How to cook involutions on moduli space of sheaves of K3 surfaces from a derived category side

Y. Prieto–Montanez ICTP (work in progress with D. Faenzi and G. Menet)

Workshop "Geometry of HyperKähler Varieties"

Hangzhou, China September 6, 2023

Sac

Notation $/_{\mathcal{K}}$

<□ > < ⊡ >

Notation

X denotes a projective K3 surface with a H ∈ Pic(X) an ample class with H² = 2(g − 1) > 0.

Notation

- X denotes a projective K3 surface with a H ∈ Pic(X) an ample class with H² = 2(g − 1) > 0.
- Moduli spaces of sheaves of K3 surfaces are deformation equivalent to the Hilbert scheme of K3 surfaces.

Notation

- X denotes a projective K3 surface with a H ∈ Pic(X) an ample class with H² = 2(g − 1) > 0.
- Moduli spaces of sheaves of K3 surfaces are deformation equivalent to the Hilbert scheme of K3 surfaces.
- D^b(X) denotes the derived category of bounded complex of coherent sheaves.

The spherical twist

The spherical twist

Let S be a spherical object in $D^{b}(X)$. The **spherical twist** associated to S is the auto-equivalence T_{S} on $D^{b}(X)$ given by the FM-transform with kernel \mathcal{P}_{S} defined as the cone

 $\mathcal{P}_{\mathcal{S}} := C(q^* \mathcal{S}^{\vee} \otimes p^* \mathcal{S} \to \mathcal{O}_{\Delta}),$

where p, q are the natural projections $X \times X \rightarrow X$.

The spherical twist

Let S be a spherical object in $D^{b}(X)$. The **spherical twist** associated to S is the auto-equivalence T_{S} on $D^{b}(X)$ given by the FM-transform with kernel \mathcal{P}_{S} defined as the cone

 $\mathcal{P}_{\mathcal{S}} := \mathcal{C}(q^*\mathcal{S}^{\vee} \otimes p^*\mathcal{S} \to \mathcal{O}_{\Delta}),$

where p, q are the natural projections $X \times X \to X$. Note that $\mathcal{P}_{\mathcal{S}}$, is an object that completes $q^* \mathcal{S}^{\vee} \otimes p^* \mathcal{S} \longrightarrow \mathcal{O}_{\Delta} \longrightarrow \mathcal{P}_{\mathcal{S}} \longrightarrow q^* \mathcal{S}^{\vee} \otimes p^* \mathcal{S}[1]$ So,

 $T_{\mathcal{S}}(\mathcal{E}) := C(\bigoplus \operatorname{Hom}(\mathcal{S}, \mathcal{E}[i]) \otimes \mathcal{S}[-i] \xrightarrow{e_{\mathcal{V}}} \mathcal{E}), \ \forall \mathcal{E} \in \mathcal{D}^{b}(\mathcal{X}).$

+ □ > + □ > + □ > + □ > + □ >

Dac

Let ${\mathcal E}$ be a complex:

Let $\mathcal E$ be a complex:

$\cdots \to \mathcal{E}^{i-1} \to \mathcal{E}^{i} \to \mathcal{E}^{i+1} \to \cdots$

with locally free sheaves \mathcal{E}^i ,

Let ${\mathcal E}$ be a complex:

$\cdots \rightarrow \mathcal{E}^{i} \rightarrow \mathcal{E}^{i} \rightarrow \mathcal{E}^{i} \rightarrow \cdots$

with locally free sheaves \mathcal{E}^i , then \mathcal{E}^{\vee} is obtained as $\cdots \rightarrow \operatorname{Hom}(\mathcal{E}^{i+1}, \mathcal{O}_X) \rightarrow \operatorname{Hom}(\mathcal{E}^i, \mathcal{O}_X) \rightarrow \operatorname{Hom}(\mathcal{E}^{i-1}, \mathcal{O}_X) \rightarrow \cdots$

Let ${\mathcal E}$ be a complex:

with locally free sheaves \mathcal{E}^i , then \mathcal{E}^{\vee} is obtained as

 $\rightarrow \mathcal{H}_{om}(\mathcal{E}^{i+1}, \mathcal{O}_{x}) \rightarrow \mathcal{H}_{om}(\mathcal{E}^{i}, \mathcal{O}_{x}) \rightarrow \mathcal{H}_{om}(\mathcal{E}^{i}, \mathcal{O}_{x}) \rightarrow$

Note that if X is regular, then the **derived dual** $\mathcal{E}^{\vee} := \mathbf{R} \operatorname{Hom}(\mathcal{E}, \mathcal{O}_X) \in \mathbf{D}^b(X)$ for any $\mathcal{E} \in \mathbf{D}^b(X)$ where \mathcal{E}^{\vee} is not the usual dual sheaf $\operatorname{Hom}(\mathcal{E}, \mathcal{O}_X)$.

Let ${\mathcal E}$ be a complex:

with locally free sheaves \mathcal{E}^{i} , then \mathcal{E}^{\vee} is obtained as $\dots \rightarrow \mathcal{H}_{om}(\mathcal{E}^{i+1}, \mathcal{O}_{x}) \rightarrow \mathcal{H}_{om}(\mathcal{E}^{i}, \mathcal{O}_{x}) \rightarrow \mathcal{H}_{om}(\mathcal{E}^{i-1}, \mathcal{O}_{x}) \rightarrow \dots$

Note that if X is regular, then the **derived dual** $\mathcal{E}^{\vee} := \mathbf{R} \operatorname{Hom}(\mathcal{E}, \mathcal{O}_X) \in \mathbf{D}^b(X)$ for any $\mathcal{E} \in \mathbf{D}^b(X)$ where \mathcal{E}^{\vee} is not the usual dual sheaf $\operatorname{Hom}(\mathcal{E}, \mathcal{O}_X)$. Moreover, under the assumption of projectivity,

Let ${\mathcal E}$ be a complex:

with locally free sheaves \mathcal{E}^i , then \mathcal{E}^{\vee} is obtained as $\cdots \rightarrow \mathcal{H}_{om}(\mathcal{E}^{i+1}, \mathcal{O}_X) \rightarrow \mathcal{H}_{om}(\mathcal{E}^i, \mathcal{O}_X) \rightarrow \mathcal{H}_{om}(\mathcal{E}^{i-1}, \mathcal{O}_X) \rightarrow \cdots$

Note that if X is regular, then the **derived dual** $\mathcal{E}^{\vee} := \mathbf{R} \operatorname{Hom}(\mathcal{E}, \mathcal{O}_X) \in \mathbf{D}^b(X)$ for any $\mathcal{E} \in \mathbf{D}^b(X)$ where \mathcal{E}^{\vee} is not the usual dual sheaf $\operatorname{Hom}(\mathcal{E}, \mathcal{O}_X)$. Moreover, under the assumption of projectivity, due to the compatibilities of derived tensor product and derived local Hom,

