# Birational geometry on moduli space of polarized K3 surfaces of low genus 

Geometry of hyperKähler varieties

$$
\begin{gathered}
\text { Zhiyuan Li } \\
\text { 2023/09/06/ } \\
\text { Shanghai Center for Mathematical Science }
\end{gathered}
$$

I. Introduction

## History

## Moduli space of curves

$\square$ The (coarse) moduli space of smooth curves of genus $g \geq 2$

$$
\mathscr{M}_{g}=\left\{\Sigma_{g}: \backsim \cdots \cdots \prec / \cong\right.
$$

is a non-compact scheme of dimension $3 g-3$.

## History

## Moduli space of curves

The (coarse) moduli space of smooth curves of genus $g \geq 2$

$$
\mathscr{M}_{g}=\left\{\Sigma_{g}: \backsim \cdots \backsim \prec / \cong\right.
$$

is a non-compact scheme of dimension $3 g-3$.
$\square$ Deligne-Mumford: the moduli space of stable curves of genus $g$

$$
\overline{\mathscr{M}}_{g}=\mathscr{M}_{g} \bigcup\{\text { nodal curves }\}
$$

is a projective scheme.

## History

## Moduli space of curves

$\square$ The (coarse) moduli space of smooth curves of genus $g \geq 2$

$$
\mathscr{M}_{g}=\left\{\Sigma_{g}: \backsim \cdots \backsim \prec / \cong\right.
$$

is a non-compact scheme of dimension $3 g-3$.
$\square$ Deligne-Mumford: the moduli space of stable curves of genus $g$

$$
\overline{\mathscr{M}}_{g}=\mathscr{M}_{g} \bigcup\{\text { nodal curves }\}
$$

is a projective scheme.
$\square$ Mumford, Giesker:

$$
\overline{\mathscr{M}}_{g} \cong \operatorname{Chow}_{g, n \geq 5} / / \mathrm{SL}((2 n-1)(g-1)) \cong \operatorname{Hilb}_{g, n \geq 5} / / \mathrm{SL}((2 n-1)(g-1))
$$

where

- Hilb ${ }_{g, n}$ : Hilbert scheme of $n$-canonically embedded curves of genus $g$
- Chowg,n: Chow variety of $n$-canonically embedded curves of genus $g$.


## Other compactifications

## Allowing worse singularities

$\square \overline{\mathscr{M}}_{\mathrm{g}}^{\text {ps }}=\mathscr{M}_{\mathrm{g}} \cup\{$ allowing cusp, no elliptic tails $\}$
$\square \overline{\mathscr{M}}_{g}^{c s}=\mathscr{M}_{g} \cup\{$ allowing tacnode, no elliptic bridges $\}$
$\square \overline{\mathscr{M}}_{g}^{h s}=\mathscr{M}_{g} \cup\{$ allowing tacnode, no elliptic chains $\}$

## Other compactifications

## Allowing worse singularities

$\square \overline{\mathscr{M}}_{g}^{p s}=\mathscr{M}_{g} \cup\{$ allowing cusp, no elliptic tails $\}$
$\square \overline{\mathscr{M}}_{\mathrm{g}}^{\text {cs }}=\mathscr{M}_{\mathrm{g}} \cup\{$ allowing tacnode, no elliptic bridges $\}$
$\square \overline{\mathscr{M}}_{g}^{h s}=\mathscr{M}_{g} \cup\{$ allowing tacnode, no elliptic chains $\}$
Varying GIT models (Schubert, Hassett-Heyon)
$\square$ Chow $_{g, 3} / / \mathrm{SL}(5 g-5) \cong$ Chow $_{g, 4} / / \mathrm{SL}(7 g-7) \cong \overline{\mathscr{M}}_{g}^{p s}$
$\square \operatorname{Chow}_{g, 2} / / \mathrm{SL}(3 g-3) \cong \overline{\mathscr{M}}_{g}^{\text {cs }}$
$\square \operatorname{Hilb}_{g, 2} / / \mathrm{SL}(7 g-7) \cong \overline{\mathscr{M}}_{g}^{h s}$

## Their relations via LMMP

## Hassett-Keel Program (Hassett-Heyon)

$\square$ BCHM: Let $\delta_{g}$ be the boundary divisor of $\overline{\mathscr{M}}_{g}$. The log canonical model

$$
\overline{\mathscr{M}}_{g}(\alpha):=\operatorname{Proj} \bigoplus_{m \geq 0} \mathrm{H}^{0}\left(\overline{\mathscr{M}}_{g}, m\left(K_{\overline{\mathscr{M}}_{g}}+\alpha \delta_{g}\right)\right)
$$

exists for $\alpha \in[0,1]$.

- $\overline{\mathscr{M}}_{g}\left(\alpha>\frac{9}{11}\right) \cong \overline{\mathscr{M}}_{g}$
$\square \overline{\mathscr{M}}_{g}\left(\frac{7}{10}<\alpha \leq \frac{9}{11}\right) \cong \overline{\mathscr{M}}_{g}^{p s}$ and $\overline{\mathscr{M}}_{g}(1) \rightarrow \overline{\mathscr{M}}_{g}\left(\frac{9}{11}\right)$ is a divisorial contraction
$\overline{\mathscr{M}}_{g}\left(\frac{7}{10}\right) \cong \operatorname{Chow}_{2} / / \mathrm{SL}(3 g-3)$ and $\overline{\mathscr{M}}_{g}\left(\frac{7}{10}-\epsilon\right) \cong \operatorname{Hilb}_{2} / / \mathrm{SL}(3 g-3)$ and there is a flip


2. Moduli of projective K3 surfaces

## Definition

- A K3 surface $S$ over $\mathbb{C}$ is a smooth compact surface satisfying

$$
\omega_{S} \cong \mathcal{O}_{S} \text { and } \mathrm{H}^{1}\left(S, \mathcal{O}_{S}\right)=0
$$

A polarized K3 surface of genus $g$ is a pair $(S, L)$, where $L$ is an ample line bundle with $L^{2}=2 g-2>0$.

## Definition

- A K3 surface $S$ over $\mathbb{C}$ is a smooth compact surface satisfying

$$
\omega_{S} \cong \mathcal{O}_{S} \text { and } \mathrm{H}^{1}\left(S, \mathcal{O}_{S}\right)=0
$$

$\square$ A polarized K3 surface of genus $g$ is a pair $(S, L)$, where $L$ is an ample line bundle with $L^{2}=2 g-2>0$.

## Example (Mukai models)

$\square g=2: S \xrightarrow{2: 1} \mathbb{P}^{2}$ double cover branched over a smooth sextic.
$\square g=3: S \hookrightarrow \mathbb{P}^{3}$ a smooth quartic surface

- $g=$ 4: $S=Q \cap C \subseteq \mathbb{P}^{4}$ a smooth complete intersections of a quadric and a cubic.
$\square g=5: S=Q_{1} \cap Q_{2} \cap Q_{3}$ is smooth complete intersection of three quadric in $\mathbb{P}^{5}$.
$\square 12 \geq g \geq 6, g \neq 11$ : smooth complete intersections in a homogenous space


## Moduli of polarized K3 surfaces

## Moduli space of polarized smooth K3 surfaces

$\square$ For $g \geq 2$, let

$$
\mathscr{F}_{g}^{\circ}=\left\{(S, L) \text { primitively polarized K3 with } L^{2}=2 g-2\right\} / \cong
$$

be the (coarse) moduli space of primitively polarized smooth K3 surfaces of genus $g$.
$\square \mathscr{F}_{\mathrm{g}}^{\circ}$ is a quasi-projective variety of dimension 19 with quotient singularities.

## Moduli of polarized K3 surfaces

## Moduli space of polarized smooth K3 surfaces

$\square$ For $g \geq 2$, let

$$
\mathscr{F}_{g}^{\circ}=\left\{(S, L) \text { primitively polarized K3 with } L^{2}=2 g-2\right\} / \cong
$$

be the (coarse) moduli space of primitively polarized smooth K3 surfaces of genus $g$.
$\square \mathscr{F}_{g}^{\circ}$ is a quasi-projective variety of dimension 19 with quotient singularities.

## A natural partial compactification

$\square$ Allowing ADE singularities: $\mathcal{F}_{g}=\mathcal{F}_{g}^{\circ} \cup \Delta_{g}$ where

$$
\Delta_{g}=\left\{(S, L) \mid L \text { ample with } L^{2}=2 g-2, S \text { has isolated ADE singularities }\right\} .
$$

$\square \mathscr{F}_{g}$ is "almost" a projective scheme.

## GIT compactifications of $\mathscr{F}_{g}^{\circ}$

Linear system on K3 surfaces
Saint-Donat: $S \rightarrow|n L|=\mathbb{P}^{N-1}$ is a closed embedding if $n \geq 3$.

## GIT compactifications of $\mathscr{F}_{g}^{\circ}$

## Linear system on K3 surfaces

Saint-Donat: $S \rightarrow|n L|=\mathbb{P}^{N-1}$ is a closed embedding if $n \geq 3$.
( $S, L$ ) is called unigonal if $S \rightarrow|2 L|$ is not a closed embedding.

