional theta correspondence.

Here are some examples about the last sentence.

• We have a commutative diagram

- If ϕ is open, then the map $\Pi_{\phi}^{ABV} \rightarrow \widehat{A_{\phi}^{ABV}}$ is a bijection.
- A representation π is unramified (spherical), if and only if φ is closed and (, π) is trivial on A^{ABV}_φ.

ABV-packets for G₂ On generic ABV-packets ABV-packets 000000 **00000**

The Enhanced Shahidi's conjecture

Some consequences of KL

• For each $\phi \in \Phi_{ur}(G_2(F))$, consider the distribution

$$\Theta_{\phi} = \sum_{\pi \in \Pi_{\phi}^{\mathrm{ABV}}} (-1)^{\dim(\mathcal{C}_{\phi}) - \dim(\mathcal{C}_{\pi})} \langle 1, \pi \rangle \Theta_{\pi}$$

If Θ_{ϕ} is stable for all elliptic $\phi \in \Phi_{ur}(G_2(F))$, then Θ_{ϕ} is stable for all $\phi \in \Phi_{\mu\nu}(G_2(F))$.

• For each $\phi \in \Phi_{ur}(G_2(F))$, there exists a unique $\hat{\phi} \in \Phi_{\mu\nu}(G_2(F))$ such that the Aubert involution defines a bijection

$$\Pi^{\rm ABV}_{\phi} \to \Pi^{\rm ABV}_{\hat{\phi}}.$$

Pric ABV-packets The Enhanced Shahidi's conjecture

Some consequences of KL

• For each $\phi \in \Phi_{ur}(G_2(F))$, consider the distribution

$$\Theta_{\phi} = \sum_{\pi \in \Pi^{\mathrm{ABV}}_{\phi}} (-1)^{\dim(\mathcal{C}_{\phi}) - \dim(\mathcal{C}_{\pi})} \langle 1, \pi
angle \Theta_{\pi}.$$

If Θ_{ϕ} is stable for all elliptic $\phi \in \Phi_{ur}(G_2(F))$, then Θ_{ϕ} is stable for all $\phi \in \Phi_{ur}(G_2(F))$.

 For each φ ∈ Φ_{ur}(G₂(F)), there exists a unique φ̂ ∈ Φ_{ur}(G₂(F)) such that the Aubert involution defines a bijection

$$\Pi^{\rm ABV}_{\phi} \to \Pi^{\rm ABV}_{\hat{\phi}}.$$

Remark

One should be able to extend the above construction to general $\phi \in \Phi(G_2)$ after the recent proof of LLC for G_2 .

Some consequences of KL

One explicit example

Let $\phi: W_F \times SL_2(\mathbb{C}) \to \widehat{G_2}$ be the unramified local Langlands parameter corresponding to the subregular unipotent conjugacy class and let $\lambda = \lambda_{\phi}$.

- $V_{\lambda} = \{a_0x^3 + a_1x^2y + a_2xy^2 + a_3y^3 : a_i \in \mathbb{C}\};$
- $H_{\lambda} = \mathrm{GL}_{2}(\mathbb{C});$
- The action of H_{λ} on V_{λ} is a twisting of Sym³;
- There are 4 orbits; denoted by $\phi_0, \phi_1, \phi_2, \phi_3$, all of which are of Arthur type, say given by ψ_i .

Gan-Gurevich-Jiang gave a construction of Π_{ub} using theta correspondence.

Proposition (Cunningham-Fiori-Z)

The ABV-packets Π_{ϕ}^{ABV} agree with Π_{ψ} constructed by Gan-Gurevich-Jiang.

Some consequences of KL

Assuming *G* is quasi-split.

Definition

An *L*-parameter ϕ is called generic if Π_{ϕ} contains a generic representation.

Conjecture: Gross-Prasad, Rallis

A parameter ϕ is generic iff $L(s, \phi, Ad)$ is regular at s = 1.

This conjecture was checked for many different groups by various authors. Gan-Ichino proved the above conjecture under certain assumptions, which were known to be true for classical groups. The Enhanced Shahidi's conjecture

Some consequences of KL

Proposition (Cunningham, Dijois, Fiori, Z.)

The parameter ϕ is open in V_{λ} with $\lambda = \lambda_{\phi}$ iff $L(s, \phi, Ad)$ is regular at s = 1.

Definition

A parameter ϕ is called open if ϕ is open in V_{λ} .

Corollary (Geometric description of generic parameters)

Assuming the conjecture of Gross-Prasad, Rallis. Then ϕ is generic iff ϕ is open.

