On Shafarevich problems for hyper-Kähler varieties

Geometry of Hyper-Kähler Varieties

Haitao Zou

2023/09/08

1 Introduction

► Introduction

Shafarevich conjecture for hyper-Kähler varieties

1 Introduction

• Let $K \subset \mathbb{C}$ be a field.

1 Introduction

• Let $K \subset \mathbb{C}$ be a field.

Definition

A hyper-Kähler variety X is a smooth projective variety over K such that

- $\pi_1^{\text{et}}(X_{\bar{K}}) = \{1\}.$
- $\mathrm{H}^{0}(X_{\overline{K}}, \Omega^{2}_{X_{\overline{K}}})$ is generated a nowhere degenerate closed 2-form $\sigma \colon \mathcal{O}_{X} \to \Omega^{2}_{X}$.

1 Introduction

• Let $K \subset \mathbb{C}$ be a field.

Definition

A hyper-Kähler variety X is a smooth projective variety over K such that

- $\pi_1^{\text{et}}(X_{\bar{K}}) = \{1\}.$
- $\mathrm{H}^{0}(X_{\overline{K}}, \Omega^{2}_{X_{\overline{K}}})$ is generated a nowhere degenerate closed 2-form $\sigma \colon \mathcal{O}_{X} \to \Omega^{2}_{X}$.

Remark

▶ *X* is HK if and only if $X_{\mathbb{C}}$ is complex hyper-Kähler variety.

1 Introduction

• Let $K \subset \mathbb{C}$ be a field.

Definition

A hyper-Kähler variety X is a smooth projective variety over K such that

- $\pi_1^{\text{et}}(X_{\bar{K}}) = \{1\}.$
- $\mathrm{H}^{0}(X_{\overline{K}}, \Omega^{2}_{X_{\overline{K}}})$ is generated a nowhere degenerate closed 2-form $\sigma \colon \mathcal{O}_{X} \to \Omega^{2}_{X}$.

Remark

- ▶ *X* is HK if and only if $X_{\mathbb{C}}$ is complex hyper-Kähler variety.
- For HKs of known types, its deformation is independent of the embedding $K \hookrightarrow \mathbb{C}$.

Finiteness of HKs over number fields

1 Introduction

• Let *K* be a number field, and fixed an embedding $K \hookrightarrow \mathbb{C}$.

Shafarevich problem

 $\mathcal M$ is a set of hyper-Kähler varieties defined over $\mathit K$. Is the following set finite?

$$\operatorname{Shaf}_{\mathcal{M}}(K,S) = \begin{cases} K \text{-isomorphism classes of varieties in} \\ \mathcal{M} \text{ defined over } K \\ (\star) \text{ with good reduction outside } S \end{cases}$$

Finiteness of HKs over number fields

1 Introduction

• Let *K* be a number field, and fixed an embedding $K \hookrightarrow \mathbb{C}$.

Shafarevich problem

 ${\mathcal M}$ is a set of hyper-Kähler varieties defined over ${\it K}$. Is the following set finite?

$$\operatorname{Shaf}_{\mathcal{M}}(K,S) = \begin{cases} K \text{-isomorphism classes of varieties in} \\ \mathcal{M} \text{ defined over } K \\ (\star) \text{ with good reduction outside } S \end{cases}$$

 (*) is called the Shafarevich condition, which corresponds to the existence of integral points "inside" Shimura variety.

Finiteness of HKs over number fields

1 Introduction

• Let *K* be a number field, and fixed an embedding $K \hookrightarrow \mathbb{C}$.

Shafarevich problem

 ${\mathcal M}$ is a set of hyper-Kähler varieties defined over ${\it K}$. Is the following set finite?

$$\operatorname{Shaf}_{\mathcal{M}}(K,S) = \begin{cases} K \text{-isomorphism classes of varieties in} \\ \mathcal{M} \text{ defined over } K \\ (\star) \text{ with good reduction outside } S \end{cases}$$

- (*) is called the Shafarevich condition, which corresponds to the existence of integral points "inside" Shimura variety.
- the Shafarevich condition can be replaced by other weaker conditions, e.g., cohomological Shafarevich condition

Shafarevich conjecture for curves

1 Introduction

Theorem (Faltings, '83)

Let S be a finite set of places of a number field K, the Shafarevich set

 $\left\{ \begin{array}{c|c} C & \text{Curve } C \text{ has genus } g \text{ defined over } K, \\ \text{with good reduction outside } S \end{array} \right\} / \cong_F.$

is finite.

