How to cook involutions on moduli space of

 sheaves of K3 surfacesfrom a derived category side

Y. Prieto-Montanez

ICTP
(work in progress with D. Faenzi and G. Menet)

Workshop "Geometry of Hyperkähler Varieties"
Hangzhou, China
September 6, 2023

Notation $/ \varnothing$

Notation

－X denotes a projective K3 surface with a $H \in \operatorname{Pic}(X)$ an ample class with $H^{2}=2(g-1)>0$ ．

Notation

- X denotes a projective K3 surface with a $H \in \operatorname{Pic}(X)$ an ample class with $H^{2}=2(g-1)>0$.
- Moduli spaces of sheaves of K3 surfaces are deformation equivalent to the Hilbert scheme of K3 surfaces.

Notation

- X denotes a projective K3 surface with a $H \in \operatorname{Pic}(X)$ an ample class with $H^{2}=2(g-1)>0$.
- Moduli spaces of sheaves of K3 surfaces are deformation equivalent to the Hilbert scheme of K3 surfaces.
$>D^{b}(X)$ denotes the derived category of bounded complex of coherent sheaves.

Main ingredients from derived category:

Main ingredients from derived category：

The spherical twist

Main ingredients from derived category:

The spherical twist
Let \mathcal{S} be a spherical object in $D^{b}(X)$. The spherical twis \dagger associated to \mathcal{S} is the auto-equivalence $T_{\mathcal{S}}$ on $D^{b}(X)$ given by the FM-transform with kernel $\mathcal{P}_{\mathcal{S}}$ defined as the cone

$$
\mathcal{P}_{\mathcal{S}}:=C\left(q^{*} \mathcal{S}^{\vee} \otimes p^{*} \mathcal{S} \rightarrow \mathcal{O}_{\Delta}\right)
$$

where p, q are the natural projections $X \times X \rightarrow X$.

Main ingredients from derived category：

The spherical twist
Let \mathcal{S} be a spherical object in $D^{b}(X)$ ．The spherical twis \dagger associated to \mathcal{S} is the auto－equivalence $T_{\mathcal{S}}$ on $D^{b}(X)$ given by the FM－transform with kernel $\mathcal{P}_{\mathcal{S}}$ defined as the cone

$$
\mathcal{P}_{\mathcal{S}}:=C\left(q^{*} \mathcal{S}^{\vee} \otimes p^{*} \mathcal{S} \rightarrow \mathcal{O}_{\Delta}\right)
$$

where p, q are the natural projections $X \times X \rightarrow X$ ．
Note that $\mathcal{P}_{\mathcal{S}}$ ，is an object that completes

$$
q^{*} \mathcal{S}^{\vee} \otimes p^{*} \mathcal{S} \longrightarrow \mathcal{O}_{\Delta} \longrightarrow \mathcal{P}_{\mathcal{S}} \longrightarrow q^{*} \mathcal{S}^{\vee} \otimes p^{*} \mathcal{S}[1]
$$

So，

$$
T_{\mathcal{S}}(\mathcal{E}):=C(\bigoplus \operatorname{Hom}(\mathcal{S}, \mathcal{E}[i]) \otimes \mathcal{S}[-i] \xrightarrow{\mathrm{ev}} \mathcal{E}), \forall \mathcal{E} \in D^{b}(X) .
$$

more ingredients: the derived dual

Let \mathcal{E} be a complex:

more ingredients：the derived dual

Let \mathcal{E} be a complex：
with locally free sheaves \mathcal{E}^{i} ．

more ingredients: the derived dual

Let \mathcal{E} be a complex:
with locally free sheaves \mathcal{E}^{i}, then \mathcal{E}^{\vee} is obtained as

more ingredients：the derived dual

Let \mathcal{E} be a complex：
with locally free sheaves \mathcal{E}^{i} ，then \mathcal{E}^{\vee} is obtained as

Note that if X is regular，then the derived dual $\mathcal{E}^{\vee}:=R \operatorname{Hom}\left(\mathcal{E}, \mathcal{O}_{X}\right) \in D^{b}(X)$ for any $\mathcal{E} \in D^{b}(X)$ where \mathcal{E}^{\vee} is not the usual dual sheaf $\operatorname{Hom}\left(\mathcal{E}, \mathcal{O}_{X}\right)$ ．

more ingredients：the derived dual

Let \mathcal{E} be a complex：
with locally free sheaves \mathcal{E}^{i} ，then \mathcal{E}^{\vee} is obtained as

Note that if X is regular，then the derived dual $\mathcal{E}^{\vee}:=R \operatorname{Hom}\left(\mathcal{E}, \mathcal{O}_{X}\right) \in D^{b}(X)$ for any $\mathcal{E} \in D^{b}(X)$ where \mathcal{E}^{\vee} is not the usual dual sheaf $\operatorname{Hom}\left(\mathcal{E}, \mathcal{O}_{X}\right)$ ．Moreover，under the assumption of projectivity，

more ingredients: the derived dual

Let \mathcal{E} be a complex:
with locally free sheaves \mathcal{E}^{i}, then \mathcal{E}^{\vee} is obtained as

Note that if X is regular, then the derived dual $\mathcal{E}^{\vee}:=R \operatorname{Hom}\left(\mathcal{E}, \mathcal{O}_{X}\right) \in D^{b}(X)$ for any $\mathcal{E} \in D^{b}(X)$ where \mathcal{E}^{\vee} is not the usual dual sheaf $\operatorname{Hom}\left(\mathcal{E}, \mathcal{O}_{X}\right)$. Moreover, under the assumption of projectivity, due to the compatibilities of derived tensor product and derived local Hom,

more ingredients: the derived dual

Let \mathcal{E} be a complex:
with locally free sheaves \mathcal{E}^{i}, then \mathcal{E}^{\vee} is obtained as

Note that if X is regular, then the derived dual $\mathcal{E}^{\vee}:=R \operatorname{Hom}\left(\mathcal{E}, \mathcal{O}_{X}\right) \in D^{b}(X)$ for any $\mathcal{E} \in D^{b}(X)$ where \mathcal{E}^{\vee} is not the usual dual sheaf $\operatorname{Hom}\left(\mathcal{E}, \mathcal{O}_{X}\right)$. Moreover, under the assumption of projectivity, due to the compatibilities of derived tensor product and derived local Hom, we obtain

$$
\mathcal{F}^{\vee} \otimes \mathcal{E} \simeq R \operatorname{Hom}\left(\mathcal{F}, \mathcal{O}_{x}\right) \otimes \mathcal{E} \simeq R \operatorname{Hom}(\mathcal{F}, \mathcal{E})
$$

more ingredients: tensoring by line bundles,...

more ingredients: tensoring by line bundles,...

Let L be a line bundle of X.

more ingredients：tensoring by line bundles，．．．

Let L be a line bundle of X ．Defines $-\otimes L$ as the map on $D^{b}(X)$ acting by

$$
-\otimes L: \mathcal{E} \mapsto \mathcal{E} \otimes L
$$

more ingredients: tensoring by line bundles,...

