Brill-Noether reconstruction for Fano 3folds and applications

Zhiyu Liu

IASM at Zhejiang University

September 3, 2023

Zhiyu Liu (Zhejiang University)

Brill-Noether reconstruction for Fano 3folds

September 3, 2023

• • = • • = •

э

Let X be a Fano 3fold.

• If Picard number $\rho(X) = 1$, we call X prime. In this case $\operatorname{Pic}(X) \cong \mathbb{Z}$.

Let X be a Fano 3fold.

- If Picard number $\rho(X) = 1$, we call X prime. In this case $\operatorname{Pic}(X) \cong \mathbb{Z}$.
- Let H be the ample generator of Pic(X), the **degree** of X is deg $X := H^{\dim X}$.

Let X be a Fano 3fold.

- If Picard number $\rho(X) = 1$, we call X prime. In this case $\operatorname{Pic}(X) \cong \mathbb{Z}$.
- Let H be the ample generator of Pic(X), the **degree** of X is deg $X := H^{\dim X}$.
- The positive integer *i* such that $-K_X = iH$ is called the **index** of *X*.

• index i = 4: \mathbb{P}^3 .

э

- index i = 4: \mathbb{P}^3 .
- index i = 3: quadric 3folds in \mathbb{P}^4 .

э

- index i = 4: \mathbb{P}^3 .
- index i = 3: quadric 3folds in \mathbb{P}^4 .
- index i = 2: $1 \le d \le 5$. Example: quartic double solids (d = 2) and cubic 3folds (d = 3).

< ∃ ▶

- index i = 4: \mathbb{P}^3 .
- index i = 3: quadric 3folds in \mathbb{P}^4 .
- index i = 2: $1 \le d \le 5$. Example: quartic double solids (d = 2) and cubic 3folds (d = 3).
- index i = 1: $2 \le d \le 22$ is even and $d \ne 20$. Example: Gushel–Mukai 3folds (d = 10) and codimension five linear sections of Gr(2, 6) (d = 14).

Kuznetsov components

• Let Y be an index 2 prime Fano 3fold, then we have a semi-orthogonal decomposition:

$$D^{b}(Y) = \langle \mathcal{K}u(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(H) \rangle.$$

In other words, $E \in \mathcal{K}u(Y)$ if and only if $\operatorname{RHom}(\mathcal{O}_Y(kH), E) = 0$ for $0 \le k \le 1$.

Kuznetsov components

• Let Y be an index 2 prime Fano 3fold, then we have a semi-orthogonal decomposition:

$$D^{b}(Y) = \langle \mathcal{K}u(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(H) \rangle.$$

In other words, $E \in \mathcal{K}u(Y)$ if and only if $\operatorname{RHom}(\mathcal{O}_Y(kH), E) = 0$ for $0 \le k \le 1$.

Let X be an index 1 prime Fano 3fold of degree d ≥ 10, then we have a semi-orthogonal decomposition:

$$\mathsf{D}^{b}(X) = \langle \mathcal{K}u(X), \mathcal{E}_{X}, \mathcal{O}_{X} \rangle$$

where \mathcal{E}_X is a stable vector bundle on X. In other words, $E \in \mathcal{K}u(X)$ if and only if $\operatorname{RHom}(\mathcal{O}_X, E) = \operatorname{RHom}(\mathcal{E}, E) = 0$.

► 4 Ξ ►

Kuznetsov components

• Let Y be an index 2 prime Fano 3fold, then we have a semi-orthogonal decomposition:

$$D^{b}(Y) = \langle \mathcal{K}u(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(H) \rangle.$$

In other words, $E \in \mathcal{K}u(Y)$ if and only if $\operatorname{RHom}(\mathcal{O}_Y(kH), E) = 0$ for $0 \le k \le 1$.