Shafarevich conjecture for curves

1 Introduction

Theorem (Faltings, '83)

Let S be a finite set of places of a number field K, the Shafarevich set

 $\left\{ C \middle| \begin{array}{c} \text{Curve } C \text{ has genus } g \text{ defined over } K, \\ \text{with good reduction outside } S \end{array} \right\} / \cong_F.$

is finite.

Mordell Conjecture:

$$\#\mathcal{C}(\mathbf{K}) < \infty \quad \text{if } g(\mathcal{C}) \geq 2$$

is a direct consequence from the Shafarevich conjecture by Kodaira–Paršhin construction:

$$\mathcal{C}(\mathit{K}) \leftrightarrow \left\{ \mathit{D}_p
ightarrow \mathcal{C}$$
 finite of degree 2^{2g} ramified exactly at $p \in \mathcal{C}(\mathit{K})
ight\}$

1 Introduction

• *K*: a number field

1 Introduction

• *K*: a number field

Bombieri-Lang Conjecture

If smooth projective variety X over K is of general type, then X(K) is not Zariski dense.

1 Introduction

• *K*: a number field

Bombieri-Lang Conjecture

If smooth projective variety X over K is of general type, then X(K) is not Zariski dense.

Remark

The relationship between finiteness of rational (integral) points in a (quasi-)projective variety and its geometry is predicted by Lang-Vojta conjectures:

1 Introduction

• *K*: a number field

Bombieri-Lang Conjecture

If smooth projective variety X over K is of general type, then X(K) is not Zariski dense.

Remark

The relationship between finiteness of rational (integral) points in a (quasi-)projective variety and its geometry is predicted by Lang-Vojta conjectures:

hyperbolicity \Leftrightarrow finiteness of rational (integral) points

1 Introduction

• *K*: a number field

Bombieri-Lang Conjecture

If smooth projective variety X over K is of general type, then X(K) is not Zariski dense.

Remark

The relationship between finiteness of rational (integral) points in a (quasi-)projective variety and its geometry is predicted by Lang-Vojta conjectures:

hyperbolicity \Leftrightarrow finiteness of rational (integral) points

► There are also stacky version Lang–Vojta conjectures.

1 Introduction

▶ Faltings, Zarhin: Abelian varieties of a fixed dimension g

- ▶ Faltings, Zarhin: Abelian varieties of a fixed dimension g
- ► André: hyper-Kähler varieties (with b₂ > 3) of given dimension with a very ample polarization of bounded degree;

- ▶ Faltings, Zarhin: Abelian varieties of a fixed dimension g
- André: hyper-Kähler varieties (with b₂ > 3) of given dimension with a very ample polarization of bounded degree;
- ► Lawrence-Sawin: hypersurfaces in a fixed abelian variety

- ▶ Faltings, Zarhin: Abelian varieties of a fixed dimension g
- André: hyper-Kähler varieties (with b₂ > 3) of given dimension with a very ample polarization of bounded degree;
- ► Lawrence-Sawin: hypersurfaces in a fixed abelian variety
- ▶ Y. She, Takamatsu: unpolarized K3 surfaces

- ▶ Faltings, Zarhin: Abelian varieties of a fixed dimension g
- André: hyper-Kähler varieties (with b₂ > 3) of given dimension with a very ample polarization of bounded degree;
- ► Lawrence-Sawin: hypersurfaces in a fixed abelian variety
- ▶ Y. She, Takamatsu: unpolarized K3 surfaces
- ► Takamatsu: Enrique surfaces

- ▶ Faltings, Zarhin: Abelian varieties of a fixed dimension g
- André: hyper-Kähler varieties (with b₂ > 3) of given dimension with a very ample polarization of bounded degree;
- ► Lawrence-Sawin: hypersurfaces in a fixed abelian variety
- ▶ Y. She, Takamatsu: unpolarized K3 surfaces
- ► Takamatsu: Enrique surfaces
- • •

Table of Contents

2 Shafarevich conjecture for hyper-Kähler varieties

Introduction

► Shafarevich conjecture for hyper-Kähler varieties

Shafarevich conjecture for HK (after André and She)

2 Shafarevich conjecture for hyper-Kähler varieties

- Let *M* be a geometric deformation type of hyper-Kähler variety.
- Let *K* be a number field, *S* a finite set of places of *K*.

Shafarevich conjecture for HK (after André and She)

2 Shafarevich conjecture for hyper-Kähler varieties

- Let *M* be a geometric deformation type of hyper-Kähler variety.
- Let *K* be a number field, *S* a finite set of places of *K*.

