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is a non-compact scheme of dimension 3g — 3.

(1 Deligne-Mumford: the moduli space of stable curves of genus g
My = Mg {nodal curves}

is a projective scheme.

d Mumford, Giesker:

Mg = Chowg >3 /SL((2n — 1)(g — 1)) = Hilbg »>5/SL((2n — 1)(g — 1))

where
= Hilbg ,: Hilbert scheme of n-canonically embedded curves of genus g

= Chowg,,: Chow variety of n-canonically embedded curves of genus g.
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Other compactifications

Allowing worse singularities

M ]ZS = Mg {allowing cusp, no elliptic tails}
H] ]Zs = Mg U {allowing tacnode, no elliptic bridges}

M ]I’; = Mg U {allowing tacnode, no elliptic chains}
Varying GIT models (Schubert, Hassett-Heyon)

O Chowy,3/SL(5g — 5) & Chowg,4/SL(7g — 7) = My

(o]

O Chowg2/SL(3g — 3) = .4,

0 Hilbgs/SL(7g — 7) = Ay



Their relations via LMMP

Hassett-Keel Program (Hassett-Heyon)

@ BCHM: Let §, be the boundary divisor of .#,. The log canonical
model

M 4() := Proj @H (M g, m(K- 7, T ad g))

m>0

exists for a € [0,

1].
Q Agla>2)2 M,
LT<a< ) /// and M g(1) = M¢() is a divisorial
contraction
QO 4 g({5) = Chowa /SL(3g — 3) and 4 ({5 — €) = Hilby /SL(3g — 3) and
there is a flip

///g(% %g(lloJFE)

S

¢(15)

sk



2. Moduli of projective K3 surfaces



d A K3 surface S over C is a smooth compact surface satisfying

ws = Os and H* (5, 05) = (),
0 A polarized K3 surface of genus g is a pair (S, L), where L is

an ample line bundle with [? = 2g — 2 > 0.




d A K3 surface S over C is a smooth compact surface satisfying

ws = Os and H* (5, 05) = (),
0 A polarized K3 surface of genus g is a pair (S, L), where L is

an ample line bundle with [? = 2g — 2 > 0.

Example (Mukai models)

dg=2S5 21, P? double cover branched over a smooth sextic.

0 g =3: S — P? a smooth quartic surface

0 g=4:S=QnN C CP* asmooth complete intersections of a quadric
and a cubic.

d g=5 §S= Q1N Q2N Qs is smooth complete intersection of three
quadric in P°.

12> g > 6,g # 11: smooth complete intersections in a homogenous
space
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Moduli of polarized K3 surfaces

Moduli space of polarized smooth K3 surfaces
1 For g > 2, let
Fg = {(S, L) primitively polarized K3 with L* = 2g — 2}/ =

be the (coarse) moduli space of primitively polarized smooth K3
surfaces of genus g.

0 %, is a quasi-projective variety of dimension 19 with quotient
singularities.

A natural partial compactification
O Allowing ADE singularities: Fg = F; U A, where
Ag = {(S7 L)| L ample with L*> = 2g—2, S has isolated ADE singularities}.

[ %, is "almost" a projective scheme.
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GIT compactifications of 7,

Linear system on K3 surfaces

0 Saint-Donat: S — |nL| =P"~! is a closed embedding if n > 3.
0 (S, L) is called unigonal if S — |2L| is not a closed embedding.

GIT compactifications

0 Viehweg: %, C Hilbg,,/SL(N) for n sufficiently large

[ Donaldson: ., C Chowy ,/SL(N) for n sufficiently large

Open problem: do they also compactify #;7?
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is a connected Shimura variety associated to an orthogonal group G
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Arithmetic compactifications of .7,

global Torelli theorem

(O Pjateckii-Sapiro, Shafarevi¢:
Fg = Sh(G)

is a connected Shimura variety associated to an orthogonal group G
with G(R) = 0(2,19).