Let X be an index 1 prime Fano 3fold of degree d ≥ 10, then we have a semi-orthogonal decomposition:

$$D^{b}(X) = \langle \mathcal{K}u(X), \mathcal{E}_{X}, \mathcal{O}_{X} \rangle$$

where \mathcal{E}_X is a stable vector bundle on X. In other words, $E \in \mathcal{K}u(X)$ if and only if $\operatorname{RHom}(\mathcal{O}_X, E) = \operatorname{RHom}(\mathcal{E}, E) = 0$.

The category $\mathcal{K}u$ is called the **Kuznetsov component**. It is a **non-commutative smooth projective variety** in the sense of Orlov.

• Let X be an index 1 prime Fano 3fold of degree d = 12, 16 or 18. Then $\mathcal{K}u(X) \simeq D^b(\mathcal{C}_X)$ for the smooth projective curve \mathcal{C}_X associated with X.

- Let X be an index 1 prime Fano 3fold of degree d = 12, 16 or 18. Then
 Ku(X) ≃ D^b(C_X) for the smooth projective curve C_X associated with X.
- Let Y be a cubic 3fold. Then $\mathcal{K}u(Y)$ is $\frac{5}{3}$ -Calabi-Yau category. (non-commutative curve)

- Let X be an index 1 prime Fano 3fold of degree d = 12, 16 or 18. Then $\mathcal{K}u(X) \simeq D^b(\mathcal{C}_X)$ for the smooth projective curve \mathcal{C}_X associated with X.
- Let Y be a cubic 3fold. Then $\mathcal{K}u(Y)$ is $\frac{5}{3}$ -Calabi-Yau category. (non-commutative curve)

Theorem (Bayer–Lahoz–Macri–Stellari)

Let X be a prime Fano 3fold of index 1 or 2. Then $\mathcal{K}u(X)$ admits a family of Bridgeland stability conditions.

Theorem (Mukai)

Let X be an index 1 prime Fano 3fold of degree d = 12 or 16. Then X is isomorphic to a (generalized) Brill–Noether locus of a moduli space of rank two stable bundles over C_X .

For d = 12, the Brill–Noether condition is given by \mathcal{O}_{C_X} $(h^0(-) \ge ?)$; for d = 16, the Brill–Noether condition is given by a rank two bundle \mathcal{F}_X $(h^0(-\otimes \mathcal{F}_X) \ge ?)$.

Theorem (Mukai)

Let X be an index 1 prime Fano 3fold of degree d = 12 or 16. Then X is isomorphic to a (generalized) Brill–Noether locus of a moduli space of rank two stable bundles over C_X .

For d = 12, the Brill–Noether condition is given by \mathcal{O}_{C_X} $(h^0(-) \ge ?)$; for d = 16, the Brill–Noether condition is given by a rank two bundle \mathcal{F}_X $(h^0(-\otimes \mathcal{F}_X) \ge ?)$.

Question

How about other prime Fano 3folds?

Let $i: \mathcal{K}u(X) \hookrightarrow D^b(X)$ be the inclusion, and $i^!$ be its right adjoint.

Zhiyu Liu (Zhejiang University)

< ∃⇒

Let $i: \mathcal{K}u(X) \hookrightarrow D^b(X)$ be the inclusion, and $i^!$ be its right adjoint.

Gluing object \mathcal{G} of \mathcal{O}^{\perp} : $\mathcal{G}_X := i^! \mathcal{E}_X$ (index 1) and $\mathcal{G}_Y := i^! \mathcal{Q}_Y = i^! (\mathbf{L}_{\mathcal{O}_Y} \mathcal{O}_Y(H))[-1]$ (index 2).

< ⊒ >

Let $i: \mathcal{K}u(X) \hookrightarrow D^b(X)$ be the inclusion, and $i^!$ be its right adjoint.

Gluing object \mathcal{G} of \mathcal{O}^{\perp} : $\mathcal{G}_X := i^! \mathcal{E}_X$ (index 1) and $\mathcal{G}_Y := i^! \mathcal{Q}_Y = i^! (\mathbf{L}_{\mathcal{O}_Y} \mathcal{O}_Y(H))[-1]$ (index 2).