Theorem (Fu-Li-Takamatsu-Zou, '22)

If $b_2(M) \ge 4$, then the following Shafarevich set is finite.

$$\operatorname{Shaf}_M(K,S) = \begin{cases} X \end{cases}$$

- *X* is hyper-Kähler variety defined over *K*, which is
 - 1. geometrically deformation equivalent to M
 - 2. with good reduction outside *S*.

Kuga-Satake construction

2 Shafarevich conjecture for hyper-Kähler varieties

• HK_d^{\dagger} be a fixed geometrically connected component of HK_d ,

Kuga-Satake construction

2 Shafarevich conjecture for hyper-Kähler varieties

- HK_d^{\dagger} be a fixed geometrically connected component of HK_d ,
- $(X, h) \in \mathrm{HK}^\dagger_d(\mathbb{C})$ a fixed \mathbb{C} -point

Kuga-Satake construction

2 Shafarevich conjecture for hyper-Kähler varieties

- HK_d^{\dagger} be a fixed geometrically connected component of HK_d ,
- $(X,h) \in \mathrm{HK}^{\dagger}_{d}(\mathbb{C})$ a fixed \mathbb{C} -point
- $\Lambda_h \coloneqq h^{\perp} \subset \mathrm{H}^2(X, \mathbb{Z}).$

Theorem (Deligne '72, André '96, Rizov '06, Madapusi Pera '15, Bindt '21)

For any integer d > 0, There is following diagram

$$\begin{split} & \operatorname{Sh}(\operatorname{CSpin}(\Lambda_h)) \\ & \overset{\operatorname{ad}}{\longrightarrow} \operatorname{Sh}(\operatorname{SO}(\Lambda_h)) \overset{\operatorname{ad}}{\longrightarrow} \operatorname{Sh}(\operatorname{GSp}(V)) \cong \mathcal{A}_g \end{split}$$

in which γ is defined over a number field E and others are defined over \mathbb{Q} .

Strictly speaking, here HK_d^{\dagger} should be replaced by a double-covering.

2 Shafarevich conjecture for hyper-Kähler varieties

• Let HK_d^{\dagger} be a fixed geometrically connected component of HK_d .

2 Shafarevich conjecture for hyper-Kähler varieties

• Let $\mathrm{HK}_{d}^{\dagger}$ be a fixed geometrically connected component of HK_{d} .

Uniform Kuga–Satake for HK There are integers *n*, *N*, and a quasi-finite morphism

$$\mathrm{HK}^\dagger_{d,n} o A_{g,N}$$

defined over a number field E, with E, n, N, g independent with d.

2 Shafarevich conjecture for hyper-Kähler varieties

• Let HK_d^{\dagger} be a fixed geometrically connected component of HK_d .

There are integers n, N, and a quasi-finite morphism

 $\mathrm{HK}_{d,n}^{\dagger}
ightarrow A_{g,N}$

defined over a number field E, with E, n, N, g independent with d.

Finiteness of Picard lattices

- Serre-Tate's good reduction theorem for abelian varieties
- Faltings' finiteness theorem for abelian varieties
- If (X, h) and (X', h') have same image in $A_{g,N}$, then $T(X_{\mathbb{C}}) \simeq T(X'_{\mathbb{C}})$ Hodge isometry.

2 Shafarevich conjecture for hyper-Kähler varieties

• Let HK_d^{\dagger} be a fixed geometrically connected component of HK_d .

Uniform Kuga–Satake for HK

There are integers n, N, and a quasi-finite morphism

$$\mathrm{HK}^\dagger_{d,n} o A_{g,N}$$

defined over a number field E, with E, n, N, g independent with d.

Finiteness of Picard lattices

- Serre-Tate's good reduction theorem for abelian varieties
- Faltings' finiteness theorem for abelian varieties
- If (X, h) and (X', h') have same image in $A_{g,N}$, then $T(X_{\mathbb{C}}) \simeq T(X'_{\mathbb{C}})$ Hodge isometry.

Birational Geometry of HK

- the elements in Shafarevich set form a finite set up to *K*-birational replacements;
- Kawamata–Morrison's Cone Conjecture over *K*
- bounded square of exceptional classes

2 Shafarevich conjecture for hyper-Kähler varieties

2 Shafarevich conjecture for hyper-Kähler varieties

• "good reduction outside S " \Rightarrow " $\mathrm{H}^*_{\mathrm{et}}(X_{\bar{K}}, \mathbb{Q}_\ell)$ are unramified as Galois modules"

2 Shafarevich conjecture for hyper-Kähler varieties

- "good reduction outside S " \Rightarrow " $\mathrm{H}^*_{\mathrm{et}}(X_{\bar{K}}, \mathbb{Q}_\ell)$ are unramified as Galois modules"
- We can replace the Shafarevich condition by cohomological Shafarevich conditions.

