Birational geometry on moduli space of polarized K3 surfaces of low genus

Geometry of hyperKähler varieties

Zhiyuan Li

2023/09/06/

Shanghai Center for Mathematical Science

I. Introduction

History

Moduli space of curves

 $\hfill\square$ The (coarse) moduli space of smooth curves of genus $g\geq 2$

$$\mathcal{M}_{g} = \left\{ \Sigma_{g} : \bigcirc \cdots \bigcirc \right\} / \cong$$

is a non-compact scheme of dimension 3g - 3.

History

Moduli space of curves

 $\hfill\square$ The (coarse) moduli space of smooth curves of genus $g\geq 2$

$$\mathcal{M}_{g} = \left\{ \Sigma_{g} : \bigcirc \\ \bigcirc \\ \bigcirc \\ \bigcirc \\ \end{pmatrix} / \cong$$

is a non-compact scheme of dimension 3g - 3.

□ **Deligne-Mumford**: the moduli space of stable curves of genus g $\overline{\mathcal{M}}_g = \mathcal{M}_g \bigcup \left\{ \text{nodal curves} \right\}$

is a projective scheme.

History

Moduli space of curves

 \square The (coarse) moduli space of smooth curves of genus $g \geq 2$

$$\mathcal{M}_{g} = \left\{ \Sigma_{g} : \bigcirc \cdots \bigcirc \right\} / \cong$$

is a non-compact scheme of dimension 3g - 3.

 $\Box \text{ Deligne-Mumford: the moduli space of stable curves of genus } g$ $\overline{\mathcal{M}}_g = \mathcal{M}_g \bigcup \Big\{ \text{nodal curves} \Big\}$

is a projective scheme.

Mumford, Giesker:

$$\overline{\mathscr{M}}_g \cong \operatorname{Chow}_{g,n \geq 5} /\!\!/ \mathrm{SL}((2n-1)(g-1)) \cong \operatorname{Hilb}_{g,n \geq 5} /\!\!/ \mathrm{SL}((2n-1)(g-1))$$
 where

- $Hilb_{g,n}$: Hilbert scheme of *n*-canonically embedded curves of genus g
- Chow $_{g,n}$: Chow variety of *n*-canonically embedded curves of genus g.

Allowing worse singularities

 $\Box \ \overline{\mathcal{M}}_{g}^{ps} = \mathcal{M}_{g} \cup \left\{ \text{allowing cusp, no elliptic tails} \right\}$ $\Box \ \overline{\mathcal{M}}_{g}^{cs} = \mathcal{M}_{g} \cup \left\{ \text{allowing tacnode, no elliptic bridges} \right\}$ $\Box \ \overline{\mathcal{M}}_{g}^{hs} = \mathcal{M}_{g} \cup \left\{ \text{allowing tacnode, no elliptic chains} \right\}$

Allowing worse singularities

 $\Box \ \overline{\mathcal{M}}_{g}^{ps} = \mathcal{M}_{g} \cup \left\{ \text{allowing cusp, no elliptic tails} \right\}$ $\Box \ \overline{\mathcal{M}}_{g}^{cs} = \mathcal{M}_{g} \cup \left\{ \text{allowing tacnode, no elliptic bridges} \right\}$ $\Box \ \overline{\mathcal{M}}_{g}^{hs} = \mathcal{M}_{g} \cup \left\{ \text{allowing tacnode, no elliptic chains} \right\}$

Varying GIT models (Schubert, Hassett-Heyon)

□ Chow_{g,3}//SL(5g - 5) \cong Chow_{g,4}//SL(7g - 7) \cong $\overline{\mathscr{M}}_g^{ps}$ □ Chow_{g,2}//SL(3g - 3) \cong $\overline{\mathscr{M}}_g^{cs}$ □ Hilb_{g,2}//SL(7g - 7) \cong $\overline{\mathscr{M}}_g^{hs}$

Hassett-Keel Program (Hassett-Heyon)

BCHM: Let δ_g be the boundary divisor of $\overline{\mathcal{M}}_g$. The log canonical model

$$\overline{\mathcal{M}}_{g}(\alpha) := \operatorname{Proj} \bigoplus_{m \geq 0} \operatorname{H}^{0}(\overline{\mathcal{M}}_{g}, m(K_{\overline{\mathcal{M}}_{g}} + \alpha \delta_{g}))$$

exists for $\alpha \in [0, 1]$.

- $\label{eq:alpha} \square \ \overline{\mathscr{M}}_{g}(\alpha > \tfrac{9}{11}) \cong \overline{\mathscr{M}}_{g}$
- $\label{eq:gamma_g} \begin{gathered} \square \ \overline{\mathcal{M}}_g(\frac{7}{10} < \alpha \leq \frac{9}{11}) \cong \overline{\mathcal{M}}_g^{ps} \ \text{and} \ \overline{\mathcal{M}}_g(1) \to \overline{\mathcal{M}}_g(\frac{9}{11}) \ \text{is a divisorial contraction} \end{gathered}$
- $\square \ \overline{\mathcal{M}}_{g}(\frac{7}{10}) \cong \operatorname{Chow}_{2}/\!\!/ \mathrm{SL}(3g-3) \text{ and } \overline{\mathcal{M}}_{g}(\frac{7}{10}-\epsilon) \cong \operatorname{Hilb}_{2}/\!\!/ \mathrm{SL}(3g-3) \text{ and }$ there is a flip

2. Moduli of projective K3 surfaces

K3 surfaces

Definition

□ A K3 surface *S* over \mathbb{C} is a smooth compact surface satisfying $\omega_S \cong \mathcal{O}_S$ and $\mathrm{H}^1(S, \mathcal{O}_S) = 0$.

□ A polarized K3 surface of genus g is a pair (S, L), where L is an ample line bundle with $L^2 = 2g - 2 > 0$.

K3 surfaces

Definition

□ A K3 surface *S* over \mathbb{C} is a smooth compact surface satisfying $\omega_{S} \cong \mathcal{O}_{S}$ and $\mathrm{H}^{1}(S, \mathcal{O}_{S}) = 0$.

□ A polarized K3 surface of genus g is a pair (S, L), where L is an ample line bundle with $L^2 = 2g - 2 > 0$.

Example (Mukai models)

- \square g = 2: $S \xrightarrow{2:1} \mathbb{P}^2$ double cover branched over a smooth sextic.
- $\hfill g=3:\ {\cal S}\hookrightarrow \mathbb{P}^3$ a smooth quartic surface
- $\square \ g=4; \ S=Q\cap C\subseteq \mathbb{P}^4$ a smooth complete intersections of a quadric and a cubic.
- $\square g = 5: S = Q_1 \cap Q_2 \cap Q_3 \text{ is smooth complete intersection of three quadric in } \mathbb{P}^5.$
- □ $12 \ge g \ge 6, g \ne 11$: smooth complete intersections in a homogenous space

Moduli space of polarized smooth K3 surfaces

 $\label{eq:star} \Box \mbox{ For } g \geq 2, \mbox{ let}$ $\mathscr{P}_g^\circ = \Big\{ (S,L) \mbox{ primitively polarized K3 with } L^2 = 2g-2 \Big\} / \cong$

be the (coarse) moduli space of primitively polarized smooth K3 surfaces of genus $\boldsymbol{g}.$

 $\hfill\square$ \mathscr{F}_g° is a quasi-projective variety of dimension 19 with quotient singularities.

Moduli space of polarized smooth K3 surfaces

 $\label{eq:star} \Box \mbox{ For } g \geq 2, \mbox{ let}$ $\mathscr{P}_g^\circ = \Big\{ (S,L) \mbox{ primitively polarized K3 with } L^2 = 2g-2 \Big\} / \cong$

be the (coarse) moduli space of primitively polarized smooth K3 surfaces of genus $\boldsymbol{g}.$

 $\hfill\square$ \mathscr{F}_g° is a quasi-projective variety of dimension 19 with quotient singularities.

A natural partial compactification

 $\hfill \black \black$

$$\Delta_g = \Big\{ (S, L) | L \text{ ample with } L^2 = 2g - 2, \text{ S has isolated ADE singularities} \Big\}.$$

 $\hfill \hfill \hfill$

Saint-Donat: $S \to |nL| = \mathbb{P}^{N-1}$ is a closed embedding if $n \ge 3$.