## GIT compactifications of $\mathscr{F}_{\mathrm{g}}^{\circ}$

## Linear system on K3 surfaces

Saint-Donat: $S \rightarrow|n L|=\mathbb{P}^{N-1}$ is a closed embedding if $n \geq 3$.
$\square(S, L)$ is called unigonal if $S \rightarrow|2 L|$ is not a closed embedding.

## GIT compactifications

$\square$ Viehweg: $\mathscr{F}_{g}^{\circ} \subseteq \operatorname{Hilb}_{g, n} / / \mathrm{SL}(N)$ for $n$ sufficiently large
Donaldson: $\mathscr{F}_{g}^{\circ} \subseteq$ Chow $_{g, n} / / \mathrm{SL}(N)$ for $n$ sufficiently large

## GIT compactifications of $\mathscr{F}_{\mathrm{g}}^{\circ}$

## Linear system on K3 surfaces

Saint-Donat: $S \rightarrow|n L|=\mathbb{P}^{N-1}$ is a closed embedding if $n \geq 3$.
$\square(S, L)$ is called unigonal if $S \rightarrow|2 L|$ is not a closed embedding.

## GIT compactifications

$\square$ Viehweg: $\mathscr{F}_{g}^{\circ} \subseteq \operatorname{Hilb}_{g, n} / / \mathrm{SL}(N)$ for $n$ sufficiently large
Donaldson: $\mathscr{F}_{g}^{\circ} \subseteq$ Chow $_{g, n} / / \mathrm{SL}(N)$ for $n$ sufficiently large
Open problem: do they also compactify $\mathscr{F}_{g}$ ?

## Arithmetic compactifications of $\mathscr{F}_{g}$

global Torelli theorem

- Pjateckī̃-Šapiro, Šhafarevič:

$$
\mathscr{F}_{g} \cong \operatorname{Sh}(G)
$$

is a connected Shimura variety associated to an orthogonal group $G$ with $G(\mathbb{R})=O(2,19)$.

## Arithmetic compactifications of $\mathscr{F}_{g}$

## global Torelli theorem

- Pjateckī̈-Šapiro, Šhafarevič:

$$
\mathscr{F}_{g} \cong \operatorname{Sh}(G)
$$

is a connected Shimura variety associated to an orthogonal group $G$ with $G(\mathbb{R})=\mathrm{O}(2,19)$.

- Baily-Borel: there is a Satake compactification

$$
\mathscr{F}_{g}^{*} \cong \operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{g}, \lambda\right)
$$

where $\lambda$ is the Hodge line bundle.

## Arithmetic compactifications of $\mathscr{F}_{g}$

## global Torelli theorem

- Pjateckiī-Šapiro, Šhafarevič:

$$
\mathscr{F}_{g} \cong \operatorname{Sh}(G)
$$

is a connected Shimura variety associated to an orthogonal group $G$ with $G(\mathbb{R})=\mathrm{O}(2,19)$.

- Baily-Borel: there is a Satake compactification

$$
\mathscr{F}_{g}^{*} \cong \operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{g}, \lambda\right)
$$

where $\lambda$ is the Hodge line bundle.
$\square$ Looijenga: there is a semitoric compactification

$$
\overline{\mathscr{F}}_{g}^{\mathscr{D}} \cong \operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{g}-\mathscr{D},\left.\lambda\right|_{\mathscr{F}_{g}-\mathscr{D}}\right)
$$

where $\mathscr{D}$ is a union of Shimura subvarieties of codimension 1.

## New modular compactifications

## Slc stable pairs moduli spaces

Kollár-Shepherd-Barron, Alexeev: The (coarse) moduli space of $K_{S}$-trivial slc pairs

$$
\overline{\mathscr{P}}_{g}=\{(S, \epsilon C)|C \in| n L \mid\} / \cong
$$

is a projective scheme. It admits a forgetful rational map $\overline{\mathscr{P}}_{g} \rightarrow \mathscr{F}_{g}$.

## New modular compactifications

## SIc stable pairs moduli spaces

Kollár-Shepherd-Barron, Alexeev: The (coarse) moduli space of $K_{S}$-trivial slc pairs

$$
\overline{\mathscr{P}}_{g}=\{(S, \epsilon C)|C \in| n L \mid\} / \cong
$$

is a projective scheme. It admits a forgetful rational map $\overline{\mathscr{P}}_{g} \rightarrow \mathscr{F}_{g}$.
$\square$ Alexeev-Engel: moduli of stable slc pairs $(S, \epsilon R)$ with $R$ recongizable.

## New modular compactifications

## SIc stable pairs moduli spaces

Kollár-Shepherd-Barron, Alexeev: The (coarse) moduli space of $K_{S}$-trivial slc pairs

$$
\overline{\mathscr{P}}_{g}=\{(S, \epsilon C)|C \in| n L \mid\} / \cong
$$

is a projective scheme. It admits a forgetful rational map $\overline{\mathscr{P}}_{g} \rightarrow \mathscr{F}_{g}$.
$\square$ Alexeev-Engel: moduli of stable slc pairs $(S, \epsilon R)$ with $R$ recongizable.

K-stable moduli spaces

Ascher-Devleming-Liu : for $c \in\left(0, \frac{1}{2}\right)$, the good moduli space of K-stable pairs

$$
\overline{\mathscr{K}}_{h, c}=\{(X, c S) \text { is K-polystable with Hilbert polynomial } h\} / \cong
$$ is a projective scheme of finite type.

## New modular compactifications

## SIc stable pairs moduli spaces

$\square$ Kollár-Shepherd-Barron, Alexeev: The (coarse) moduli space of $K_{S}$-trivial slc pairs

$$
\overline{\mathscr{P}}_{g}=\{(S, \epsilon C)|C \in| n L \mid\} / \cong
$$

is a projective scheme. It admits a forgetful rational map $\overline{\mathscr{P}}_{g} \rightarrow \mathscr{F}_{g}$.
$\square$ Alexeev-Engel: moduli of stable slc pairs $(S, \epsilon R)$ with $R$ recongizable.

## K-stable moduli spaces

Ascher-Devleming-Liu : for $c \in\left(0, \frac{1}{2}\right)$, the good moduli space of K-stable pairs

$$
\overline{\mathscr{K}}_{h, c}=\{(X, c S) \text { is K-polystable with Hilbert polynomial } h\} / \cong
$$ is a projective scheme of finite type.

Guiding Problem: Carrying out the birational morphisms between various compactifications with modular interpretations.

## A motivated example: $g=2$

Set

- $\overline{\mathscr{F}}_{2}^{\text {Mukai }}=\left|\mathcal{O}_{\mathbb{P}^{2}}(6)\right| / / \operatorname{SL}(3)$
$\square \mathscr{K}_{6, c}$ : the moduli space of K-polystable log Fano surface pairs smoothable to $\left(\mathbb{P}^{2}, c C\right)$ where $C \in\left|\mathcal{O}_{\mathbb{P}^{2}}(6)\right|$
$\square \overline{\mathscr{P}}_{2}$ : moduli space of KSBA stable degree 2 K3 pairs.


## A motivated example: $g=2$

Set
$\square \overline{\mathscr{F}}_{2}^{\text {Mukai }}=\left|\mathcal{O}_{\mathbb{P}^{2}}(6)\right| / / \operatorname{SL}(3)$
$\square \mathscr{K}_{6, c}$ : the moduli space of K-polystable log Fano surface pairs smoothable to $\left(\mathbb{P}^{2}, c C\right)$ where $C \in\left|\mathcal{O}_{\mathbb{P}^{2}}(6)\right|$
$\square \overline{\mathscr{P}}_{2}$ : moduli space of KSBA stable degree 2 K3 pairs.

## Shah, Laza, Ascher-Devleming-Liu

$\square$ There is a diagram

$$
\begin{aligned}
& \widehat{\mathscr{F}}_{2} \cong \overline{\mathscr{K}}_{6,\left(\frac{1}{4}, \frac{1}{2}-\epsilon\right)}<\stackrel{h}{-\overline{\mathscr{P}}_{2}} \\
& \\
& \overline{\mathscr{F}}_{2}^{\text {Mukai }} \cong \overline{\mathscr{K}}_{6,\left(0, \frac{1}{4}\right]}->\mathscr{\mathscr { F }}_{2}^{*}
\end{aligned}
$$

## A motivated example: $g=2$

Set
$\square \overline{\mathscr{F}}_{2}^{\text {Mukai }}=\left|\mathcal{O}_{\mathbb{P}^{2}}(6)\right| / / \operatorname{SL}(3)$
$\square \overline{\mathscr{K}}_{6, c}$ : the moduli space of K-polystable log Fano surface pairs smoothable to $\left(\mathbb{P}^{2}, c C\right)$ where $C \in\left|\mathcal{O}_{\mathbb{P}^{2}}(6)\right|$

- $\overline{\mathscr{P}}_{2}$ : moduli space of KSBA stable degree 2 K3 pairs.