Let ${\mathcal E}$ be a complex:

with locally free sheaves \mathcal{E}^i , then \mathcal{E}^ee is obtained as

 $\cdots \rightarrow \operatorname{Hom}(\mathcal{E}^{i+1}, \mathcal{O}_X) \rightarrow \operatorname{Hom}(\mathcal{E}^i, \mathcal{O}_X) \rightarrow \operatorname{Hom}(\mathcal{E}^{i-1}, \mathcal{O}_X) \rightarrow \cdots$

Note that if X is regular, then the **derived dual** $\mathcal{E}^{\vee} := \mathbf{R} \operatorname{Hom}(\mathcal{E}, \mathcal{O}_X) \in \mathbf{D}^b(X)$ for any $\mathcal{E} \in \mathbf{D}^b(X)$ where \mathcal{E}^{\vee} is not the usual dual sheaf $\operatorname{Hom}(\mathcal{E}, \mathcal{O}_X)$. Moreover, under the assumption of projectivity, due to the compatibilities of derived tensor product and derived local Hom, we obtain

 $\mathcal{F}^{\vee}\otimes \mathcal{E}\simeq \mathcal{R}\mathrm{Hom}(\mathcal{F},\mathcal{O}_X)\otimes \mathcal{E}\simeq \mathcal{R}\mathrm{Hom}(\mathcal{F},\mathcal{E}).$

Let *L* be a line bundle of X.

Let *L* be a line bundle of *X*. Defines $- \otimes L$ as the map on $D^b(X)$ acting by

 $-\otimes L: \mathcal{E} \mapsto \mathcal{E} \otimes L.$

Let *L* be a line bundle of *X*. Defines $- \otimes L$ as the map on $D^{b}(X)$ acting by

 $-\otimes L: \mathcal{E} \mapsto \mathcal{E} \otimes L.$

The map $-\otimes L$ can be seen as a FM-transform with Kernel ι_*L .

Let *L* be a line bundle of *X*. Defines $- \otimes L$ as the map on $D^{b}(X)$ acting by

 $-\otimes L: \mathcal{E} \mapsto \mathcal{E} \otimes L.$

The map $-\otimes L$ can be seen as a FM-transform with Kernel ι_*L . (Optional ingredients:) (?)

Let *L* be a line bundle of *X*. Defines $- \otimes L$ as the map on $D^{b}(X)$ acting by

 $-\otimes L: \mathcal{E} \mapsto \mathcal{E} \otimes L.$

The map $-\otimes L$ can be seen as a FM-transform with Kernel ι_*L .

(Optional ingredients:)

The shift functor, $\mathcal{E} \to \mathcal{E}[1]$, is the FM-transform with kernel $\mathcal{O}_{\Delta}[1]$.

< □ > < 同 > < Ξ > < Ξ >

Let *L* be a line bundle of *X*. Defines $- \otimes L$ as the map on $D^{b}(X)$ acting by

 $-\otimes L: \mathcal{E} \mapsto \mathcal{E} \otimes L.$

The map $-\otimes L$ can be seen as a FM-transform with Kernel ι_*L .

(Optional ingredients:)

The shift functor, $\mathcal{E} \to \mathcal{E}[1]$, is the FM-transform with kernel $\mathcal{O}_{\Delta}[1]$. The Serre functor for a K3 surface, is the FM-transform with kernel $\mathcal{O}_{\Delta}[2]$.

Definition Let \mathcal{S} be a spherical object

Definition Let S be a spherical object and $L \in Pic(X)$.

Definition

Let S be a spherical object and $L \in Pic(X)$. Define $\Phi_{S,L}$ as the following functor on $D^b(X)$:

 $\mathcal{E} \mapsto \Phi_{\mathcal{S}, \mathcal{L}}(\mathcal{E}) = \mathcal{R} \operatorname{Hom}(\mathcal{T}_{\mathcal{S}}(\mathcal{E}), \mathcal{L}).$

Sac

Definition

Let S be a spherical object and $L \in Pic(X)$. Define $\Phi_{S,L}$ as the following functor on $D^b(X)$:

 $\mathcal{E} \mapsto \Phi_{\mathcal{S},L}(\mathcal{E}) = \mathbf{R} \operatorname{Hom}(\mathcal{T}_{\mathcal{S}}(\mathcal{E}), L).$

The functor $\Phi_{\mathcal{S},L}$ on an element $\mathcal{E} \in \mathbf{D}^{b}(X)$ is explicitly given by $\Phi_{\mathcal{S},L} : \mathcal{E} \stackrel{T_{\mathcal{S}}}{\mapsto} \mathcal{T}_{\mathcal{S}}(\mathcal{E}) \stackrel{()^{\vee}}{\mapsto} \mathbf{R} \operatorname{Hom}(\mathcal{T}_{\mathcal{S}}(\mathcal{E}), \mathcal{O}_{X}) \stackrel{-\otimes L}{\mapsto} \mathbf{R} \operatorname{Hom}(\mathcal{T}_{\mathcal{S}}(\mathcal{E}), L).$

Definition

Let S be a spherical object and $L \in Pic(X)$. Define $\Phi_{S,L}$ as the following functor on $D^b(X)$:

 $\mathcal{E} \mapsto \Phi_{\mathcal{S},L}(\mathcal{E}) = \mathbf{R} \operatorname{Hom}(\mathcal{T}_{\mathcal{S}}(\mathcal{E}), L).$

The functor $\Phi_{\mathcal{S},L}$ on an element $\mathcal{E} \in \mathbf{D}^{b}(X)$ is explicitly given by $\Phi_{\mathcal{S},L} : \mathcal{E} \stackrel{T_{\mathcal{S}}}{\mapsto} T_{\mathcal{S}}(\mathcal{E}) \stackrel{()^{\vee}}{\mapsto} \mathbf{R} \operatorname{Hom}(T_{\mathcal{S}}(\mathcal{E}), \mathcal{O}_{X}) \stackrel{-\otimes L}{\mapsto} \mathbf{R} \operatorname{Hom}(T_{\mathcal{S}}(\mathcal{E}), L).$

Is $\Phi_{\mathcal{S},L}$ well-defined on $D^b(X)$?

Definition

Let S be a spherical object and $L \in Pic(X)$. Define $\Phi_{S,L}$ as the following functor on $D^b(X)$:

 $\mathcal{E} \mapsto \Phi_{\mathcal{S},L}(\mathcal{E}) = \mathbf{R} \operatorname{Hom}(\mathcal{T}_{\mathcal{S}}(\mathcal{E}), L).$

The functor $\Phi_{\mathcal{S},L}$ on an element $\mathcal{E} \in \mathbf{D}^{b}(X)$ is explicitly given by $\Phi_{\mathcal{S},L} : \mathcal{E} \stackrel{T_{\mathcal{S}}}{\mapsto} \mathcal{T}_{\mathcal{S}}(\mathcal{E}) \stackrel{()^{\vee}}{\mapsto} \mathbf{R} \operatorname{Hom}(\mathcal{T}_{\mathcal{S}}(\mathcal{E}), \mathcal{O}_{X}) \stackrel{-\otimes L}{\mapsto} \mathbf{R} \operatorname{Hom}(\mathcal{T}_{\mathcal{S}}(\mathcal{E}), L).$

Dac

Is $\Phi_{\mathcal{S},L}$ well-defined on $D^b(X)$? Is it already an involution?