Assuming $\phi = \phi^{o}$ is open, one could fix the LLC such that $\pi(\phi^o, 1)$ is the generic representation (w.r.t a fixed Whittaker datum), where $1 \in \widehat{A}_{\phi^o}$ is the trivial character.

On generic ABV-packets

The Enhanced Shahidi's conjecture

Some consequences of KL

Generic ABV-packets

Conjecture of Gross-Prasad, Rallis is equivalent to:

Gross-Prasad, Rallis' conjecture

 Π_{ϕ} contains a generic representation iff ϕ is open.

A generalization of the above is the following

Conjecture

Let ϕ be an L-parameter. Then $\Pi_{\phi}^{\text{\tiny ABV}}$ contains a generic representation iff ϕ is open.

The above conjecture is indeed a generalization of that of GP, Rallis, because $\Pi_{\phi} \subset \Pi_{\phi}^{ABV}$ for general ϕ and $\Pi_{\phi} = \Pi_{\phi}^{ABV}$ if ϕ is open.

Generic ABV-packets

Theorem (Cunningham, Dijois, Fiori, Z.)

If G is a quasi-split classical group, ϕ is an L-parameter of G, then Π_{ϕ}^{ABV} contains a generic representation iff ϕ is open.

Note that if ϕ is open, then $\Pi_{\phi} = \Pi_{\phi}^{ABV}$ contains a generic representation by the conjecture of GP, Rallis. On the contrary, suppose that Π_{ϕ}^{ABV} contains a generic representation π^{o} . It is known that $\pi^{o} \in \Pi_{C^{o}}$ and it corresponds to the trivial character of C^{o} . Thus the above statement is equivalent to

 $\mathsf{NEv}_C(\mathbf{1}_{C^o}) \neq 0$ iff $C = C^o$.

Tempered parameters

- Recall that an *L*-parameter φ : W_F × SL₂(ℂ) → ^LG is called tempered if φ|_{W_F} is bounded.
- If φ is tempered, then Π_φ consists of tempered representations.
- If ϕ is tempered, then ϕ is of Arthur type.

Proposition

An L-parameter is tempered iff ϕ is both of Arthur type and open.

Conjecture (Shahidi, 1990)

If ϕ is tempered, then Π_{ϕ} contains a generic representation.

The above conjecture has been checked by many authors. The following is an enhanced version.

Conjecture (Enhanced Shahidi's conjecture, 2021)

If G is a quasi-split classical group such that Arthur packets can be defined. Let ψ be an Arthur parameter, then Π_{ψ} contains a generic representation iff ψ is tempered, i.e., $\psi = \phi_{\psi}$ for a tempered L-parameter ϕ .

- Liu-Shahidi proved the enhanced Shahidi's conjecture for quasi-split classical groups under certain assumptions.
- Hazeltine-Liu-Lo proved the Enhanced Shahidi's conjecture for split SO_{2n+1} and Sp_{2n}.
- The Enhanced Shahidi's conjecture for quasi-split classical groups follows from the Vogan conjecture, namely, if $\psi = \phi_{\psi}$, then $\Pi_{\phi}^{ABV} = \Pi_{\psi}$. In this sense, the above conjecture for generic ABV-packets is a generalization of the Enhanced Shahidi's conjecture.

Some consequences of KL

A new framework to solve the Enhanced Shahidi's conjecture

- For an Arthur parameter ψ : W_F × SL₂(ℂ) × SL₂(ℂ) → ^LG, define ψ̂ by ψ̂(w, x, y) = ψ(w, y, x).
- For a representation π of G(F), let π̂ be the Aubert dual of π.

Theorem (Hazeltine, Liu, Lo, Z.)

The Enhanced Shahidi's conjecture follows from the following 3 assumptions:

- *if* $\pi \in \Pi_{\psi}$ *, then* $\overline{C_{\phi_{\pi}}} \supset C_{\phi_{\psi}}$ *;*
- 3 for any Arthur parameter ψ , one has $\Pi_{\widehat{\psi}} = \{\widehat{\pi} : \pi \in \Pi_{\psi}\}$;

for any generic representation π^o, one has π̂^o ∈ Π_{φ₀}, where φ₀ is the zero orbit in V_λ for λ = λ<sub>φ_π₀.
</sub>

- Assumption (2) for SO_n and Sp_{2n} was proved by Bin Xu.
- Assuming that generic parameters are open parameters, assumption (3) for SO_n and Sp_{2n} was checked by Arthur.
- Assumption (1) appeared as a conjecture in one of Bin Xu's paper. It reveals a very important geometric property of Arthur packets.

