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I. Introduction
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History

Moduli space of curves

o The (coarse) moduli space of smooth curves of genus g ≥ 2

=Mg

{
Σg :

}
/ ∼=

is a non-compact scheme of dimension 3g − 3.

o Deligne-Mumford: the moduli space of stable curves of genus g

M g = Mg
⋃{

nodal curves
}

is a projective scheme.

o Mumford, Giesker:

M g ∼= Chowg,n≥5//SL((2n − 1)(g − 1)) ∼= Hilbg,n≥5//SL((2n − 1)(g − 1))

where
• Hilbg,n: Hilbert scheme of n-canonically embedded curves of genus g

• Chowg,n: Chow variety of n-canonically embedded curves of genus g .
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Other compactifications

Allowing worse singularities

o M
ps
g = Mg ∪

{
allowing cusp, no elliptic tails

}
o M

cs
g = Mg ∪

{
allowing tacnode, no elliptic bridges

}
o M

hs
g = Mg ∪

{
allowing tacnode, no elliptic chains

}

Varying GIT models (Schubert, Hassett-Heyon)

o Chowg,3//SL(5g − 5) ∼= Chowg,4//SL(7g − 7) ∼= M
ps
g

o Chowg,2//SL(3g − 3) ∼= M
cs
g

o Hilbg,2//SL(7g − 7) ∼= M
hs
g
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Their relations via LMMP

Hassett-Keel Program (Hassett-Heyon)

o BCHM: Let δg be the boundary divisor of M g . The log canonical
model

M g(α) := Proj
⊕
m≥0

H0(M g ,m(KMg
+ αδg))

exists for α ∈ [0, 1].

o M g(α > 9
11
) ∼= M g

o M g(
7
10

< α ≤ 9
11
) ∼= M

ps
g and M g(1) → M g(

9
11
) is a divisorial

contraction
o M g(

7
10
) ∼= Chow2//SL(3g − 3) and M g(

7
10

− ε) ∼= Hilb2//SL(3g − 3) and
there is a flip

M g(
7
10

− ε)

&&LL
LLL

LLL
LL

M g(
7
10

+ ε)

xxrrr
rrr

rrr
r

M g(
7
10
)
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2. Moduli of projective K3 surfaces
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K3 surfaces

o A K3 surface S over C is a smooth compact surface satisfying
ωS ∼= OS and H1(S,OS) = 0.

o A polarized K3 surface of genus g is a pair (S, L), where L is
an ample line bundle with L2 = 2g − 2 > 0.

Definition

Example (Mukai models)

o g = 2: S 2:1−−→ P2 double cover branched over a smooth sextic.
o g = 3: S ↪→ P3 a smooth quartic surface
o g = 4: S = Q ∩ C ⊆ P4 a smooth complete intersections of a quadric

and a cubic.
o g = 5: S = Q1 ∩ Q2 ∩ Q3 is smooth complete intersection of three

quadric in P5.
o 12 ≥ g ≥ 6, g ̸= 11: smooth complete intersections in a homogenous

space
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Moduli of polarized K3 surfaces

Moduli space of polarized smooth K3 surfaces

o For g ≥ 2, let

F ◦
g =

{
(S, L) primitively polarized K3 with L2 = 2g − 2

}
/ ∼=

be the (coarse) moduli space of primitively polarized smooth K3
surfaces of genus g .

o F ◦
g is a quasi-projective variety of dimension 19 with quotient

singularities.

A natural partial compactification

o Allowing ADE singularities: Fg = F◦
g ∪∆g where

∆g =
{
(S, L)| L ample with L2 = 2g−2, S has isolated ADE singularities

}
.

o Fg is "almost" a projective scheme.
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GIT compactifications of F ◦
g

Linear system on K3 surfaces

o Saint-Donat: S → |nL| = PN−1 is a closed embedding if n ≥ 3.

o (S, L) is called unigonal if S → |2L| is not a closed embedding.