◆□▶ ◆□▶ ◆ 三▶ ◆ □ ▶ ◆ □ ●

▲□▶▲□▶▲三▶▲三▶ 三 りへゆ

◆□▶ ◆□▶ ◆ 三▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

▲□▶▲□▶▲三▶▲三≯ 三 少へ⊙

Is $\Phi_{\mathcal{S},L}$ well-defined on the moduli space of sheaves?

Let $v = (v_o, v_1H, v_2) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector.

Let $v = (v_o, v_1H, v_2) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^2 > 0$.

Let $v = (v_o, v_1H, v_2) \in H(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^2 > 0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E}) = (\operatorname{rk}(\mathcal{E}), c_1(\mathcal{E}), \chi(\mathcal{E}) - \operatorname{rk}(\mathcal{E}))$.

Let $v = (v_o, v_1H, v_2) \in H(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^2 > 0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E}) = (\mathsf{rk}(\mathcal{E}), c_1(\mathcal{E}), \chi(\mathcal{E}) - \mathsf{rk}(\mathcal{E}))$. Set by

 $M(v) := \{ \mathcal{E} \text{ is } H \text{-ss sheaf with } v(\mathcal{E}) = v \} \subset \operatorname{Coh}(X)$ $\Rightarrow [M, 6H, 06, Y] \quad HK \quad Mp^{Ls} \quad ef \quad K3^{C} \quad V^{\frac{2}{2}+2} \text{-type}$

Let $v = (v_o, v_1H, v_2) \in H(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^2 > 0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E}) = (\operatorname{rk}(\mathcal{E}), c_1(\mathcal{E}), \chi(\mathcal{E}) - \operatorname{rk}(\mathcal{E}))$. Set by

 $M(v) := \{\mathcal{E} \text{ is } H \text{-ss sheaf with } v(\mathcal{E}) = v\} \subset \operatorname{Coh}(X)$

1. Is $\Phi_{\mathcal{S},\mathcal{L}}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?

Let $v = (v_o, v_1H, v_2) \in H(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^2 > 0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E}) = (\mathsf{rk}(\mathcal{E}), c_1(\mathcal{E}), \chi(\mathcal{E}) - \mathsf{rk}(\mathcal{E}))$. Set by

 $M(v) := \{\mathcal{E} \text{ is } H \text{-ss sheaf with } v(\mathcal{E}) = v\} \subset \operatorname{Coh}(X)$

Is Φ_{S,L}(E) ∈ Coh(X) for all E ∈ Coh(X)?
What is the order of Φ_{S,L}?

Let $v = (v_o, v_1H, v_2) \in H(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^2 > 0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E}) = (\operatorname{rk}(\mathcal{E}), c_1(\mathcal{E}), \chi(\mathcal{E}) - \operatorname{rk}(\mathcal{E}))$. Set by

 $M(v) := \{\mathcal{E} \text{ is } H\text{-ss sheaf with } v(\mathcal{E}) = v\} \subset \operatorname{Coh}(X)$

1. Is $\Phi_{S,L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$? 2. What is the order of $\Phi_{S,L}$? $\phi_{S,L} \circ H(X, \mathcal{H})$ is an $\mathcal{E} = \mathfrak{v}(S)^{L}$ involution BUT $L \in \mathfrak{v}(S)^{L}$ $\widehat{\mathfrak{MS}}(X)$

Let $v = (v_o, v_1H, v_2) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^2 > 0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E}) = (\mathsf{rk}(\mathcal{E}), c_1(\mathcal{E}), \chi(\mathcal{E}) - \mathsf{rk}(\mathcal{E}))$. Set by

 $M(v) := \{\mathcal{E} \text{ is } H \text{-ss sheaf with } v(\mathcal{E}) = v\} \subset \operatorname{Coh}(X)$

Is Φ_{S,L}(E) ∈ Coh(X) for all E ∈ Coh(X)?
What is the order of Φ_{S,L}?
Is Φ_{S,L}(E) a Herri-stable sheaf for all E ∈ M(v)?
M-shuble ⇒ shuble ⇒ semi-stuble → M-semi-stuble.

Let $v = (v_o, v_1H, v_2) \in \widetilde{H}(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^2 > 0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E}) = (\mathsf{rk}(\mathcal{E}), c_1(\mathcal{E}), \chi(\mathcal{E}) - \mathsf{rk}(\mathcal{E}))$. Set by

 $M(v) := \{\mathcal{E} \text{ is } H\text{-ss sheaf with } v(\mathcal{E}) = v\} \subset \operatorname{Coh}(X)$

- 1. Is $\Phi_{\mathcal{S},L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?
- 2. What is the order of $\Phi_{S,L}$?
- 3. Is $\Phi_{S,L}(\mathcal{E})$ a semi-stable sheaf for all $\mathcal{E} \in M(v)$? If not, where is it? \mathcal{E} ? If $H^{1}(X, \mathcal{E})=0$? (where build be the set of the set o

Let $v = (v_o, v_1H, v_2) \in H(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^2 > 0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E}) = (\mathsf{rk}(\mathcal{E}), c_1(\mathcal{E}), \chi(\mathcal{E}) - \mathsf{rk}(\mathcal{E}))$. Set by

 $M(v) := \{\mathcal{E} \text{ is } H\text{-ss sheaf with } v(\mathcal{E}) = v\} \subset \operatorname{Coh}(X)$

- 1. Is $\Phi_{\mathcal{S},L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?
- 2. What is the order of $\Phi_{S,L}$?
- 3. Is $\Phi_{S,L}(\mathcal{E})$ a semi-stable sheaf for all $\mathcal{E} \in M(v)$? If not, where is it?

< □ > < 回 > < 三 > < 三 >

Dac

4. What is the Mukai vector $v(\Phi_{\mathcal{S},L}(\mathcal{E}))$?

Let $v = (v_o, v_1H, v_2) \in H(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^2 > 0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E}) = (\mathsf{rk}(\mathcal{E}), c_1(\mathcal{E}), \chi(\mathcal{E}) - \mathsf{rk}(\mathcal{E}))$. Set by

 $M(v) := \{\mathcal{E} \text{ is } H\text{-ss sheaf with } v(\mathcal{E}) = v\} \subset \operatorname{Coh}(X)$

- 1. Is $\Phi_{\mathcal{S},L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?
- 2. What is the order of $\Phi_{S,L}$?
- 3. Is $\Phi_{S,L}(\mathcal{E})$ a semi-stable sheaf for all $\mathcal{E} \in M(v)$? If not, where is it?

< □ > < @ > < E > < E >

Dac

- 4. What is the Mukai vector $v(\Phi_{\mathcal{S},L}(\mathcal{E}))$?
- 5. What is the induced map $\Phi^*_{\mathcal{S},L}$ on $H^2(\mathcal{M}(v),\mathbb{Z})$?