4 Baily-Borel: there is a Satake compactification
Z; = Proj R(Zg, A),
where A is the Hodge line bundle.

1 Looijenga: there is a semitoric compactification

Fg 2 Proj R(F; — 2,7, 2),

where Z is a union of Shimura subvarieties of codimension 1.



New modular compactifications

Slc stable pairs moduli spaces

J Kollar-Shepherd-Barron, Alexeev: The (coarse) moduli space of
Ks-trivial slc pairs

Py ={(5,eC) | C € |nL|}/ =

is a projective scheme. It admits a forgetful rational map £, --» Z,.
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New modular compactifications

Slc stable pairs moduli spaces

J Kollar-Shepherd-Barron, Alexeev: The (coarse) moduli space of
Ks-trivial slc pairs

Py ={(5,eC) | C € |nL|}/ =

is a projective scheme. It admits a forgetful rational map £, --» Z,.

[ Alexeev-Engel: moduli of stable slc pairs (S, eR) with R recongizable.
K-stable moduli spaces

0 Ascher-Devleming-Liu : for ¢ € (0, 1), the good moduli space of
K-stable pairs

e :{(X, cS) is K-polystable with Hilbert polynomial h}/ =
is a projective scheme of finite type.
Guiding Problem: Carrying out the birational morphisms between various

compactifications with modular interpretations.
10



A motivated example: g =2

Set

7Mukai

Q 75" =[0s2(6)] /SL(3)

[ #6.c : the moduli space of K-polystable log Fano surface pairs
smoothable to (P?, cC) where C € |Op2(6)]

O Z5: moduli space of KSBA stable degree 2 K3 pairs.
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A motivated example: g =2

Set
Mukal
Q 75" =[0s2(6)] /SL(3)
[ #6.c : the moduli space of K-polystable log Fano surface pairs
smoothable to (P?, cC) where C € |Op2(6)]
O Z5: moduli space of KSBA stable degree 2 K3 pairs.

Shah, Laza, Ascher-Devleming-Liu

[ There is a diagram

P22 H o3 t-0=~ ~ P2
—Mukai \ *
F2 Xy —>F

a % — Z5 is a Q-Carterization map and 52\2 — Z5 contracts the
unigonal loci %1 1.
uka . . . . . . —=Mukai
M 372 — F is the Kirwan partial desingularization of %5

11



From LMMP point of view

All the compactifications can be constructed through a unified
way.
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From LMMP point of view

All the compactifications can be constructed through a unified
way.

Log canonical models of %5
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with o € [0,1] N Q.
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From LMMP point of view

All the compactifications can be constructed through a unified

way.

Log canonical models of %5

Let B = 2,1 and define
F5(a) := Proj R(F5, A + aB)

with o € [0,1] N Q.

Then we have

—=Mukai

0O 75(0) = F3, Fala) = F for a € (0,1), Fa(1) = Fy

O Zs(e) — F2(1) contracts the strict transform of 21 1 to a point.

12



The case with Mukai models

0 Mukai’s GIT compactification Z,

g Mukai model ?L’gwu,(ai

3 quartic surface P3* /SL(4)

4 cubic hypersurface on Q P29 /SO(5)

5 c.i. of three quadratics in P° Gr(3,21) /SL(6)
6 quadric hypersurface on Fs P22 JPSL(2)

7 | c.i. of eight hyperplanes in IGr(5,10) | Gr(8, 16)/Spin(10)
8 c.i. of six hyperplanes in Gr(2, 6) Gr(6, 15) /SL(6)
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7 | c.i. of eight hyperplanes in IGr(5,10) | Gr(8, 16)/Spin(10)

8 c.i. of six hyperplanes in Gr(2, 6) Gr(6, 15) /SL(6)
— Mukai

Remark. The rank of Pic(.%, ) is 1.
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The case with Mukai models

M kai
1 Mukai’s GIT compactification .7, e

g Mukai model ?L’gwu,(ai

3 quartic surface P3* /SL(4)

4 cubic hypersurface on Q P29 /SO(5)

5 c.i. of three quadratics in P° Gr(3,21) /SL(6)
6 quadric hypersurface on Fs P22 JPSL(2)

7 | c.i. of eight hyperplanes in IGr(5,10) | Gr(8, 16)/Spin(10)
8 c.i. of six hyperplanes in Gr(2, 6) Gr(6, 15) /SL(6)

—=Mukai

Remark. The rank of Pic(.%, ) is 1.