Key observation: For an index 1 prime Fano 3fold of degree d = 12 or 16, the equivalence $D^b(C_X) \simeq \mathcal{K}u(X)$ maps \mathcal{O}_{C_X} (or \mathcal{F}_X) to \mathcal{G}_X .

Let $i: \mathcal{K}u(X) \hookrightarrow D^b(X)$ be the inclusion, and $i^!$ be its right adjoint.

Gluing object \mathcal{G} of \mathcal{O}^{\perp} : $\mathcal{G}_X := i^! \mathcal{E}_X$ (index 1) and $\mathcal{G}_Y := i^! \mathcal{Q}_Y = i^! (\mathbf{L}_{\mathcal{O}_Y} \mathcal{O}_Y(H))[-1]$ (index 2).

Key observation: For an index 1 prime Fano 3fold of degree d = 12 or 16, the equivalence $D^b(C_X) \simeq \mathcal{K}u(X)$ maps \mathcal{O}_{C_X} (or \mathcal{F}_X) to \mathcal{G}_X .

curve $C_X \Rightarrow$ non-commutative curve $\mathcal{K}u(X)$

Let $i: \mathcal{K}u(X) \hookrightarrow D^b(X)$ be the inclusion, and $i^!$ be its right adjoint.

Gluing object \mathcal{G} of \mathcal{O}^{\perp} : $\mathcal{G}_X := i^! \mathcal{E}_X$ (index 1) and $\mathcal{G}_Y := i^! \mathcal{Q}_Y = i^! (\mathbf{L}_{\mathcal{O}_Y} \mathcal{O}_Y(H))[-1]$ (index 2).

Key observation: For an index 1 prime Fano 3fold of degree d = 12 or 16, the equivalence $D^b(\mathcal{C}_X) \simeq \mathcal{K}u(X)$ maps $\mathcal{O}_{\mathcal{C}_X}$ (or \mathcal{F}_X) to \mathcal{G}_X .

curve $C_X \Rightarrow$ non-commutative curve $\mathcal{K}u(X)$

moduli of stable bundles over $C_X \Rightarrow$ moduli of stable objects in $\mathcal{K}u(X)$

・ロット (雪) (日) (日) (日) (日)

Let $i: \mathcal{K}u(X) \hookrightarrow D^b(X)$ be the inclusion, and $i^!$ be its right adjoint.

Gluing object \mathcal{G} of \mathcal{O}^{\perp} : $\mathcal{G}_X := i^! \mathcal{E}_X$ (index 1) and $\mathcal{G}_Y := i^! \mathcal{Q}_Y = i^! (\mathbf{L}_{\mathcal{O}_Y} \mathcal{O}_Y(H))[-1]$ (index 2).

Key observation: For an index 1 prime Fano 3fold of degree d = 12 or 16, the equivalence $D^b(\mathcal{C}_X) \simeq \mathcal{K}u(X)$ maps $\mathcal{O}_{\mathcal{C}_X}$ (or \mathcal{F}_X) to \mathcal{G}_X .

curve $C_X \Rightarrow$ non-commutative curve $\mathcal{K}u(X)$

moduli of stable bundles over $C_X \Rightarrow$ moduli of stable objects in $\mathcal{K}u(X)$

generalised Brill–Noether condition \Rightarrow Brill–Noether condition given by \mathcal{G}_X

Theorem (Jacovski–Liu–Zhang)

Let X be an index 1 prime Fano 3fold of degree $d \ge 10$. Then

 $X \cong \{F \colon \hom(F, \mathcal{G}_X[k]) \ge n_d \text{ for some } k \in \mathbb{Z}\} \subset M_{\sigma}(\mathcal{K}u(X), [i^*\mathbb{C}_x]).$

Here n_d is an integer only depends on d, σ is any Serre-invariant stability condition on $\mathcal{K}u(X)$, and $M_{\sigma}(\mathcal{K}u(X), [i^*\mathbb{C}_x])$ is the moduli space of σ -stable objects with the class $[i^*\mathbb{C}_x]$.