Let $v = (v_o, v_1H, v_2) \in H(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^2 > 0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E}) = (\mathsf{rk}(\mathcal{E}), c_1(\mathcal{E}), \chi(\mathcal{E}) - \mathsf{rk}(\mathcal{E}))$. Set by

 $M(v) := \{\mathcal{E} \text{ is } H\text{-ss sheaf with } v(\mathcal{E}) = v\} \subset \operatorname{Coh}(X)$

- 1. Is $\Phi_{\mathcal{S},L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?
- 2. What is the order of $\Phi_{S,L}$?
- 3. Is $\Phi_{S,L}(\mathcal{E})$ a semi-stable sheaf for all $\mathcal{E} \in M(v)$? If not, where is it?

<**□ ▶ <□ ▶ <⊇ ▶ <⊇ ▶**

Dac

- 4. What is the Mukai vector $v(\Phi_{\mathcal{S},L}(\mathcal{E}))$?
- 5. What is the induced map $\Phi^*_{\mathcal{S},L}$ on $H^2(\mathcal{M}(v),\mathbb{Z})$? Is it symplectic

Let $v = (v_o, v_1H, v_2) \in H(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^2 > 0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E}) = (\mathsf{rk}(\mathcal{E}), c_1(\mathcal{E}), \chi(\mathcal{E}) - \mathsf{rk}(\mathcal{E}))$. Set by

 $M(v) := \{\mathcal{E} \text{ is } H\text{-ss sheaf with } v(\mathcal{E}) = v\} \subset \operatorname{Coh}(X)$

- 1. Is $\Phi_{\mathcal{S},L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?
- 2. What is the order of $\Phi_{S,L}$?
- 3. Is $\Phi_{S,L}(\mathcal{E})$ a semi-stable sheaf for all $\mathcal{E} \in M(v)$? If not, where is it?
- 4. What is the Mukai vector $v(\Phi_{\mathcal{S},L}(\mathcal{E}))$?
- 5. What is the induced map $\Phi_{S,L}^*$ on $H^2(M(v),\mathbb{Z})$? Is it symplectic or anti-symplectic? $\oint_{S,L}^* W_{M(v)} = \stackrel{t}{-} W_{M}(v)$

↓□ ▶ ↓ @ ▶ ↓ E ▶ ↓ E ▶

Let $v = (v_o, v_1H, v_2) \in H(X, \mathbb{Z})$ be a Mukai vector. Assume that v is primitive and $v^2 > 0$. The Mukai vector associated to a sheaf \mathcal{E} is given by $v(\mathcal{E}) = (\mathsf{rk}(\mathcal{E}), c_1(\mathcal{E}), \chi(\mathcal{E}) - \mathsf{rk}(\mathcal{E}))$. Set by

 $M(v) := \{\mathcal{E} \text{ is } H\text{-ss sheaf with } v(\mathcal{E}) = v\} \subset \operatorname{Coh}(X)$

- 1. Is $\Phi_{\mathcal{S},L}(\mathcal{E}) \in \operatorname{Coh}(X)$ for all $\mathcal{E} \in \operatorname{Coh}(X)$?
- 2. What is the order of $\Phi_{S,L}$?
- 3. Is $\Phi_{S,L}(\mathcal{E})$ a semi-stable sheaf for all $\mathcal{E} \in M(v)$? If not, where is it?
- 4. What is the Mukai vector $v(\Phi_{\mathcal{S},L}(\mathcal{E}))$?

5. What is the induced map $\Phi_{\mathcal{S},L}^*$ on $H^2(\mathcal{M}(v),\mathbb{Z})$? Is it symplectic or anti-symplectic? $\oint_{\mathcal{S},L}^* W_{\mathcal{M}(v)} = \stackrel{t}{\longrightarrow} W_{\mathcal{M}}(v)$

< □ > < @ > < ≧ > < ≧ >

• If $\Phi = T_S$,

▶ If $\Phi = T_S$, then its induced action on cohomology T_S^H on $\widetilde{H}(X, \mathbb{Z})$ is given by the reflection R_s in the hyperplane orthogonal to the (-2)-class $s \in NS(X)$,

▶ If $\Phi = T_S$, then its induced action on cohomology T_S^H on $\widetilde{H}(X, \mathbb{Z})$ is given by the reflection R_s in the hyperplane orthogonal to the (-2)-class $s \in NS(X)$,

 $R_s: w \mapsto w + \langle w, s \rangle \cdot v(\mathcal{S}).$

▶ If $\Phi = T_S$, then its induced action on cohomology T_S^H on $\widetilde{H}(X, \mathbb{Z})$ is given by the reflection R_s in the hyperplane orthogonal to the (-2)-class $s \in NS(X)$,

 $R_s: w \mapsto w + \langle w, s \rangle \overline{\cdot v(\mathcal{S})}.$

▶ If $\Phi = T_S$, then its induced action on cohomology T_S^H on $\widetilde{H}(X, \mathbb{Z})$ is given by the reflection R_s in the hyperplane orthogonal to the (-2)-class $s \in NS(X)$,

 $R_s: w \mapsto w + \langle w, s \rangle \cdot v(\mathcal{S}).$

Sac

• If $\Phi = ()^{\vee}$, then $\Phi^{H} = \mathbb{D} := (x, yD, z) \mapsto (x, -yD, z)$.

▶ If $\Phi = T_S$, then its induced action on cohomology T_S^H on $\widetilde{H}(X, \mathbb{Z})$ is given by the reflection R_s in the hyperplane orthogonal to the (-2)-class $s \in NS(X)$,

 $R_s: w \mapsto w + \langle w, s \rangle \overline{\cdot v(\mathcal{S})}.$

If $\Phi = ()^{\vee}$, then $\Phi^{H} = \mathbb{D} := (x, yD, z) \mapsto (x, -yD, z)$. If $\Phi = - \otimes L$,

▶ If $\Phi = T_S$, then its induced action on cohomology T_S^H on $\widetilde{H}(X, \mathbb{Z})$ is given by the reflection R_s in the hyperplane orthogonal to the (-2)-class $s \in NS(X)$,

 $R_s: w \mapsto w + \langle w, s \rangle \overline{\cdot v(\mathcal{S})}.$

► If $\Phi = ()^{\vee}$, then $\Phi^H = \mathbb{D} := (x, yD, z) \mapsto (x, -yD, z)$. ► If $\Phi = - \otimes L$, then Φ^H is given by

 $(x, yD, z) \stackrel{-\otimes L^{H}}{\mapsto} (x, xL + yD, \frac{L^{2}}{2}x + (D \cdot L)y + xz),$

<<u>↓□ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶</u>

Dac

▶ If $\Phi = T_S$, then its induced action on cohomology T_S^H on $\widetilde{H}(X, \mathbb{Z})$ is given by the reflection R_s in the hyperplane orthogonal to the (-2)-class $s \in NS(X)$,

 $R_s: w \mapsto w + \langle w, s \rangle \overline{\cdot v(\mathcal{S})}.$

If Φ = ()[∨], then Φ^H = D := (x, yD, z) → (x, -yD, z).
If Φ = - ⊗ L, then Φ^H is given by

$$(x, yD, z) \stackrel{-\otimes L^H}{\mapsto} (x, xL + yD, \frac{L^2}{2}x + (D \cdot L)y + xz),$$

the multiplication (cup product of cohomology classes) with the Chern character $ch(L) = exp(c_1(L)) = (1, L, L^2/2)$.