GIT compactifications

o Viehweg: F ◦
g ⊆ Hilbg,n//SL(N) for n sufficiently large

o Donaldson: F ◦
g ⊆ Chowg,n//SL(N) for n sufficiently large

Open problem: do they also compactify Fg ?
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Arithmetic compactifications of Fg

global Torelli theorem

o Pjateckĭı-Šapiro, Šhafarevič:

Fg ∼= Sh(G)

is a connected Shimura variety associated to an orthogonal group G
with G(R) = O(2, 19).

o Baily-Borel: there is a Satake compactification

F ∗
g ∼= Proj R(Fg , λ),

where λ is the Hodge line bundle.

o Looijenga: there is a semitoric compactification

F
D
g ∼= Proj R(Fg − D , λ|Fg−D),

where D is a union of Shimura subvarieties of codimension 1.
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o Pjateckĭı-Šapiro, Šhafarevič:

Fg ∼= Sh(G)

is a connected Shimura variety associated to an orthogonal group G
with G(R) = O(2, 19).

o Baily-Borel: there is a Satake compactification

F ∗
g ∼= Proj R(Fg , λ),

where λ is the Hodge line bundle.

o Looijenga: there is a semitoric compactification

F
D
g ∼= Proj R(Fg − D , λ|Fg−D),

where D is a union of Shimura subvarieties of codimension 1.

9



New modular compactifications

Slc stable pairs moduli spaces

o Kollár-Shepherd-Barron, Alexeev: The (coarse) moduli space of
KS -trivial slc pairs

Pg = {(S, εC) | C ∈ |nL|}/ ∼=

is a projective scheme. It admits a forgetful rational map Pg 99K Fg .

o Alexeev-Engel: moduli of stable slc pairs (S, εR) with R recongizable.

K-stable moduli spaces

o Ascher-Devleming-Liu : for c ∈ (0, 1
2
), the good moduli space of

K-stable pairs

K h,c =
{
(X , cS) is K-polystable with Hilbert polynomial h

}
/ ∼=

is a projective scheme of finite type.

Guiding Problem: Carrying out the birational morphisms between various
compactifications with modular interpretations.
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A motivated example: g = 2

Set

o F
Mukai
2 = |OP2(6)|//SL(3)

o K 6,c : the moduli space of K-polystable log Fano surface pairs
smoothable to (P2, cC) where C ∈ |OP2(6)|

o P2: moduli space of KSBA stable degree 2 K3 pairs.

Shah, Laza, Ascher-Devleming-Liu

o There is a diagram

F̂2
∼= K 6,( 1

4
, 1
2
−ϵ)

π

�� %%LL
LLL

LLL
LLL

P2

��

hoo_ _ _

F
Mukai
2

∼= K 6,(0, 1
4
]

//___ F ∗
2

o F̂2 → F ∗
2 is a Q-Carterization map and F̂2 → F ∗

2 contracts the
unigonal loci D1,1.

o F̂2 → F
Mukai
2 is the Kirwan partial desingularization of F

Mukai
2
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From LMMP point of view

All the compactifications can be constructed through a unified
way.

Let B = D1,1 and define

F 2(α) := Proj R(F ∗
2 , λ+ αB)

with α ∈ [0, 1] ∩Q.

Log canonical models of F ∗
2

Then we have

o F 2(0) ∼= F ∗
2 , F 2(α) ∼= F̂2 for α ∈ (0, 1), F 2(1) ∼= F

Mukai
2

o F 2(ε) → F 2(1) contracts the strict transform of D1,1 to a point.
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The case with Mukai models

o Mukai’s GIT compactification F
Mukai
g

g Mukai model F
Mukai
g

3 quartic surface P34//SL(4)
4 cubic hypersurface on Q P29//SO(5)

5 c.i. of three quadratics in P5 Gr(3, 21)//SL(6)
6 quadric hypersurface on F5 P22//PSL(2)
7 c.i. of eight hyperplanes in IGr(5, 10) Gr(8, 16)//Spin(10)
8 c.i. of six hyperplanes in Gr(2, 6) Gr(6, 15)//SL(6)

Remark. The rank of Pic(F Mukai
g ) is 1.

o Hassett-Keel-Looijenga program: Find interpolating log canonical
models connecting F

Mukai
g and F ∗

g with modular and arithmetic
interpretations.

Idea: Run MMP with scaling on F ∗
g .
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Before construction: divisors on F ∗
g

Noether-Lefschetz divisors

o Dd,h: parametrizing (S, L) ∈ Fg whose Pic(S) contains a primitive
lattice (

2g − 2 d
d 2h − 2

)

o Dd,h can be regarded as a Shimura subvariety.
o Bergeron-Li-Millson-Moeglin: PicQ(Fg) is spanned by Dd,h.