## Shah, Laza, Ascher-Devleming-Liu

$\square$ There is a diagram

$$
\begin{aligned}
\widehat{\mathscr{F}}_{2} & \cong \overline{\mathscr{K}}_{6,\left(\frac{1}{4}, \frac{1}{2}-\epsilon\right)}<\stackrel{h}{-}-\overline{\mathscr{P}}_{2} \\
& \pi \\
\overleftarrow{\mathscr{F}}_{2}^{\text {Mukai }} & \cong \overline{\mathscr{K}}_{6,\left(0, \frac{1}{4}\right]}-->\mathscr{\mathscr { F }}_{2}^{*}
\end{aligned}
$$

- $\widehat{\mathscr{F}}_{2} \rightarrow \mathscr{F}_{2}^{*}$ is a $\mathbb{Q}$-Carterization map and $\widehat{\mathscr{F}_{2}} \rightarrow \mathscr{F}_{2}^{*}$ contracts the unigonal loci $\mathscr{D}_{1,1}$.
- $\widehat{\mathscr{F}}_{2} \rightarrow \overline{\mathscr{F}}_{2}^{\text {Mukai }}$ is the Kirwan partial desingularization of $\overline{\mathscr{F}}_{2}^{\text {Mukai }}$


## From LMMP point of view

All the compactifications can be constructed through a unified way.

## From LMMP point of view

All the compactifications can be constructed through a unified way.

Log canonical models of $\mathscr{F}_{2}^{*}$
Let $\mathbf{B}=\mathscr{D}_{1,1}$ and define

$$
\overline{\mathscr{F}}_{2}(\alpha):=\operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{2}^{*}, \lambda+\alpha \mathbf{B}\right)
$$

with $\alpha \in[0,1] \cap \mathbb{Q}$.

## From LMMP point of view

All the compactifications can be constructed through a unified way.

Log canonical models of $\mathscr{F}_{2}^{*}$
Let $\mathbf{B}=\mathscr{D}_{1,1}$ and define

$$
\overline{\mathscr{F}}_{2}(\alpha):=\operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{2}^{*}, \lambda+\alpha \mathbf{B}\right)
$$

with $\alpha \in[0,1] \cap \mathbb{Q}$.

Then we have

- $\overline{\mathscr{F}}_{2}(0) \cong \mathscr{F}_{2}^{*}, \overline{\mathscr{F}}_{2}(\alpha) \cong \widehat{\mathscr{F}}_{2}$ for $\alpha \in(0,1), \overline{\mathscr{F}}_{2}(1) \cong \overline{\mathscr{F}}_{2}^{\text {Mukai }}$
$\square \overline{\mathscr{F}}_{2}(\epsilon) \rightarrow \overline{\mathscr{F}}_{2}(1)$ contracts the strict transform of $\mathscr{D}_{1,1}$ to a point.


## The case with Mukai models

- Mukai's GIT compactification $\overline{\mathscr{F}}_{g}^{\text {Mukai }}$

| $g$ | Mukai model | $\overline{\mathscr{F}}_{g}^{\text {Mukai }}$ |
| :---: | :---: | :---: |
| 3 | quartic surface | $\mathbb{P}^{34} / / \mathrm{SL}(4)$ |
| 4 | cubic hypersurface on $Q$ | $\mathbb{P}^{29} / / \mathrm{SO}(5)$ |
| 5 | c.i. of three quadratics in $\mathbb{P}^{5}$ | $\mathrm{Gr}(3,21) / / \mathrm{SL}(6)$ |
| 6 | quadric hypersurface on $\mathbf{F}_{5}$ | $\mathbb{P}^{22} / / \mathrm{PSL}(2)$ |
| 7 | c.i. of eight hyperplanes in $\operatorname{IGr}(5,10)$ | $\mathrm{Gr}(8,16) / / \operatorname{Spin}(10)$ |
| 8 | c.i. of six hyperplanes in $\operatorname{Gr}(2,6)$ | $\mathrm{Gr}(6,15) / / \operatorname{SL}(6)$ |

## The case with Mukai models

- Mukai's GIT compactification $\overline{\mathscr{F}}_{g}^{\text {Mukai }}$

| $g$ | Mukai model | $\overline{\mathscr{F}}_{g}^{\text {Mukai }}$ |
| :---: | :---: | :---: |
| 3 | quartic surface | $\mathbb{P}^{34} / / \mathrm{SL}(4)$ |
| 4 | cubic hypersurface on $Q$ | $\mathbb{P}^{29} / / \mathrm{SO}(5)$ |
| 5 | c.i. of three quadratics in $\mathbb{P}^{5}$ | $\mathrm{Gr}(3,21) / / \mathrm{SL}(6)$ |
| 6 | quadric hypersurface on $\mathbf{F}_{5}$ | $\mathbb{P}^{22} / / \mathrm{PSL}(2)$ |
| 7 | c.i. of eight hyperplanes in $\operatorname{IGr}(5,10)$ | $\mathrm{Gr}(8,16) / / \operatorname{Spin}(10)$ |
| 8 | c.i. of six hyperplanes in $\operatorname{Gr}(2,6)$ | $\mathrm{Gr}(6,15) / / \mathrm{SL}(6)$ |

Remark. The rank of $\operatorname{Pic}\left(\overline{\mathscr{F}}_{g}^{\text {Mukai }}\right)$ is 1 .

## The case with Mukai models

- Mukai's GIT compactification $\overline{\mathscr{F}}_{g}^{\text {Mukai }}$

| $g$ | Mukai model | $\overline{\mathscr{F}}_{g}^{\text {Mukai }}$ |
| :---: | :---: | :---: |
| 3 | quartic surface | $\mathbb{P}^{34} / / \mathrm{SL}(4)$ |
| 4 | cubic hypersurface on $Q$ | $\mathbb{P}^{29} / / \mathrm{SO}(5)$ |
| 5 | c.i. of three quadratics in $\mathbb{P}^{5}$ | $\mathrm{Gr}(3,21) / / \mathrm{SL}(6)$ |
| 6 | quadric hypersurface on $\mathbf{F}_{5}$ | $\mathbb{P}^{22} / / \mathrm{PSL}(2)$ |
| 7 | c.i. of eight hyperplanes in $\operatorname{IGr}(5,10)$ | $\mathrm{Gr}(8,16) / / \operatorname{Spin}(10)$ |
| 8 | c.i. of six hyperplanes in $\operatorname{Gr}(2,6)$ | $\mathrm{Gr}(6,15) / / \operatorname{SL}(6)$ |

Remark. The rank of $\operatorname{Pic}\left(\overline{\mathscr{F}}_{g}^{\text {Mukai }}\right)$ is 1 .
$\square$ Hassett-Keel-Looijenga program: Find interpolating log canonical models connecting $\overline{\mathscr{F}}_{g}^{\text {Mukai }}$ and $\mathscr{F}_{g}^{*}$ with modular and arithmetic interpretations.

## The case with Mukai models

- Mukai's GIT compactification $\overline{\mathscr{F}}_{g}^{\text {Mukai }}$

| $g$ | Mukai model | $\overline{\mathscr{F}}_{g}^{\text {Mukai }}$ |
| :---: | :---: | :---: |
| 3 | quartic surface | $\mathbb{P}^{34} / / \mathrm{SL}(4)$ |
| 4 | cubic hypersurface on $Q$ | $\mathbb{P}^{29} / / \mathrm{SO}(5)$ |
| 5 | c.i. of three quadratics in $\mathbb{P}^{5}$ | $\mathrm{Gr}(3,21) / / \mathrm{SL}(6)$ |
| 6 | quadric hypersurface on $\mathbf{F}_{5}$ | $\mathbb{P}^{22} / / \mathrm{PSL}(2)$ |
| 7 | c.i. of eight hyperplanes in $\operatorname{IGr}(5,10)$ | $\mathrm{Gr}(8,16) / / \operatorname{Spin}(10)$ |
| 8 | c.i. of six hyperplanes in $\operatorname{Gr}(2,6)$ | $\mathrm{Gr}(6,15) / / \operatorname{SL}(6)$ |

Remark. The rank of $\operatorname{Pic}\left(\overline{\mathscr{F}}_{g}^{\text {Mukai }}\right)$ is 1 .
$\square$ Hassett-Keel-Looijenga program: Find interpolating log canonical models connecting $\overline{\mathscr{F}}_{g}^{\text {Mukai }}$ and $\mathscr{F}_{g}^{*}$ with modular and arithmetic interpretations.

Idea: Run MMP with scaling on $\mathscr{F}_{g}^{*}$.

## Before construction: divisors on $\mathscr{F}_{g}^{*}$

## Noether-Lefschetz divisors

$\square \mathscr{D}_{d, h}$ : parametrizing $(S, L) \in \mathscr{F}_{g}$ whose $\operatorname{Pic}(S)$ contains a primitive lattice

$$
\left(\begin{array}{cc}
2 g-2 & d \\
d & 2 h-2
\end{array}\right)
$$

## Before construction: divisors on $\mathscr{F}_{g}^{*}$

## Noether-Lefschetz divisors

$\square \mathscr{D}_{d, h}$ : parametrizing $(S, L) \in \mathscr{F}_{g}$ whose $\operatorname{Pic}(S)$ contains a primitive lattice

$$
\left(\begin{array}{cc}
2 g-2 & d \\
d & 2 h-2
\end{array}\right)
$$

$\square \mathscr{D}_{d, h}$ can be regarded as a Shimura subvariety.