Saint-Donat: $S \to |nL| = \mathbb{P}^{N-1}$ is a closed embedding if $n \ge 3$.

 \Box (S, L) is called unigonal if $S \rightarrow |2L|$ is not a closed embedding.

Saint-Donat: $S \to |nL| = \mathbb{P}^{N-1}$ is a closed embedding if $n \ge 3$.

 $\hfill \begin{subarray}{c} \Box & (S,L) \end{subarray}$ is called unigonal if $S \rightarrow |2L|$ is not a closed embedding.

GIT compactifications

□ Viehweg: $\mathscr{F}_g^{\circ} \subseteq \operatorname{Hilb}_{g,n}/\!\!/\operatorname{SL}(N)$ for *n* sufficiently large

Donaldson: $\mathscr{F}_g^{\circ} \subseteq \operatorname{Chow}_{g,n}/\!\!/\operatorname{SL}(N)$ for *n* sufficiently large

 $\label{eq:saint-Donat: S} \square \ \mathsf{Saint-Donat:} \ S \to |nL| = \mathbb{P}^{N-1} \ \mathrm{is \ a \ closed \ embedding \ if} \ n \geq 3.$

 $\hfill \begin{subarray}{c} \Box & (S,L) \end{subarray}$ is called unigonal if $S \rightarrow |2L|$ is not a closed embedding.

GIT compactifications

□ Viehweg: $\mathscr{F}_{g}^{\circ} \subseteq \operatorname{Hilb}_{g,n}/\!\!/\operatorname{SL}(N)$ for *n* sufficiently large

Donaldson: $\mathscr{F}_{g}^{\circ} \subseteq \operatorname{Chow}_{g,n}/\!\!/\operatorname{SL}(N)$ for *n* sufficiently large

Open problem: do they also compactify \mathscr{F}_g ?

global Torelli theorem

D Pjateckiĩ-Šapiro, Šhafarevič:

 $\mathscr{F}_g \cong \operatorname{Sh}(G)$

is a connected Shimura variety associated to an orthogonal group G with $G(\mathbb{R})={\rm O}(2,19).$

global Torelli theorem

D Pjateckiĩ-Šapiro, Šhafarevič:

 $\mathscr{F}_g \cong \mathrm{Sh}(G)$

is a connected Shimura variety associated to an orthogonal group G with $G(\mathbb{R})={\rm O}(2,19).$

Baily-Borel: there is a Satake compactification

 $\mathscr{F}_{\mathsf{g}}^* \cong \mathbf{Proj} \ \mathrm{R}(\mathscr{F}_{\mathsf{g}}, \lambda),$

where λ is the Hodge line bundle.

global Torelli theorem

Departeckii-Šapiro, Šhafarevič:

 $\mathscr{F}_g \cong \mathrm{Sh}(\mathsf{G})$

is a connected Shimura variety associated to an orthogonal group G with $G(\mathbb{R})={\rm O}(2,19).$

Baily-Borel: there is a Satake compactification

 $\mathscr{F}_g^*\cong \mathbf{Proj}\ \mathrm{R}(\mathscr{F}_g,\lambda),$

where λ is the Hodge line bundle.

Looijenga: there is a semitoric compactification

$$\overline{\mathscr{F}}_{g}^{\mathscr{D}} \cong \mathbf{Proj} \ \mathrm{R}(\mathscr{F}_{g} - \mathscr{D}, \lambda |_{\mathscr{F}_{g} - \mathscr{D}}),$$

where ${\mathcal D}$ is a union of Shimura subvarieties of codimension 1.

New modular compactifications

SIc stable pairs moduli spaces

□ Kollár-Shepherd-Barron, Alexeev: The (coarse) moduli space of *K*_S-trivial slc pairs

$$\overline{\mathscr{P}}_{g} = \{(S, \epsilon C) \mid C \in |nL|\}/\cong$$

is a projective scheme. It admits a forgetful rational map $\overline{\mathscr{P}}_g \dashrightarrow \mathscr{F}_g$.

SIc stable pairs moduli spaces

□ Kollár-Shepherd-Barron, Alexeev: The (coarse) moduli space of *K*_S-trivial slc pairs

$$\overline{\mathscr{P}}_{g} = \{(S, \epsilon C) \mid C \in |nL|\} / \cong$$

is a projective scheme. It admits a forgetful rational map $\overline{\mathscr{P}}_g \dashrightarrow \mathscr{F}_g$. \Box Alexeev-Engel: moduli of stable slc pairs $(S, \epsilon R)$ with R recongizable. SIc stable pairs moduli spaces

□ Kollár-Shepherd-Barron, Alexeev: The (coarse) moduli space of K_S-trivial slc pairs

$$\overline{\mathscr{P}}_{g} = \{(S, \epsilon C) \mid C \in |nL|\} / \cong$$

is a projective scheme. It admits a forgetful rational map $\overline{\mathscr{P}}_g \dashrightarrow \mathscr{F}_g$. \Box Alexeev-Engel: moduli of stable slc pairs $(S, \epsilon R)$ with R recongizable.

K-stable moduli spaces

□ Ascher-Devleming-Liu : for $c \in (0, \frac{1}{2})$, the good moduli space of K-stable pairs

 $\overline{\mathcal{K}}_{h,c} = \left\{ (X, cS) \text{ is K-polystable with Hilbert polynomial } h \right\} / \cong$ is a projective scheme of finite type.

SIc stable pairs moduli spaces

□ Kollár-Shepherd-Barron, Alexeev: The (coarse) moduli space of K_S-trivial slc pairs

$$\overline{\mathscr{P}}_{g} = \{(S, \epsilon C) \mid C \in |nL|\}/\cong$$

is a projective scheme. It admits a forgetful rational map $\overline{\mathscr{P}}_g \dashrightarrow \mathscr{F}_g$. \Box Alexeev-Engel: moduli of stable slc pairs $(S, \epsilon R)$ with R recongizable.

K-stable moduli spaces

□ Ascher-Devleming-Liu : for $c \in (0, \frac{1}{2})$, the good moduli space of K-stable pairs

 $\overline{\mathcal{K}}_{h,c} = \left\{ (X, cS) \text{ is K-polystable with Hilbert polynomial } h \right\} / \cong$ is a projective scheme of finite type.

Guiding Problem: Carrying out the birational morphisms between various compactifications with modular interpretations.

A motivated example: g = 2

Set

- $\square \ \overline{\mathscr{F}}_2^{Mukai} = |\mathcal{O}_{\mathbb{P}^2}(6)| /\!\!/ \mathrm{SL}(3)$
- □ $\overline{\mathscr{K}}_{6,c}$: the moduli space of K-polystable log Fano surface pairs smoothable to (\mathbb{P}^2, cC) where $C \in |\mathcal{O}_{\mathbb{P}^2}(6)|$
- $\hfill \overline{\mathscr{P}}_2$: moduli space of KSBA stable degree 2 K3 pairs.

A motivated example: g = 2

 Set

- $\square \ \overline{\mathscr{F}}_2^{Mukai} = |\mathcal{O}_{\mathbb{P}^2}(6)| /\!\!/ \mathrm{SL}(3)$
- □ $\overline{\mathscr{K}}_{6,c}$: the moduli space of K-polystable log Fano surface pairs smoothable to (\mathbb{P}^2, cC) where $C \in |\mathcal{O}_{\mathbb{P}^2}(6)|$
- $\square \overline{\mathscr{P}}_2$: moduli space of KSBA stable degree 2 K3 pairs.

Shah, Laza, Ascher-Devleming-Liu

□ There is a diagram

A motivated example: g = 2

Set

- $\square \ \overline{\mathscr{F}}_2^{Mukai} = |\mathcal{O}_{\mathbb{P}^2}(6)| /\!\!/ \mathrm{SL}(3)$
- □ $\overline{\mathscr{K}}_{6,c}$: the moduli space of K-polystable log Fano surface pairs smoothable to (\mathbb{P}^2, cC) where $C \in |\mathcal{O}_{\mathbb{P}^2}(6)|$
- $\square \overline{\mathscr{P}}_2$: moduli space of KSBA stable degree 2 K3 pairs.

