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I X denotes a projective K3 surface with a H ∈ Pic(X) an
ample class with H2 = 2(g− 1) > 0.

I Moduli spaces of sheaves of K3 surfaces are deformation
equivalent to the Hilbert scheme of K3 surfaces.

I Db(X) denotes the derived category of bounded complex
of coherent sheaves.
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Dr
af
tMain ingredients from derived

category:

The spherical twist

Let S be a spherical object in Db(X). The spherical twist

associated to S is the auto-equivalence TS on Db(X) given by
the FM-transform with kernel PS defined as the cone

PS := C(q∗S∨ ⊗ p∗S → O∆),

where p, q are the natural projections X × X → X.
Note that PS , is an object that completes

q∗S∨ ⊗ p∗S O∆ PS q∗S∨ ⊗ p∗S[1]

So,

TS(E) := C(
⊕
i

Hom(S, E [i])⊗ S[−i] ev−→ E), ∀E ∈ Db(X).
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Let E be a complex:

with locally free sheaves E i, then E∨ is obtained as

Note that if X is regular, then the derived dual

E∨ := RHom(E ,OX) ∈ Db(X) for any E ∈ Db(X) where E∨ is not
the usual dual sheaf Hom(E ,OX). Moreover, under the
assumption of projectivity, due to the compatibilities of derived
tensor product and derived local Hom, we obtain

F∨ ⊗ E ' RHom(F ,OX)⊗ E ' RHom(F , E).
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bundles,...

Let L be a line bundle of X. Defines −⊗ L as the map on Db(X)
acting by

−⊗ L : E 7→ E ⊗ L.

The map −⊗ L can be seen as a FM-transform with Kernel ι∗L.

(Optional ingredients:)

The shift functor, E → E [1], is the FM-transform with kernel
O∆[1].
The Serre functor for a K3 surface, is the FM-transform with
kernel O∆[2].
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Definition
Let S be a spherical object and L ∈ Pic(X). Define ΦS,L as the
following functor on Db(X):

E 7→ ΦS,L(E) = RHom(TS(E), L).

The functor ΦS,L on an element E ∈ Db(X) is explicitly given by

ΦS,L : E TS7→ TS(E)
()∨7→ RHom(TS(E),OX)

−⊗L7→ RHom(TS(E), L).

Is ΦS,L well-defined on Db(X)? Is it already an involution?
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tIs ΦS,L well-defined on the moduli

space of sheaves?

Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector.

Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0.

The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).

Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)?

If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)?

Is it
symplectic or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic

or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic or anti-symplectic?



Dr
af
tIs ΦS,L well-defined on the moduli

space of sheaves?
Let v = (vo, v1H, v2) ∈ H̃(X,Z) be a Mukai vector. Assume that v
is primitive and v2 > 0. The Mukai vector associated to a sheaf
E is given by v(E) = (rk(E), c1(E), χ(E)− rk(E)).
Set by

M(v) := {E is H-ss sheaf with v(E) = v} ⊂ Coh(X)

1. Is ΦS,L(E) ∈ Coh(X) for all E ∈ Coh(X)?

2. What is the order of ΦS,L?

3. Is ΦS,L(E) a semi-stable sheaf for all E ∈ M(v)? If not,
where is it?

4. What is the Mukai vector v(ΦS,L(E))?

5. What is the induced map Φ∗S,L on H2(M(v),Z)? Is it
symplectic or anti-symplectic?



Dr
af
tFrom Φ ∈ D

b(X) to ΦH ∈ O(H̃(X,Z))

I If Φ = TS , then its induced action on cohomology TH
S on

H̃(X,Z) is given by the reflection Rs in the hyperplane
orthogonal to the (−2)-class s ∈ NS(X),

Rs : w 7→ w + 〈w, s〉 · v(S).

I If Φ = ()∨, then ΦH = D := (x, yD, z) 7→ (x,−yD, z).