## Before construction: divisors on $\mathscr{F}_{g}^{*}$

## Noether-Lefschetz divisors

$\square \mathscr{D}_{d, h}$ : parametrizing $(S, L) \in \mathscr{F}_{g}$ whose $\operatorname{Pic}(S)$ contains a primitive lattice

$$
\left(\begin{array}{cc}
2 g-2 & d \\
d & 2 h-2
\end{array}\right)
$$

$\square \mathscr{D}_{d, h}$ can be regarded as a Shimura subvariety.
Bergeron-Li-Millson-Moeglin: $\mathrm{Pic}_{\mathbb{Q}}\left(\mathscr{F}_{g}\right)$ is spanned by $\mathscr{D}_{d, h}$.

## Before construction: divisors on $\mathscr{F}_{g}^{*}$

## Noether-Lefschetz divisors

$\square \mathscr{D}_{d, h}$ : parametrizing $(S, L) \in \mathscr{F}_{g}$ whose $\operatorname{Pic}(S)$ contains a primitive lattice

$$
\left(\begin{array}{cc}
2 g-2 & d \\
d & 2 h-2
\end{array}\right)
$$

$\square \mathscr{D}_{d, h}$ can be regarded as a Shimura subvariety.
$\square$ Bergeron-Li-Millson-Moeglin: $\mathrm{Pic}_{\mathbb{Q}}\left(\mathscr{F}_{g}\right)$ is spanned by $\mathscr{D}_{d, h}$.

## Examples

$\square \mathscr{D}_{0,0}=$ nodal loci

- $\mathscr{D}_{1,1}=$ unigonal loci
$\square \mathscr{D}_{2,1}=$ hyperelliptic loci, i.e. the loci where $S \rightarrow|L|$ is $2: 1$.


## Picard group of $\mathscr{F}_{g}^{*}$ with Mukai models

Greer-Li-Tian: the Picard group of $\mathscr{F}_{g}^{*}$ for $g \leq 10$ is given by

| $g$ | $\operatorname{dimPic}_{\mathbb{Q}}\left(\mathscr{F}_{g}\right)$ | generators (besides $\lambda$ ) |
| :---: | :---: | :---: |
| 2 | 2 | $\mathscr{D}_{1,1}$ |
| 3 | 3 | $\mathscr{D}_{1,1}, \mathscr{D}_{2,1}$ |
| 4 | 4 | $\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}$ |
| 5 | 4 | $\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}$ |
| 6 | 6 | $\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{5,2}, \mathscr{D}_{4,1}$ |
| 7 | 7 | $\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{5,2}, \mathscr{D}_{6,2}, \mathscr{D}_{4,1}$ |
| 8 | 7 | $\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{6,2}, \mathscr{D}_{7,2}, \mathscr{D}_{4,1}$ |
| 9 | 8 | $\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{6,2}, \mathscr{D}_{7,2}, \mathscr{D}_{4,1}, \mathscr{D}_{5,1}$ |
| 10 | 9 | $\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{4,1}, \mathscr{D}_{7,2}, \mathscr{D}_{9,3}, \mathscr{D}_{8,2}, \mathscr{D}_{5,1}$, |

Interpolating models: consider

$$
\overline{\mathscr{F}}_{g}(\alpha)=\operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{g}^{*}, \lambda+\mathbf{B}(\alpha)\right)
$$

with $\alpha$ varying in $[0,1] \cap \mathbb{Q}$, where $\mathbf{B}(\alpha)=\sum_{i=1}^{\rho} a_{i}(\alpha) \mathscr{D}_{d_{i}, h_{i}}$ with $\mathscr{D}_{d_{i}, h_{i}}$ given in the previous Table, $a_{i}(\alpha)$ are linear functionals.

Interpolating models: consider

$$
\overline{\mathscr{F}}_{g}(\alpha)=\operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{g}^{*}, \lambda+\mathbf{B}(\alpha)\right)
$$

with $\alpha$ varying in $[0,1] \cap \mathbb{Q}$, where $\mathbf{B}(\alpha)=\sum_{i=1}^{\rho} a_{i}(\alpha) \mathscr{D}_{d_{i}, h_{i}}$ with $\mathscr{D}_{d_{i}, h_{i}}$ given in the previous Table, $a_{i}(\alpha)$ are linear functionals.

Expectation: there is a chamber structure on $\alpha$ and the birational maps

$$
\mathscr{F}_{g}^{*} \rightarrow \overline{\mathscr{F}}_{g}^{M u k a i}
$$

factors through a series of wall crossing maps.

Interpolating models: consider

$$
\overline{\mathscr{F}}_{g}(\alpha)=\operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{g}^{*}, \lambda+\mathbf{B}(\alpha)\right)
$$

with $\alpha$ varying in $[0,1] \cap \mathbb{Q}$, where $\mathbf{B}(\alpha)=\sum_{i=1}^{\rho} a_{i}(\alpha) \mathscr{D}_{d_{i}, h_{i}}$ with $\mathscr{D}_{d_{i}, h_{i}}$ given in the previous Table, $a_{i}(\alpha)$ are linear functionals.

Expectation: there is a chamber structure on $\alpha$ and the birational maps

$$
\mathscr{F}_{g}^{*} \rightarrow \overline{\mathscr{F}}_{g}^{M u k a i}
$$

factors through a series of wall crossing maps.

## Problem:

1. existence of $\overline{\mathscr{F}}_{g}(\alpha)$ : finite generation is missing.

Interpolating models: consider

$$
\overline{\mathscr{F}}_{g}(\alpha)=\operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{g}^{*}, \lambda+\mathbf{B}(\alpha)\right)
$$

with $\alpha$ varying in $[0,1] \cap \mathbb{Q}$, where $\mathbf{B}(\alpha)=\sum_{i=1}^{\rho} a_{i}(\alpha) \mathscr{D}_{d_{i}, h_{i}}$ with $\mathscr{D}_{d_{i}, h_{i}}$ given in the previous Table, $a_{i}(\alpha)$ are linear functionals.

Expectation: there is a chamber structure on $\alpha$ and the birational maps

$$
\mathscr{F}_{g}^{*} \xrightarrow[\mathscr{F}_{g}]{M u k a i}
$$

factors through a series of wall crossing maps.

## Problem:

1. existence of $\overline{\mathscr{F}}_{g}(\alpha)$ : finite generation is missing.
2. computation of walls: high dimensional varieties have very complicated degenerations

## A short cut (least wall crossings)

Predictions: there exitsts $a_{i}(\alpha)$ such that

## A short cut (least wall crossings)

Predictions: there exitsts $a_{i}(\alpha)$ such that
(Semitoric part) $\overline{\mathscr{F}}_{g}(0)$ is Looijenga's semitoric compactification and the birational map

$$
\mathscr{F}_{g}^{*} \longrightarrow \overline{\mathscr{F}}_{g}(0)
$$

factors through a $\mathbb{Q}$-factorialization, a series of flips, and divisorial contractions.
(GIT part) $\overline{\mathscr{F}}_{g}(\alpha)$ is a VGIT and $\overline{\mathscr{F}}_{g}^{\text {Mukai }} \cong \overline{\mathscr{F}}_{g}(1)$. The parameter $\alpha \in \mathbb{Q} \cap[0,1]$ admits a chamber structure with finite many walls $0<\alpha_{0}<\cdots<\alpha_{m}<1$, i.e.


## A short cut (least wall crossings)

Predictions: there exitsts $a_{i}(\alpha)$ such that

- (Semitoric part) $\overline{\mathscr{F}}_{g}(0)$ is Looijenga's semitoric compactification and the birational map

$$
\mathscr{F}_{g}^{*} \longrightarrow \overline{\mathscr{F}}_{g}(0)
$$

factors through a $\mathbb{Q}$-factorialization, a series of flips, and divisorial contractions.
$\square$ (GIT part) $\overline{\mathscr{F}}_{g}(\alpha)$ is a VGIT and $\overline{\mathscr{F}}_{g}^{\text {Mukai }} \cong \overline{\mathscr{F}}_{g}(1)$. The parameter $\alpha \in \mathbb{Q} \cap[0,1]$ admits a chamber structure with finite many walls $0<\alpha_{0}<\cdots<\alpha_{m}<1$, i.e.

$$
\overline{\mathscr{F}}_{g}\left(\alpha_{n-1}, \alpha_{n}\right)
$$

$\square$ The centers are proper transforms of Shimura subvarieties lying in Looijenga's stratification of $\sum \mathscr{D}_{d_{i}, h_{i}}$.

## Looijenga's stratification

$\square \operatorname{Sh}(G)=\Gamma \backslash \mathrm{D}$, with $G=O(V)$ an orthogonal group.
$\square \mathscr{D}=\Gamma \backslash \sum_{v \in A} v^{\perp}$ is a union of Shimura subvarieties $\mathscr{D}$ of codimension one.

## Looijenga's stratification

- $\mathrm{Sh}(G)=\Gamma \backslash \mathrm{D}$, with $G=O(V)$ an orthogonal group.
$\square \mathscr{D}=\Gamma \backslash \sum_{v \in A} v^{\perp}$ is a union of Shimura subvarieties $\mathscr{D}$ of codimension one.
Looijenga's stratification of $\mathscr{D}$ :

$$
\mathscr{D}^{(d)}=\Gamma \backslash \sum\left(\bigcap_{i=1}^{d} v_{k_{i}}^{\perp}\right)
$$

where $v_{k_{i}} \in A$ are linearly independent.