Let L be a line bundle of X. Defines $-\otimes L$ as the map on $D^{b}(X)$ acting by

$$
-\otimes L: \mathcal{E} \mapsto \mathcal{E} \otimes L
$$

The map $-\otimes L$ can be seen as a FM-transform with Kernel $\iota_{*} L$.

more ingredients：tensoring by line bundles，．．．

Let L be a line bundle of X ．Defines $-\otimes L$ as the map on $D^{b}(X)$ acting by

$$
-\otimes L: \mathcal{E} \mapsto \mathcal{E} \otimes L .
$$

The map $-\otimes L$ can be seen as a FM－transform with Kernel $\iota_{*} L$ ．
（Optional ingredients：）（？）

more ingredients：tensoring by line bundles，．．．

Let L be a line bundle of X ．Defines $-\otimes L$ as the map on $D^{b}(X)$ acting by

$$
-\otimes L: \mathcal{E} \mapsto \mathcal{E} \otimes L .
$$

The map $-\otimes L$ can be seen as a FM－transform with Kernel $\iota_{*} L$ ．
（Optional ingredients：）
The shift functor， $\mathcal{E} \rightarrow \mathcal{E}[1]$ ，is the FM －transform with kernel $\mathcal{O}_{\Delta}[1]$ ．

more ingredients: tensoring by line bundles,...

Let L be a line bundle of X. Defines $-\otimes L$ as the map on $D^{b}(X)$ acting by

$$
-\otimes L: \mathcal{E} \mapsto \mathcal{E} \otimes L .
$$

The map $-\otimes L$ can be seen as a FM-transform with Kernel $\iota_{*} L$.
(Optional ingredients:)
The shift functor, $\mathcal{E} \rightarrow \mathcal{E}[1]$, is the $F M$-transform with kernel $\mathcal{O}_{\Delta}[1]$.
The Serre functor for a K3 surface, is the FM-transform with kernel $\mathcal{O}_{\Delta}[2]$.

Recipe of an involution

Recipe of an involution

Definition
Let \mathcal{S} be a spherical object

Recipe of an involution

Definition
Let \mathcal{S} be a spherical object and $L \in \operatorname{Pic}(X)$.

Recipe of an involution

Definition

Let \mathcal{S} be a spherical object and $L \in \operatorname{Pic}(X)$. Define $\Phi_{\mathcal{S}, L}$ as the following functor on $D^{b}(X)$:

$$
\mathcal{E} \mapsto \Phi_{\mathcal{S}, L}(\mathcal{E})=R H o m\left(T_{\mathcal{S}}(\mathcal{E}), L\right) .
$$

```
|
```


Recipe of an involution

Definition

Let \mathcal{S} be a spherical object and $L \in \operatorname{Pic}(X)$. Define $\Phi_{\mathcal{S}, L}$ as the following functor on $D^{b}(X)$:

$$
\mathcal{E} \mapsto \Phi_{\mathcal{S}, L}(\mathcal{E})=R H o m\left(T_{\mathcal{S}}(\mathcal{E}), L\right) .
$$

The functor $\Phi_{\mathcal{S}, L}$ on an element $\mathcal{E} \in D^{b}(X)$ is explicitly given by

$$
\Phi_{\mathcal{S}, L}: \mathcal{E} \stackrel{T_{\mathcal{S}}}{\mapsto} T_{\mathcal{S}}(\mathcal{E}) \stackrel{()^{\vee}}{\mapsto} R H o m\left(T_{\mathcal{S}}(\mathcal{E}), \mathcal{O}_{X}\right) \stackrel{-\otimes L}{\mapsto} R \operatorname{Hom}\left(T_{\mathcal{S}}(\mathcal{E}), L\right) .
$$

Recipe of an involution

Definition

Let \mathcal{S} be a spherical object and $L \in \operatorname{Pic}(X)$. Define $\Phi_{\mathcal{S}, L}$ as the following functor on $D^{b}(X)$:

$$
\mathcal{E} \mapsto \Phi_{\mathcal{S}, L}(\mathcal{E})=R H o m\left(T_{\mathcal{S}}(\mathcal{E}), L\right) .
$$

The functor $\Phi_{\mathcal{S}, L}$ on an element $\mathcal{E} \in D^{b}(X)$ is explicitly given by

$$
\Phi_{\mathcal{S}, L}: \mathcal{E} \stackrel{T_{\mathcal{S}}}{\mapsto} T_{\mathcal{S}}(\mathcal{E}) \stackrel{()^{\vee}}{\mapsto} R H o m\left(T_{\mathcal{S}}(\mathcal{E}), \mathcal{O}_{X}\right) \stackrel{-\otimes L}{\mapsto} R \operatorname{Hom}\left(T_{\mathcal{S}}(\mathcal{E}), L\right) .
$$

Is $\Phi_{S, L}$ well-defined on $D^{b}(X)$?

Recipe of an involution

Definition

Let \mathcal{S} be a spherical object and $L \in \operatorname{Pic}(X)$. Define $\Phi_{\mathcal{S}, L}$ as the following functor on $D^{b}(X)$:

$$
\mathcal{E} \mapsto \Phi_{\mathcal{S}, L}(\mathcal{E})=R H o m\left(T_{\mathcal{S}}(\mathcal{E}), L\right) .
$$

The functor $\Phi_{\mathcal{S}, L}$ on an element $\mathcal{E} \in D^{b}(X)$ is explicitly given by

$$
\Phi_{\mathcal{S}, L}: \mathcal{E} \stackrel{T_{\mathcal{S}}}{\mapsto} T_{\mathcal{S}}(\mathcal{E}) \stackrel{()^{\vee}}{\mapsto} R \operatorname{Hom}\left(T_{\mathcal{S}}(\mathcal{E}), \mathcal{O}_{X}\right) \stackrel{-\otimes L}{\mapsto} R \operatorname{Hom}\left(T_{\mathcal{S}}(\mathcal{E}), L\right) .
$$

Is $\Phi_{S, L}$ well-defined on $D^{b}(X)$? Is it already an involution?

Ideal prototype.

Ideal prototype.

$$
\underset{\sim}{\downarrow}
$$

Ideal prototype.

Ideal prototype.

$$
\begin{aligned}
& D^{b}(X) \xrightarrow{\Phi} D^{b}(X) \\
& \downarrow \\
& \tilde{H}(X, \mathbb{Z}) \xrightarrow{\Phi^{H}} \widetilde{H}(X, \mathbb{Z}) \\
& \uparrow \\
& H^{2}\left(M_{H}(X, v), \mathbb{Z}\right) \xrightarrow{\Phi^{*}} H^{2}\left(M_{H}(X, v), \mathbb{Z}\right)
\end{aligned}
$$

Ideal prototype.

$$
\begin{aligned}
& D^{b}(X) \xrightarrow{\Phi} D^{b}(X) \\
& \downarrow \downarrow
\end{aligned}
$$

Is $\Phi_{S, L}$ well-defined on the moduli space of sheaves?