I If Φ = −⊗ L, then ΦH is given by

(x, yD, z)
−⊗LH7→ (x, xL + yD,

L2

2
x + (D · L)y + xz),

the multiplication (cup product of cohomology classes) with
the Chern character ch(L) = exp(c1(L)) = (1, L, L2/2).



Dr
af
tFrom Φ ∈ D

b(X) to ΦH ∈ O(H̃(X,Z))

I If Φ = TS ,

then its induced action on cohomology TH
S on

H̃(X,Z) is given by the reflection Rs in the hyperplane
orthogonal to the (−2)-class s ∈ NS(X),

Rs : w 7→ w + 〈w, s〉 · v(S).

I If Φ = ()∨, then ΦH = D := (x, yD, z) 7→ (x,−yD, z).

I If Φ = −⊗ L, then ΦH is given by

(x, yD, z)
−⊗LH7→ (x, xL + yD,

L2

2
x + (D · L)y + xz),

the multiplication (cup product of cohomology classes) with
the Chern character ch(L) = exp(c1(L)) = (1, L, L2/2).



Dr
af
tFrom Φ ∈ D

b(X) to ΦH ∈ O(H̃(X,Z))

I If Φ = TS , then its induced action on cohomology TH
S on

H̃(X,Z) is given by the reflection Rs in the hyperplane
orthogonal to the (−2)-class s ∈ NS(X),

Rs : w 7→ w + 〈w, s〉 · v(S).

I If Φ = ()∨, then ΦH = D := (x, yD, z) 7→ (x,−yD, z).

I If Φ = −⊗ L, then ΦH is given by

(x, yD, z)
−⊗LH7→ (x, xL + yD,

L2

2
x + (D · L)y + xz),

the multiplication (cup product of cohomology classes) with
the Chern character ch(L) = exp(c1(L)) = (1, L, L2/2).



Dr
af
tFrom Φ ∈ D

b(X) to ΦH ∈ O(H̃(X,Z))

I If Φ = TS , then its induced action on cohomology TH
S on

H̃(X,Z) is given by the reflection Rs in the hyperplane
orthogonal to the (−2)-class s ∈ NS(X),

Rs : w 7→ w + 〈w, s〉 · v(S).

I If Φ = ()∨, then ΦH = D := (x, yD, z) 7→ (x,−yD, z).

I If Φ = −⊗ L, then ΦH is given by

(x, yD, z)
−⊗LH7→ (x, xL + yD,

L2

2
x + (D · L)y + xz),

the multiplication (cup product of cohomology classes) with
the Chern character ch(L) = exp(c1(L)) = (1, L, L2/2).



Dr
af
tFrom Φ ∈ D

b(X) to ΦH ∈ O(H̃(X,Z))

I If Φ = TS , then its induced action on cohomology TH
S on

H̃(X,Z) is given by the reflection Rs in the hyperplane
orthogonal to the (−2)-class s ∈ NS(X),

Rs : w 7→ w + 〈w, s〉 · v(S).

I If Φ = ()∨,

then ΦH = D := (x, yD, z) 7→ (x,−yD, z).

I If Φ = −⊗ L, then ΦH is given by

(x, yD, z)
−⊗LH7→ (x, xL + yD,

L2

2
x + (D · L)y + xz),

the multiplication (cup product of cohomology classes) with
the Chern character ch(L) = exp(c1(L)) = (1, L, L2/2).



Dr
af
tFrom Φ ∈ D

b(X) to ΦH ∈ O(H̃(X,Z))

I If Φ = TS , then its induced action on cohomology TH
S on

H̃(X,Z) is given by the reflection Rs in the hyperplane
orthogonal to the (−2)-class s ∈ NS(X),

Rs : w 7→ w + 〈w, s〉 · v(S).

I If Φ = ()∨, then ΦH = D := (x, yD, z) 7→ (x,−yD, z).