Shah, Laza, Ascher-Devleming-Liu

□ There is a diagram

 $\begin{array}{l} \square \ \widehat{\mathscr{F}}_2 \to \mathscr{F}_2^* \ \text{is a \mathbb{Q}-Carterization map and $\widehat{\mathscr{F}}_2$} \to \mathscr{F}_2^* \ \text{contracts the unigonal loci $\mathscr{D}_{1,1}$}. \\ \square \ \widehat{\mathscr{F}}_2 \to \overline{\mathscr{F}}_2^{Mukai} \ \text{is the Kirwan partial desingularization of $\overline{\mathscr{F}}_2^{Mukai}$} \end{array}$

All the compactifications can be constructed through a unified way.

All the compactifications can be constructed through a unified way.

Log canonical models of \mathscr{F}_2^* Let $\mathbf{B} = \mathscr{D}_{1,1}$ and define $\overline{\mathscr{F}}_2(\alpha) := \operatorname{Proj} \operatorname{R}(\mathscr{F}_2^*, \lambda + \alpha \mathbf{B})$ with $\alpha \in [0, 1] \cap \mathbb{Q}$. All the compactifications can be constructed through a unified way.

Log canonical models of \mathscr{F}_2^* Let $\mathbf{B} = \mathscr{D}_{1,1}$ and define $\overline{\mathscr{F}}_2(\alpha) := \operatorname{Proj} \mathbb{R}(\mathscr{F}_2^*, \lambda + \alpha \mathbf{B})$ with $\alpha \in [0, 1] \cap \mathbb{Q}$.

Then we have

$$\square \ \overline{\mathscr{F}}_2(0) \cong \mathscr{F}_2^*, \ \overline{\mathscr{F}}_2(\alpha) \cong \widehat{\mathscr{F}}_2 \ \text{for} \ \alpha \in (0,1), \ \overline{\mathscr{F}}_2(1) \cong \overline{\mathscr{F}}_2^{Muka}$$

 $\label{eq:states} \square \ \overline{\mathscr{F}}_2(\epsilon) \to \overline{\mathscr{F}}_2(1) \mbox{ contracts the strict transform of } \mathscr{D}_{1,1} \mbox{ to a point.}$

D Mukai's GIT compactification $\overline{\mathscr{F}}_{g}^{Mukai}$

g	Mukai model	$\overline{\mathscr{F}}_{g}^{Mukai}$
3	quartic surface	$\mathbb{P}^{34}/\!\!/\mathrm{SL}(4)$
4	cubic hypersurface on Q	$\mathbb{P}^{29}/\!\!/\mathrm{SO}(5)$
5	c.i. of three quadratics in \mathbb{P}^5	$\operatorname{Gr}(3,21)/\!\!/\operatorname{SL}(6)$
6	quadric hypersurface on \mathbf{F}_5	$\mathbb{P}^{22}//\mathrm{PSL}(2)$
7	c.i. of eight hyperplanes in $IGr(5, 10)$	$\operatorname{Gr}(8,16)/\!\!/\operatorname{Spin}(10)$
8	c.i. of six hyperplanes in $Gr(2, 6)$	$\operatorname{Gr}(6,15)/\!\!/\operatorname{SL}(6)$

 $\hfill\square$ Mukai's GIT compactification $\overline{\mathscr{F}}_g^{Mukai}$

g	Mukai model	$\overline{\mathscr{F}}_{g}^{Mukai}$
3	quartic surface	$\mathbb{P}^{34}/\!\!/\mathrm{SL}(4)$
4	cubic hypersurface on Q	$\mathbb{P}^{29}/\!\!/\mathrm{SO}(5)$
5	c.i. of three quadratics in \mathbb{P}^5	$\operatorname{Gr}(3,21)/\!\!/\operatorname{SL}(6)$
6	quadric hypersurface on \mathbf{F}_5	$\mathbb{P}^{22}//\mathrm{PSL}(2)$
7	c.i. of eight hyperplanes in $IGr(5, 10)$	Gr(8, 16)//Spin(10)
8	c.i. of six hyperplanes in $Gr(2, 6)$	$\operatorname{Gr}(6,15)/\!\!/\operatorname{SL}(6)$

Remark. The rank of $\operatorname{Pic}(\overline{\mathscr{F}}_g^{Mukai})$ is 1.

\Box Mukai's GIT compactification $\overline{\mathscr{F}}_{g}^{Mukai}$

g	Mukai model	$\overline{\mathscr{F}}_{g}^{Mukai}$
3	quartic surface	$\mathbb{P}^{34}/\!\!/\mathrm{SL}(4)$
4	cubic hypersurface on Q	$\mathbb{P}^{29}/\!\!/\mathrm{SO}(5)$
5	c.i. of three quadratics in \mathbb{P}^5	$\operatorname{Gr}(3,21)/\!\!/\operatorname{SL}(6)$
6	quadric hypersurface on \mathbf{F}_5	$\mathbb{P}^{22}//\mathrm{PSL}(2)$
7	c.i. of eight hyperplanes in $IGr(5, 10)$	Gr(8, 16)//Spin(10)
8	c.i. of six hyperplanes in $Gr(2, 6)$	$\operatorname{Gr}(6,15)/\!\!/\operatorname{SL}(6)$

Remark. The rank of $\operatorname{Pic}(\overline{\mathscr{F}}_{g}^{Mukai})$ is 1.

 \Box Hassett-Keel-Looijenga program: Find interpolating log canonical models connecting $\overline{\mathscr{F}}_{g}^{Mukai}$ and \mathscr{F}_{g}^{*} with modular and arithmetic interpretations.

 $\hfill\square$ Mukai's GIT compactification $\overline{\mathscr{F}}_g^{Mukai}$

g	Mukai model	$\overline{\mathscr{F}}_{g}^{Mukai}$
3	quartic surface	$\mathbb{P}^{34}/\!\!/\mathrm{SL}(4)$
4	cubic hypersurface on Q	$\mathbb{P}^{29}/\!\!/\mathrm{SO}(5)$
5	c.i. of three quadratics in \mathbb{P}^5	$\operatorname{Gr}(3,21)/\!\!/\operatorname{SL}(6)$
6	quadric hypersurface on \mathbf{F}_5	$\mathbb{P}^{22}//\mathrm{PSL}(2)$
7	c.i. of eight hyperplanes in $IGr(5, 10)$	Gr(8, 16)//Spin(10)
8	c.i. of six hyperplanes in $Gr(2, 6)$	$\operatorname{Gr}(6,15)/\!\!/\operatorname{SL}(6)$

Remark. The rank of $\operatorname{Pic}(\overline{\mathscr{F}}_{g}^{Mukai})$ is 1.

 \Box Hassett-Keel-Looijenga program: Find interpolating log canonical models connecting $\overline{\mathscr{F}}_{g}^{Mukai}$ and \mathscr{F}_{g}^{*} with modular and arithmetic interpretations.

Idea: Run MMP with scaling on \mathscr{F}_g^* .

Noether-Lefschetz divisors

 $\hfill\square$ $\mathcal{D}_{d,h}:$ parametrizing $(S,L)\in \mathcal{F}_g$ whose $\operatorname{Pic}(S)$ contains a primitive lattice

$$\left(\begin{array}{cc} 2\mathsf{g}-2 & \mathsf{d} \\ \mathsf{d} & 2\mathsf{h}-2 \end{array}\right)$$

Noether-Lefschetz divisors

 $\hfill\square$ $\mathcal{D}_{d,h}:$ parametrizing $(S,L)\in \mathcal{F}_g$ whose $\operatorname{Pic}(S)$ contains a primitive lattice

$$\left(\begin{array}{cc} 2\mathsf{g}-2 & \mathsf{d} \\ \mathsf{d} & 2\mathsf{h}-2 \end{array}\right)$$

 $\hfill\square$ $\mathcal{D}_{d,h}$ can be regarded as a Shimura subvariety.
Noether-Lefschetz divisors

 $\hfill\square$ $\mathcal{D}_{d,h}:$ parametrizing $(S,L)\in \mathcal{F}_g$ whose $\operatorname{Pic}(S)$ contains a primitive lattice

$$\left(\begin{array}{cc} 2g-2 & d \\ d & 2h-2 \end{array}\right)$$

- $\hfill \ensuremath{\mathbb Q}_{d,h}$ can be regarded as a Shimura subvariety.
- **Decreption Bergeron-Li-Millson-Moeglin**: $\operatorname{Pic}_{\mathbb{Q}}(\mathscr{F}_g)$ is spanned by $\mathscr{D}_{d,h}$.