Examples

o D0,0 = nodal loci
o D1,1 = unigonal loci
o D2,1 = hyperelliptic loci, i.e. the loci where S → |L| is 2 : 1.
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Picard group of F ∗
g with Mukai models

Greer-Li-Tian: the Picard group of F ∗
g for g ≤ 10 is given by

g dim PicQ(Fg) generators (besides λ)
2 2 D1,1

3 3 D1,1,D2,1

4 4 D1,1,D2,1,D3,1

5 4 D1,1,D2,1,D3,1

6 6 D1,1,D2,1,D3,1,D5,2,D4,1

7 7 D1,1,D2,1,D3,1,D5,2, D6,2, D4,1

8 7 D1,1,D2,1,D3,1,D6,2, D7,2, D4,1

9 8 D1,1,D2,1,D3,1,D6,2, D7,2, D4,1,D5,1

10 9 D1,1,D2,1,D3,1,D4,1,D7,2,D9,3, D8,2,D5,1,

15



General construction

Interpolating models: consider

F g(α) = Proj R(F ∗
g , λ+ B(α))

with α varying in [0, 1] ∩Q, where B(α) =
ρ∑

i=1

ai(α)Ddi ,hi with Ddi ,hi given in

the previous Table, ai(α) are linear functionals.

Expectation: there is a chamber structure on α and the birational maps

F ∗
g 99K F

Mukai
g

factors through a series of wall crossing maps.

Problem:

1. existence of F g(α): finite generation is missing.
2. computation of walls: high dimensional varieties have very

complicated degenerations
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A short cut (least wall crossings)

Predictions: there exitsts ai(α) such that

o (Semitoric part) F g(0) is Looijenga’s semitoric compactification and
the birational map

F ∗
g 99K F g(0)

factors through a Q-factorialization, a series of flips, and divisorial
contractions.

o (GIT part) F g(α) is a VGIT and F
Mukai
g ∼= F g(1). The parameter

α ∈ Q ∩ [0, 1] admits a chamber structure with finite many walls
0 < α0 < · · · < αm < 1, i.e.

F g(αn−1, αn)

π−

&&MM
MMM

MMM
MM

F g(αn, αn+1)

π+

xxqqq
qqq

qqq
q

F g(αn)

o The centers are proper transforms of Shimura subvarieties lying in
Looijenga’s stratification of

∑
Ddi ,hi .
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Looijenga’s stratification

o Sh(G) = Γ\D, with G = O(V ) an orthogonal group.
o D = Γ\

∑
v∈A

v⊥ is a union of Shimura subvarieties D of codimension one.

o Looijenga’s stratification of D :

D(d) = Γ\
∑

(

d⋂
i=1

v⊥
ki )

where vki ∈ A are linearly independent.
o This gives a tower of Shimura varieties D(d+1) ⊆ D(d) and the

irreducible components of D(2) will occur in the restriction D |D .

Connection to HKL

o Potential center: the stratification B(d) of the support of B(α).
o Potential walls: solution α0 of the linear equation 1− f (α) = 0, where

λ+ B(α)|B(d) = (1− f (α))λ+ B(d+1)(α)

and B(d+1)(α) is extremal or not effective at α0.
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An ideal situation

The birational map

Proj R(Sh(G), λ) 99K Proj R(Sh(G), λ+ B(α))

factor through a series of elementary transformations, whose centers are
irreducible components of Looijenga’s stratification of the support of B(α).

o the birational map Sh(G)∗ 99K Sh(G)
D

is in the ideal situation.
o Laza-O’Grady, Ascher-Devleming-Liu:

F ∗
3 99K F 3(β) = Proj R(F ∗

3 , λ+ β(D1,1 + D2,1))

is in the ideal situation.

Example

Remark. In HKL, this never happen when g > 3. The centers will become
much more complicated.
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Useful tools via arithmetic methods

Intersection theory on Shimura varieties

o Pic(Sh(G)) is essentially the space of certain modular forms.

o Greer-Laza-Li-Si-Tian: there is an effective algorithm to compute
the restriction of NL-divisors to Shimura subvarieties by using the
Jacobi forms. In particular, one can get an explicit formula of

λ+ B(α)|B(d) ,

as a linear combination of NL divisors.