[1J Hassett-Keel-Looijenga program: Find interpolating log canonical
—Mukai
models connecting Z,

ar*

and .#; with modular and arithmetic

interpretations.
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The case with Mukai models

M kai
1 Mukai’s GIT compactification .7, e

g Mukai model ?L’gwu,(ai

3 quartic surface P3* /SL(4)

4 cubic hypersurface on Q P29 /SO(5)

5 c.i. of three quadratics in P° Gr(3,21) /SL(6)
6 quadric hypersurface on Fs P22 JPSL(2)

7 | c.i. of eight hyperplanes in IGr(5,10) | Gr(8, 16)/Spin(10)
8 c.i. of six hyperplanes in Gr(2, 6) Gr(6, 15) /SL(6)

—=Mukai

Remark. The rank of Pic(.%, ) is 1.

[1J Hassett-Keel-Looijenga program: Find interpolating log canonical
— Mukai
models connecting .7, " and Z,

ar*

¢ with modular and arithmetic
interpretations.

Idea: Run MMP with scaling on .%,

13



Before construction: divisors on 7g*

Noether-Lefschetz divisors

1 Dg,n: parametrizing (S, L) € F; whose Pic(S) contains a primitive

2g — 2 d
d 2h —2

lattice
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2g — 2 d
d 2h —2

A P41 can be regarded as a Shimura subvariety.

lattice

0 Bergeron-Li-Millson-Moeglin: Picg(.%;) is spanned by Zq,.
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Before construction: divisors on 7g*

Noether-Lefschetz divisors

1 Dg,n: parametrizing (S, L) € F; whose Pic(S) contains a primitive

2g — 2 d
d 2h —2

A P41 can be regarded as a Shimura subvariety.

lattice

0 Bergeron-Li-Millson-Moeglin: Picg(.%;) is spanned by Zq,.

Examples
1 %0 = nodal loci
[ 21,1 = unigonal loci
0 2., = hyperelliptic loci, i.e. the loci where S — |L|is 2: 1.

14



Picard group of 7, with Mukai models

Greer-Li-Tian: the Picard group of %, for g < 10 is given by

g | dimPicg(Zg) generators (besides \)

2 2 D

3 3 D11,D2,1

4 4 Dy, P2, D3 0

5 4 D1, D21,D31

6 6 Dy, Dop, Pajn, Ds,2,Pa,1

7 7 D, Do, D3y, D2, Do,2, Dan

8 7 D1, D2, D31, D2, Dr2, Dan

9 8 D, Doy, Dapn, Do2, Dr2y, Daq, Do
10 9 D11, D2, D31, Pap, D2, Do, Dsy2, Ds 1,

15



General construction

Interpolating models: consider

F¢(a) = Proj R(Z;, A + B(a))

P
with « varying in [0, 1] N Q, where B(a) = > ai()Za;,n; With Dy, given in
=1
the previous Table, a;j(a) are linear functionals.
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Expectation: there is a chamber structure on « and the birational maps
—=Mukai

a* __ a7
Fg > Fg

factors through a series of wall crossing maps.
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General construction

Interpolating models: consider

F¢(a) = Proj R(Z;, A + B(a))

P
with « varying in [0, 1] N Q, where B(a) = > ai()Za;,n; With Dy, given in
=1
the previous Table, a;j(a) are linear functionals.

Expectation: there is a chamber structure on « and the birational maps
e —=Mukai
Fyg - Fy
factors through a series of wall crossing maps.
Problem:

1. existence of .Z4(a): finite generation is missing.