Noether-Lefschetz divisors

 $\hfill\square$ $\mathcal{D}_{d,h}:$ parametrizing $(S,L)\in \mathcal{F}_g$ whose $\operatorname{Pic}(S)$ contains a primitive lattice

$$\left(\begin{array}{cc} 2\mathsf{g}-2 & \mathsf{d} \\ \mathsf{d} & 2\mathsf{h}-2 \end{array}\right)$$

- $\square \mathcal{D}_{d,h}$ can be regarded as a Shimura subvariety.
- **Derived Section 2.1** Bergeron-Li-Millson-Moeglin: $\operatorname{Pic}_{\mathbb{Q}}(\mathscr{F}_g)$ is spanned by $\mathscr{D}_{d,h}$.

Examples

- $\hfill\square$ $\mathscr{D}_{0,0}=$ nodal loci
- $\square \mathscr{D}_{1,1} =$ unigonal loci
- $\square \mathscr{D}_{2,1}$ = hyperelliptic loci, i.e. the loci where $S \to |L|$ is 2 : 1.

Greer-Li-Tian: the Picard group of \mathscr{F}_g^* for $g \leq 10$ is given by

g	$\dim \operatorname{Pic}_{\mathbb{Q}}(\mathscr{F}_g)$	generators (besides λ)
2	2	$\mathscr{D}_{1,1}$
3	3	$\mathscr{D}_{1,1}, \mathscr{D}_{2,1}$
4	4	$\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}$
5	4	$\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}$
6	6	$\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{5,2}, \mathscr{D}_{4,1}$
7	7	$\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{5,2}, \mathscr{D}_{6,2}, \mathscr{D}_{4,1}$
8	7	$\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{6,2}, \mathscr{D}_{7,2}, \mathscr{D}_{4,1}$
9	8	$\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{6,2}, \mathscr{D}_{7,2}, \mathscr{D}_{4,1}, \mathscr{D}_{5,1}$
10	9	$\mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{4,1}, \mathscr{D}_{7,2}, \mathscr{D}_{9,3}, \mathscr{D}_{8,2}, \mathscr{D}_{5,1},$

$$\overline{\mathscr{F}}_{\mathsf{g}}(\alpha) = \operatorname{\mathbf{Proj}}\, \mathrm{R}(\mathscr{F}_{\mathsf{g}}^*, \lambda + \mathbf{B}(\alpha))$$

with α varying in $[0,1] \cap \mathbb{Q}$, where $\mathbf{B}(\alpha) = \sum_{i=1}^{\rho} \mathbf{a}_i(\alpha) \mathscr{D}_{\mathbf{d}_i,\mathbf{h}_i}$ with $\mathscr{D}_{\mathbf{d}_i,\mathbf{h}_i}$ given in the previous Table, $\mathbf{a}_i(\alpha)$ are linear functionals.

$$\overline{\mathscr{F}}_{\mathsf{g}}(\alpha) = \operatorname{\mathbf{Proj}}\, \mathrm{R}(\mathscr{F}_{\mathsf{g}}^*, \lambda + \mathbf{B}(\alpha))$$

with α varying in $[0,1] \cap \mathbb{Q}$, where $\mathbf{B}(\alpha) = \sum_{i=1}^{\rho} \mathbf{a}_i(\alpha) \mathscr{D}_{\mathbf{d}_i,\mathbf{h}_i}$ with $\mathscr{D}_{\mathbf{d}_i,\mathbf{h}_i}$ given in the previous Table, $\mathbf{a}_i(\alpha)$ are linear functionals.

Expectation: there is a chamber structure on α and the birational maps

$$\mathscr{F}_{g}^{*} \dashrightarrow \overline{\mathscr{F}}_{g}^{Muka}$$

factors through a series of wall crossing maps.

$$\overline{\mathscr{F}}_{\mathsf{g}}(\alpha) = \operatorname{\mathbf{Proj}}\, \mathrm{R}(\mathscr{F}_{\mathsf{g}}^*, \lambda + \mathbf{B}(\alpha))$$

with α varying in $[0,1] \cap \mathbb{Q}$, where $\mathbf{B}(\alpha) = \sum_{i=1}^{\rho} \mathbf{a}_i(\alpha) \mathscr{D}_{\mathbf{d}_i,\mathbf{h}_i}$ with $\mathscr{D}_{\mathbf{d}_i,\mathbf{h}_i}$ given in the previous Table, $\mathbf{a}_i(\alpha)$ are linear functionals.

Expectation: there is a chamber structure on α and the birational maps

$$\mathscr{F}_{g}^{*} \dashrightarrow \overline{\mathscr{F}}_{g}^{Muka}$$

factors through a series of wall crossing maps.

Problem:

1. existence of $\overline{\mathscr{F}}_{g}(\alpha)$: finite generation is missing.

$$\overline{\mathscr{F}}_{\mathsf{g}}(\alpha) = \operatorname{\mathbf{Proj}}\, \mathrm{R}(\mathscr{F}_{\mathsf{g}}^*, \lambda + \mathbf{B}(\alpha))$$

with α varying in $[0,1] \cap \mathbb{Q}$, where $\mathbf{B}(\alpha) = \sum_{i=1}^{\rho} \mathbf{a}_i(\alpha) \mathscr{D}_{\mathbf{d}_i,\mathbf{h}_i}$ with $\mathscr{D}_{\mathbf{d}_i,\mathbf{h}_i}$ given in the previous Table, $\mathbf{a}_i(\alpha)$ are linear functionals.

Expectation: there is a chamber structure on α and the birational maps

$$\mathscr{F}_{g}^{*} \dashrightarrow \overline{\mathscr{F}}_{g}^{Muka}$$

factors through a series of wall crossing maps.

Problem:

- 1. existence of $\overline{\mathscr{F}}_{g}(\alpha)$: finite generation is missing.
- 2. computation of walls: high dimensional varieties have very complicated degenerations

A short cut (least wall crossings)

Predictions: there exitsts $a_i(\alpha)$ such that

A short cut (least wall crossings)

Predictions: there exitsts $a_i(\alpha)$ such that

□ (Semitoric part) $\overline{\mathscr{P}}_{g}(0)$ is Looijenga's semitoric compactification and the birational map

$$\mathscr{F}_{g}^{*} \dashrightarrow \overline{\mathscr{F}}_{g}(0)$$

factors through a $\mathbb{Q}\text{-}\textsc{factorialization},$ a series of flips, and divisorial contractions.

□ (GIT part) $\overline{\mathscr{F}}_{g}(\alpha)$ is a VGIT and $\overline{\mathscr{F}}_{g}^{Mukai} \cong \overline{\mathscr{F}}_{g}(1)$. The parameter $\alpha \in \mathbb{Q} \cap [0, 1]$ admits a chamber structure with finite many walls $0 < \alpha_0 < \cdots < \alpha_m < 1$, i.e.

A short cut (least wall crossings)

Predictions: there exitsts $a_i(\alpha)$ such that

□ (Semitoric part) $\overline{\mathscr{F}}_{g}(0)$ is Looijenga's semitoric compactification and the birational map

$$\mathscr{F}_{g}^{*} \dashrightarrow \overline{\mathscr{F}}_{g}(0)$$

factors through a $\mathbb{Q}\text{-}\textsc{factorialization},$ a series of flips, and divisorial contractions.

□ (GIT part) $\overline{\mathscr{F}}_{g}(\alpha)$ is a VGIT and $\overline{\mathscr{F}}_{g}^{Mukai} \cong \overline{\mathscr{F}}_{g}(1)$. The parameter $\alpha \in \mathbb{Q} \cap [0, 1]$ admits a chamber structure with finite many walls $0 < \alpha_0 < \cdots < \alpha_m < 1$, i.e.

□ The centers are proper transforms of Shimura subvarieties lying in Looijenga's stratification of $\sum \mathscr{D}_{d_i, b_i}$.