## Looijenga's stratification

$\square \operatorname{Sh}(G)=\Gamma \backslash \mathrm{D}$, with $G=O(V)$ an orthogonal group.
$\square \mathscr{D}=\Gamma \backslash \sum_{v \in A} v^{\perp}$ is a union of Shimura subvarieties $\mathscr{D}$ of codimension one.
$\square$ Looijenga's stratification of $\mathscr{D}$ :

$$
\mathscr{D}^{(d)}=\Gamma \backslash \sum\left(\bigcap_{i=1}^{d} v_{k_{i}}^{\perp}\right)
$$

where $v_{k_{i}} \in A$ are linearly independent.

- This gives a tower of Shimura varieties $\mathscr{D}^{(d+1)} \subseteq \mathscr{D}^{(d)}$ and the irreducible components of $\mathscr{D}^{(2)}$ will occur in the restriction $\left.\mathscr{D}\right|_{\mathscr{D}}$.


## Looijenga's stratification

$\square \operatorname{Sh}(G)=\Gamma \backslash \mathrm{D}$, with $G=O(V)$ an orthogonal group.
$\square \mathscr{D}=\Gamma \backslash \sum_{v \in A} v^{\perp}$ is a union of Shimura subvarieties $\mathscr{D}$ of codimension one.
Looijenga's stratification of $\mathscr{D}$ :

$$
\mathscr{D}^{(d)}=\Gamma \backslash \sum\left(\bigcap_{i=1}^{d} v_{k_{i}}^{\perp}\right)
$$

where $v_{k_{i}} \in A$ are linearly independent.

- This gives a tower of Shimura varieties $\mathscr{D}^{(d+1)} \subseteq \mathscr{D}^{(d)}$ and the irreducible components of $\mathscr{D}^{(2)}$ will occur in the restriction $\left.\mathscr{D}\right|_{\mathscr{D}}$.


## Connection to HKL

$\square$ Potential center: the stratification $\mathbf{B}^{(d)}$ of the support of $\mathbf{B}(\alpha)$.
$\square$ Potential walls: solution $\alpha_{0}$ of the linear equation $1-f(\alpha)=0$, where

$$
\lambda+\left.\mathbf{B}(\alpha)\right|_{\mathbf{B}^{(d)}}=(1-f(\alpha)) \lambda+\mathbf{B}^{(d+1)}(\alpha)
$$

and $\mathbf{B}^{(d+1)}(\alpha)$ is extremal or not effective at $\alpha_{0}$.

The birational map

$$
\operatorname{Proj} \mathrm{R}(\operatorname{Sh}(G), \lambda) \longrightarrow \operatorname{Proj} \mathrm{R}(\operatorname{Sh}(G), \lambda+\mathbf{B}(\alpha))
$$

factor through a series of elementary transformations, whose centers are irreducible components of Looijenga's stratification of the support of $\mathbf{B}(\alpha)$.

## An ideal situation

The birational map

$$
\operatorname{Proj} \mathrm{R}(\operatorname{Sh}(G), \lambda) \rightarrow \operatorname{Proj} \mathrm{R}(\operatorname{Sh}(G), \lambda+\mathbf{B}(\alpha))
$$

factor through a series of elementary transformations, whose centers are irreducible components of Looijenga's stratification of the support of $\mathbf{B}(\alpha)$.

## Example

$\square$ the birational map $\operatorname{Sh}(G)^{*} \rightarrow \overline{\operatorname{Sh}(G)}$ is in the ideal situation.
$\square$ Laza-O'Grady, Ascher-Devleming-Liu:

$$
\mathscr{F}_{3}^{*} \longrightarrow \overline{\mathscr{F}}_{3}(\beta)=\operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{3}^{*}, \lambda+\beta\left(\mathscr{D}_{1,1}+\mathscr{D}_{2,1}\right)\right)
$$

is in the ideal situation.

## An ideal situation

The birational map

$$
\operatorname{Proj} \mathrm{R}(\operatorname{Sh}(G), \lambda) \rightarrow \operatorname{Proj} \mathrm{R}(\operatorname{Sh}(G), \lambda+\mathbf{B}(\alpha))
$$

factor through a series of elementary transformations, whose centers are irreducible components of Looijenga's stratification of the support of $\mathbf{B}(\alpha)$.

## Example

$\square$ the birational map $\operatorname{Sh}(G)^{*} \rightarrow \overline{\operatorname{Sh}(G)}^{\mathscr{D}}$ is in the ideal situation.
$\square$ Laza-O'Grady, Ascher-Devleming-Liu:

$$
\mathscr{F}_{3}^{*} \rightarrow \overline{\mathscr{F}}_{3}(\beta)=\operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{3}^{*}, \lambda+\beta\left(\mathscr{D}_{1,1}+\mathscr{D}_{2,1}\right)\right)
$$

is in the ideal situation.

Remark. In HKL, this never happen when $g>3$. The centers will become much more complicated.

## Useful tools via arithmetic methods

Intersection theory on Shimura varieties

- $\operatorname{Pic}(\operatorname{Sh}(G))$ is essentially the space of certain modular forms.


## Useful tools via arithmetic methods

## Intersection theory on Shimura varieties

$\square \operatorname{Pic}(\operatorname{Sh}(G))$ is essentially the space of certain modular forms.
$\square$ Greer-Laza-Li-Si-Tian: there is an effective algorithm to compute the restriction of NL-divisors to Shimura subvarieties by using the Jacobi forms. In particular, one can get an explicit formula of

$$
\lambda+\left.\mathbf{B}(\alpha)\right|_{\mathbf{B}^{(d)}},
$$

as a linear combination of NL divisors.

## Useful tools via arithmetic methods

Intersection theory on Shimura varieties
$\square \operatorname{Pic}(\operatorname{Sh}(G))$ is essentially the space of certain modular forms.
$\square$ Greer-Laza-Li-Si-Tian: there is an effective algorithm to compute the restriction of NL-divisors to Shimura subvarieties by using the Jacobi forms. In particular, one can get an explicit formula of

$$
\lambda+\left.\mathbf{B}(\alpha)\right|_{\mathbf{B}^{(d)}},
$$

as a linear combination of NL divisors.

Understanding of effective cones
$\square$ Peterson: $\operatorname{Is} \operatorname{Eff}\left(\mathscr{F}_{g}^{*}\right)=\operatorname{Eff}\left(\mathscr{F}_{g}^{*}\right)^{\mathrm{NL}}$ generated by the NL divisors?

## Useful tools via arithmetic methods

Intersection theory on Shimura varieties
$\square \operatorname{Pic}(\operatorname{Sh}(G))$ is essentially the space of certain modular forms.
$\square$ Greer-Laza-Li-Si-Tian: there is an effective algorithm to compute the restriction of NL-divisors to Shimura subvarieties by using the Jacobi forms. In particular, one can get an explicit formula of

$$
\lambda+\left.\mathbf{B}(\alpha)\right|_{\mathbf{B}^{(d)}},
$$

as a linear combination of NL divisors.

Understanding of effective cones
Peterson: Is $\operatorname{Eff}\left(\mathscr{F}_{g}^{*}\right)=\operatorname{Eff}\left(\mathscr{F}_{g}^{*}\right)^{\mathrm{NL}}$ generated by the NL divisors?
Greer-Laza-Li-Si-Tian: $\mathscr{D}_{d, h}$ is extremal in $\operatorname{Eff}\left(\mathscr{F}_{g}^{*}\right)$ if

$$
\frac{15}{8}(g-1) \geq d^{2}-4(g-1)(h-1)
$$

## Example of generators of $\operatorname{Eff}\left(\mathscr{F}_{g}^{*}\right)^{\mathrm{NL}}$

List of generators of $\operatorname{Eff}\left(\mathscr{F}_{g}^{*}\right)^{\mathrm{NL}}$ for $g \leq 10$

| $g$ | $\operatorname{dimPic}_{\mathbb{Q}}\left(\mathscr{F}_{g}\right)$ | Generators |
| :---: | :---: | :---: |
| 2 | 2 | $\mathscr{D}_{0,0}, \mathscr{D}_{1,1}$ |
| 3 | 3 | $\mathscr{D}_{0,0} \mathscr{D}_{1,1}, \mathscr{D}_{2,1}$ |
| 4 | 4 | $\mathscr{D}_{0,0} \mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}$ |
| 5 | 4 | $\mathscr{D}_{0,0}, \mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}$ |
| 6 | 6 | $\mathscr{D}_{0,0}, \mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{5,2}, \mathscr{D}_{4,1}$ |
| 7 | 7 | $\mathscr{D}_{0,0}, \mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{5,2}, \mathscr{D}_{6,2}, \mathscr{D}_{4,1}$ |
| 8 | 7 | $\mathscr{D}_{0,0}, \mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{6,2}, \mathscr{D}_{7,2}, \mathscr{D}_{4,1}$ |
| 9 | 8 | $\mathscr{D}_{0,0}, \mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{6,2}, \mathscr{D}_{7,2}, \mathscr{D}_{4,1}, \mathscr{D}_{5,1}$ |
| 10 | 9 | $\mathscr{D}_{0,0}, \mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{4,1}, \mathscr{D}_{7,2}, \mathscr{D}_{9,3}, \mathscr{D}_{8,2}, \mathscr{D}_{5,1}$, |

Remark. The blue ones are extremal in $\operatorname{Eff}\left(\mathscr{F}_{\mathrm{g}}^{*}\right)$.
IV. HKL for $\mathscr{F}_{4}$

## Polarized K3 surface of genus 4

## Projective models

For $(S, L) \in \mathscr{F}_{4}$, the image $S \rightarrow|L|$ is a complete intersection of a quadric and a cubic in $\mathbb{P}^{4}$ iff $(S, L)$ is not lying in $\mathscr{D}_{1,1}, \mathscr{D}_{2,1}$.
$\square$ The image $S \rightarrow|L|$ is a complete intersection of a smooth quadric $Q$ and a cubic in $\mathbb{P}^{4}$ iff $(S, L)$ is not lying in $\mathscr{D}_{1,1}, \mathscr{D}_{2,1}$ and $\mathscr{D}_{3,1}$.