Proof of the above theorem: Given π , consider $\Psi(\pi) = \{\psi : \pi \in \Pi_{\psi}\}$. Assumption (1) says that if $\pi \in \Pi_{\phi_0}$, $\Psi(\pi) = \{\psi_0\}$ with $\phi_0 = \phi_{\psi_0}$. Assumption (2) says that there is a bijection $\Psi(\pi) \to \Psi(\widehat{\pi})$ by sending ψ to $\widehat{\psi}$. In particular, there is a bijection $\Psi(\pi^o) \to \Psi(\widehat{\pi}^o)$. Assumption (3) says that $\widehat{\pi^o} \in \Pi_{\phi_0}$, which implies that $\Psi(\pi^o)$ is a singleton, which must be $\widehat{\psi}_0$. The above discussion shows that $\widehat{\psi}_0$ is tempered.

Theorem (Hazeltine, Liu, Lo, Z.)

For split SO_{2n+1} and Sp_{2n} , the above assumption (1) is true. Thus the Enhanced Shahidi's conjecture is true for split SO_{2n+1} and Sp_{2n} .

The proof uses the explicit construction of Arthur packets of these groups due to Mœglin, Bin Xu, and then further refined by Atobe, Hazeltine-Liu-Lo.

Conjecture (Kazhdan-Lusztig)

For each $\pi \in (\text{Rep}_{\lambda}(G))^{\text{simple}}$, there exists a perverse sheaf $\mathcal{M}_{\pi} \in Per_{H}(V)$ such that for each pair π, π' , we have

multiplicity(π', M_{π}) = multiplicity($\mathcal{M}_{\pi}, \mathcal{P}(\pi')$).

Here M_{π} is the standard module of π .

Fix a λ . Consider an orbit C and the open orbit C° . The geometric multiplicity

multiplicity(
$$\mathcal{M}_{\pi(\phi_{\mathcal{C}},1)}, \mathcal{P}(\pi(\phi_{\mathcal{C}^o},1)))$$

could be easily determined.

The Enhanced Shahidi's conjecture

Some consequences of KL

Proposition

• multiplicity $(\mathcal{M}_{\pi(\phi_{C},1)}, \mathcal{P}(\pi(\phi_{C^o},1))) = 1;$

• For any
$$ho \in \widehat{A_{\phi_{\mathcal{C}^o}}}$$
, $\mathcal{M}_{\pi(\phi_{\mathcal{C}^o},
ho)} = \mathcal{P}(\pi(\phi_{\mathcal{C}^o},
ho)).$

Corollary

Assuming Kazhdan-Lusztig. Let π^{o} be a generic representation with L-parameter ϕ^{o} .

• If ϕ is an L-parameter with $\lambda_{\phi} = \lambda_{\phi^o}$, then

$$\langle M_{\pi(\phi,1)}, \pi^o \rangle = 1.$$

• For any $\pi \in \Pi_{\phi^o}$, M_{π} is irreducible.

The last one is a generalization of Casselman-Shahidi's standard module conjecture, which was proved by Heiermann-Opdam. This generalized version was proved by Heiermann unconditionally.

ABV-packets for G_2 On generic ABV-packets

The Enhanced Shahidi's conjecture Some consequences of KL

Central character

A consequence of the first statement of the above corollary is

Corollary

Assuming Kazhdan-Lusztig. We have

$$\omega_{\pi(\phi,1)} = \omega_{M_{\pi(\phi,1)}} = \omega_{\pi^o}.$$

For any ϕ , it is expected that $\omega_{\pi_1} = \omega_{\pi_2}$ for any $\pi_1, \pi_2 \in \Pi_{\phi}$. Denote this character by ω_{ϕ} .

Corollary

- If $\lambda_{\phi_1} = \lambda_{\phi_2} = \lambda$, we have $\omega_{\phi_1} = \omega_{\phi_2}$, which is denoted by ω_{λ} .
- For any $\pi_1, \pi_2 \in \operatorname{Rep}_{\lambda}$, we should have $\omega_{\pi_1} = \omega_{\pi_2} = \omega_{\lambda}$. In particular, representations in Π_{ϕ}^{ABV} have the same central character.

ABV-packets ABV-packets for G₂

On generic ABV-packe

The Enhanced Shahidi's conjectur

Some consequences of KL $_{\circ\circ\circ\bullet}$

Thank you!