I If Φ = −⊗ L, then ΦH is given by

(x, yD, z)
−⊗LH7→ (x, xL + yD,

L2

2
x + (D · L)y + xz),

the multiplication (cup product of cohomology classes) with
the Chern character ch(L) = exp(c1(L)) = (1, L, L2/2).



Dr
af
tFrom Φ ∈ D

b(X) to ΦH ∈ O(H̃(X,Z))

I If Φ = TS , then its induced action on cohomology TH
S on

H̃(X,Z) is given by the reflection Rs in the hyperplane
orthogonal to the (−2)-class s ∈ NS(X),

Rs : w 7→ w + 〈w, s〉 · v(S).

I If Φ = ()∨, then ΦH = D := (x, yD, z) 7→ (x,−yD, z).

I If Φ = −⊗ L,

then ΦH is given by

(x, yD, z)
−⊗LH7→ (x, xL + yD,

L2

2
x + (D · L)y + xz),

the multiplication (cup product of cohomology classes) with
the Chern character ch(L) = exp(c1(L)) = (1, L, L2/2).



Dr
af
tFrom Φ ∈ D

b(X) to ΦH ∈ O(H̃(X,Z))

I If Φ = TS , then its induced action on cohomology TH
S on

H̃(X,Z) is given by the reflection Rs in the hyperplane
orthogonal to the (−2)-class s ∈ NS(X),

Rs : w 7→ w + 〈w, s〉 · v(S).

I If Φ = ()∨, then ΦH = D := (x, yD, z) 7→ (x,−yD, z).

I If Φ = −⊗ L, then ΦH is given by

(x, yD, z)
−⊗LH7→ (x, xL + yD,

L2

2
x + (D · L)y + xz),

the multiplication (cup product of cohomology classes) with
the Chern character ch(L) = exp(c1(L)) = (1, L, L2/2).



Dr
af
tFrom Φ ∈ D

b(X) to ΦH ∈ O(H̃(X,Z))

I If Φ = TS , then its induced action on cohomology TH
S on

H̃(X,Z) is given by the reflection Rs in the hyperplane
orthogonal to the (−2)-class s ∈ NS(X),

Rs : w 7→ w + 〈w, s〉 · v(S).

I If Φ = ()∨, then ΦH = D := (x, yD, z) 7→ (x,−yD, z).

I If Φ = −⊗ L, then ΦH is given by

(x, yD, z)
−⊗LH7→ (x, xL + yD,

L2

2
x + (D · L)y + xz),

the multiplication (cup product of cohomology classes) with
the Chern character ch(L) = exp(c1(L)) = (1, L, L2/2).



Dr
af
tA sheaf is sending in a sheaf

Set by L = OX(dH) and by ΦS,d := ΦS,OX(dH). Assume that E is
a torsion free sheaf, Ext1(S, E) = Ext2(S, E) = 0, and
coker(HomX(S, E)⊗ S ev→ E) is a torsion sheaf. We can compute
ΦS,d as:

Take the dual by OX(dH) of the distinguish triangle associated
to ev, we obtain

Hence,

Under the assumption that coker(ev) is torsion sheaf, we have
H−1(ΦS,d(E)) = 0. Since E is a torsion free sheaf,
Extp(E ,OX) = 0 for all p ≥ 2.
So,

ΦS,d(E) = H0(ΦS,d(E)).
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tThe Mukai vector of ΦS,d(E).

Explicitly computations show that

v(ΦS,d(E)) = D ◦ RS(v)⊗OX(dH).

Implying that d = 0 or d = 1.

Assume that Hom(S, E) 6= 0, then

Case d = 0: v(ΦS,0(E)) = v iff S = OX and v0 = v2.

Case d = 1: v(ΦS,1(E)) = (v0, v1H, v2) iff v(S) = (2, 1, g/2) and
2v2 = (2g− 2)v1 − v0(g/2− 1).
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tMain Results when rkS = 1

Theorem (Faenzi, Menet, P)
Let X be a projective K3 surface with H ∈ Pic(X) and
H2 = 2(g− 1). Let r ≥ 1 be an integer with r2 ≤ g < (r + 1)2.
Then, ΦS,d is a well-defined involution on M(r,H, r).
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tBirational involutions

Relaxing conditions on g and r, the map is a birational involution!