Looijenga's stratification

- □ Sh(G) = Γ \D, with G = O(V) an orthogonal group.
- $\label{eq:point} \square \ \mathcal{D} = \Gamma \backslash \sum_{v \in A} v^\perp \ \text{is a union of Shimura subvarieties} \ \mathcal{D} \ \text{of codimension one.}$

Looijenga's stratification

- $\label{eq:G} \Box \ \mathrm{Sh}(G) = \Gamma \backslash \mathrm{D}, \, \mathrm{with} \ G = O(V) \ \mathrm{an \ orthogonal \ group}.$
- $\label{eq:generalized_states} \square \ \mathcal{D} = \Gamma \backslash \sum_{v \in A} v^\perp \ \text{is a union of Shimura subvarieties} \ \mathcal{D} \ \text{of codimension one.}$
- \Box Looijenga's stratification of \mathscr{D} :

$$\mathscr{D}^{(d)} = \Gamma \setminus \sum (\bigcap_{i=1}^{d} \mathsf{v}_{k_i}^{\perp})$$

where $v_{k_i} \in A$ are linearly independent.

- $\label{eq:G} \Box \ \mathrm{Sh}(G) = \Gamma \backslash \mathrm{D}, \, \mathrm{with} \ G = O(V) \ \mathrm{an \ orthogonal \ group}.$
- $\boxdot \ \mathcal{D} = \Gamma \backslash \sum_{v \in A} v^{\perp}$ is a union of Shimura subvarieties \mathcal{D} of codimension one.
- \Box Looijenga's stratification of \mathscr{D} :

$$\mathscr{D}^{(d)} = \Gamma \setminus \sum (\bigcap_{i=1}^{d} \mathsf{v}_{k_i}^{\perp})$$

where $v_{k_i} \in A$ are linearly independent.

□ This gives a tower of Shimura varieties $\mathscr{D}^{(d+1)} \subseteq \mathscr{D}^{(d)}$ and the irreducible components of $\mathscr{D}^{(2)}$ will occur in the restriction $\mathscr{D}|_{\mathscr{D}}$.

- $\label{eq:G} \Box \ \mathrm{Sh}(G) = \Gamma \backslash \mathrm{D}, \, \mathrm{with} \ G = O(V) \ \mathrm{an \ orthogonal \ group}.$
- $\label{eq:generalized_states} \square \ \mathcal{D} = \Gamma \backslash \sum_{v \in A} v^\perp \ \text{is a union of Shimura subvarieties} \ \mathcal{D} \ \text{of codimension one.}$
- \Box Looijenga's stratification of \mathscr{D} :

$$\mathscr{D}^{(d)} = \Gamma \setminus \sum (\bigcap_{i=1}^{d} v_{k_i}^{\perp})$$

where $v_{k_i} \in A$ are linearly independent.

□ This gives a tower of Shimura varieties $\mathscr{D}^{(d+1)} \subseteq \mathscr{D}^{(d)}$ and the irreducible components of $\mathscr{D}^{(2)}$ will occur in the restriction $\mathscr{D}|_{\mathscr{D}}$.

Connection to HKL

- **D** Potential center: the stratification $\mathbf{B}^{(d)}$ of the support of $\mathbf{B}(\alpha)$.
- **D** Potential walls: solution α_0 of the linear equation $1 f(\alpha) = 0$, where

$$\lambda + \mathbf{B}(\alpha)|_{\mathbf{B}^{(d)}} = (1 - f(\alpha))\lambda + \mathbf{B}^{(d+1)}(\alpha)$$

and $\mathbf{B}^{(d+1)}(\alpha)$ is extremal or not effective at α_0 .

The birational map

Proj $R(Sh(G), \lambda) \dashrightarrow \mathbf{Proj} R(Sh(G), \lambda + \mathbf{B}(\alpha))$

factor through a series of elementary transformations, whose centers are irreducible components of Looijenga's stratification of the support of $\mathbf{B}(\alpha)$.

The birational map

Proj $R(Sh(G), \lambda) \dashrightarrow \mathbf{Proj} R(Sh(G), \lambda + \mathbf{B}(\alpha))$

factor through a series of elementary transformations, whose centers are irreducible components of Looijenga's stratification of the support of $\mathbf{B}(\alpha)$.

Example • the birational map $\operatorname{Sh}(G)^* \dashrightarrow \overline{\operatorname{Sh}(G)}^{\mathscr{D}}$ is in the ideal situation. • Laza-O'Grady, Ascher-Devleming-Liu: $\mathscr{F}_3^* \dashrightarrow \overline{\mathscr{F}}_3(\beta) = \operatorname{Proj} \operatorname{R}(\mathscr{F}_3^*, \lambda + \beta(\mathscr{D}_{1,1} + \mathscr{D}_{2,1}))$

is in the ideal situation.

The birational map

Proj $R(Sh(G), \lambda) \dashrightarrow \mathbf{Proj} R(Sh(G), \lambda + \mathbf{B}(\alpha))$

factor through a series of elementary transformations, whose centers are irreducible components of Looijenga's stratification of the support of $\mathbf{B}(\alpha)$.

Example • the birational map $\operatorname{Sh}(G)^* \dashrightarrow \overline{\operatorname{Sh}(G)}^{\mathscr{D}}$ is in the ideal situation. • Laza-O'Grady, Ascher-Devleming-Liu: $\mathscr{F}_3^* \dashrightarrow \overline{\mathscr{F}}_3(\beta) = \operatorname{Proj} \operatorname{R}(\mathscr{F}_3^*, \lambda + \beta(\mathscr{D}_{1,1} + \mathscr{D}_{2,1}))$ is in the ideal situation.

Remark. In HKL, this never happen when g > 3. The centers will become much more complicated.

 \square $\operatorname{Pic}(\operatorname{Sh}(G))$ is essentially the space of certain modular forms.

- $\hfill\square$ $\operatorname{Pic}(\operatorname{Sh}(G))$ is essentially the space of certain modular forms.
- □ Greer-Laza-Li-Si-Tian: there is an effective algorithm to compute the restriction of NL-divisors to Shimura subvarieties by using the Jacobi forms. In particular, one can get an explicit formula of

 $\lambda + \mathbf{B}(\alpha)|_{\mathbf{B}^{(d)}},$

as a linear combination of NL divisors.

- $\hfill\square$ $\operatorname{Pic}(\operatorname{Sh}(G))$ is essentially the space of certain modular forms.
- □ Greer-Laza-Li-Si-Tian: there is an effective algorithm to compute the restriction of NL-divisors to Shimura subvarieties by using the Jacobi forms. In particular, one can get an explicit formula of

 $\lambda + \mathbf{B}(\alpha)|_{\mathbf{B}^{(d)}},$

as a linear combination of NL divisors.

Understanding of effective cones

Deterson: Is $\text{Eff}(\mathscr{F}_g^*) = \text{Eff}(\mathscr{F}_g^*)^{\text{NL}}$ generated by the NL divisors?

- $\hfill\square$ $\operatorname{Pic}(\operatorname{Sh}(G))$ is essentially the space of certain modular forms.
- □ Greer-Laza-Li-Si-Tian: there is an effective algorithm to compute the restriction of NL-divisors to Shimura subvarieties by using the Jacobi forms. In particular, one can get an explicit formula of

 $\lambda + \mathbf{B}(\alpha)|_{\mathbf{B}^{(d)}},$

as a linear combination of NL divisors.

Understanding of effective cones

D Peterson: Is $\operatorname{Eff}(\mathscr{F}_g^*) = \operatorname{Eff}(\mathscr{F}_g^*)^{\operatorname{NL}}$ generated by the NL divisors?