2. computation of walls: high dimensional varieties have very
complicated degenerations

16



A short cut (least wall crossings)

Predictions: there exitsts ai(a) such that
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A short cut (least wall crossings)

Predictions: there exitsts ai(a) such that

O (Semitoric part) .%4(0) is Looijenga’s semitoric compactification and
the birational map

LO;; i §g(0)

factors through a Q-factorialization, a series of flips, and divisorial

contractions.
—=Mukai

O (GIT part) Z,(a)is a VGIT and Z, = Z,(1). The parameter
a € QN 0, 1] admits a chamber structure with finite many walls
O<ap < <am<l,ie.

yg(a"*ha") ‘gg(a"aamkl)

Fg(an)
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A short cut (least wall crossings)

Predictions: there exitsts ai(a) such that

O (Semitoric part) .%4(0) is Looijenga’s semitoric compactification and
the birational map

LO;; i §g(0)

factors through a Q-factorialization, a series of flips, and divisorial

contractions.
—=Mukai

O (GIT part) Z,(a)is a VGIT and Z, = Z,(1). The parameter
a € QN 0, 1] admits a chamber structure with finite many walls
O<ap < <am<l,ie.

yg(a"*ha") ‘gg(a"aamkl)
\ /
Fg(an)

(4 The centers are proper transforms of Shimura subvarieties lying in
Looijenga’s stratification of Y Zq, ;.

17



Looijenga’s stratification

0 Sh(G) =TI'\D, with G = O(V) an orthogonal group.

O 2 =T\ v is a union of Shimura subvarieties 2 of codimension one.
vEA
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Looijenga’s stratification

0 Sh(G) =TI'\D, with G = O(V) an orthogonal group.

O 2 =T\ v is a union of Shimura subvarieties 2 of codimension one.
vEA

[ Looijenga’s stratification of Z:

d

7@ -\ T

where vy, € A are linearly independent.

O This gives a tower of Shimura varieties 29t C 29 and the
irreducible components of 2® will occur in the restriction 2.

Connection to HKL

O Potential center: the stratification B?) of the support of B(c).

0 Potential walls: solution aqg of the linear equation 1 — f(a)) = 0, where
A +B(@)lpw = (1 = f(@)A + BV (a)

and B4+ (q) is extremal or not effective at ayp.

18



An ideal situation

The birational map
Proj R(Sh(G), \) --» Proj R(Sh(G), A + B(«))

factor through a series of elementary transformations, whose centers are
irreducible components of Looijenga’s stratification of the support of B(«).
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Proj R(Sh(G), \) --» Proj R(Sh(G), A + B(«))

factor through a series of elementary transformations, whose centers are
irreducible components of Looijenga’s stratification of the support of B(«).

(1 the birational map Sh(G)* --» Sh(G)9 is in the ideal situation.
U Laza-O’Grady, Ascher-Devleming-Liu:

F35 —— F3(B) = Proj R(F35 , A+ B(Z11 + Z2,1))

is in the ideal situation.
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An ideal situation

The birational map
Proj R(Sh(G), \) --» Proj R(Sh(G), A + B(«))

factor through a series of elementary transformations, whose centers are
irreducible components of Looijenga’s stratification of the support of B(«).

(1 the birational map Sh(G)* --» Sh(G)9 is in the ideal situation.
U Laza-O’Grady, Ascher-Devleming-Liu:

F35 —— F3(B) = Proj R(F35 , A+ B(Z11 + Z2,1))

is in the ideal situation.

Remark. In HKL, this never happen when g > 3. The centers will become
much more complicated.
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Useful tools via arithmetic methods

Intersection theory on Shimura varieties

0 Pic(Sh(G)) is essentially the space of certain modular forms.
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Useful tools via arithmetic methods

Intersection theory on Shimura varieties

0 Pic(Sh(G)) is essentially the space of certain modular forms.

A Greer-Laza-Li-Si-Tian: there is an effective algorithm to compute
the restriction of NL-divisors to Shimura subvarieties by using the
Jacobi forms. In particular, one can get an explicit formula of

A+ B(a) g,

as a linear combination of NL divisors.
Understanding of effective cones

0 Peterson: Is Eff(#;) = Eff(#;)"" generated by the NL divisors?

O Greer-Laza-Li-Si-Tian: %y is extremal in Eff(.%;) if

5

g(e—1)>d"—4(g-1)(h-1).