Corollary
Assuming r ≥ 2 and dimM(v) ≥ 2. Then, ΦS,d defines a
birational involution on M(r, 1, r).

Example (r = 1)
Beauville’s involution.

Example
There exist two involutions on M(2, 1, 2) for g ≥ 5.
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Consider S be a spherical bundle of Mukai vector
v(S) = (2, 1, g/2).

Theorem
If g ≡ 2 mod 4, then ΦS,1 is a birational involution on S[ g+2

4 ].

Theorem
If g ≥ 10 and 4|(g + 2), then, ΦS,1 is a regular involution on
M(3, 1, g+2

4 ).

Theorem
If g ≥ 2 and v = (v0, 1, g− 1− v0

2 (g/2− 1)) is an integral Mukai
vector with 3 ≤ v0 ≤ 3(g− 1), then ΦS,1 is a birational involution
on M(v).



Dr
af
tInvolutions when rkS > 1

Consider S be a spherical bundle of Mukai vector
v(S) = (2, 1, g/2).

Theorem
If g ≡ 2 mod 4, then ΦS,1 is a birational involution on S[ g+2

4 ].

Theorem
If g ≥ 10 and 4|(g + 2), then, ΦS,1 is a regular involution on
M(3, 1, g+2

4 ).

Theorem
If g ≥ 2 and v = (v0, 1, g− 1− v0

2 (g/2− 1)) is an integral Mukai
vector with 3 ≤ v0 ≤ 3(g− 1), then ΦS,1 is a birational involution
on M(v).



Dr
af
tInvolutions when rkS > 1

Consider S be a spherical bundle of Mukai vector
v(S) = (2, 1, g/2).

Theorem
If g ≡ 2 mod 4, then ΦS,1 is a birational involution on S[ g+2

4 ].

Theorem
If g ≥ 10 and 4|(g + 2), then, ΦS,1 is a regular involution on
M(3, 1, g+2

4 ).

Theorem
If g ≥ 2 and v = (v0, 1, g− 1− v0

2 (g/2− 1)) is an integral Mukai
vector with 3 ≤ v0 ≤ 3(g− 1), then ΦS,1 is a birational involution
on M(v).



Dr
af
tInvolutions when rkS > 1

Consider S be a spherical bundle of Mukai vector
v(S) = (2, 1, g/2).

Theorem
If g ≡ 2 mod 4, then ΦS,1 is a birational involution on S[ g+2

4 ].

Theorem
If g ≥ 10 and 4|(g + 2), then, ΦS,1 is a regular involution on
M(3, 1, g+2

4 ).

Theorem
If g ≥ 2 and v = (v0, 1, g− 1− v0

2 (g/2− 1)) is an integral Mukai
vector with 3 ≤ v0 ≤ 3(g− 1), then ΦS,1 is a birational involution
on M(v).



Dr
af
tInvolutions when rkS > 1

Consider S be a spherical bundle of Mukai vector
v(S) = (2, 1, g/2).

Theorem
If g ≡ 2 mod 4, then ΦS,1 is a birational involution on S[ g+2

4 ].

Theorem
If g ≥ 10 and 4|(g + 2), then, ΦS,1 is a regular involution on
M(3, 1, g+2

4 ).

Theorem
If g ≥ 2 and v = (v0, 1, g− 1− v0

2 (g/2− 1)) is an integral Mukai
vector with 3 ≤ v0 ≤ 3(g− 1), then ΦS,1 is a birational involution
on M(v).



Dr
af
tAnti-symplectic involutions

Theorem
The involution ΦS,d on M(r,H, r) such that r ≥ 1,
r2 ≤ g < (r + 1)2 and H2 = 2(g− 1) is anti-symplectic.
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