Is $\Phi_{S, L}$ well－defined on the moduli space of sheaves？
 Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \tilde{H}(X, \mathbb{Z})$ be a Mukai vector．

Is $\Phi_{S, L}$ well-defined on the moduli space of sheaves?

Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \tilde{H}(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^{2}>0$.

Is $\Phi_{S, L}$ well－defined on the moduli space of sheaves？

Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector．Assume that v is primitive and $v^{2}>0$ ．The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E})=\left(r k(\mathcal{E}), c_{1}(\mathcal{E}), \chi(\mathcal{E})-r k(\mathcal{E})\right)$ ．

Is $\Phi_{S, L}$ well－defined on the moduli space of sheaves？

Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector．Assume that v is primitive and $v^{2}>0$ ．The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E})=\left(r k(\mathcal{E}), c_{1}(\mathcal{E}), \chi(\mathcal{E})-r k(\mathcal{E})\right)$ ． Set by

$$
M(v):=\{\mathcal{E} \text { is } H \text {-ss sheaf with } v(\mathcal{E})=v\} \subset \operatorname{Coh}(X)
$$

Is $\Phi_{S, L}$ well-defined on the moduli space of sheaves?

Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^{2}>0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E})=\left(r k(\mathcal{E}), c_{1}(\mathcal{E}), \chi(\mathcal{E})-r k(\mathcal{E})\right)$. Set by

$$
M(v):=\{\mathcal{E} \text { is } H \text {-ss sheaf with } v(\mathcal{E})=v\} \subset \operatorname{Coh}(X)
$$

1. Is $\Phi_{S, L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?

Is $\Phi_{S, L}$ well-defined on the moduli space of sheaves?

Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^{2}>0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E})=\left(r k(\mathcal{E}), c_{1}(\mathcal{E}), \chi(\mathcal{E})-r k(\mathcal{E})\right)$. Set by

$$
M(v):=\{\mathcal{E} \text { is } H \text {-ss sheaf with } v(\mathcal{E})=v\} \subset \operatorname{Coh}(X)
$$

1. Is $\Phi_{S, L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?
2. What is the order of $\Phi_{\mathcal{S}, L}$?

Is $\Phi_{S, L}$ well-defined on the moduli space of sheaves?

Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^{2}>0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E})=\left(r k(\mathcal{E}), c_{1}(\mathcal{E}), \chi(\mathcal{E})-r k(\mathcal{E})\right)$. Set by

$$
M(v):=\{\mathcal{E} \text { is } H \text {-ss sheaf with } v(\mathcal{E})=v\} \subset \operatorname{Coh}(X)
$$

1. Is $\Phi_{\mathcal{S}, L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?
2. What is the order of $\Phi_{\mathcal{S}, L}$? $\quad \phi_{s, L}$ on $\tilde{H}(x, z)$ is induction $B \cup T$ an $L \in v(S)^{\perp}$

Is $\Phi_{S, L}$ well-defined on the moduli space of sheaves?

Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^{2}>0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E})=\left(r k(\mathcal{E}), c_{1}(\mathcal{E}), \chi(\mathcal{E})-r k(\mathcal{E})\right)$. Set by

$$
M(v):=\{\mathcal{E} \text { is } H \text {-ss sheaf with } v(\mathcal{E})=v\} \subset \operatorname{Coh}(X)
$$

1. Is $\Phi_{\mathcal{S}, L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?
2. What is the order of $\Phi_{\mathcal{S}, L}$?
3. Is $\Phi_{\mathcal{S}, L}(\mathcal{E})$ a semi-stable sheaf for all $\mathcal{E} \in M(v)$? M-stub \Rightarrow stable \Rightarrow semistuble $\Rightarrow \mu$-senistabb.

Is $\Phi_{S, L}$ well-defined on the moduli space of sheaves?

Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^{2}>0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E})=\left(r k(\mathcal{E}), c_{1}(\mathcal{E}), \chi(\mathcal{E})-r k(\mathcal{E})\right)$. Set by

$$
M(v):=\{\mathcal{E} \text { is } H \text {-ss sheaf with } v(\mathcal{E})=v\} \subset \operatorname{Coh}(X)
$$

1. Is $\Phi_{\mathcal{S}, L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?
2. What is the order of $\Phi_{\mathcal{S}, L}$?
3. Is $\Phi_{\mathcal{S}, L}(\mathcal{E})$ a semi-stable sheaf for all $\mathcal{E} \in M(v)$? If not, where is it? ε ? st $H^{1}(X, \varepsilon)=0$?

Is $\Phi_{S, L}$ well－defined on the moduli space of sheaves？

Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector．Assume that v is primitive and $v^{2}>0$ ．The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E})=\left(r k(\mathcal{E}), c_{1}(\mathcal{E}), \chi(\mathcal{E})-r k(\mathcal{E})\right)$ ． Set by

$$
M(v):=\{\mathcal{E} \text { is } H \text {-ss sheaf with } v(\mathcal{E})=v\} \subset \operatorname{Coh}(X)
$$

1．Is $\Phi_{\mathcal{S}, L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$ ？
2．What is the order of $\Phi_{\mathcal{S}, L}$ ？
3．Is $\Phi_{\mathcal{S}, L}(\mathcal{E})$ a semi－stable sheaf for all $\mathcal{E} \in M(v)$ ？If not， where is it？

4．What is the Mukai vector $v\left(\Phi_{\mathcal{S}, L}(\mathcal{E})\right)$ ？

Is $\Phi_{S, L}$ well－defined on the moduli space of sheaves？

Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector．Assume that v is primitive and $v^{2}>0$ ．The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E})=\left(r k(\mathcal{E}), c_{1}(\mathcal{E}), \chi(\mathcal{E})-r k(\mathcal{E})\right)$ ． Set by

$$
M(v):=\{\mathcal{E} \text { is } H \text {-ss sheaf with } v(\mathcal{E})=v\} \subset \operatorname{Coh}(X)
$$

1．Is $\Phi_{\mathcal{S}, L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$ ？
2．What is the order of $\Phi_{\mathcal{S}, L}$ ？
3．Is $\Phi_{\mathcal{S}, L}(\mathcal{E})$ a semi－stable sheaf for all $\mathcal{E} \in M(v)$ ？If not， where is it？

4．What is the Mukai vector $v\left(\Phi_{\mathcal{S}, L}(\mathcal{E})\right)$ ？
5．What is the induced map $\Phi_{\mathcal{S}, L}^{*}$ on $H^{2}(M(v), \mathbb{Z})$ ？

Is $\Phi_{S, L}$ well-defined on the moduli space of sheaves?

Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^{2}>0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E})=\left(r k(\mathcal{E}), c_{1}(\mathcal{E}), \chi(\mathcal{E})-r k(\mathcal{E})\right)$. Set by

$$
M(v):=\{\mathcal{E} \text { is } H \text {-ss sheaf with } v(\mathcal{E})=v\} \subset \operatorname{Coh}(X)
$$

1. Is $\Phi_{\mathcal{S}, L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?
2. What is the order of $\Phi_{\mathcal{S}, L}$?
3. Is $\Phi_{\mathcal{S}, L}(\mathcal{E})$ a semi-stable sheaf for all $\mathcal{E} \in M(v)$? If not, where is it?
4. What is the Mukai vector $v\left(\Phi_{\mathcal{S}, L}(\mathcal{E})\right)$?
5. What is the induced map $\Phi_{S, L}^{*}$ on $H^{2}(M(v), \mathbb{Z})$? Is it symplectic

Is $\Phi_{S, L}$ well-defined on the moduli space of sheaves?

Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^{2}>0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E})=\left(r k(\mathcal{E}), c_{1}(\mathcal{E}), \chi(\mathcal{E})-r k(\mathcal{E})\right)$. Set by

$$
M(v):=\{\mathcal{E} \text { is } H \text {-ss sheaf with } v(\mathcal{E})=v\} \subset \operatorname{Coh}(X)
$$

1. Is $\Phi_{\mathcal{S}, L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?
2. What is the order of $\Phi_{\mathcal{S}, L}$?
3. Is $\Phi_{\mathcal{S}, L}(\mathcal{E})$ a semi-stable sheaf for all $\mathcal{E} \in M(v)$? If not, where is it?
4. What is the Mukai vector $v\left(\Phi_{\mathcal{S}, L}(\mathcal{E})\right)$?
5. What is the induced map $\Phi_{\mathcal{S}, L}^{*}$ on $H^{2}(M(v), \mathbb{Z})$? Is it symplectic or anti-symplectic?

$$
\phi_{S, l}^{*} w_{M(v)}= \pm w_{M}(v)
$$

Is $\Phi_{S, L}$ well-defined on the moduli space of sheaves?

Let $v=\left(v_{0}, v_{1} H, v_{2}\right) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^{2}>0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E})=\left(r k(\mathcal{E}), c_{1}(\mathcal{E}), \chi(\mathcal{E})-r k(\mathcal{E})\right)$. Set by

$$
M(v):=\{\mathcal{E} \text { is } H \text {-ss sheaf with } v(\mathcal{E})=v\} \subset \operatorname{Coh}(X)
$$

1. Is $\Phi_{\mathcal{S}, L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?
2. What is the order of $\Phi_{\mathcal{S}, L}$?
3. Is $\Phi_{\mathcal{S}, L}(\mathcal{E})$ a semi-stable sheaf for all $\mathcal{E} \in M(v)$? If not, where is it?
4. What is the Mukai vector $v\left(\Phi_{\mathcal{S}, L}(\mathcal{E})\right)$?
5. What is the induced map $\Phi_{\mathcal{S}, L}^{*}$ on $H^{2}(M(v), \mathbb{Z})$? Is it symplectic or anti-symplectic?

$$
\phi_{S, l}^{*} w_{M(v)}= \pm w_{M}(v)
$$

From $\phi \in D^{b}(X)$ to $\phi^{H} \in \mathcal{O}(\tilde{H}(X, \mathbb{Z}))$

From $\phi \in D^{b}(X)$ to $\phi^{H} \in \mathcal{O}(\widetilde{H}(X, \mathbb{Z}))$

- If $\phi=T_{\mathcal{S}}$.

From $\phi \in D^{b}(X)$ to $\phi^{H} \in \mathcal{O}(\tilde{H}(X, \mathbb{Z}))$

- If $\phi=T_{\mathcal{S}}$, then its induced action on cohomology $T_{\mathcal{S}}^{H}$ on $\widetilde{H}(X, \mathbb{Z})$ is given by the reflection R_{s} in the hyperplane orthogonal to the (-2)-class $s \in N S(X)$.

From $\phi \in D^{b}(X)$ to $\phi^{H} \in \mathcal{O}(\tilde{H}(X, \mathbb{Z}))$

- If $\phi=T_{\mathcal{S}}$, then its induced action on cohomology $T_{\mathcal{S}}^{H}$ on $\widetilde{H}(X, \mathbb{Z})$ is given by the reflection R_{S} in the hyperplane orthogonal to the (-2)-class $s \in N S(X)$.

$$
R_{s}: w \mapsto w+\langle w, s\rangle \cdot v(\mathcal{S}) .
$$

From $\phi \in D^{b}(X)$ to $\phi^{H} \in \mathcal{O}(\tilde{H}(X, \mathbb{Z}))$

- If $\phi=T_{\mathcal{S}}$, then its induced action on cohomology $T_{\mathcal{S}}^{H}$ on $\widetilde{H}(X, \mathbb{Z})$ is given by the reflection R_{s} in the hyperplane orthogonal to the (-2)-class $s \in N S(X)$.

$$
R_{s}: w \mapsto w+\langle w, s\rangle \cdot v(\mathcal{S}) .
$$

\vee If $\phi=()^{\vee}$.

From $\phi \in D^{b}(X)$ to $\phi^{H} \in \mathcal{O}(\tilde{H}(X, \mathbb{Z}))$

- If $\phi=T_{\mathcal{S}}$, then its induced action on cohomology $T_{\mathcal{S}}^{H}$ on $\tilde{H}(X, \mathbb{Z})$ is given by the reflection R_{s} in the hyperplane orthogonal to the (-2)-class $s \in N S(X)$.

$$
R_{s}: w \mapsto w+\langle w, s\rangle \cdot v(\mathcal{S}) .
$$

$>$ If $\phi=()^{\vee}$, then $\phi^{H}=\mathbb{D}:=(x, y D, z) \mapsto(x,-y D, z)$.

From $\phi \in D^{b}(X)$ to $\phi^{H} \in \mathcal{O}(\tilde{H}(X, \mathbb{Z}))$

- If $\phi=T_{\mathcal{S}}$, then its induced action on cohomology $T_{\mathcal{S}}^{H}$ on $\widetilde{H}(X, \mathbb{Z})$ is given by the reflection R_{S} in the hyperplane orthogonal to the (-2)-class $s \in N S(X)$.

$$
R_{s}: w \mapsto w+\langle w, s\rangle \cdot v(\mathcal{S}) .
$$

\vee If $\phi=()^{\vee}$, then $\phi^{H}=\mathbb{D}:=(x, y D, z) \mapsto(x,-y D, z)$.
$>$ If $\Phi=-\otimes L$.