2 Shafarevich conjecture for hyper-Kähler varieties

- "good reduction outside S " \Rightarrow " $\mathrm{H}^*_{\mathrm{et}}(X_{\bar{K}}, \mathbb{Q}_\ell)$ are unramified as Galois modules"
- We can replace the Shafarevich condition by cohomological Shafarevich conditions.

Theorem (Fu-Li-Takamatsu-Zou, '22)

If $M = K3^{[n]}$ -type, generalized Kummer, OG6 or OG10, then the following cohomological Shafarevich set is finite

$$\operatorname{Shaf}_{M}^{hom}(K,S) = \begin{cases} X \end{cases}$$

- X is hyper-Kähler variety defined over K, which is
 1. geometrically deformation-equivalent to M
 2. H^{*}_{et}(X_k, Q_ℓ) are unramified outside S as
 - Galois modules.

Cohomological Shafarevich conjectures for HK

2 Shafarevich conjecture for hyper-Kähler varieties

- "good reduction outside S " \Rightarrow " $\mathrm{H}^*_{\mathrm{et}}(X_{\bar{K}}, \mathbb{Q}_\ell)$ are unramified as Galois modules"
- We can replace the Shafarevich condition by cohomological Shafarevich conditions.

Theorem (Fu-Li-Takamatsu-Zou, '22)

If $M = K3^{[n]}$ -type, generalized Kummer, OG6 or OG10, then the following cohomological Shafarevich set is finite

$$\operatorname{Shaf}_{M}^{hom}(K,S) = \begin{cases} X & \text{is hyper-K\"ahler variety defined over } K, \text{ which is } Y \\ 1. & \text{geometrically deformation-equivalent to } M \\ 2. & \operatorname{H}_{\operatorname{et}}^{*}(X_{\overline{K}}, \mathbb{Q}_{\ell}) \text{ are unramified outside } S \text{ as } \\ & \text{Galois modules.} \end{cases}$$

▶ Liedtke-Matsumoto, Yang: For K3 surfaces, at prime *p* big enough (e.g., *p* > 36):

unramifiedness \Leftrightarrow reduction with at worst ADE singularities

K3 surface (Takamatsu, '18)	K3 ^[n] -type, OG10	generalized Kummer, OG6
$\mathrm{H}^2_{\mathrm{\acute{e}t}}(X_{ar{k}}, \mathbb{Q}_\ell)$ being unramified.	$\mathrm{H}^2_{\mathrm{\acute{e}t}}(X_{\overline{k}}, \mathbb{Q}_\ell)$ being unramified.	$\mathrm{H}^*_{\mathrm{et}}(X_{\overline{K}}, \mathbb{Q}_\ell)$ are all unramified.

2 Shafarevich conjecture for hyper-Kähler varieties

K3 surface (Takamatsu, '18)	K3 ^[n] -type, OG10	generalized Kummer, OG6
$\mathrm{H}^2_{\mathrm{\acute{e}t}}(X_{ar{K}}, \mathbb{Q}_\ell)$ being unramified.	$\mathrm{H}^2_{\mathrm{\acute{e}t}}(X_{\overline{K}}, \mathbb{Q}_\ell)$ being unramified.	$\mathrm{H}^*_{\mathrm{et}}(X_{ar{K}}, \mathbb{Q}_\ell)$ are all unramified.

▶ It depends on whether $\operatorname{Aut}(X_{\overline{K}})$ acts faithfully on $\bigoplus_{i \in I} \operatorname{H}^{i}_{\operatorname{et}}(X_{\overline{K}}, \mathbb{Q}_{\ell})$ for some index set *I*.

2 Shafarevich conjecture for hyper-Kähler varieties

K3 surface (Takamatsu, '18)	K3 ^[n] -type, OG10	generalized Kummer, OG6
$\mathrm{H}^2_{\mathrm{\acute{e}t}}(X_{ar{K}}, \mathbb{Q}_\ell)$ being unramified.	$\mathrm{H}^2_{\mathrm{\acute{e}t}}(X_{\overline{K}}, \mathbb{Q}_\ell)$ being unramified.	$\mathrm{H}^*_{\mathrm{et}}(X_{ar{K}}, \mathbb{Q}_\ell)$ are all unramified.