Greer-Laza-Li-Si-Tian: $\mathscr{D}_{d,h}$ is extremal in $\mathrm{Eff}(\mathscr{F}_g^*)$ if

$$\frac{15}{8}(g-1) \ge d^2 - 4(g-1)(h-1).$$

List of generators of $\operatorname{Eff}(\mathscr{F}_g^*)^{\operatorname{NL}}$ for $g \leq 10$

g	$\dim \operatorname{Pic}_{\mathbb{Q}}(\mathscr{F}_g)$	Generators
2	2	$\mathscr{D}_{0,0}, \mathscr{D}_{1,1}$
3	3	$\mathscr{D}_{0,0} \ \mathscr{D}_{1,1}, \mathscr{D}_{2,1}$
4	4	$\mathscr{D}_{0,0} \ \mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}$
5	4	$\mathscr{D}_{0,0}, \mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}$
6	6	$\mathscr{D}_{0,0},\mathscr{D}_{1,1},\mathscr{D}_{2,1},\mathscr{D}_{3,1},\mathscr{D}_{5,2},\mathscr{D}_{4,1}$
7	7	$\mathscr{D}_{0,0}, \mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{5,2}, \mathscr{D}_{6,2}, \mathscr{D}_{4,1}$
8	7	$\mathscr{D}_{0,0}, \mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{6,2}, \mathscr{D}_{7,2}, \mathscr{D}_{4,1}$
9	8	$\mathscr{D}_{0,0}, \mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{6,2}, \mathscr{D}_{7,2}, \mathscr{D}_{4,1}, \mathscr{D}_{5,1}$
10	9	$\mathscr{D}_{0,0}, \mathscr{D}_{1,1}, \mathscr{D}_{2,1}, \mathscr{D}_{3,1}, \mathscr{D}_{4,1}, \mathscr{D}_{7,2}, \mathscr{D}_{9,3}, \mathscr{D}_{8,2}, \mathscr{D}_{5,1},$

Remark. The blue ones are extremal in $\text{Eff}(\mathscr{F}_g^*)$.

IV. HKL for \mathscr{F}_4

Projective models

- □ For $(S, L) \in \mathscr{F}_4$, the image $S \to |L|$ is a complete intersection of a quadric and a cubic in \mathbb{P}^4 iff (S, L) is not lying in $\mathscr{D}_{1,1}$, $\mathscr{D}_{2,1}$.
- □ The image $S \to |L|$ is a complete intersection of a smooth quadric Q and a cubic in \mathbb{P}^4 iff (S, L) is not lying in $\mathcal{D}_{1,1}$, $\mathcal{D}_{2,1}$ and $\mathcal{D}_{3,1}$.

Projective models

- □ For $(S, L) \in \mathscr{F}_4$, the image $S \to |L|$ is a complete intersection of a quadric and a cubic in \mathbb{P}^4 iff (S, L) is not lying in $\mathscr{D}_{1,1}$, $\mathscr{D}_{2,1}$.
- □ The image $S \to |L|$ is a complete intersection of a smooth quadric Q and a cubic in \mathbb{P}^4 iff (S, L) is not lying in $\mathcal{D}_{1,1}$, $\mathcal{D}_{2,1}$ and $\mathcal{D}_{3,1}$.

Parametrization space

□ (2,3)-complete intersections are parametrized by an open subset of a projective bundle $\mathbb{P}(E) \rightarrow |\mathcal{O}_{\mathbb{P}^4}(2)| = \mathbb{P}^{14}$, where

$$0 \to \boldsymbol{p}_*(\mathcal{I}_{\mathcal{Q}} \otimes \boldsymbol{q}^*\mathcal{O}_{\mathbb{P}^4}(3)) \to \boldsymbol{p}_*(\boldsymbol{q}^*\mathcal{O}_{\mathbb{P}^4}(3)) \to \boldsymbol{E} \to 0,$$

 \mathcal{Q} is the universal quadric with projections $p: \mathcal{Q} \to |\mathcal{O}_{\mathbb{P}^4}(2)|$ and $q: \mathcal{Q} \to \mathbb{P}^4$.

□ (Fix Q) cubic hypersurfaces on Q are parametrized by $|\mathcal{O}_Q(3)|$.

GIT compactifications

As (2,3)-complete intersection

□ **GIT** quotient of $\mathbb{P}(E)$: $\mathbb{P}(E)//_t SL(5)$ the GIT w.r.t. the linearization

 $H_t = q^* \mathcal{O}_{\mathbb{P}^{14}}(1) + t \mathcal{O}_{\mathbb{P}(E)}(1).$

GIT compactifications

As (2,3)-complete intersection

GIT quotient of $\mathbb{P}(E)$: $\mathbb{P}(E)//_t SL(5)$ the GIT w.r.t. the linearization

 $H_t = q^* \mathcal{O}_{\mathbb{P}^{14}}(1) + t \mathcal{O}_{\mathbb{P}(E)}(1).$

D Benoist: H_t is ample when $0 < t \le \frac{1}{2}$.

As (2,3)-complete intersection

□ **GIT** quotient of $\mathbb{P}(E)$: $\mathbb{P}(E)//_t SL(5)$ the GIT w.r.t. the linearization

 $H_t = q^* \mathcal{O}_{\mathbb{P}^{14}}(1) + t \mathcal{O}_{\mathbb{P}(E)}(1).$

Benoist: H_t is ample when $0 < t \le \frac{1}{2}$.

GIT quotient of Chow variety: $\operatorname{Chow}_{6,2}(\mathbb{P}^4)/\!\!/\operatorname{SL}(5)$

As (2,3)-complete intersection

GIT quotient of $\mathbb{P}(E)$: $\mathbb{P}(E)//_t SL(5)$ the GIT w.r.t. the linearization

 $H_t = q^* \mathcal{O}_{\mathbb{P}^{14}}(1) + t \mathcal{O}_{\mathbb{P}(E)}(1).$

Benoist: H_t is ample when $0 < t \le \frac{1}{2}$.

GIT quotient of Chow variety: $Chow_{6,2}(\mathbb{P}^4)/\!\!/SL(5)$

As nodal cubic fourfolds

- □ (2,3)-complete intersection (q, f) in $\mathbb{P}^4 \Leftrightarrow$ a nodal cubic $\{x_5q + f = 0\}$ in \mathbb{P}^5 .
- □ This gives a non-reductive GIT model

$\Delta_0 /\!\!/ G$

where $\Delta_0 \subseteq \Delta$ paramterizing cubics which are singular at $p = [0, \ldots, 0, 1]$ and $G \leq SL(6)$ is the stabilizer of p.

Boundary stratum

Li-Tian: $\overline{\mathscr{F}}_{4}^{Mukai} - \mathscr{F}_{4}$ consists of 9 irreducible components parametrizing singular c.i. as below:

- 1. (dim = 6) two simple elliptic singularities of type \tilde{E}_6
- 2. (dim = 2) two simple elliptic singularities of type \tilde{E}_8 , whose projective tangent cone meeting the surface along lines.
- 3. (dim = 11) a simple elliptic singularities of type \tilde{E}_7
- 4. (dim = 8) a simple elliptic singularity of type \tilde{E}_8 , whose projective tangent cone meeting the surface along points.
- 5. $(\dim = 11)$ a line
- 6. $(\dim = 7)$ a conic
- 7. $(\dim = 3)$ a twisted cubic
- 8. $(\dim = 2)$ a rational curve of degree 4
- 9. $(\dim = 7)$ an elliptic curve of degree 4

□ Stark: the boundary $\mathscr{F}_4^* - \mathscr{F}_4$ consists of 10 modular curves meeting at a point.

Conjecture A

Set $\mathbf{B}(\alpha) = \mathscr{D}_{1,1} + \mathscr{D}_{2,1} + \alpha \mathscr{D}_{3,1}$ and

$$\mathscr{F}_4(\alpha) := \operatorname{Proj} \operatorname{R}(\mathscr{F}_4^*, \lambda + \mathbf{B}(\alpha)).$$

Then

□ (Existence) $R(\mathscr{F}_4^*, \lambda + \mathbf{B}(\alpha))$ is finitely generated for $\alpha \in \mathbb{Q} \cap [0, 1]$. □ the walls of the Mori chamber decomposition of the cone

$$\left\{\lambda + \mathbf{B}(\alpha) \mid \alpha \in \mathbb{Q}, \alpha > 0\right\}$$

are located at the following critical values

$$\mathbf{Wall} = \Big\{0, \frac{1}{28}, \frac{1}{16}, \frac{1}{14}, \frac{1}{12}, \frac{1}{10}, \frac{1}{8}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1\Big\}.$$

Conjecture A

Set $\mathbf{B}(\alpha) = \mathscr{D}_{1,1} + \mathscr{D}_{2,1} + \alpha \mathscr{D}_{3,1}$ and

$$\mathscr{F}_4(\alpha) := \operatorname{Proj} \operatorname{R}(\mathscr{F}_4^*, \lambda + \mathbf{B}(\alpha)).$$

Then

□ (Existence) $R(\mathscr{F}_4^*, \lambda + \mathbf{B}(\alpha))$ is finitely generated for $\alpha \in \mathbb{Q} \cap [0, 1]$. □ the walls of the Mori chamber decomposition of the cone

$$\left\{\lambda + \mathbf{B}(\alpha) \mid \alpha \in \mathbb{Q}, \alpha > 0\right\}$$

are located at the following critical values

$$\mathbf{Wall} = \left\{0, \frac{1}{28}, \frac{1}{16}, \frac{1}{14}, \frac{1}{12}, \frac{1}{10}, \frac{1}{8}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1\right\}.$$

Remark: $\frac{1}{9}$ is missing.