## Polarized K3 surface of genus 4

## Projective models

For $(S, L) \in \mathscr{F}_{4}$, the image $S \rightarrow|L|$ is a complete intersection of a quadric and a cubic in $\mathbb{P}^{4}$ iff $(S, L)$ is not lying in $\mathscr{D}_{1,1}, \mathscr{D}_{2,1}$.
The image $S \rightarrow|L|$ is a complete intersection of a smooth quadric $Q$ and a cubic in $\mathbb{P}^{4}$ iff $(S, L)$ is not lying in $\mathscr{D}_{1,1}, \mathscr{D}_{2,1}$ and $\mathscr{D}_{3,1}$.

## Parametrization space

- (2,3)-complete intersections are parametrized by an open subset of a projective bundle $\mathbb{P}(E) \rightarrow\left|\mathcal{O}_{\mathbb{P}^{4}}(2)\right|=\mathbb{P}^{14}$, where

$$
0 \rightarrow p_{*}\left(\mathcal{I}_{\mathcal{Q}} \otimes q^{*} \mathcal{O}_{\mathbb{P}^{4}}(3)\right) \rightarrow p_{*}\left(q^{*} \mathcal{O}_{\mathbb{P}^{4}}(3)\right) \rightarrow E \rightarrow 0,
$$

$\mathcal{Q}$ is the universal quadric with projections $p: \mathcal{Q} \rightarrow\left|\mathcal{O}_{\mathbb{P}^{4}}(2)\right|$ and $q: \mathcal{Q} \rightarrow \mathbb{P}^{4}$.
(Fix $Q)$ cubic hypersurfaces on $Q$ are parametrized by $\left|\mathcal{O}_{Q}(3)\right|$.

## GIT compactifications

As (2,3)-complete intersection
$\square$ GIT quotient of $\mathbb{P}(E): \mathbb{P}(E) / /{ }_{t} \mathrm{SL}(5)$ the GIT w.r.t. the linearization

$$
H_{t}=q^{*} \mathcal{O}_{\mathbb{P}^{14}}(1)+t \mathcal{O}_{\mathbb{P}(E)}(1)
$$

## GIT compactifications

As (2,3)-complete intersection
$\square$ GIT quotient of $\mathbb{P}(E): \mathbb{P}(E) / /{ }_{t} \mathrm{SL}(5)$ the GIT w.r.t. the linearization

$$
H_{t}=q^{*} \mathcal{O}_{\mathbb{P}^{14}}(1)+t \mathcal{O}_{\mathbb{P}(E)}(1)
$$

$\square$ Benoist: $H_{t}$ is ample when $0<t \leq \frac{1}{2}$.

## GIT compactifications

As (2,3)-complete intersection
$\square$ GIT quotient of $\mathbb{P}(E): \mathbb{P}(E) / /{ }_{t} \mathrm{SL}(5)$ the GIT w.r.t. the linearization

$$
H_{t}=q^{*} \mathcal{O}_{\mathbb{P}^{14}}(1)+t \mathcal{O}_{\mathbb{P}(E)}(1)
$$

$\square$ Benoist: $H_{t}$ is ample when $0<t \leq \frac{1}{2}$.
$\square$ GIT quotient of Chow variety: $\operatorname{Chow}_{6,2}\left(\mathbb{P}^{4}\right) / / \mathrm{SL}(5)$

## GIT compactifications

As (2,3)-complete intersection
$\square$ GIT quotient of $\mathbb{P}(E): \mathbb{P}(E) / /{ }_{t} \mathrm{SL}(5)$ the GIT w.r.t. the linearization

$$
H_{t}=q^{*} \mathcal{O}_{\mathbb{P}^{14}}(1)+t \mathcal{O}_{\mathbb{P}(E)}(1)
$$

$\square$ Benoist: $H_{t}$ is ample when $0<t \leq \frac{1}{2}$.
$\square$ GIT quotient of Chow variety: $\operatorname{Chow}_{6,2}\left(\mathbb{P}^{4}\right) / / \mathrm{SL}(5)$

As nodal cubic fourfolds
$\square(2,3)$-complete intersection $(q, f)$ in $\mathbb{P}^{4} \Leftrightarrow$ a nodal cubic $\left\{x_{5} q+f=0\right\}$ in $\mathbb{P}^{5}$.
$\square$ This gives a non-reductive GIT model

$$
\Delta_{0} / / G
$$

where $\Delta_{0} \subseteq \Delta$ paramterizing cubics which are singular at $p=[0, \ldots, 0,1]$ and $G \leq \mathrm{SL}(6)$ is the stabilizer of $p$.

## Boundary stratum

$\square$ Li-Tian: $\mathscr{F}_{4}^{\text {Mukai }}-\mathscr{F}_{4}$ consists of 9 irreducible components parametrizing singular c.i. as below:

1. $(\operatorname{dim}=6)$ two simple elliptic singularities of type $\tilde{E}_{6}$
2. ( $\operatorname{dim}=2$ ) two simple elliptic singularities of type $\tilde{E}_{8}$, whose projective tangent cone meeting the surface along lines.
3. $(\operatorname{dim}=11)$ a simple elliptic singularities of type $\widetilde{E}_{7}$
4. $(\operatorname{dim}=8)$ a simple elliptic singularity of type $\widetilde{E}_{8}$, whose projective tangent cone meeting the surface along points.
5. $(\operatorname{dim}=11)$ a line
6. $(\operatorname{dim}=7)$ a conic
7. $(\operatorname{dim}=3)$ a twisted cubic
8. $(\operatorname{dim}=2)$ a rational curve of degree 4
9. $(\operatorname{dim}=7)$ an elliptic curve of degree 4

Stark: the boundary $\mathscr{F}_{4}^{*}-\mathscr{F}_{4}$ consists of 10 modular curves meeting at a point.

## HKL conjecture

## Conjecture A

Set $\mathbf{B}(\alpha)=\mathscr{D}_{1,1}+\mathscr{D}_{2,1}+\alpha \mathscr{D}_{3,1}$ and

$$
\mathscr{F}_{4}(\alpha):=\operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{4}^{*}, \lambda+\mathbf{B}(\alpha)\right) .
$$

Then
(Existence) $\mathrm{R}\left(\mathscr{F}_{4}^{*}, \lambda+\mathbf{B}(\alpha)\right)$ is finitely generated for $\alpha \in \mathbb{Q} \cap[0,1]$.
the walls of the Mori chamber decomposition of the cone

$$
\{\lambda+\mathbf{B}(\alpha) \mid \alpha \in \mathbb{Q}, \alpha>0\}
$$

are located at the following critical values

$$
\text { Wall }=\left\{0, \frac{1}{28}, \frac{1}{16}, \frac{1}{14}, \frac{1}{12}, \frac{1}{10}, \frac{1}{8}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1\right\} .
$$

## HKL conjecture

## Conjecture A

Set $\mathbf{B}(\alpha)=\mathscr{D}_{1,1}+\mathscr{D}_{2,1}+\alpha \mathscr{D}_{3,1}$ and

$$
\mathscr{F}_{4}(\alpha):=\operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{4}^{*}, \lambda+\mathbf{B}(\alpha)\right) .
$$

Then

- (Existence) $\mathrm{R}\left(\mathscr{F}_{4}^{*}, \lambda+\mathbf{B}(\alpha)\right)$ is finitely generated for $\alpha \in \mathbb{Q} \cap[0,1]$.
the walls of the Mori chamber decomposition of the cone

$$
\{\lambda+\mathbf{B}(\alpha) \mid \alpha \in \mathbb{Q}, \alpha>0\}
$$

are located at the following critical values

$$
\text { Wall }=\left\{0, \frac{1}{28}, \frac{1}{16}, \frac{1}{14}, \frac{1}{12}, \frac{1}{10}, \frac{1}{8}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1\right\} .
$$

Remark: $\frac{1}{9}$ is missing.