From $\phi \in D^{b}(X)$ to $\phi^{H} \in \mathcal{O}(\tilde{H}(X, \mathbb{Z}))$

- If $\Phi=T_{\mathcal{S}}$, then its induced action on cohomology $T_{\mathcal{S}}^{H}$ on $\widetilde{H}(X, \mathbb{Z})$ is given by the reflection R_{S} in the hyperplane orthogonal to the (-2)-class $s \in N S(X)$.

$$
R_{s}: w \mapsto w+\langle w, s\rangle \cdot v(\mathcal{S}) .
$$

- If $\phi=()^{\vee}$, then $\Phi^{H}=\mathbb{D}:=(x, y D, z) \mapsto(x,-y D, z)$.
- If $\phi=-\otimes L$, then ϕ^{H} is given by

$$
(x, y D, z) \stackrel{-\otimes H^{H}}{\mapsto}\left(x, x L+y D, \frac{L^{2}}{2} x+(D \cdot L) y+x z\right),
$$

From $\phi \in D^{b}(X)$ to $\phi^{H} \in \mathcal{O}(\tilde{H}(X, \mathbb{Z}))$

- If $\phi=T_{\mathcal{S}}$, then its induced action on cohomology $T_{\mathcal{S}}^{H}$ on $\tilde{H}(X, \mathbb{Z})$ is given by the reflection R_{s} in the hyperplane orthogonal to the (-2)-class $s \in N S(X)$.

$$
R_{s}: w \mapsto w+\langle w, s\rangle \cdot v(\mathcal{S}) .
$$

\vee If $\phi=()^{\vee}$, then $\phi^{H}=\mathbb{D}:=(x, y D, z) \mapsto(x,-y D, z)$.

- If $\phi=-\otimes L$, then ϕ^{H} is given by

$$
(x, y D, z) \stackrel{-\otimes L^{H}}{\mapsto}\left(x, x L+y D, \frac{L^{2}}{2} x+(D \cdot L) y+x z\right)
$$

the multiplication (cup product of cohomology classes) with the Chern character $\operatorname{ch}(L)=\exp \left(c_{1}(L)\right)=\left(1, L, L^{2} / 2\right)$.

A sheaf is sending in a sheaf

A sheaf is sending in a sheaf

Set by $L=\mathcal{O}_{x}(d H)$

A sheaf is sending in a sheaf

Set by $L=\mathcal{O}_{x}(d H)$ and by $\Phi_{\mathcal{S}, d}:=\Phi_{\mathcal{S}, \mathcal{O}_{\times}(d H)}$.

A sheaf is sending in a sheaf

Set by $L=\mathcal{O}_{x}(d H)$ and by $\Phi_{\mathcal{S}, d}:=\Phi_{\mathcal{S}, \mathcal{O}_{x}(d H)}$. Assume that \mathcal{E} is a torsion free sheaf,

A sheaf is sending in a sheaf

Set by $L=\mathcal{O}_{x}(d H)$ and by $\Phi_{\mathcal{S}, d}:=\Phi_{\mathcal{S}, \mathcal{O}_{X}(d H)}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^{1}(\mathcal{S}, \mathcal{E})=\operatorname{Ext}^{2}(\mathcal{S}, \mathcal{E})=0$.

A sheaf is sending in a sheaf

Set by $L=\mathcal{O}_{x}(d H)$ and by $\Phi_{\mathcal{S}, d}:=\Phi_{\mathcal{S}, \mathcal{O}_{X}(d H)}$ ．Assume that \mathcal{E} is a torsion free sheaf， $\operatorname{Ext}^{1}(\mathcal{S}, \mathcal{E})=\operatorname{Ext}^{2}(\mathcal{S}, \mathcal{E})=0$ ，and $\operatorname{coker}\left(\operatorname{Hom}_{x}(\mathcal{S}, \mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_{v}} \mathcal{E}\right)$ is a torsion sheaf．

A sheaf is sending in a sheaf

Set by $L=\mathcal{O}_{X}(d H)$ and by $\Phi_{\mathcal{S}, d}:=\Phi_{\mathcal{S}, \mathcal{O}_{X}(d H)}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^{1}(\mathcal{S}, \mathcal{E})=\operatorname{Ext}^{2}(\mathcal{S}, \mathcal{E})=0$, and $\operatorname{coker}\left(\operatorname{Hom}_{x}(\mathcal{S}, \mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_{v}} \mathcal{E}\right)$ is a torsion sheaf. We can compute $\Phi_{\mathcal{S}, \mathrm{d}}$ as:

$$
\varepsilon \mapsto \phi_{s, d}(\varepsilon)=R \text { Hon }_{x}\left(T_{\delta}(\varepsilon), O_{x}(d H)\right) .
$$

A sheaf is sending in a sheaf

Set by $L=\mathcal{O}_{X}(d H)$ and by $\Phi_{\mathcal{S}, d}:=\Phi_{\mathcal{S}, \mathcal{O}_{X}(d H)}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^{1}(\mathcal{S}, \mathcal{E})=\operatorname{Ext}^{2}(\mathcal{S}, \mathcal{E})=0$, and $\operatorname{coker}\left(\operatorname{Hom}_{x}(\mathcal{S}, \mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_{v}} \mathcal{E}\right)$ is a torsion sheaf. We can compute $\Phi_{\mathcal{S}, d}$ as:

$$
\varepsilon \mapsto \Phi_{s, d}(\varepsilon)=R \operatorname{Hom}_{x}\left(T_{s}(\varepsilon), O_{x}(d H)\right) .
$$

Take the dual by $\mathcal{O}_{x}(\mathrm{dH})$ of the distinguish triangle associated to e_{v}.

A sheaf is sending in a sheaf
 a torsion free sheaf, $\operatorname{Ext}^{1}(\mathcal{S}, \mathcal{E})=\operatorname{Ext}^{2}(\mathcal{S}, \mathcal{E})=0$, and $\operatorname{coker}\left(\operatorname{Hom}_{x}(\mathcal{S}, \mathcal{E}) \otimes \mathcal{S} \xrightarrow{\boldsymbol{e}_{\Upsilon}} \mathcal{E}\right)$ is a torsion sheaf. We can compute $\Phi_{\mathcal{S}, d}$ as:

$$
\varepsilon \mapsto \phi_{s, d}(\varepsilon)=R H \operatorname{tom}_{x}\left(T_{\delta}(\varepsilon), O_{x}(d H)\right) .
$$

Take the dual by $\mathcal{O}_{x}(d H)$ of the distinguish triangle associated to e_{v}, we obtain

$$
R \operatorname{lom}_{x}\left(\varepsilon, \theta_{x}(d H)\right) \rightarrow \operatorname{RHom}_{x}(S, \varepsilon)^{v} S_{\infty}^{v} G_{x}(d H) \rightarrow \phi_{s, d}(\varepsilon)
$$