HKL conjecture

□ (Tower structure) The centers of $\mathscr{F}_4(\alpha_n - \epsilon) \to \mathscr{F}_4(\alpha_n)$ forms a descending towers of Shimura subvarieties in $\overline{\mathscr{F}}_6^*$

 \blacktriangleright A_n -tower:

$$\begin{split} \mathscr{D}_{3,1} &= \operatorname{Sh}(\Lambda_{A_2}) \supset \ldots \supset \operatorname{Sh}(\Lambda_{A_5}) \supset \operatorname{Sh}(\Lambda_{A'_6}) \supset \operatorname{Sh}(\Lambda_{A'_7}) \cup \operatorname{Sh}(\Lambda_{A''_7}) \\ &\supset \operatorname{Sh}(\Lambda_{A'_8}) \cup \operatorname{Sh}(\Lambda_{A''_8}) \supset \operatorname{Sh}(\Lambda_{A'_9}) \supset \operatorname{Sh}(\Lambda_{A'_{10}}) \end{split}$$

 \blacktriangleright D_n-tower:

 $\operatorname{Sh}(\Lambda_{D_4}) \supset \operatorname{Sh}(\Lambda_{D_5}) \supset \operatorname{Sh}(\Lambda_{D_6}) \supset \operatorname{Sh}(\Lambda_{D_7}) \supset \operatorname{Sh}(\Lambda_{D'_8}) \supset \operatorname{Sh}(\Lambda_{D'_9})$ $\blacktriangleright E_n$ -tower:

 $\operatorname{Sh}(\Lambda_{E_6}) \supset \operatorname{Sh}(\Lambda_{E_7}) \supset \operatorname{Sh}(\Lambda_{E_8})$

where $\Lambda_{A_n} = (E_6 \oplus A_n)^{\perp}, \Lambda_{D_n} = (E_6 \oplus D_n)^{\perp}, \Lambda_{E_n} = (E_6 \oplus E_n)^{\perp} \subseteq U^{\oplus 2} \oplus E_8^{\oplus 3}.$

HKL conjecture

□ (Tower structure) The centers of $\mathscr{F}_4(\alpha_n - \epsilon) \to \mathscr{F}_4(\alpha_n)$ forms a descending towers of Shimura subvarieties in $\overline{\mathscr{F}}_6^*$

 \blacktriangleright A_n -tower:

$$\begin{split} \widehat{\mathscr{D}}_{3,1} &= \operatorname{Sh}(\Lambda_{A_2}) \supset \ldots \supset \operatorname{Sh}(\Lambda_{A_5}) \supset \operatorname{Sh}(\Lambda_{A'_6}) \supset \operatorname{Sh}(\Lambda_{A'_7}) \cup \operatorname{Sh}(\Lambda_{A''_7}) \\ &\supset \operatorname{Sh}(\Lambda_{A'_8}) \cup \operatorname{Sh}(\Lambda_{A''_8}) \supset \operatorname{Sh}(\Lambda_{A'_9}) \supset \operatorname{Sh}(\Lambda_{A'_{10}}) \end{split}$$

 \blacktriangleright D_n -tower:

 $\operatorname{Sh}(\Lambda_{D_4}) \supset \operatorname{Sh}(\Lambda_{D_5}) \supset \operatorname{Sh}(\Lambda_{D_6}) \supset \operatorname{Sh}(\Lambda_{D_7}) \supset \operatorname{Sh}(\Lambda_{D'_8}) \supset \operatorname{Sh}(\Lambda_{D'_9})$ $\blacktriangleright E_n$ -tower:

$$\operatorname{Sh}(\Lambda_{E_6}) \supset \operatorname{Sh}(\Lambda_{E_7}) \supset \operatorname{Sh}(\Lambda_{E_8})$$

where $\Lambda_{A_n} = (E_6 \oplus A_n)^{\perp}, \Lambda_{D_n} = (E_6 \oplus D_n)^{\perp}, \Lambda_{E_n} = (E_6 \oplus E_n)^{\perp} \subseteq U^{\oplus 2} \oplus E_8^{\oplus 3}.$

Remark. Sh(Λ_{A_n}), Sh(Λ_{D_n}), Sh(Λ_{E_n}) and Sh($\Lambda_{A'_{10}}$) are irreducible components of $\mathscr{D}_{3,1}^{(n)}$.

Modular interpretation of $\mathscr{D}_{3,1}^{(\bullet)}$ and modifications

Generic member in $\mathscr{D}_{3,1}^{(\bullet)}$

- □ A_n -tower: $S = Q \cap Y$ with rank(Q) = 4 and S has an A_{n-1} singularity at the vertex of Q.
- □ D_n -tower: $S = Q \cap Y$ with rank(Q) = 3 and S has a D_{n-2} and an A_1 singularity in Sing(Q).
- □ E_n -tower: $S = Q \cap Y$ with rank(Q) = 3 and S has an A_5 (resp. D_6 , E_7) singularity in Sing(Q).

Modular interpretation of $\mathscr{D}_{3,1}^{(\bullet)}$ and modifications

Generic member in $\mathscr{D}_{3,1}^{(\bullet)}$

- □ A_n -tower: $S = Q \cap Y$ with rank(Q) = 4 and S has an A_{n-1} singularity at the vertex of Q.
- □ D_n -tower: $S = Q \cap Y$ with rank(Q) = 3 and S has a D_{n-2} and an A_1 singularity in Sing(Q).
- □ E_n -tower: $S = Q \cap Y$ with rank(Q) = 3 and S has an A_5 (resp. D_6 , E_7) singularity in Sing(Q).

Generic member in $Sh(\Lambda_{A'_{\bullet}})$

□ $(S, \mathcal{O}_S(1)) \in Sh(\Lambda_{A_n})$ and contains a special line passing through the vertex of Q
Main result

Theorem (Greer-Laza-Li-Si-Tian)

$$\Box \ \overline{\mathscr{F}}_4(1-\epsilon) \cong \overline{\mathscr{F}}_4^{\mathsf{Muka}}$$

 $\square \ \overline{\mathscr{F}}_4(\frac{1}{10}) \cong \operatorname{Chow}_{6,2}(\mathbb{P}^4) /\!\!/ \operatorname{SL}(5).$

 $\hfill \hfill \overline{\mathscr{F}}_4(0)\cong \Delta^0/\!\!/ {\cal G}$ is a Looijenga compactification.

 $\hfill\Box\ensuremath{\,\,\overline{\!\!\mathscr F}}_4(\alpha)$ exists when $\alpha\geq 1/10$ or $\alpha=0$ and there is an isomorphism

$$\mathbb{P}(E)/\!\!/_t \operatorname{SL}(5) \cong \operatorname{Proj} \mathbb{R}(\mathscr{D}_{1,1} + \frac{4+t}{5t} \mathscr{D}_{2,1} + \frac{1-t}{5t} \mathscr{D}_{3,1})$$
$$\cong \overline{\mathscr{F}}_4(\frac{1-t}{5t})$$

for $0 < t \le \frac{2}{3}$.

Moreover, the conjecture holds when $\overline{\mathscr{F}_4}(\alpha)$ exists.