20



Example of generators of Eff(.7; )"

List of generators of Eff(#;)"" for g < 10

g | dimPicg(Zg) Generators

2 2 Do,0, P11

3 3 Doo D1,1,P2,1

4 4 Doo D1, Po1,P3,1

5 4 D00, D11y D21, P31

6 6 Doo, D11, Do, D3, Ds,2,Pa

7 7 Doo, D11, D1, D31, Ds,2, Do,2, D

8 7 Doo, Diny Do, D3, De,2, D2, Das

9 8 Do0s D1, P21y D, Do,y D2y Dan, Dsa
10 9 Do, D11, D1, Daj, Daq, D2, Doz, D2, Dsa,

Remark. The blue ones are extremal in Eff(.%,).
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IV. HKL for %,



Polarized K3 surface of genus 4

Projective models

O For (S, L) € Z4, the image S — |L| is a complete intersection of a
quadric and a cubic in P* iff (S, L) is not lying in Z1,1, Zo.1.

0 The image S — |L| is a complete intersection of a smooth quadric Q
and a cubic in P* iff (S, L) is not lying in %11, P»,1 and Ps.1.
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Polarized K3 surface of genus 4

Projective models

O For (S, L) € Z4, the image S — |L| is a complete intersection of a
quadric and a cubic in P* iff (S, L) is not lying in Z1,1, Zo.1.

0 The image S — |L| is a complete intersection of a smooth quadric Q
and a cubic in P* iff (S, L) is not lying in %11, P»,1 and Ps.1.

Parametrization space

[ (2, 3)-complete intersections are parametrized by an open subset of a
projective bundle P(E) — |Opa(2)| = P'*, where

0— ps(ZTo ® q"Opa(3)) — pu(q"Opa(3)) = E — 0,

Q is the universal quadric with projections p : @ — |Op4(2)] and
qg:Q— P*

0 (Fix Q) cubic hypersurfaces on Q are parametrized by |Og(3)|.
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GIT compactifications

As (2, 3)-complete intersection

0 GIT quotient of P(E): P(E)/:SL(5) the GIT w.r.t. the linearization

H: = q*(’)]pm(l) + tO]p(E)(l).
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GIT compactifications

As (2, 3)-complete intersection

0 GIT quotient of P(E): P(E)/:SL(5) the GIT w.r.t. the linearization
Ht = q*(’)]pm(l) + tO]p(E)(l).
0 Benoist: H; is ample when 0 < t < 1.

O GIT quotient of Chow variety: Chows 2 (P*)/SL(5)

As nodal cubic fourfolds

@ (2, 3)-complete intersection (g, f) in P* < a nodal cubic {xsq + f = 0}
in P°.

([ This gives a non-reductive GIT model

Ao/ G

where Ay C A paramterizing cubics which are singular at
p=10,...,0,1] and G < SL(6) is the stabilizer of p.
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Boundary stratum

—=Mukai

A Li-Tian: 7, — %4 consists of 9 irreducible components parametrizing

singular c.i. as below:

(dim = 6) two simple elliptic singularities of type Es

(dim = 2) two simple elliptic singularities of type Es, whose projective
tangent cone meeting the surface along lines.

3. (dim = 11) a simple elliptic singularities of type E;

5

© ®© N o O

(dim = 8) a simple elliptic singularity of type Eg, whose projective
tangent cone meeting the surface along points.

(dim = 11) a line

(dim = 7) a conic

(dim = 3) a twisted cubic

(dim = 2) a rational curve of degree 4
(dim = 7) an elliptic curve of degree 4

[ Stark: the boundary .%#; — .%4 consists of 10 modular curves meeting at a

point.
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HKL conjecture

Conjecture A
Set B(a) = 211 + o1 + aP3,1 and
Fa() := Proj R(Z4, ) + B()).