► It depends on whether $\operatorname{Aut}(X_{\overline{K}})$ acts faithfully on $\bigoplus_{i \in I} \operatorname{H}^{i}_{\operatorname{et}}(X_{\overline{K}}, \mathbb{Q}_{\ell})$ for some index set *I*.

For generalized Kummer and OG6, $Aut(X_{\overline{K}})$ does NOT act faithfully on H^2 .

K3 surface (Takamatsu, '18)	K3 ^[n] -type, OG10	generalized Kummer, OG6
$\mathrm{H}^2_{\mathrm{\acute{e}t}}(X_{ar{K}}, \mathbb{Q}_\ell)$ being unramified.	$\mathrm{H}^2_{\mathrm{\acute{e}t}}(X_{\overline{K}}, \mathbb{Q}_\ell)$ being unramified.	$\mathrm{H}^*_{\mathrm{et}}(X_{ar{K}}, \mathbb{Q}_\ell)$ are all unramified.

- ► It depends on whether $\operatorname{Aut}(X_{\overline{K}})$ acts faithfully on $\bigoplus_{i \in I} \operatorname{H}^{i}_{\operatorname{et}}(X_{\overline{K}}, \mathbb{Q}_{\ell})$ for some index set *I*.
- For generalized Kummer and OG6, $Aut(X_{\overline{K}})$ does NOT act faithfully on H^2 .
- ► For any hyper-Kähler variety in dimension 4, cohomological Shafarevich conjecture holds ($\operatorname{H}_{\operatorname{et}}^*(X_{\overline{K}}, \mathbb{Q}_{\ell})$) being unramified), by recent work of Cheng Jiang and Wenfei Liu.

Recent progress: pointed Shafarevich conjecture

2 Shafarevich conjecture for hyper-Kähler varieties

Theorem (Fu-Li-Takamatsu-Zou)

- Let k be an algebraically closed field in characteristic 0;
- $(\mathcal{C}, 0)$ a pointed curve over k (i.e., $0 \in \mathcal{C}$ a fixed closed point)

The following set is finite.

Shaf $((\mathcal{C}, 0), X) = \begin{cases} f: \mathfrak{X} \to \mathcal{C} & \text{is smooth proper family of hyper-} \\ K \ddot{a}hler \text{ varieties over } k \text{ such that } \mathfrak{X}_0 = \\ f^{-1}(0) \cong X \end{cases}$

• \mathfrak{X} can only be an algebraic space.

Recent progress: pointed Shafarevich conjecture

2 Shafarevich conjecture for hyper-Kähler varieties

Theorem (Fu-Li-Takamatsu-Zou)

- Let k be an algebraically closed field in characteristic 0;
- $(\mathcal{C}, 0)$ a pointed curve over k (i.e., $0 \in \mathcal{C}$ a fixed closed point)

The following set is finite.

Shaf $((\mathcal{C}, 0), X) = \begin{cases} f: \mathfrak{X} \to \mathcal{C} & \text{is smooth proper family of hyper-} \\ K \ddot{a}hler \text{ varieties over } k \text{ such that } \mathfrak{X}_0 = \\ f^{-1}(0) \cong X \end{cases}$

- \mathfrak{X} can only be an algebraic space.
- ► For pointed Shafarevich conjecture for polarized HK (i.e., *f* is projective), this is a direct consequence of the hyperbolicity of the moduli stack of polarized HKs.

2 Shafarevich conjecture for hyper-Kähler varieties

► Does cohomological Shafarevich conjecture hold for all HK? It is sufficient to show Aut(*X*) acts on the cohomology ring H^{*}(*X*) trivially.

- ► Does cohomological Shafarevich conjecture hold for all HK? It is sufficient to show Aut(X) acts on the cohomology ring H^{*}(X) trivially.
- ▶ For higher dimensional HK variety X, $H^*_{et}(X_{\bar{K}}, \mathbb{Q}_{\ell})$ being unramified \Rightarrow ?

2 Shafarevich conjecture for hyper-Kähler varieties

- ► Does cohomological Shafarevich conjecture hold for all HK? It is sufficient to show Aut(X) acts on the cohomology ring H^{*}(X) trivially.
- ► For higher dimensional HK variety X, $H^*_{et}(X_{\overline{K}}, \mathbb{Q}_{\ell})$ being unramified \Rightarrow ?
- ► If derived equivalences preserves deformation type of HK varieties, then

cohomological Shafarevich conjecture \Rightarrow finiteness of FM partners over K.

On Shafarevich problems for hyper-Kähler varieties

Thank you for listening! Any questions?