A sheaf is sending in a sheaf
Set by $L=\mathcal{O}_{X}(d H)$ and by $\Phi_{\mathcal{S}, d}:=\Phi_{\mathcal{S}, \mathcal{O}_{X}(d H)}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^{1}(\mathcal{S}, \mathcal{E})=\operatorname{Ext}^{2}(\mathcal{S}, \mathcal{E})=0$, and $\operatorname{coker}\left(\operatorname{Hom} x(\mathcal{S}, \mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_{V}} \mathcal{E}\right)$ is a torsion sheaf. We can compute $\Phi_{\mathcal{S}, d}$ as:

$$
\varepsilon \mapsto \phi_{s, d}(\varepsilon)=R \operatorname{Hom}_{x}\left(T_{\delta}(\varepsilon), \Theta_{x}(d H)\right) .
$$

Take the dual by $\mathcal{O}_{x}(\mathrm{dH})$ of the distinguish triangle associated to e_{v}, we obtain

$$
\text { R from } \text { ne. }_{x}\left(\varepsilon, O_{x}(d H)\right) \rightarrow \text { RHom }_{x}(S, \varepsilon)^{v} \oplus S^{v} G_{x}(d H) \rightarrow \phi_{S, d}(\varepsilon)
$$

$$
H^{-1}\left(\phi_{s, d}(\varepsilon)\right) \rightarrow \operatorname{Hom}_{x}\left(\varepsilon, \theta_{x}(d H)\right) \rightarrow \operatorname{Hom}_{x}(S, \varepsilon)_{\otimes}^{v} S_{*}^{v} \theta_{x}(d H) \rightarrow H^{0}\left(\phi_{s, d}(\varepsilon)\right) \rightarrow \varepsilon x^{1}\left(\varepsilon, \theta_{x}(d H)\right)
$$

A sheaf is sending in a sheaf
Set by $L=\mathcal{O}_{X}(d H)$ and by $\Phi_{\mathcal{S}, d}:=\Phi_{\mathcal{S}, \mathcal{O}_{X}(d H)}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^{1}(\mathcal{S}, \mathcal{E})=\operatorname{Ext}^{2}(\mathcal{S}, \mathcal{E})=0$, and $\operatorname{coker}\left(\operatorname{Hom} x(\mathcal{S}, \mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_{V}} \mathcal{E}\right)$ is a torsion sheaf. We can compute $\Phi_{\mathcal{S}, d}$ as:

$$
\varepsilon \mapsto \Phi_{S, d}(\varepsilon)=R \text { Home }_{x}\left(T_{\delta}(\varepsilon), O_{x}(d H)\right) \text {. }
$$

Take the dual by $\mathcal{O}_{x}(\mathrm{dH})$ of the distinguish triangle associated to e_{v} we obtain

Hence,

$$
\text { Hence, } H^{-1}\left(\phi_{s, d}(\varepsilon)\right) \rightarrow \tan \left(\varepsilon, \theta_{x}(d H)\right) \rightarrow \operatorname{Hom}_{x}(S, \varepsilon)^{v} S_{*}^{v} \sigma_{x}(d H) \rightarrow H^{0}\left(\phi_{s, d}(\varepsilon)\right) \rightarrow \varepsilon x x^{1}\left(\varepsilon, \theta_{x}(d \mu)\right) \rightarrow 0
$$

Under the assumption that poker $\left(e_{V}\right)$ is torsion sheaf, we have $\mathcal{H}^{-1}\left(\Phi_{\mathcal{S}, a}(\mathcal{E})\right)=0$.

A sheaf is sending in a sheaf

Set by $L=\mathcal{O}_{x}(d H)$ and by $\Phi_{\mathcal{S}, d}:=\Phi_{\mathcal{S}, \mathcal{O}_{X}(d H)}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^{1}(\mathcal{S}, \mathcal{E})=\operatorname{Ext}^{2}(\mathcal{S}, \mathcal{E})=0$, and $\operatorname{coker}\left(\operatorname{Hom} x(\mathcal{S}, \mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_{V}} \mathcal{E}\right)$ is a torsion sheaf. We can compute $\Phi_{\mathcal{S}, d}$ as:

$$
\varepsilon \mapsto \phi_{S, d}(\varepsilon)=R \text { Hom }_{x}\left(T_{\delta}(\varepsilon), O_{x}(d H)\right) .
$$

Take the dual by $\mathcal{O}_{x}(d H)$ of the distinguish triangle associated to e_{v}, we obtain

Hence,

$$
R \operatorname{lom}_{x}\left(\varepsilon, \omega_{x}(d H)\right) \rightarrow \operatorname{RHom}_{x}(S, \varepsilon)^{v} S_{\infty}^{v} G_{x}(d H) \rightarrow \phi_{S, d}(\varepsilon)
$$

 Under pride assuntption that coker (e_{v}) is torsion sheaf, we have $\mathcal{H}^{-1}\left(\Phi_{\mathcal{S}, d}(\mathcal{E})\right)=0$. Since \mathcal{E} is a torsion free sheaf,
$\operatorname{Ext}^{p}\left(\mathcal{E}, \mathcal{O}_{X}\right)=0$ for all $p \geq 2$.

A sheaf is sending in a sheaf

Set by $L=\mathcal{O}_{X}(d H)$ and by $\Phi_{\mathcal{S}, d}:=\Phi_{S, \mathcal{O}_{X}(d H)}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^{1}(\mathcal{S}, \mathcal{E})=\operatorname{Ext}^{2}(\mathcal{S}, \mathcal{E})=0$, and $\operatorname{coker}\left(\operatorname{Hom}_{x}(\mathcal{S}, \mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_{v}} \mathcal{E}\right)$ is a torsion sheaf. We can compute $\Phi_{\mathcal{S}, d}$ as:

$$
\varepsilon \mapsto \phi_{s, d}(\varepsilon)=R \text { Hom }_{x}\left(T_{\delta}(\varepsilon), O_{x}(d H)\right) \text {. }
$$

Take the dual by $\mathcal{O}_{x}(\mathrm{dH})$ of the distinguish triangle associated to e_{v}, we obtain

$$
R \operatorname{Hom}_{x}\left(\varepsilon, O_{x}(d H)\right) \rightarrow R \operatorname{Hom}_{x}(S, \varepsilon)^{v} \in S^{v} G_{x}(d H) \rightarrow \Phi_{S, d}(\varepsilon)
$$

Hence,

$$
H^{-1}\left(\phi_{s, d}(\varepsilon)\right) \rightarrow \tan _{x}\left(\varepsilon, \theta_{x}(d H)\right) \rightarrow \operatorname{Hom}_{x}(s, \varepsilon)_{\otimes}^{v} S_{\otimes}^{v} \sigma_{x}(d H) \rightarrow H^{0}\left(\phi_{s, d}(\varepsilon)\right) \rightarrow \varepsilon x+^{1}\left(\varepsilon, \theta_{x}(d t)\right) \rightarrow 0
$$ Under the assumption that coker (e_{v}) is torsion sheaf, we have $\mathcal{H}^{-1}\left(\Phi_{\mathcal{S}, d}(\mathcal{E})\right)=0$. Since \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^{p}\left(\mathcal{E}, \mathcal{O}_{X}\right)=0$ for all $p \geq 2$. So,

$$
\Phi_{\mathcal{S}, d}(\mathcal{E})=\mathcal{H}^{0}\left(\Phi_{\mathcal{S}, d}(\mathcal{E})\right)
$$

The Mukai vector of $\Phi_{\mathcal{S}, d}(\mathcal{E})$.