Understanding of effective cones

o Peterson: Is Eff(F ∗
g ) = Eff(F ∗

g )
NL generated by the NL divisors?

o Greer-Laza-Li-Si-Tian: Dd,h is extremal in Eff(F ∗
g ) if

15

8
(g − 1) ≥ d2 − 4(g − 1)(h − 1).
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Example of generators of Eff(F ∗
g )

NL

List of generators of Eff(F ∗
g )

NL for g ≤ 10

g dim PicQ(Fg) Generators
2 2 D0,0, D1,1

3 3 D0,0 D1,1,D2,1

4 4 D0,0 D1,1,D2,1,D3,1

5 4 D0,0, D1,1,D2,1,D3,1

6 6 D0,0, D1,1,D2,1,D3,1,D5,2,D4,1

7 7 D0,0, D1,1,D2,1,D3,1,D5,2, D6,2, D4,1

8 7 D0,0, D1,1,D2,1,D3,1,D6,2, D7,2, D4,1

9 8 D0,0, D1,1,D2,1,D3,1,D6,2, D7,2, D4,1,D5,1

10 9 D0,0, D1,1,D2,1,D3,1,D4,1,D7,2,D9,3, D8,2,D5,1,

Remark. The blue ones are extremal in Eff(F ∗
g ).
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IV. HKL for F4

22



Polarized K3 surface of genus 4

Projective models

o For (S, L) ∈ F4, the image S → |L| is a complete intersection of a
quadric and a cubic in P4 iff (S, L) is not lying in D1,1, D2,1.

o The image S → |L| is a complete intersection of a smooth quadric Q
and a cubic in P4 iff (S, L) is not lying in D1,1, D2,1 and D3,1.

Parametrization space

o (2, 3)-complete intersections are parametrized by an open subset of a
projective bundle P(E) → |OP4(2)| = P14, where

0 → p∗(IQ ⊗ q∗OP4(3)) → p∗(q∗OP4(3)) → E → 0,

Q is the universal quadric with projections p : Q → |OP4(2)| and
q : Q → P4.

o (Fix Q) cubic hypersurfaces on Q are parametrized by |OQ(3)|.
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GIT compactifications

As (2, 3)-complete intersection

o GIT quotient of P(E): P(E)//t SL(5) the GIT w.r.t. the linearization

Ht = q∗OP14(1) + tOP(E)(1).

o Benoist: Ht is ample when 0 < t ≤ 1
2
.

o GIT quotient of Chow variety: Chow6,2(P4)//SL(5)

As nodal cubic fourfolds

o (2, 3)-complete intersection (q, f ) in P4 ⇔ a nodal cubic {x5q + f = 0}
in P5.

o This gives a non-reductive GIT model

∆0//G

where ∆0 ⊆ ∆ paramterizing cubics which are singular at
p = [0, . . . , 0, 1] and G ≤ SL(6) is the stabilizer of p.
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Boundary stratum

o Li-Tian: F
Mukai
4 − F4 consists of 9 irreducible components parametrizing

singular c.i. as below:

1. (dim = 6) two simple elliptic singularities of type Ẽ6

2. (dim = 2) two simple elliptic singularities of type Ẽ8, whose projective
tangent cone meeting the surface along lines.

3. (dim = 11) a simple elliptic singularities of type Ẽ7

4. (dim = 8) a simple elliptic singularity of type Ẽ8, whose projective
tangent cone meeting the surface along points.

5. (dim = 11) a line
6. (dim = 7) a conic
7. (dim = 3) a twisted cubic
8. (dim = 2) a rational curve of degree 4

9. (dim = 7) an elliptic curve of degree 4

o Stark: the boundary F ∗
4 −F4 consists of 10 modular curves meeting at a

point.
25



HKL conjecture

Conjecture A

Set B(α) = D1,1 + D2,1 + αD3,1 and

F4(α) := Proj R(F ∗
4 , λ+ B(α)).

Then

o (Existence) R(F ∗
4 , λ+ B(α)) is finitely generated for α ∈ Q ∩ [0, 1].

o the walls of the Mori chamber decomposition of the cone{
λ+ B(α) | α ∈ Q, α > 0

}
are located at the following critical values

Wall =
{
0,

1

28
,
1

16
,
1

14
,
1

12
,
1

10
,
1

8
,
1

7
,
1

6
,
1

5
,
1

4
,
1

3
,
1

2
, 1
}
.