## HKL conjecture

(Tower structure) The centers of $\mathscr{F}_{4}\left(\alpha_{n}-\epsilon\right) \rightarrow \mathscr{F}_{4}\left(\alpha_{n}\right)$ forms a descending towers of Shimura subvarieties in $\mathscr{\mathscr { F }}_{6}{ }_{6}$
$\Leftrightarrow A_{n}$-tower:

$$
\begin{aligned}
\mathscr{D}_{3,1}=\operatorname{Sh}\left(\Lambda_{A_{2}}\right) & \supset \ldots \supset \operatorname{Sh}\left(\Lambda_{A_{5}}\right) \supset \operatorname{Sh}\left(\Lambda_{A_{6}^{\prime}}\right) \supset \operatorname{Sh}\left(\Lambda_{A_{7}^{\prime}}\right) \cup \operatorname{Sh}\left(\Lambda_{A_{7}^{\prime \prime}}\right) \\
& \supset \operatorname{Sh}\left(\Lambda_{A_{8}^{\prime}}\right) \cup \operatorname{Sh}\left(\Lambda_{A_{8}^{\prime \prime}}\right) \supset \operatorname{Sh}\left(\Lambda_{A_{9}^{\prime}}\right) \supset \operatorname{Sh}\left(\Lambda_{A_{10}^{\prime}}\right)
\end{aligned}
$$

$\Rightarrow D_{n}$-tower:

$$
\operatorname{Sh}\left(\Lambda_{D_{4}}\right) \supset \operatorname{Sh}\left(\Lambda_{D_{5}}\right) \supset \operatorname{Sh}\left(\Lambda_{D_{6}}\right) \supset \operatorname{Sh}\left(\Lambda_{D_{7}}\right) \supset \operatorname{Sh}\left(\Lambda_{D_{8}^{\prime}}\right) \supset \operatorname{Sh}\left(\Lambda_{D_{9}^{\prime}}\right)
$$

$\Rightarrow E_{n}$-tower:

$$
\operatorname{Sh}\left(\Lambda_{E_{6}}\right) \supset \operatorname{Sh}\left(\Lambda_{E_{7}}\right) \supset \operatorname{Sh}\left(\Lambda_{E_{8}}\right)
$$

where $\Lambda_{A_{n}}=\left(E_{6} \oplus A_{n}\right)^{\perp}, \Lambda_{D_{n}}=\left(E_{6} \oplus D_{n}\right)^{\perp}, \Lambda_{E_{n}}=\left(E_{6} \oplus E_{n}\right)^{\perp} \subseteq \mathrm{U}^{\oplus 2} \oplus E_{8}^{\oplus 3}$.

## HKL conjecture

(Tower structure) The centers of $\mathscr{F}_{4}\left(\alpha_{n}-\epsilon\right) \rightarrow \mathscr{F}_{4}\left(\alpha_{n}\right)$ forms a descending towers of Shimura subvarieties in $\overline{\mathscr{F}}_{6}^{*}$
$\Rightarrow A_{n}$-tower:

$$
\begin{aligned}
\mathscr{D}_{3,1}=\operatorname{Sh}\left(\Lambda_{A_{2}}\right) & \supset \ldots \supset \operatorname{Sh}\left(\Lambda_{A_{5}}\right) \supset \operatorname{Sh}\left(\Lambda_{A_{6}^{\prime}}\right) \supset \operatorname{Sh}\left(\Lambda_{A_{7}^{\prime}}\right) \cup \operatorname{Sh}\left(\Lambda_{A_{7}^{\prime \prime}}\right) \\
& \supset \operatorname{Sh}\left(\Lambda_{A_{8}^{\prime}}\right) \cup \operatorname{Sh}\left(\Lambda_{A_{8}^{\prime \prime}}\right) \supset \operatorname{Sh}\left(\Lambda_{A_{9}^{\prime}}\right) \supset \operatorname{Sh}\left(\Lambda_{A_{10}^{\prime}}\right)
\end{aligned}
$$

$\Rightarrow D_{n}$-tower:

$$
\operatorname{Sh}\left(\Lambda_{D_{4}}\right) \supset \operatorname{Sh}\left(\Lambda_{D_{5}}\right) \supset \operatorname{Sh}\left(\Lambda_{D_{6}}\right) \supset \operatorname{Sh}\left(\Lambda_{D_{7}}\right) \supset \operatorname{Sh}\left(\Lambda_{D_{8}^{\prime}}\right) \supset \operatorname{Sh}\left(\Lambda_{D_{9}^{\prime}}\right)
$$

$\Rightarrow E_{n}$-tower:

$$
\operatorname{Sh}\left(\Lambda_{E_{6}}\right) \supset \operatorname{Sh}\left(\Lambda_{E_{7}}\right) \supset \operatorname{Sh}\left(\Lambda_{E_{8}}\right)
$$

where $\Lambda_{A_{n}}=\left(E_{6} \oplus A_{n}\right)^{\perp}, \Lambda_{D_{n}}=\left(E_{6} \oplus D_{n}\right)^{\perp}, \Lambda_{E_{n}}=\left(E_{6} \oplus E_{n}\right)^{\perp} \subseteq \mathrm{U}^{\oplus 2} \oplus E_{8}^{\oplus 3}$.
Remark. $\operatorname{Sh}\left(\Lambda_{A_{n}}\right), \operatorname{Sh}\left(\Lambda_{D_{n}}\right), \operatorname{Sh}\left(\Lambda_{E_{n}}\right)$ and $\operatorname{Sh}\left(\Lambda_{A_{10}^{\prime}}\right)$ are irreducible components of $\mathscr{D}_{3,1}^{(n)}$.

## Modular interpretation of $\mathscr{O}_{3,1}^{(\bullet)}$ and modifications

Generic member in $\mathscr{D}_{3,1}^{(\bullet)}$
$\square A_{n}$-tower: $S=Q \cap Y$ with $\operatorname{rank}(Q)=4$ and $S$ has an $A_{n-1}$ singularity at the vertex of $Q$.

- $D_{n}$-tower: $S=Q \cap Y$ with $\operatorname{rank}(Q)=3$ and $S$ has a $D_{n-2}$ and an $A_{1}$ singularity in $\operatorname{Sing}(Q)$.
$E_{n}$-tower: $S=Q \cap Y$ with $\operatorname{rank}(Q)=3$ and $S$ has an $A_{5}\left(\right.$ resp. $\left.D_{6}, E_{7}\right)$ singularity in $\operatorname{Sing}(Q)$.

Generic member in $\mathscr{D}_{3,1}^{(\bullet)}$
$\square A_{n}$-tower: $S=Q \cap Y$ with $\operatorname{rank}(Q)=4$ and $S$ has an $A_{n-1}$ singularity at the vertex of $Q$.

- $D_{n}$-tower: $S=Q \cap Y$ with $\operatorname{rank}(Q)=3$ and $S$ has a $D_{n-2}$ and an $A_{1}$ singularity in $\operatorname{Sing}(Q)$.
$E_{n}$-tower: $S=Q \cap Y$ with $\operatorname{rank}(Q)=3$ and $S$ has an $A_{5}\left(\right.$ resp. $\left.D_{6}, E_{7}\right)$ singularity in $\operatorname{Sing}(Q)$.

Generic member in $\operatorname{Sh}\left(\Lambda_{A_{\bullet}^{\prime}}\right)$
$\square\left(S, \mathcal{O}_{S}(1)\right) \in \operatorname{Sh}\left(\Lambda_{A_{n}}\right)$ and contains a special line passing through the vertex of $Q$

## Main result

## Theorem (Greer-Laza-Li-Si-Tian)

- $\mathscr{\mathscr { F }}_{4}(1-\epsilon) \cong \overline{\mathscr{F}}_{4}^{\text {Mukai }}$
- $\overline{\mathscr{F}}_{4}\left(\frac{1}{10}\right) \cong \operatorname{Chow}_{6,2}\left(\mathbb{P}^{4}\right) / / \operatorname{SL}(5)$.
- $\overline{\mathscr{F}}_{4}(0) \cong \Delta^{0} / / G$ is a Looijenga compactification.
- $\overline{\mathscr{F}}_{4}(\alpha)$ exists when $\alpha \geq 1 / 10$ or $\alpha=0$ and there is an isomorphism

$$
\begin{aligned}
\mathbb{P}(E) / / t \mathrm{SL}(5) & \cong \operatorname{Proj} \mathrm{R}\left(\mathscr{D}_{1,1}+\frac{4+t}{5 t} \mathscr{D}_{2,1}+\frac{1-t}{5 t} \mathscr{D}_{3,1}\right) \\
& \cong \overline{\mathscr{F}}_{4}\left(\frac{1-t}{5 t}\right)
\end{aligned}
$$

for $0<t \leq \frac{2}{3}$.
Moreover, the conjecture holds when $\overline{\mathscr{F}_{4}}(\alpha)$ exists.

## Main result

## Theorem (Greer-Laza-Li-Si-Tian)

- $\overline{\mathscr{F}}_{4}(1-\epsilon) \cong \overline{\mathscr{F}}_{4}^{\text {Mukai }}$
- $\overline{\mathscr{F}}_{4}\left(\frac{1}{10}\right) \cong \operatorname{Chow}_{6,2}\left(\mathbb{P}^{4}\right) / / \operatorname{SL}(5)$.
- $\overline{\mathscr{F}}_{4}(0) \cong \Delta^{0} / / G$ is a Looijenga compactification.
- $\mathscr{F}_{4}(\alpha)$ exists when $\alpha \geq 1 / 10$ or $\alpha=0$ and there is an isomorphism

$$
\begin{aligned}
\mathbb{P}(E) / / t \operatorname{SL}(5) & \cong \operatorname{Proj} \mathrm{R}\left(\mathscr{D}_{1,1}+\frac{4+t}{5 t} \mathscr{D}_{2,1}+\frac{1-t}{5 t} \mathscr{\mathscr { O }}_{3,1}\right) \\
& \cong \overline{\mathscr{F}}_{4}\left(\frac{1-t}{5 t}\right)
\end{aligned}
$$

for $0<t \leq \frac{2}{3}$.
Moreover, the conjecture holds when $\overline{\mathscr{F}}_{4}(\alpha)$ exists.