(1日) (1日) (1日)

Theorem (Jacovski–Liu–Zhang)

Let X be an index 1 prime Fano 3fold of degree $d \ge 10$. Then

 $X \cong \{F \colon \hom(F, \mathcal{G}_X[k]) \ge n_d \text{ for some } k \in \mathbb{Z}\} \subset M_{\sigma}(\mathcal{K}u(X), [i^*\mathbb{C}_x]).$

Here n_d is an integer only depends on d, σ is any Serre-invariant stability condition on $\mathcal{K}u(X)$, and $M_{\sigma}(\mathcal{K}u(X), [i^*\mathbb{C}_x])$ is the moduli space of σ -stable objects with the class $[i^*\mathbb{C}_x]$.

Theorem (Feyzbakhsh-Liu-Zhang)

Let Y be an index 2 prime Fano 3fold of degree $d \ge 2$. Then

 $Y \cong \{F \colon \hom(F, \mathcal{G}_Y[k]) \ge d + 1 \text{ for some } k \in \mathbb{Z}\} \subset M_{\sigma}(\mathcal{K}u(Y), [i^*\mathbb{C}_y]).$

Here \mathbb{C}_{y} is the skyscraper sheaf supported on $y \in Y$, σ is any Serre-invariant stability condition on $\mathcal{K}u(Y)$, and $M_{\sigma}(\mathcal{K}u(Y), [i^{*}\mathbb{C}_{y}])$ is the moduli space of σ -stable objects with the class $[i^{*}\mathbb{C}_{y}]$.

Application 1: Categorical Torelli theorems

Corollary (Refined categorical Torelli theorem)

Let X and X' be index 1 prime Fano 3folds of degree $d \ge 10$. If there is an equivalence $\mathcal{K}u(X) \simeq \mathcal{K}u(X')$ that maps \mathcal{G}_X to $\mathcal{G}_{X'}$, then $X \cong X'$.

• • = • • = •

Application 1: Categorical Torelli theorems

Corollary (Refined categorical Torelli theorem)

Let X and X' be index 1 prime Fano 3folds of degree $d \ge 10$. If there is an equivalence $\mathcal{K}u(X) \simeq \mathcal{K}u(X')$ that maps \mathcal{G}_X to $\mathcal{G}_{X'}$, then $X \cong X'$.

Theorem (Feyzbakhsh–Liu–Zhang)

Let Y and Y' be index 2 prime Fano 3folds of degree $2 \le d \le 4$. Then up to some explicit auto-equivalences, any equivalence $\mathcal{K}u(Y) \simeq \mathcal{K}u(Y')$ maps \mathcal{G}_Y to $\mathcal{G}_{Y'}$.

Application 1: Categorical Torelli theorems

Corollary (Refined categorical Torelli theorem)

Let X and X' be index 1 prime Fano 3folds of degree $d \ge 10$. If there is an equivalence $\mathcal{K}u(X) \simeq \mathcal{K}u(X')$ that maps \mathcal{G}_X to $\mathcal{G}_{X'}$, then $X \cong X'$.

Theorem (Feyzbakhsh–Liu–Zhang)

Let Y and Y' be index 2 prime Fano 3folds of degree $2 \le d \le 4$. Then up to some explicit auto-equivalences, any equivalence $\mathcal{K}u(Y) \simeq \mathcal{K}u(Y')$ maps \mathcal{G}_Y to $\mathcal{G}_{Y'}$.

Corollary (Categorical Torelli theorem)

Let Y and Y' be index 2 prime Fano 3folds of degree $2 \le d \le 4$. If there is an equivalence $\mathcal{K}u(Y) \simeq \mathcal{K}u(Y')$, then $Y \cong Y'$.