Remark: 1
9

is missing.
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HKL conjecture

o (Tower structure) The centers of F4(αn − ε) → F4(αn) forms a
descending towers of Shimura subvarieties in F

∗
6

å An-tower:

D3,1 = Sh(ΛA2) ⊃ . . . ⊃ Sh(ΛA5) ⊃ Sh(ΛA′
6
) ⊃ Sh(ΛA′

7
) ∪ Sh(ΛA′′

7
)

⊃ Sh(ΛA′
8
) ∪ Sh(ΛA′′

8
) ⊃ Sh(ΛA′

9
) ⊃ Sh(ΛA′

10
)

å Dn-tower:

Sh(ΛD4) ⊃ Sh(ΛD5) ⊃ Sh(ΛD6) ⊃ Sh(ΛD7) ⊃ Sh(ΛD′
8
) ⊃ Sh(ΛD′

9
)

å En-tower:
Sh(ΛE6) ⊃ Sh(ΛE7) ⊃ Sh(ΛE8)

where ΛAn = (E6 ⊕An)
⊥, ΛDn = (E6 ⊕Dn)

⊥, ΛEn = (E6 ⊕En)
⊥ ⊆ U⊕2 ⊕E⊕3

8 .

Remark. Sh(ΛAn), Sh(ΛDn), Sh(ΛEn) and Sh(ΛA′
10
) are irreducible

components of D(n)
3,1 .
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Modular interpretation of D
(•)
3,1 and modifications

Generic member in D(•)
3,1

o An-tower: S = Q ∩ Y with rank(Q) = 4 and S has an An−1 singularity
at the vertex of Q.

o Dn-tower: S = Q ∩ Y with rank(Q) = 3 and S has a Dn−2 and an A1

singularity in Sing(Q).

o En-tower: S = Q ∩ Y with rank(Q) = 3 and S has an A5 (resp. D6, E7)
singularity in Sing(Q).

Generic member in Sh(ΛA′
•)

o (S,OS(1)) ∈ Sh(ΛAn) and contains a special line passing through the
vertex of Q
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Main result

o F 4(1− ε) ∼= F
Mukai
4

o F 4(
1
10
) ∼= Chow6,2(P4)//SL(5).

o F 4(0) ∼= ∆0//G is a Looijenga compactification.

o F 4(α) exists when α ≥ 1/10 or α = 0 and there is an
isomorphism

P(E)//t SL(5) ∼= Proj R(D1,1 +
4 + t
5t D2,1 +

1− t
5t D3,1)

∼= F 4(
1− t
5t )

for 0 < t ≤ 2
3
.

Moreover, the conjecture holds when F4(α) exists.

Theorem (Greer-Laza-Li-Si-Tian)

The proof makes use of variational GIT, but there is a purely arithmetic
explanation.
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Theorem (Greer-Laza-Li-Si-Tian)

The proof makes use of variational GIT, but there is a purely arithmetic
explanation.
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A glimpse of wall crossings for An-tower

Using our arithmetic algorithm, one can compute the restriction of
λ+ B(α) to Sh(ΛAn) as below

λ+ B(α)|Sh(ΛAn )
=(1− (n − 1)α)λ+ α Sh(ΛAn+1) + (1 + 4s)Dhyper

+α(n − 1) Sh(ΛDn+1) + α
(n − 2)(n − 1)

2
Sh(ΛEn+1).

Greer-Laza-Li-Si-Tian

o Dhyper , Sh(ΛDn+1) and Sh(ΛEn+1) are birationally contractible on
Sh(ΛAn).

o Sh(ΛAn+1) is birationally contractible when n ≤ 5. At α = 1
n−1

, it will
contract Sh(ΛAn).

o However, Sh(ΛAn+1) is movable when n > 5. Indeed, Sh(ΛA6) will be
also contracted at α = 1

4
(instead of 1

5
). This is essentially the reason

why there are modifications Sh(ΛA′
6
) from α = 1

5
.