The Mukai vector of $\Phi_{\mathcal{S}, d}(\mathcal{E})$.

Explicitly computations show that

$$
v\left(\Phi_{\mathcal{S}, d}(\mathcal{E})\right)=D \circ R_{\mathcal{S}}(v) \otimes \mathcal{O}_{X}(d H) .
$$

The Mukai vector of $\Phi_{\mathcal{S}, d}(\mathcal{E})$.

Explicitly computations show that

$$
v\left(\Phi_{\mathcal{S}, d}(\mathcal{E})\right)=D \circ R_{\mathcal{S}}(v) \otimes \mathcal{O}_{X}(d H)
$$

Implying that $d=0$ or $d=1$.

The Mukai vector of $\Phi_{\mathcal{S}, d}(\mathcal{E})$.

Explicitly computations show that

$$
v\left(\Phi_{\mathcal{S}, d}(\mathcal{E})\right)=D \circ R_{\mathcal{S}}(v) \otimes \mathcal{O}_{X}(d H) .
$$

Implying that $d=0$ or $d=1$.
Assume that $\operatorname{Hom}(\mathcal{S}, \mathcal{E}) \neq 0$,

The Mukai vector of $\Phi_{\mathcal{S}, d}(\mathcal{E})$.

Explicitly computations show that

$$
v\left(\Phi_{\mathcal{S}, d}(\mathcal{E})\right)=D \circ R_{\mathcal{S}}(v) \otimes \mathcal{O}_{X}(d H) .
$$

Implying that $d=0$ or $d=1$.
Assume that $\operatorname{Hom}(\mathcal{S}, \mathcal{E}) \neq 0$, then
Case $d=0$:

The Mukai vector of $\Phi_{\mathcal{S}, d}(\mathcal{E})$.

Explicitly computations show that

$$
v\left(\Phi_{\mathcal{S}, d}(\mathcal{E})\right)=D \circ R_{\mathcal{S}}(v) \otimes \mathcal{O}_{X}(d H) .
$$

Implying that $d=0$ or $d=1$.
Assume that $\operatorname{Hom}(\mathcal{S}, \mathcal{E}) \neq 0$, then
Case $d=0: \quad v\left(\Phi_{\mathcal{S}, 0}(\mathcal{E})\right)=v$ iff $\mathcal{S}=\mathcal{O}_{x}$ and $v_{0}=v_{2}$.

The Mukai vector of $\Phi_{\mathcal{S}, d}(\mathcal{E})$.

Explicitly computations show that

$$
v\left(\Phi_{\mathcal{S}, d}(\mathcal{E})\right)=D \circ R_{\mathcal{S}}(v) \otimes \mathcal{O}_{X}(d H) .
$$

Implying that $d=0$ or $d=1$.
Assume that $\operatorname{Hom}(\mathcal{S}, \mathcal{E}) \neq 0$, then
Case $d=0: \quad v\left(\Phi_{\mathcal{S}, 0}(\mathcal{E})\right)=v$ iff $\mathcal{S}=\mathcal{O}_{x}$ and $v_{0}=v_{2}$.
Case $d=1$:

The Mukai vector of $\Phi_{\mathcal{S}, d}(\mathcal{E})$.

Explicitly computations show that

$$
v\left(\Phi_{\mathcal{S}, d}(\mathcal{E})\right)=D \circ R_{\mathcal{S}}(v) \otimes \mathcal{O}_{X}(d H)
$$

Implying that $d=0$ or $d=1$.
Assume that $\operatorname{Hom}(\mathcal{S}, \mathcal{E}) \neq 0$, then
Case $d=0: \quad v\left(\Phi_{\mathcal{S}, 0}(\mathcal{E})\right)=v$ iff $\mathcal{S}=\mathcal{O}_{x}$ and $v_{0}=v_{2}$.
Case $d=1: v\left(\Phi_{\mathcal{S}, 1}(\mathcal{E})\right)=\left(v_{0}, v_{1} H, v_{2}\right)$ iff $v(\mathcal{S})=(2,1, g / 2)$ and $2 v_{2}=(2 g-2) v_{1}-v_{0}(g / 2-1)$.
when $\Phi_{\mathcal{S}, d}(\mathcal{E})$ is slope-stable?
Keg points:,$E x A^{1}(s, \varepsilon)=E_{x} t^{2}(s, \varepsilon)=0$
i) $\phi(\varepsilon)$ is torsion free? Yes $>$ and Cover lv is sup.
on isolated points.
ii) In addition: $\phi(\varepsilon)$ is μ-stable? Yes if $\mathrm{kr}\left(e_{v}\right)$ is μ-stall ।
when $\Phi_{\mathcal{S}, d}(\mathcal{E})$ is slope-stable?
Key points:
i) $\phi(\varepsilon)$ is bison ?,$>\operatorname{Ext}^{1}(S, \varepsilon)=E x x^{2}(S, \varepsilon)=0$ and \rightarrow cover lv is supp. on isolated points.
ii) In addition:

$$
\phi(\varepsilon) \text { is } \mu \text {-stable? Yes if } \operatorname{kr}\left(e_{v}\right) \text { is } \mu \text {-stat le }
$$ μ-stall !

Again under ass

$$
\begin{aligned}
& \text { ain under ass. } \\
& \text { Ext }{ }^{1}(S, \varepsilon)=E_{x} t^{2}(S, \varepsilon)=0 \quad \text { \& } \operatorname{Hom}(S, \varepsilon) \neq 0 \\
& +\quad v\left(\phi_{S, d}(\varepsilon)\right)=v(\varepsilon) \quad \& \quad C_{1}(\varepsilon)=H
\end{aligned}
$$

when $\Phi_{\mathcal{S}, d}(\mathcal{E})$ is slope-stable?
Key points:
i) $\phi(\varepsilon)$ is torsion free? Yes,, $\begin{gathered}E x t^{1}(s, \varepsilon)=E x t^{2}(s, \varepsilon)=0 \\ \text { and }\end{gathered}$ and Cover e_{v} is supp.
on isolated points.
ii) In addition:

$$
\phi(\varepsilon) \text { is } \mu \text {-stable? Yes if } \operatorname{kr}\left(e_{v}\right) \text { is } \begin{aligned}
& \mu \text {-stat le } \\
& \hline
\end{aligned}
$$

μ-stall 1
Again under ass.

$$
\begin{aligned}
& \text { Ext }{ }^{1}(S, \varepsilon)=E x x^{2}(S, \varepsilon)=0 \text { \& } \operatorname{Hom}(S, \varepsilon) \neq 0 \\
& +\quad v\left(\phi_{S, d}(\varepsilon)\right)=v(\varepsilon) \& C_{1}(\varepsilon)=H
\end{aligned}
$$

Main Results when rk $\mathcal{S}=1$

Theorem（Faenzi，Menet，P）
Let X be a projective K3 surface with $H \in \operatorname{Pic}(X)$ and $H^{2}=2(g-1)$ ．Let $r \geq 1$ be an integer with $r^{2} \leq g<(r+1)^{2}$ ． Then，$\Phi_{\mathcal{S}, d}$ is a well－defined involution on $M(r, H, r)$ ．

Birational involutions

Relaxing conditions on g and r ，the map is a birational involution！

Corollary

Assuming $r \geq 2$ and $\operatorname{dim} M(v) \geq 2$ ．Then，$\Phi_{\mathcal{S}, d}$ defines a birational involution on $M(r, 1, r)$ ．

Birational involutions

Relaxing conditions on g and r, the map is a binational involution!