The proof makes use of variational GIT, but there is a purely arithmetic explanation.

## A glimpse of wall crossings for $A_{n}$-tower

Using our arithmetic algorithm, one can compute the restriction of $\lambda+\mathbf{B}(\alpha)$ to $\operatorname{Sh}\left(\Lambda_{A_{n}}\right)$ as below

$$
\begin{aligned}
\lambda+\left.\mathbf{B}(\alpha)\right|_{\operatorname{Sh}\left(\Lambda_{A_{n}}\right)}= & (1-(n-1) \alpha) \lambda+\alpha \operatorname{Sh}\left(\Lambda_{A_{n+1}}\right)+(1+4 s) \mathscr{D}_{\text {hyper }} \\
& +\alpha(n-1) \operatorname{Sh}\left(\Lambda_{D_{n+1}}\right)+\alpha \frac{(n-2)(n-1)}{2} \operatorname{Sh}\left(\Lambda_{E_{n+1}}\right) .
\end{aligned}
$$

## A glimpse of wall crossings for $A_{n}$-tower

Using our arithmetic algorithm, one can compute the restriction of $\lambda+\mathbf{B}(\alpha)$ to $\operatorname{Sh}\left(\Lambda_{A_{n}}\right)$ as below

$$
\begin{aligned}
\lambda+\left.\mathbf{B}(\alpha)\right|_{\operatorname{Sh}\left(\Lambda_{A_{n}}\right)}= & (1-(n-1) \alpha) \lambda+\alpha \operatorname{Sh}\left(\Lambda_{A_{n+1}}\right)+(1+4 s) \mathscr{D}_{\text {hyper }} \\
& +\alpha(n-1) \operatorname{Sh}\left(\Lambda_{D_{n+1}}\right)+\alpha \frac{(n-2)(n-1)}{2} \operatorname{Sh}\left(\Lambda_{E_{n+1}}\right) .
\end{aligned}
$$

## Greer-Laza-Li-Si-Tian

$\square \mathscr{D}_{\text {hyper }}, \operatorname{Sh}\left(\Lambda_{D_{n+1}}\right)$ and $\operatorname{Sh}\left(\Lambda_{E_{n+1}}\right)$ are birationally contractible on $\operatorname{Sh}\left(\Lambda_{A_{n}}\right)$.

## A glimpse of wall crossings for $A_{n}$-tower

Using our arithmetic algorithm, one can compute the restriction of $\lambda+\mathbf{B}(\alpha)$ to $\operatorname{Sh}\left(\Lambda_{A_{n}}\right)$ as below

$$
\begin{aligned}
\lambda+\left.\mathbf{B}(\alpha)\right|_{\operatorname{Sh}\left(\Lambda_{A_{n}}\right)}= & (1-(n-1) \alpha) \lambda+\alpha \operatorname{Sh}\left(\Lambda_{A_{n+1}}\right)+(1+4 s) \mathscr{D}_{\text {hyper }} \\
& +\alpha(n-1) \operatorname{Sh}\left(\Lambda_{D_{n+1}}\right)+\alpha \frac{(n-2)(n-1)}{2} \operatorname{Sh}\left(\Lambda_{E_{n+1}}\right) .
\end{aligned}
$$

## Greer-Laza-Li-Si-Tian

$\square \mathscr{D}_{\text {hyper }}, \operatorname{Sh}\left(\Lambda_{D_{n+1}}\right)$ and $\operatorname{Sh}\left(\Lambda_{E_{n+1}}\right)$ are birationally contractible on $\operatorname{Sh}\left(\Lambda_{A_{n}}\right)$.
$\square \operatorname{Sh}\left(\Lambda_{A_{n+1}}\right)$ is birationally contractible when $n \leq 5$. At $\alpha=\frac{1}{n-1}$, it will contract $\operatorname{Sh}\left(\Lambda_{A_{n}}\right)$.

## A glimpse of wall crossings for $A_{n}$-tower

Using our arithmetic algorithm, one can compute the restriction of $\lambda+\mathbf{B}(\alpha)$ to $\operatorname{Sh}\left(\Lambda_{A_{n}}\right)$ as below

$$
\begin{aligned}
\lambda+\left.\mathbf{B}(\alpha)\right|_{\operatorname{Sh}\left(\Lambda_{A_{n}}\right)}= & (1-(n-1) \alpha) \lambda+\alpha \operatorname{Sh}\left(\Lambda_{A_{n+1}}\right)+(1+4 s) \mathscr{D}_{\text {hyper }} \\
& +\alpha(n-1) \operatorname{Sh}\left(\Lambda_{D_{n+1}}\right)+\alpha \frac{(n-2)(n-1)}{2} \operatorname{Sh}\left(\Lambda_{E_{n+1}}\right) .
\end{aligned}
$$

## Greer-Laza-Li-Si-Tian

$\square \mathscr{D}_{\text {hyper }}, \operatorname{Sh}\left(\Lambda_{D_{n+1}}\right)$ and $\operatorname{Sh}\left(\Lambda_{E_{n+1}}\right)$ are birationally contractible on $\operatorname{Sh}\left(\Lambda_{A_{n}}\right)$.
$\square \operatorname{Sh}\left(\Lambda_{A_{n+1}}\right)$ is birationally contractible when $n \leq 5$. At $\alpha=\frac{1}{n-1}$, it will contract $\operatorname{Sh}\left(\Lambda_{A_{n}}\right)$.
$\square$ However, $\operatorname{Sh}\left(\Lambda_{A_{n+1}}\right)$ is movable when $n>5$. Indeed, $\operatorname{Sh}\left(\Lambda_{A_{6}}\right)$ will be also contracted at $\alpha=\frac{1}{4}$ (instead of $\frac{1}{5}$ ). This is essentially the reason why there are modifications $\operatorname{Sh}\left(\Lambda_{A_{6}^{\prime}}\right)$ from $\alpha=\frac{1}{5}$.

## Wall crossings for moduli space of K-polystable pairs

## Conjecture B (GLLST)

Let $\overline{\mathscr{K}}_{4}(c)$ be the good moduli space of K-semistable Fano pairs $(X, c S)$ smoothing to $(Q, c S)$.
$\square$ For $c \in(0,1] \cap \mathbb{Q}$, there is an isomorphism

$$
\overline{\mathscr{K}}_{4}(c) \cong \operatorname{Proj} \mathrm{R}\left(\mathscr{F}_{4}^{*}, \lambda+\frac{1-c}{8 c} \mathscr{D}_{3,1}+\frac{1-c}{c} \mathscr{D}_{2,1}+\frac{5(1-c)}{2 c} \mathscr{D}_{1,1}\right) .
$$

with $\overline{\mathscr{K}}_{4}(c) \cong \overline{\mathscr{F}}_{4}\left(\frac{1-c}{8 c}\right)$ for $c \leq \frac{1}{2}$ and $\overline{\mathscr{K}}_{4}(1) \cong \mathscr{F}_{4}^{*}$.
the walls of $\overline{\mathscr{K}}_{4}(c)$ are

$$
\begin{aligned}
& \left\{\frac{5}{7}\right\} \bigcup\left\{\frac{11+n}{27+n}, 1 \leq n \leq 5\right\} \bigcup\left\{\frac{3+n}{11+n}, 6 \leq n \leq 11, n \neq 10\right\} \bigcup \\
& \left\{\frac{36+n}{52+n}, n=1,3,4,7\right\} \bigcup\left\{\frac{7}{9}, \frac{2}{3}, \frac{7}{11}, \frac{3}{5}, \frac{5}{9}, \frac{1}{2}, \frac{7}{15}, \frac{3}{7}, \frac{5}{13}, \frac{1}{3}, \frac{3}{11}, \frac{1}{5}, \frac{1}{9}\right\} .
\end{aligned}
$$

## Further Remarks

(Arithmetic side) The arithmetic method works for moduli space of lattice polarized K3 surfaces, hyper-Kähler manifolds and cetain high dimensional log Fano pairs. It is relatively easier with the aid of computer.
(Arithmetic side) The arithmetic method works for moduli space of lattice polarized K3 surfaces, hyper-Kähler manifolds and cetain high dimensional log Fano pairs. It is relatively easier with the aid of computer.
(Geometric side) When $\operatorname{dim} \geq 3$, it is currently very difficult to determine the $K$-stable pairs via birational geometry.
(Arithmetic side) The arithmetic method works for moduli space of lattice polarized K3 surfaces, hyper-Kähler manifolds and cetain high dimensional log Fano pairs. It is relatively easier with the aid of computer.
(Geometric side) When $\operatorname{dim} \geq 3$, it is currently very difficult to determine the $K$-stable pairs via birational geometry.

Pan-Si-Wu, J. Zhao: moduli space of hyperelliptic K3 surfaces, log del Pezzol, Hassett-Keel on $\overline{\mathscr{M}}_{6}$ surfaces.
That