30



A glimpse of wall crossings for An-tower

Using our arithmetic algorithm, one can compute the restriction of
λ+ B(α) to Sh(ΛAn) as below

λ+ B(α)|Sh(ΛAn )
=(1− (n − 1)α)λ+ α Sh(ΛAn+1) + (1 + 4s)Dhyper

+α(n − 1) Sh(ΛDn+1) + α
(n − 2)(n − 1)

2
Sh(ΛEn+1).

Greer-Laza-Li-Si-Tian

o Dhyper , Sh(ΛDn+1) and Sh(ΛEn+1) are birationally contractible on
Sh(ΛAn).

o Sh(ΛAn+1) is birationally contractible when n ≤ 5. At α = 1
n−1

, it will
contract Sh(ΛAn).

o However, Sh(ΛAn+1) is movable when n > 5. Indeed, Sh(ΛA6) will be
also contracted at α = 1

4
(instead of 1

5
). This is essentially the reason

why there are modifications Sh(ΛA′
6
) from α = 1

5
.

30



A glimpse of wall crossings for An-tower

Using our arithmetic algorithm, one can compute the restriction of
λ+ B(α) to Sh(ΛAn) as below

λ+ B(α)|Sh(ΛAn )
=(1− (n − 1)α)λ+ α Sh(ΛAn+1) + (1 + 4s)Dhyper

+α(n − 1) Sh(ΛDn+1) + α
(n − 2)(n − 1)

2
Sh(ΛEn+1).

Greer-Laza-Li-Si-Tian

o Dhyper , Sh(ΛDn+1) and Sh(ΛEn+1) are birationally contractible on
Sh(ΛAn).

o Sh(ΛAn+1) is birationally contractible when n ≤ 5. At α = 1
n−1

, it will
contract Sh(ΛAn).

o However, Sh(ΛAn+1) is movable when n > 5. Indeed, Sh(ΛA6) will be
also contracted at α = 1

4
(instead of 1

5
). This is essentially the reason

why there are modifications Sh(ΛA′
6
) from α = 1

5
.

30



A glimpse of wall crossings for An-tower

Using our arithmetic algorithm, one can compute the restriction of
λ+ B(α) to Sh(ΛAn) as below

λ+ B(α)|Sh(ΛAn )
=(1− (n − 1)α)λ+ α Sh(ΛAn+1) + (1 + 4s)Dhyper

+α(n − 1) Sh(ΛDn+1) + α
(n − 2)(n − 1)

2
Sh(ΛEn+1).

Greer-Laza-Li-Si-Tian

o Dhyper , Sh(ΛDn+1) and Sh(ΛEn+1) are birationally contractible on
Sh(ΛAn).

o Sh(ΛAn+1) is birationally contractible when n ≤ 5. At α = 1
n−1

, it will
contract Sh(ΛAn).

o However, Sh(ΛAn+1) is movable when n > 5. Indeed, Sh(ΛA6) will be
also contracted at α = 1

4
(instead of 1

5
). This is essentially the reason

why there are modifications Sh(ΛA′
6
) from α = 1

5
.

30



Wall crossings for moduli space of K-polystable pairs

Conjecture B (GLLST)

Let K 4(c) be the good moduli space of K-semistable Fano pairs (X , cS)
smoothing to (Q, cS).

o For c ∈ (0, 1] ∩Q, there is an isomorphism

K 4(c) ∼= Proj R(F ∗
4 , λ+

1− c
8c D3,1 +

1− c
c D2,1 +

5(1− c)
2c D1,1).

with K 4(c) ∼= F 4(
1−c
8c ) for c ≤ 1

2
and K 4(1) ∼= F ∗

4 .

o the walls of K 4(c) are{
5

7

}⋃{
11 + n
27 + n , 1 ≤ n ≤ 5

}⋃{
3 + n
11 + n , 6 ≤ n ≤ 11, n ̸= 10

}⋃
{
36 + n
52 + n , n = 1, 3, 4, 7

}⋃{
7

9
,
2

3
,
7

11
,
3

5
,
5

9
,
1

2
,
7

15
,
3

7
,
5

13
,
1

3
,
3

11
,
1

5
,
1

9

}
.

31



Further Remarks

o (Arithmetic side) The arithmetic method works for moduli space of
lattice polarized K3 surfaces, hyper-Kähler manifolds and cetain
high dimensional log Fano pairs. It is relatively easier with the aid of
computer.

o (Geometric side) When dim ≥ 3, it is currently very difficult to
determine the K -stable pairs via birational geometry.

o Pan-Si-Wu, J. Zhao: moduli space of hyperelliptic K3 surfaces, log del
Pezzol, Hassett-Keel on M 6 surfaces.
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Thanks!
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