Then

0 (Existence) R(.Z;, A + B(«)) is finitely generated for « € QN [0, 1].

A the walls of the Mori chamber decomposition of the cone

{/\+B(a) | ae(@,a>0}

are located at the following critical values
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HKL conjecture

Conjecture A
Set B(a) = 211 + o1 + aP3,1 and
Fa() := Proj R(Z4, ) + B()).

Then

0 (Existence) R(.Z;, A + B(«)) is finitely generated for « € QN [0, 1].

A the walls of the Mori chamber decomposition of the cone

{/\+B(a) | ae(@,a>0}

are located at the following critical values

Remark: ; is missing.
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HKL conjecture

1 (Tower structure) The centers of .F#4(ay — €) = Fa(an) forms a
descending towers of Shimura subvarieties in 7;

= A,-tower:
3,1 = Sh(Aa;) D ... D Sh(Aag) D Sh(Agy) D Sh(Aa,) USh(Aar)
D Sh(Ag,) USh(Agy) D Sh(Aay) O Sh(Aay )
= D,-tower:
Sh(Ap,) D Sh(Aps) D Sh(Aps) D Sh(Ap,) D Sh(Ap,) D Sh(Ap)

= [ _tower:
Sh(Ag,) D Sh(Ag,) D Sh(Ag)

where Aa, = (Es ® An)L, Ap, = (Es @ Dn)*, Ag, = (Es ® E,)" C U @ EP®.
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HKL conjecture

1 (Tower structure) The centers of .F#4(ay — €) = Fa(an) forms a
descending towers of Shimura subvarieties in 7;

= A,-tower:
3,1 = Sh(Aa;) D ... D Sh(Aag) D Sh(Agy) D Sh(Aa,) USh(Aar)
D Sh(Ag,) USh(Agy) D Sh(Aay) O Sh(Aay )
= D,-tower:
Sh(Ap,) D Sh(Aps) D Sh(Aps) D Sh(Ap,) D Sh(Ap,) D Sh(Ap)

= [ _tower:
Sh(Ag,) D Sh(Ag,) D Sh(Ag)

where Aa, = (Es ® An)L, Ap, = (Es @ Dn)*, Ag, = (Es ® E,)" C U @ EP®.

Remark. Sh(Aa,), Sh(Ap,), Sh(Ag,) and Sh(Ay, ) are irreducible

components of @é”l) .
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Modular interpretation of 9@5"1) and modifications

Generic member in Qé'l)

0 Ap-tower: S= QN Y with rank(Q) =4 and S has an A,_: singularity
at the vertex of Q.

O D,-tower: S = QN Y with rank(Q) = 3 and S has a D,—2 and an Ay
singularity in Sing(Q).

O E,-tower: S = QN Y with rank(Q) = 3 and S has an As (resp. Ds, E7)
singularity in Sing(Q).
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Modular interpretation of 9@5"1) and modifications

Generic member in Qé'l)

0 Ap-tower: S= QN Y with rank(Q) =4 and S has an A,_: singularity
at the vertex of Q.

O D,-tower: S = QN Y with rank(Q) = 3 and S has a D,—2 and an Ay
singularity in Sing(Q).

O E,-tower: S = QN Y with rank(Q) = 3 and S has an As (resp. Ds, E7)
singularity in Sing(Q).

Generic member in Sh(A ;)

0 (5,0s(1)) € Sh(Aa,) and contains a special line passing through the
vertex of @
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Main result

Theorem (Greer-Laza-Li-Si-Tian)

—=Mukai

Fa(l-e) =2 F
4(55) & Chows 2(P*) / SL(5).

0
Z4(0) = A%//G is a Looijenga compactification.

N

4
H]
W]
a2

Z4(a) exists when o > 1/10 or o = 0 and there is an
isomorphism

P(E)//t SL( ) = Proj R(@1 1 + .@2 1 + @3 1)
1—t
5t )

> F o

f0r0<t§§.