Corollary
Assuming $r \geq 2$ and $\operatorname{dim} M(v) \geq 2$. Then, $\Phi_{\mathcal{S}, d}$ defines a binational involution on $M(r, 1, r)$.

$$
\begin{aligned}
& \text { Deauville's involution. } \\
& M(v)=M(1, H, 1)=x^{[y-1]} \\
& \omega \\
& \gamma_{z}(H) \Rightarrow \text { tain dual: } \varepsilon x t^{1}\left(\mathcal{F}_{z}(H), \omega_{x}\right) \simeq \omega_{z} \\
& \text { But } z c x \text { of length or } 2 \\
& \\
& \Rightarrow \omega_{z} \simeq \sigma_{z} .
\end{aligned}
$$

Birational involutions

Relaxing conditions on g and r, the map is a birational involution!

Corollary

Assuming $r \geq 2$ and $\operatorname{dim} M(v) \geq 2$. Then, $\Phi_{S, d}$ defines a binational involution on $M(r, 1, r)$.

Beauville's involution.
$M(v)=M(1, H, 1)=X^{[s-1]}$
$\gamma_{z}^{\omega}(H) \Rightarrow$ tain dual: $\varepsilon_{x} T^{-1}\left(f_{z}(H), \omega_{x}\right) \cong \omega_{z}$
But $z-x$ of lough 1 or 2
If $g=3 \ni x<\mathbb{P}^{\vec{\beta}} \underset{\text { quartic }}{\Rightarrow \omega_{z}} \sim$

Birational involutions

Relaxing conditions on g and r, the map is a birational involution!

Corollary

Assuming $r \geq 2$ and $\operatorname{dim} M(v) \geq 2$. Then, $\Phi_{S, d}$ defines a binational involution on $M(r, 1, r)$.

Beauville's involution.
$M(v)=M(1, H, 1)=X^{[s-1]}$
$\gamma_{z}^{\omega}(H) \Rightarrow$ tain dual: $\varepsilon_{x} t^{1}\left(\mathcal{I}_{z}(H), \omega_{x}\right) \cong \omega_{z}$
But $z-x$ of lough 1 or 2
If $g=3 \ni x<\mathbb{P}^{\overrightarrow{ } \quad \omega_{\text {quartic }}} \xlongequal{\omega_{z}}$

Birational involutions

Relaxing conditions on g and r ，the map is a birational involution！

Corollary
Assuming $r \geq 2$ and $\operatorname{dim} M(v) \geq 2$ ．Then，$\Phi_{S, d}$ defines a birational involution on $M(r, 1, r)$ ．

Beauville＇s involution．

There exist two involutions on $M(2,1,2)$ for $g \geq 5$ ．

Involutions when rk $\mathcal{S}>1$

Involutions when rk $\mathcal{S}>1$

Consider \mathcal{S} be a spherical bundle of Mukai vector $v(\mathcal{S})=(2,1, g / 2)$ ．

Involutions when rk $\mathcal{S}>1$

Consider \mathcal{S} be a spherical bundle of Mukai vector $v(\mathcal{S})=(2,1, g / 2)$.

Theorem
If $g \equiv 2 \bmod 4$, then $\Phi_{\mathcal{S}, 1}$ is a birational involution on $S^{\left[\frac{q+2}{4}\right]}$.

Involutions when rk $\mathcal{S}>1$

Consider \mathcal{S} be a spherical bundle of Mukai vector $v(\mathcal{S})=(2,1, g / 2)$.

Theorem
If $g \equiv 2 \bmod 4$, then $\Phi_{\mathcal{S}, 1}$ is a birational involution on $S^{\left[\frac{q+2}{4}\right]}$.

Theorem

If $g \geq 10$ and $4 \mid(g+2)$, then, $\Phi_{\mathcal{S}, 1}$ is a regular involution on $M\left(3,1, \frac{g+2}{4}\right)$.

Involutions when rk $\mathcal{S}>1$

Consider \mathcal{S} be a spherical bundle of Mukai vector $v(\mathcal{S})=(2,1, g / 2)$.

Theorem
If $g \equiv 2 \bmod 4$, then $\Phi_{\mathcal{S}, 1}$ is a birational involution on $S^{\left[\frac{q+2}{4}\right]}$.
Theorem
If $g \geq 10$ and $4 \mid(g+2)$, then, $\Phi_{\mathcal{S}, 1}$ is a regular involution on $M\left(3,1, \frac{g+2}{4}\right)$.

Theorem
If $g \geq 2$ and $v=\left(v_{0}, 1, g-1-\frac{v_{0}}{2}(g / 2-1)\right)$ is an integral Mukai vector with $3 \leq v_{0} \leq 3(g-1)$, then $\Phi_{\mathcal{S}, 1}$ is a birational involution on $M(v)$.

Anti-symplectic involutions

Theorem
The involution $\Phi_{\mathcal{S}, d}$ on $M(r, H, r)$ such that $r \geq 1$, $r^{2} \leq g<(r+1)^{2}$ and $H^{2}=2(g-1)$ is anti-symplectic.

Anti-symplectic involutions

Theorem
The involution $\Phi_{\mathcal{S}, d}$ on $M(r, H, r)$ such that $r \geq 1$, $r^{2} \leq g<(r+1)^{2}$ and $H^{2}=2(g-1)$ is anti-symplectic.

Anti-symplectic involutions

Theorem
The involution $\Phi_{S, d}$ on $M(r, H, r)$ such that $r \geq 1$, $r^{2} \leq g<(r+1)^{2}$ and $H^{2}=2(g-1)$ is anti-symplectic.
\Rightarrow Lattice theory: $H^{2}(H(\nu), \uplus i)^{\phi_{s, d}^{*}}$ and $\left.\left(H^{2}(H(\nu), \notin i)\right)^{\phi_{s, d}^{*}}\right)^{1}$

谢谢
(thanks)

$$
\begin{aligned}
& \text { Coming soon on Ar } X_{i v} \text {.. }
\end{aligned}
$$

(we hope)