<□▶
<□▶
<=▶
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>

A sheaf is sending in a sheaf set by $L = O_X(dH)$

Set by $L = \mathcal{O}_X(d\mathcal{H})$ and by $\Phi_{\mathcal{S},d} := \Phi_{\mathcal{S},\mathcal{O}_X(d\mathcal{H})}$.

Set by $L = \mathcal{O}_X(dH)$ and by $\Phi_{S,d} := \Phi_{S,\mathcal{O}_X(dH)}$. Assume that \mathcal{E} is a torsion free sheaf,

Set by $L = \mathcal{O}_X(dH)$ and by $\Phi_{S,d} := \Phi_{S,\mathcal{O}_X(dH)}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^1(S,\mathcal{E}) = \operatorname{Ext}^2(S,\mathcal{E}) = 0$,

Set by $L = \mathcal{O}_X(d\mathcal{H})$ and by $\Phi_{\mathcal{S},d} := \Phi_{\mathcal{S},\mathcal{O}_X(d\mathcal{H})}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^1(\mathcal{S},\mathcal{E}) = \operatorname{Ext}^2(\mathcal{S},\mathcal{E}) = 0$, and $\operatorname{coker}(\operatorname{Hom}_X(\mathcal{S},\mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_X} \mathcal{E})$ is a torsion sheaf.

Set by $L = \mathcal{O}_X(d\mathcal{H})$ and by $\Phi_{\mathcal{S},d} := \Phi_{\mathcal{S},\mathcal{O}_X(d\mathcal{H})}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^1(\mathcal{S},\mathcal{E}) = \operatorname{Ext}^2(\mathcal{S},\mathcal{E}) = 0$, and $\operatorname{coker}(\operatorname{Hom}_X(\mathcal{S},\mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_{\aleph}} \mathcal{E})$ is a torsion sheaf. We can compute $\Phi_{\mathcal{S},d}$ as:

 $E \mapsto \phi_{s,d}(\varepsilon) = R \operatorname{Hom}_{\kappa}(T_s(\varepsilon), O_{\chi}(dH)).$

Set by $L = \mathcal{O}_X(d\mathcal{H})$ and by $\Phi_{\mathcal{S},d} := \Phi_{\mathcal{S},\mathcal{O}_X(d\mathcal{H})}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^1(\mathcal{S},\mathcal{E}) = \operatorname{Ext}^2(\mathcal{S},\mathcal{E}) = 0$, and $\operatorname{coker}(\operatorname{Hom}_X(\mathcal{S},\mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_{\mathcal{K}}} \mathcal{E})$ is a torsion sheaf. We can compute $\Phi_{\mathcal{S},d}$ as:

 $\varepsilon \mapsto \phi_{s,d}(\varepsilon) = R Hom_{\kappa}(T_{s}(\varepsilon), O_{\kappa}(dH)).$

Take the dual by $\mathcal{O}_X(dH)$ of the distinguish triangle associated to e_v ,

Set by $L = \mathcal{O}_X(dH)$ and by $\Phi_{\mathcal{S},d} := \Phi_{\mathcal{S},\mathcal{O}_X(dH)}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^1(\mathcal{S},\mathcal{E}) = \operatorname{Ext}^2(\mathcal{S},\mathcal{E}) = 0$, and $\operatorname{coker}(\operatorname{Hom}_X(\mathcal{S},\mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_{\mathcal{K}}} \mathcal{E})$ is a torsion sheaf. We can compute $\Phi_{\mathcal{S},d}$ as:

 $E \mapsto \phi_{s,d}(\varepsilon) = R \operatorname{Hom}_{\kappa}(T_{s}(\varepsilon), O_{\kappa}(dH)).$

Take the dual by $\mathcal{O}_X(dH)$ of the distinguish triangle associated to e_v , we obtain

 $\mathsf{R} \operatorname{Hom}_{\mathsf{X}}(\mathsf{E},\mathsf{W}_{\mathsf{X}}(\mathsf{d}\mathsf{H})) \xrightarrow{} \mathsf{R} \operatorname{Hom}_{\mathsf{X}}(\mathsf{S},\mathsf{E})^{\mathsf{V}} \otimes \mathsf{S}^{\mathsf{V}} \otimes \mathsf{G}_{\mathsf{X}}(\mathsf{d}\mathsf{H}) \xrightarrow{} \varphi_{\mathsf{S},\mathfrak{g}}(\mathsf{E})$

Set by $L = \mathcal{O}_X(dH)$ and by $\Phi_{S,d} := \Phi_{S,\mathcal{O}_X(dH)}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^1(\mathcal{S},\mathcal{E}) = \operatorname{Ext}^2(\mathcal{S},\mathcal{E}) = 0$, and $\operatorname{coker}(\operatorname{Hom}_X(\mathcal{S},\mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_X} \mathcal{E})$ is a torsion sheaf. We can compute $\Phi_{S,d}$ as:

$$\varepsilon \mapsto \phi_{s,d}(\varepsilon) = R \operatorname{Hom}_{\kappa}(T_{s}(\varepsilon), O_{x}(dH))$$

Take the dual by $\mathcal{O}_X(dH)$ of the distinguish triangle associated to e_v , we obtain

 $\begin{array}{l} \mathsf{R} \xrightarrow{} \mathsf{Hom}_{\mathsf{X}}(\mathcal{E}, \mathcal{O}_{\mathsf{X}}(\mathcal{A} \mathsf{H})) \xrightarrow{} \mathsf{R} \operatorname{Hom}_{\mathsf{X}}(\mathcal{S}, \mathcal{E}) \xrightarrow{\mathsf{V}} \mathcal{O}_{\mathsf{X}} \xrightarrow{\mathsf{V}} \mathcal{O}_{\mathsf{X}}(\mathcal{A} \mathsf{H}) \xrightarrow{} \varphi_{\mathcal{S}, \mathfrak{X}}(\mathcal{E}) \\ \mathsf{Hence}, \end{array}$

 $\mathcal{H}^{1}(\varphi_{s,d}(\varepsilon)) \rightarrow \mathcal{H}_{on}(\varepsilon,0,\varepsilon(dH)) \rightarrow \mathcal{H}_{on}(s,\varepsilon) \otimes S^{\vee} \otimes \mathcal{O}_{s}(dH) \rightarrow \mathcal{H}^{1}(\varphi_{s,d}(\varepsilon)) \rightarrow \mathcal{E}_{s}\mathcal{H}^{1}(\varepsilon,0,\varepsilon(dH)) \rightarrow \mathcal{H}^{1}(\varphi_{s,d}(\varepsilon)) \rightarrow \mathcal{E}_{s}\mathcal{H}^{1}(\varepsilon,0,\varepsilon(dH)) \rightarrow \mathcal{H}^{1}(\varphi_{s,d}(\varepsilon)) \rightarrow \mathcal{H}^{1}(\varphi_{$