Moreover, the conjecture holds when Z4(«) exists.

29



Main result

Theorem (Greer-Laza-Li-Si-Tian)

—=Mukai

Fa(l-e) =2 F
4(55) & Chows 2(P*) / SL(5).

0
Z4(0) = A%//G is a Looijenga compactification.

N

4
H]
W]
a2

Z4(a) exists when o > 1/10 or o = 0 and there is an
isomorphism

P(E)//t SL( ) = Proj R(@1 1 + .@2 1 + @3 1)
1—t
5t )

> F o

f0r0<t§§.

Moreover, the conjecture holds when Z4(«) exists.

The proof makes use of variational GIT, but there is a purely arithmetic
explanation.
29



A glimpse of wall crossings for A,-tower

Using our arithmetic algorithm, one can compute the restriction of
A+ B(a) to Sh(Aa,) as below

A+ B(a)|Sh(AA") 2(1 — (n — 1)0())\ + aSh(AAn+1) + (1 + 45)@hyper

+a(n—1)Sh(Ap,.,) + a% Sh(Ag,, ;).
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contract Sh(Aa,).

30



A glimpse of wall crossings for A,-tower

Using our arithmetic algorithm, one can compute the restriction of
A+ B(a) to Sh(Aa,) as below

A+ B(a)|Sh(AA") 2(1 — (n — 1)0())\ + aSh(AAn+1) + (1 + 45)@hyper

+a(n—1)Sh(Ap,.,) + a% Sh(Ag,, ;).

Greer-Laza-Li-Si-Tian

O Dhyper, Sh(Ap,,,) and Sh(Ag,,,) are birationally contractible on
Sh(Aa,).

0 Sh(Aa,,,) is birationally contractible when n < 5. At o = -1+, it will
contract Sh(Aa,).

O However, Sh(Aa,,,) is movable when n > 5. Indeed, Sh(Aa,) will be
also contracted at o = 1 (instead of %) This is essentially the reason

1
why there are modifications Sh(A,, ) from a = i
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Wall crossings for moduli space of K-polystable pairs

Conjecture B (GLLST)

Let 7 4(c) be the good moduli space of K-semistable Fano pairs (X, cS)
smoothing to (Q, cS).

0 For c € (0,1] N Q, there is an isomorphism

8c

1-— 5(1 —
C.93,1 aF C.@2,1 o (7
c c

A 4(c) = Proj R(FS, N+

with J#4(c) & F4(1E) for ¢ < 3 and A 4(1) = Z5.

8c

O the walls of 7 4(c) are

) 11+ n 3+n
1< n< 6<n<11 10
{7}U{27+n’1 "*5}U{11+n/6*” n# }U
3 1

36 +n T27 51 7 3 5 1 3 11
) :17 4, n’a9’11° '’ 0’0’1’7’ 19’911’ a [
{52+n'” 3 '7}U{93115921571331159}
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Further Remarks

1 (Arithmetic side) The arithmetic method works for moduli space of
lattice polarized K3 surfaces, hyper-Kihler manifolds and cetain
high dimensional log Fano pairs. It is relatively easier with the aid of
computer.

32



Further Remarks

1 (Arithmetic side) The arithmetic method works for moduli space of
lattice polarized K3 surfaces, hyper-Kihler manifolds and cetain
high dimensional log Fano pairs. It is relatively easier with the aid of
computer.

1 (Geometric side) When dim > 3, it is currently very difficult to
determine the K-stable pairs via birational geometry.
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Further Remarks

1 (Arithmetic side) The arithmetic method works for moduli space of
lattice polarized K3 surfaces, hyper-Kihler manifolds and cetain
high dimensional log Fano pairs. It is relatively easier with the aid of
computer.

1 (Geometric side) When dim > 3, it is currently very difficult to
determine the K-stable pairs via birational geometry.

[ Pan-Si-Wu, J. Zhao: moduli space of hyperelliptic K3 surfaces, log del
Pezzol, Hassett-Keel on M ¢ surfaces.
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