Main result

Theorem (Greer-Laza-Li-Si-Tian)

$$\Box \ \overline{\mathscr{F}}_4(1-\epsilon) \cong \overline{\mathscr{F}}_4^{\mathsf{Muka}}$$

 $\square \ \overline{\mathscr{F}}_4(\frac{1}{10}) \cong \operatorname{Chow}_{6,2}(\mathbb{P}^4) /\!\!/ \operatorname{SL}(5).$

 $\hfill \begin{tabular}{ll} \overline{\mathscr{F}}_4(\alpha) \mbox{ exists when } \alpha \geq 1/10 \mbox{ or } \alpha = 0 \mbox{ and there is an isomorphism} \end{tabular}$

$$\begin{split} \mathbb{P}(E)/\!\!/_t \operatorname{SL}(5) &\cong \operatorname{Proj} \mathbb{R}(\mathscr{D}_{1,1} + \frac{4+t}{5t} \mathscr{D}_{2,1} + \frac{1-t}{5t} \mathscr{D}_{3,1}) \\ &\cong \overline{\mathscr{F}}_4(\frac{1-t}{5t}) \end{split}$$

for $0 < t \le \frac{2}{3}$.

Moreover, the conjecture holds when $\overline{\mathscr{F}_4}(\alpha)$ exists.

The proof makes use of variational GIT, but there is a purely arithmetic explanation.

Using our arithmetic algorithm, one can compute the restriction of $\lambda + \mathbf{B}(\alpha)$ to $\operatorname{Sh}(\Lambda_{A_n})$ as below

$$\begin{split} \lambda + \mathbf{B}(\alpha)|_{\operatorname{Sh}(\Lambda_{A_n})} = & (1 - (n-1)\alpha)\lambda + \alpha\operatorname{Sh}(\Lambda_{A_{n+1}}) + (1+4s)\mathscr{D}_{hyper} \\ & + \alpha(n-1)\operatorname{Sh}(\Lambda_{D_{n+1}}) + \alpha\frac{(n-2)(n-1)}{2}\operatorname{Sh}(\Lambda_{E_{n+1}}). \end{split}$$

Using our arithmetic algorithm, one can compute the restriction of $\lambda + \mathbf{B}(\alpha)$ to $\operatorname{Sh}(\Lambda_{A_n})$ as below

$$\begin{split} \lambda + \mathbf{B}(\alpha)|_{\operatorname{Sh}(\Lambda_{A_n})} = &(1 - (n-1)\alpha)\lambda + \alpha\operatorname{Sh}(\Lambda_{A_{n+1}}) + (1+4s)\mathscr{D}_{hyper} \\ &+ \alpha(n-1)\operatorname{Sh}(\Lambda_{D_{n+1}}) + \alpha\frac{(n-2)(n-1)}{2}\operatorname{Sh}(\Lambda_{E_{n+1}}). \end{split}$$

Greer-Laza-Li-Si-Tian

Using our arithmetic algorithm, one can compute the restriction of $\lambda + \mathbf{B}(\alpha)$ to $\operatorname{Sh}(\Lambda_{A_n})$ as below

$$\begin{split} \lambda + \mathbf{B}(\alpha)|_{\operatorname{Sh}(\Lambda_{A_n})} = &(1 - (n-1)\alpha)\lambda + \alpha\operatorname{Sh}(\Lambda_{A_{n+1}}) + (1+4s)\mathscr{D}_{hyper} \\ &+ \alpha(n-1)\operatorname{Sh}(\Lambda_{D_{n+1}}) + \alpha\frac{(n-2)(n-1)}{2}\operatorname{Sh}(\Lambda_{E_{n+1}}). \end{split}$$

Greer-Laza-Li-Si-Tian

- $\square \ \mathcal{D}_{hyper}, \operatorname{Sh}(\Lambda_{D_{n+1}}) \text{ and } \operatorname{Sh}(\Lambda_{E_{n+1}}) \text{ are birationally contractible on } \operatorname{Sh}(\Lambda_{A_n}).$
- □ Sh($\Lambda_{A_{n+1}}$) is birationally contractible when $n \leq 5$. At $\alpha = \frac{1}{n-1}$, it will contract Sh(Λ_{A_n}).

Using our arithmetic algorithm, one can compute the restriction of $\lambda + \mathbf{B}(\alpha)$ to $\operatorname{Sh}(\Lambda_{A_n})$ as below

$$\begin{split} \lambda + \mathbf{B}(\alpha)|_{\operatorname{Sh}(\Lambda_{A_n})} = &(1 - (n-1)\alpha)\lambda + \alpha\operatorname{Sh}(\Lambda_{A_{n+1}}) + (1 + 4s)\mathscr{D}_{hyper} \\ &+ \alpha(n-1)\operatorname{Sh}(\Lambda_{D_{n+1}}) + \alpha\frac{(n-2)(n-1)}{2}\operatorname{Sh}(\Lambda_{E_{n+1}}). \end{split}$$

Greer-Laza-Li-Si-Tian

- $\square \ \mathcal{D}_{hyper}, \operatorname{Sh}(\Lambda_{D_{n+1}}) \text{ and } \operatorname{Sh}(\Lambda_{E_{n+1}}) \text{ are birationally contractible on } \operatorname{Sh}(\Lambda_{A_n}).$
- □ Sh($\Lambda_{A_{n+1}}$) is birationally contractible when $n \leq 5$. At $\alpha = \frac{1}{n-1}$, it will contract Sh(Λ_{A_n}).
- □ However, $\operatorname{Sh}(\Lambda_{A_{n+1}})$ is movable when n > 5. Indeed, $\operatorname{Sh}(\Lambda_{A_6})$ will be also contracted at $\alpha = \frac{1}{4}$ (instead of $\frac{1}{5}$). This is essentially the reason why there are modifications $\operatorname{Sh}(\Lambda_{A'_6})$ from $\alpha = \frac{1}{5}$.

Conjecture B (GLLST)

Let $\overline{\mathcal{K}}_4(c)$ be the good moduli space of K-semistable Fano pairs (X, cS) smoothing to (Q, cS).

 $\hfill\square$ For $\boldsymbol{c}\in(0,1]\cap\mathbb{Q},$ there is an isomorphism

$$\overline{\mathscr{K}}_4(\boldsymbol{c}) \cong \operatorname{\mathbf{Proj}} \operatorname{R}(\mathscr{F}_4^*, \lambda + \frac{1-c}{8c}\mathscr{D}_{3,1} + \frac{1-c}{c}\mathscr{D}_{2,1} + \frac{5(1-c)}{2c}\mathscr{D}_{1,1}).$$

ith $\overline{\mathscr{K}}_4(\boldsymbol{c}) \cong \overline{\mathscr{F}}_4(\frac{1-c}{8c})$ for $\boldsymbol{c} \leq \frac{1}{2}$ and $\overline{\mathscr{K}}_4(1) \cong \mathscr{F}_4^*.$

 \Box the walls of $\overline{\mathscr{K}}_4(c)$ are

W

$$\begin{cases} \frac{5}{7} \\ \bigcup \\ \left\{ \frac{11+n}{27+n}, 1 \le n \le 5 \right\} \\ \bigcup \\ \left\{ \frac{36+n}{52+n}, n=1,3,4,7 \right\} \\ \bigcup \\ \left\{ \frac{7}{9}, \frac{2}{3}, \frac{7}{11}, \frac{3}{5}, \frac{5}{9}, \frac{1}{2}, \frac{7}{15}, \frac{3}{7}, \frac{5}{13}, \frac{1}{3}, \frac{3}{11}, \frac{1}{5}, \frac{1}{9} \right\}.$$

□ (Arithmetic side) The arithmetic method works for moduli space of lattice polarized K3 surfaces, hyper-Kähler manifolds and cetain high dimensional log Fano pairs. It is relatively easier with the aid of computer.

□ (Arithmetic side) The arithmetic method works for moduli space of lattice polarized K3 surfaces, hyper-Kähler manifolds and cetain high dimensional log Fano pairs. It is relatively easier with the aid of computer.

Geometric side) When dim ≥ 3 , it is currently very difficult to determine the *K*-stable pairs via birational geometry.

□ (Arithmetic side) The arithmetic method works for moduli space of lattice polarized K3 surfaces, hyper-Kähler manifolds and cetain high dimensional log Fano pairs. It is relatively easier with the aid of computer.

Geometric side) When dim ≥ 3 , it is currently very difficult to determine the *K*-stable pairs via birational geometry.

D Pan-Si-Wu, J. Zhao: moduli space of hyperelliptic K3 surfaces, log del Pezzol, Hassett-Keel on $\overline{\mathcal{M}}_6$ surfaces.