Set by $L = \mathcal{O}_X(dH)$ and by $\Phi_{\mathcal{S},d} := \Phi_{\mathcal{S},\mathcal{O}_X(dH)}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^1(\mathcal{S},\mathcal{E}) = \operatorname{Ext}^2(\mathcal{S},\mathcal{E}) = 0$, and $\operatorname{coker}(\operatorname{Hom}_X(\mathcal{S},\mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_{\mathsf{X}}} \mathcal{E})$ is a torsion sheaf. We can compute $\Phi_{\mathcal{S},d}$ as:

 $E \mapsto \phi_{s,d}(\varepsilon) = R \operatorname{Hom}_{\kappa}(T_s(\varepsilon), O_{\kappa}(dH)).$

Take the dual by $\mathcal{O}_{X}(dH)$ of the distinguish triangle associated to e_{v} , we obtain \mathbb{R} Hom $(\mathcal{E}, \mathcal{O}_{X}(dH)) \rightarrow \mathbb{R}$ Hom $_{X}(s, \mathcal{E})^{\vee} \otimes S^{\vee} \otimes (\mathcal{O}_{X}(dH)) \rightarrow \varphi_{s, h} \in \mathbb{C}^{2}$

K Hom $(\mathcal{E}, \mathcal{O}_{X}(dH)) \rightarrow \mathbb{R}$ Hom $(S, \mathcal{E}) \otimes S^{\vee} \otimes \mathcal{O}_{X}(dH) \rightarrow \Phi_{S,d}(\mathcal{E})$ Hence, $\mathcal{H}^{i}(\Phi_{S,d}(\mathcal{E})) \rightarrow \mathcal{H}_{om}(S, \mathcal{E}) \otimes S^{\vee} \otimes \mathcal{O}_{X}(dH) \rightarrow \mathcal{H}^{i}(\Phi_{S,d}(\mathcal{E})) \rightarrow \mathcal{E}_{X}^{i}(\mathcal{E}, \mathcal{O}_{X}(dH)) \rightarrow \mathcal{H}_{om}(S, \mathcal{E}) \otimes S^{\vee} \otimes \mathcal{O}_{X}(dH) \rightarrow \mathcal{H}^{i}(\Phi_{S,d}(\mathcal{E})) \rightarrow \mathcal{E}_{X}^{i}(\mathcal{E}, \mathcal{O}_{X}(dH)) \rightarrow \mathcal{H}_{om}(S, \mathcal{E}) \otimes S^{\vee} \otimes \mathcal{O}_{X}(dH) \rightarrow \mathcal{H}^{i}(\Phi_{S,d}(\mathcal{E})) \rightarrow \mathcal{E}_{X}^{i}(\mathcal{E}, \mathcal{O}_{X}(dH)) \rightarrow \mathcal{H}_{om}(S, \mathcal{E}) \otimes S^{\vee} \otimes \mathcal{O}_{X}(dH) \rightarrow \mathcal{H}^{i}(\Phi_{S,d}(\mathcal{E})) \rightarrow \mathcal{E}_{X}^{i}(\mathcal{E}, \mathcal{O}_{X}(\mathcal{E})) \rightarrow \mathcal{H}_{om}(S, \mathcal{E}) \otimes S^{\vee} \otimes \mathcal{O}_{X}(\mathcal{E}) \rightarrow \mathcal{H}^{i}(\mathcal{O}_{X}(\mathcal{E})) \rightarrow \mathcal{H}_{om}(S, \mathcal{E}) \otimes S^{\vee} \otimes \mathcal{O}_{X}(\mathcal{E}) \rightarrow \mathcal{H}_{om}(\mathcal{E}) \rightarrow \mathcal{H}_{om}(S, \mathcal{E}) \rightarrow \mathcal{H}_{om}(S, \mathcal{H}) \rightarrow \mathcal{H}_{om}(S, \mathcal{E}) \rightarrow \mathcal{H}_{om}(S, \mathcal{H}) \rightarrow \mathcal{H}_{om}(S, \mathcal{$

□ ▶ ◀ @ ▶ ◀ Ē ▶ ◀ Ē ▶ Ē ዏ

Set by $L = \mathcal{O}_X(d\mathcal{H})$ and by $\Phi_{\mathcal{S},d} := \Phi_{\mathcal{S},\mathcal{O}_X(d\mathcal{H})}$. Assume that \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^1(\mathcal{S},\mathcal{E}) = \operatorname{Ext}^2(\mathcal{S},\mathcal{E}) = 0$, and $\operatorname{coker}(\operatorname{Hom}_X(\mathcal{S},\mathcal{E}) \otimes \mathcal{S} \xrightarrow{e_{\mathcal{K}}} \mathcal{E})$ is a torsion sheaf. We can compute $\Phi_{\mathcal{S},d}$ as:

 $E \mapsto \phi_{s,d}(\varepsilon) = R \operatorname{Hom}_{\kappa}(T_{s}(\varepsilon), O_{\kappa}(dH)).$

Take the dual by $\mathcal{O}_X(dH)$ of the distinguish triangle associated to e_v , we obtain

 $\begin{array}{c} \mathsf{R} \rightarrow \mathsf{Hom}_{\mathsf{X}}(\varepsilon, \omega_{\mathsf{X}}(\mathsf{d}\mathsf{H})) \rightarrow \mathsf{R} \rightarrow \mathsf{Hom}_{\mathsf{X}}(s, \varepsilon)^{\mathsf{V}} \otimes s^{\mathsf{V}} \otimes \mathsf{G}_{\mathsf{X}}(\mathsf{d}\mathsf{H}) \rightarrow \mathsf{f}_{\mathsf{S}}(\varepsilon) \\ \mathsf{Hence}, \end{array}$

 $\begin{array}{l} \mathcal{H}^{\prime}(\Phi_{\mathcal{S},d}(\mathcal{E})) \xrightarrow{} \mathcal{H}_{om}(\mathcal{E}, \mathcal{O}_{\mathcal{S}}(\mathcal{A}\mathcal{H})) \xrightarrow{} \mathcal{H}_{om}(\mathcal{S}, \mathcal{E})^{\vee}_{\mathcal{S}} \xrightarrow{} \mathcal{O}_{\mathcal{S}}(\mathcal{O}_{\mathcal{S}}(\mathcal{A}\mathcal{H})) \xrightarrow{} \mathcal{H}^{\prime}(\Phi_{\mathcal{S},d}(\mathcal{E})) \xrightarrow{} \mathcal{E} \times \mathcal{H}^{\prime}(\mathcal{E}, \mathcal{O}_{\mathcal{S}}(\mathcal{A}\mathcal{H})) \xrightarrow{} \mathcal{O} \\ \text{Under free assumption that coker}(e_{v}) \text{ is torsion sheaf, we have} \\ \mathcal{H}^{-1}(\Phi_{\mathcal{S},d}(\mathcal{E})) = 0. \text{ Since } \mathcal{E} \text{ is a torsion free sheaf,} \\ \text{Ext}^{p}(\mathcal{E}, \mathcal{O}_{X}) = 0 \text{ for all } p \geq 2. \end{array}$

Set by $L = \mathcal{O}_X(dH)$ and by $\Phi_{\mathcal{S},d} := \Phi_{\mathcal{S},\mathcal{O}_X(dH)}$. Assume that \mathcal{E} is a forsion free sheaf, $\text{Ext}^1(\mathcal{S}, \mathcal{E}) = \text{Ext}^2(\mathcal{S}, \mathcal{E}) = 0$, and $\operatorname{coker}(\operatorname{Hom}_X(\mathcal{S},\mathcal{E})\otimes \mathcal{S} \xrightarrow{e_V} \mathcal{E})$ is a torsion sheaf. We can compute $\Phi_{S,d}$ as:

 $\varepsilon \mapsto \phi_{s,s}(\varepsilon) = R \operatorname{Hom}_{\kappa}(T_{s}(\varepsilon), O_{\kappa}(dH)).$

Take the dual by $\mathcal{O}_{X}(dH)$ of the distinguish triangle associated

to e_v , we obtain $R \rightarrow R$ $(\varepsilon, \omega_x(dH)) \rightarrow R + \omega_x(s, \varepsilon)^{\vee} \otimes S^{\vee} \otimes (\sigma, dH) \rightarrow \varphi_{s, d}(\varepsilon)$ Hence.

 $\mathcal{H}^{(d_{s_{d}}(\varepsilon))} \rightarrow \mathcal{H}_{m_{s}}(\varepsilon, \varepsilon, \varepsilon) \xrightarrow{}_{\mathscr{O}} S^{\vee}_{\mathscr{O}} \mathcal{O}_{\mathcal{O}}(\varepsilon, \varepsilon) \rightarrow \mathcal{H}^{(d_{s_{d}}(\varepsilon))} \rightarrow \mathcal{E}_{\mathcal{H}}^{(d_{s_{d}}(\varepsilon))} \rightarrow \mathcal{O}_{\mathcal{O}}^{(d_{s_{d}}(\varepsilon))} \rightarrow \mathcal{O}_{\mathcalO}^{(d_{s_{d}}(\varepsilon))} \rightarrow \mathcal$ $\mathcal{H}^{-1}(\Phi_{\mathcal{S},d}(\mathcal{E})) = 0$. Since \mathcal{E} is a torsion free sheaf, $\operatorname{Ext}^{p}(\mathcal{E}, \mathcal{O}_{X}) = 0$ for all p > 2. So.

< □ > < □ >

$$\Phi_{\mathcal{S},d}(\mathcal{E})=\mathcal{H}^0(\Phi_{\mathcal{S},d}(\mathcal{E})).$$

The Mukai vector of $\Phi_{\mathcal{S},d}(\mathcal{E})$.

The Mukai vector of $\Phi_{\mathcal{S},d}(\mathcal{E})$.

Explicitly computations show that

 $v(\Phi_{\mathcal{S},d}(\mathcal{E})) = D \circ R_{\mathcal{S}}(v) \otimes \mathcal{O}_{X}(d\mathcal{H}).$

The Mukai vector of $\Phi_{\mathcal{S},d}(\mathcal{E})$.

Explicitly computations show that

 $v(\Phi_{\mathcal{S},d}(\mathcal{E})) = D \circ R_{\mathcal{S}}(v) \otimes \mathcal{O}_{X}(d\mathcal{H}).$

Implying that d = 0 or d = 1.

The Mukai vector of $\Phi_{\mathcal{S},d}(\mathcal{E})$. Explicitly computations show that $v(\Phi_{\mathcal{S},d}(\mathcal{E})) = D \circ \mathcal{R}_{\mathcal{S}}(v) \otimes \mathcal{O}_{\mathcal{X}}(d\mathcal{H}).$ Implying that d = 0 or d = 1. Assume that $Hom(\mathcal{S}, \mathcal{E}) \neq 0$,

Sac

The Mukai vector of $\Phi_{\mathcal{S},d}(\mathcal{E})$. Explicitly computations show that $v(\Phi_{\mathcal{S},d}(\mathcal{E})) = D \circ \mathcal{R}_{\mathcal{S}}(v) \otimes \mathcal{O}_{\mathcal{X}}(d\mathcal{H}).$ Implying that d = 0 or d = 1. Assume that $Hom(\mathcal{S}, \mathcal{E}) \neq 0$, then Case d = 0:

The Mukai vector of $\Phi_{S,d}(\mathcal{E})$. Explicitly computations show that $v(\Phi_{\mathcal{S},d}(\mathcal{E})) = D \circ \mathcal{R}_{\mathcal{S}}(v) \otimes \mathcal{O}_{\mathcal{X}}(d\mathcal{H}).$ Implying that d = 0 or d = 1. Assume that $Hom(\mathcal{S}, \mathcal{E}) \neq 0$, then Case d = 0: $v(\Phi_{\mathcal{S},0}(\mathcal{E})) = v$ iff $\mathcal{S} = \mathcal{O}_X$ and $v_0 = v_2$.

Dac

The Mukai vector of $\Phi_{S,d}(\mathcal{E})$. Explicitly computations show that $v(\Phi_{\mathcal{S},d}(\mathcal{E})) = D \circ \mathcal{R}_{\mathcal{S}}(v) \otimes \mathcal{O}_{\mathcal{X}}(d\mathcal{H}).$ Implying that d = 0 or d = 1. Assume that $Hom(\mathcal{S}, \mathcal{E}) \neq 0$, then Case d = 0: $v(\Phi_{\mathcal{S},0}(\mathcal{E})) = v$ iff $\mathcal{S} = \mathcal{O}_X$ and $v_0 = v_2$. Case d = 1:

Dac

<u>The Mu</u>kai vector of $\Phi_{S,d}(\mathcal{E})$. Explicitly computations show that $v(\Phi_{\mathcal{S},d}(\mathcal{E})) = D \circ R_{\mathcal{S}}(v) \otimes \mathcal{O}_{\mathcal{X}}(d\mathcal{H}).$ Implying that d = 0 or d = 1. Assume that $Hom(\mathcal{S}, \mathcal{E}) \neq 0$, then Case d = 0: $v(\Phi_{S,0}(\mathcal{E})) = v$ iff $S = \mathcal{O}_X$ and $v_0 = v_2$. **Case** d = 1: $v(\Phi_{S,1}(\mathcal{E})) = (v_0, v_1 H, v_2)$ iff v(S) = (2, 1, g/2) and $2v_2 = (2q-2)v_1 - v_0(q/2-1).$

when $\Phi_{\mathcal{S},d}(\mathcal{E})$ is slope-stable?

Key points: , Ext'(S,E)=Ext2(SE)=0 i) $\phi(\varepsilon)$ is horsion free? Yes and > Cover lov is suff. on isolated points.

ii) In addition: $\phi(\varepsilon)$ is M-stable? Yes if Kor(ev) is M-stable !

when $\Phi_{\mathcal{S},d}(\mathcal{E})$ is slope-stable?

Key points: , Ext'(S,E)=Ext(S,E)=0 i) $\phi(\varepsilon)$ is forsion free? Yes and Scover Rv is suff. on isolated foints.

ii) In addition: $\phi(\varepsilon)$ is M-stable? Yes if Kor(Rv) is M-stable !

<□▶ <⊡▶ < ⊇▶ < ⊇▶ Ξ

Again under ass $Ext^{1}(S, E) = Ext^{2}(S, E) = 0$ & $Hom(S, E) \neq 0$ $+ \sqrt{(\phi_{S,d}(E))} = \sqrt{(E)} = C_{1}(E) = H$

when $\Phi_{\mathcal{S},d}(\mathcal{E})$ is slope-stable?

Key points: , Ext¹(S,E)=Ext²(S,E)=0 i) $\phi(\varepsilon)$ is forsion free? Yes and S Cover Ev is suff. on isolated points. ii) In addition: $\phi(\varepsilon)$ is M-stable? Yes if Ker(ev) is M-stable ! Again under ass. & $Hom(S, E) \neq 0$ $Ext^{1}(s, e) = Ext^{2}(s, e) = 0$ + $\mathcal{N}(\phi_{s,d}(\epsilon)) = \Psi(\epsilon) \times \mathcal{L}(\epsilon) = H$) Coker Ry is supp on isol. Points & Kor (RV) is H-

Main Results when $\operatorname{rk} \mathcal{S} = 1$

Theorem (Faenzi, Menet, P)

Let X be a projective K3 surface with $H \in Pic(X)$ and $H^2 = 2(g-1)$. Let $r \ge 1$ be an integer with $r^2 \le g < (r+1)^2$. Then, $\Phi_{S,d}$ is a well-defined involution on M(r,H,r).

Relaxing conditions on g and r, the map is a birational involution!

Sac

Corollary

Assuming $r \ge 2$ and dim $M(v) \ge 2$. Then, $\Phi_{S,d}$ defines a birational involution on M(r, 1, r).

Relaxing conditions on g and r, the map is a birational involution!

Dac

Corollary

Assuming $r \ge 2$ and dim $M(v) \ge 2$. Then, $\Phi_{S,d}$ defines a birational involution on M(r, 1, r).

Example (r = 1)

Beauville's involution. $H(V) = H(1, H, 1) = X^{CJ-J}$ $J_{2}(H) \Rightarrow latin dural: Ext^{1}(J_{2}(H), 0x) \sim W_{2}$ $B_{0}t = 2cX$ of length 1 or 2 $\Rightarrow W_{2} \simeq 0z$.

Relaxing conditions on q and r, the map is a birational involution!

Corollary

Assuming $r \geq 2$ and dim $M(v) \geq 2$. Then, $\Phi_{S,d}$ defines a > Lit L < R³ sponned by 2 birational involution on M(r, 1, r).

Beauville's involution. $M(V) = M(1, H, 1) = X^{[3-1]}$ $\begin{array}{l} \mathcal{J}_{2}(H) \implies \text{lacin dual}: Ext^{1}(\mathcal{Z}_{2}(H), \mathcal{O}_{X}) \stackrel{N}{\longrightarrow} \mathcal{O}_{Z} \\ & \mathcal{B}_{0}t \quad \mathcal{Z}_{CX} \quad \text{ef langth 1 or 2} \\ \implies \mathcal{W}_{2} \stackrel{N}{\longrightarrow} \mathcal{O}_{Z} \\ & \mathcal{I}_{1} \quad \mathcal{J}_{2} \quad \mathcal{J}_{2}$

Relaxing conditions on g and r, the map is a birational involution!

Corollary

Assuming $r \ge 2$ and dim $M(v) \ge 2$. Then, $\Phi_{S,d}$ defines a birational involution on M(r, 1, r).

Example (r = 1)

Beauville's involution. $H(v) = H(1, H, 1) = X^{(3-1)}$ $\Im_{2}(H) \implies latin dual: Ext^{1}(J_{2}(H), (0_{X}) \stackrel{n}{\longrightarrow} (W_{2}) \stackrel{n}{\longrightarrow} (E_{3}(H)) \stackrel{1}{\longrightarrow} (E_{2}(H)) \stackrel{n}{\longrightarrow} (E_{2}(H)) \stackrel{n$

Relaxing conditions on g and r, the map is a birational involution!

Corollary

Assuming $r \ge 2$ and dim $M(v) \ge 2$. Then, $\Phi_{S,d}$ defines a birational involution on M(r, 1, r).

Example (r = 1)

Beauville's involution.

There exist two involutions on M(2,1,2) for $g \ge 5$.

Consider S be a spherical bundle of Mukai vector v(S) = (2, 1, g/2).

Consider S be a spherical bundle of Mukai vector v(S) = (2, 1, g/2).

Theorem

If $g \equiv 2 \mod 4$, then $\Phi_{S,1}$ is a birational involution on $S^{\left[\frac{q+2}{4}\right]}$.

Consider S be a spherical bundle of Mukai vector v(S) = (2, 1, g/2).

Theorem

If $g \equiv 2 \mod 4$, then $\Phi_{S,1}$ is a birational involution on $S^{\left[\frac{q+2}{4}\right]}$.

Theorem If $g \ge 10$ and 4|(g + 2), then, $\Phi_{S,1}$ is a regular involution on $M(3, 1, \frac{g+2}{4})$.

Consider S be a spherical bundle of Mukai vector v(S) = (2, 1, g/2).

Theorem

If $g \equiv 2 \mod 4$, then $\Phi_{S,1}$ is a birational involution on $S^{\left[\frac{q+2}{4}\right]}$.

Theorem

If $g \ge 10$ and 4|(g + 2), then, $\Phi_{S,1}$ is a regular involution on $M(3, 1, \frac{g+2}{4})$.

Theorem

If $g \ge 2$ and $v = (v_0, 1, g - 1 - \frac{v_0}{2}(g/2 - 1))$ is an integral Mukai vector with $3 \le v_0 \le 3(g - 1)$, then $\Phi_{S,1}$ is a birational involution on M(v).

Anti-symplectic involutions

Theorem The involution $\Phi_{S,d}$ on M(r,H,r) such that $r \ge 1$, $r^2 \le g < (r+1)^2$ and $H^2 = 2(g-1)$ is anti-symplectic.

Dac

Anti-symplectic involutions

Theorem The involution $\Phi_{S,d}$ on M(r,H,r) such that $r \ge 1$, $r^2 \le g < (r+1)^2$ and $H^2 = 2(g-1)$ is anti-symplectic.

Anti-symplectic involutions

Theorem The involution $\Phi_{S,d}$ on M(r,H,r) such that $r \geq 1$, 2 endound ab $r^{2} \leq g < (r+1)^{2}$ and $H^{2} = 2(g-1)$ is anti-symplectic. H2(H(N),2)) \$ and (H2(H(N),2)) \$ -> Lattice theory : Sac

谢谢 (thanks)

< ->

Coming soon on ArXiv... (We hope)

谢谢 (thanks)

< □