When d = 3, this is proved by Bernardara-Macri-Mehrotra-Stellari, Pertusi-Yang and Bayer-Beentjes-Feyzbakhsh-Hein-Martinelli-Rezaee-Schmidt. When d = 2, Altavilla-Petković-Rota proved this corollary under certain generic assumption.

Zhiyu Liu (Zhejiang University)

Brill-Noether reconstruction for Fano 3folds

9/12

Application 2: Auto-equivalences of Kuznetsov components

Corollary

Let Y be an index 2 prime Fano 3fold of degree $2 \le d \le 3$. Then

 $\operatorname{Aut}_{\operatorname{FM}}(\mathcal{K}u(Y)) = \langle \operatorname{Aut}(Y), \mathbf{0}, [1] \rangle.$

Here **O** is the **rotation functor**. The d = 3 case is also proved by Ziqi Liu independently, using a different method.

A (10) × (10)

Application 2: Auto-equivalences of Kuznetsov components

Corollary

Let Y be an index 2 prime Fano 3fold of degree $2 \le d \le 3$. Then

 $\operatorname{Aut}_{\operatorname{FM}}(\mathcal{K}u(Y)) = \langle \operatorname{Aut}(Y), \mathbf{0}, [1] \rangle.$

Here **O** is the **rotation functor**. The d = 3 case is also proved by Ziqi Liu independently, using a different method.

Corollary

Let X be an index 1 prime Fano 3fold of degree d = 10 or 14. When d = 10, we furthermore assume that X is general. Then $\operatorname{Aut}_{FM}(\mathcal{K}u(X)) = \langle \operatorname{Aut}(X), S_{\mathcal{K}u(X)}, [1] \rangle$.

Application 2: Auto-equivalences of Kuznetsov components

Corollary

Let Y be an index 2 prime Fano 3fold of degree $2 \le d \le 3$. Then

 $\operatorname{Aut}_{\operatorname{FM}}(\mathcal{K}u(Y)) = \langle \operatorname{Aut}(Y), \mathbf{0}, [1] \rangle.$

Here **O** is the **rotation functor**. The d = 3 case is also proved by Ziqi Liu independently, using a different method.

Corollary

Let X be an index 1 prime Fano 3fold of degree d = 10 or 14. When d = 10, we furthermore assume that X is general. Then $\operatorname{Aut}_{FM}(\mathcal{K}u(X)) = \langle \operatorname{Aut}(X), S_{\mathcal{K}u(X)}, [1] \rangle$.

Corollary

Let X be an index 1 prime Fano 3fold of degree d = 14, and Y be the Phaffian cubic threefold associated with X. Then we have $Aut(X) \cong Aut(Y)$.

Application 3: Kuznetsov's Fano 3fold conjecture

We denote the moduli stack of index *i* degree *d* prime Fano 3folds by M_d^i .

Conjecture (Kuznetsov)

For any $1 \leq d \leq 5$, there is a correspondence $Z \subset M^1_{4d+2} \times M^2_d$ dominants each factor, such that for any point $(X_{4d+2}, Y_d) \in Z$, there is an equivalence $\mathcal{K}u(X_{4d+2}) \simeq \mathcal{K}u(Y_d)$.

Application 3: Kuznetsov's Fano 3fold conjecture

We denote the moduli stack of index *i* degree *d* prime Fano 3folds by M_d^i .

Conjecture (Kuznetsov)

For any $1 \leq d \leq 5$, there is a correspondence $Z \subset M^1_{4d+2} \times M^2_d$ dominants each factor, such that for any point $(X_{4d+2}, Y_d) \in Z$, there is an equivalence $\mathcal{K}u(X_{4d+2}) \simeq \mathcal{K}u(Y_d)$.

The case $3 \le d \le 5$ is proved by Kuznetsov. For d = 1, the conjecture does not hold for HH(-) reason. The remaining case d = 2 is disproved by Bayer–Perry and Zhang using different methods.

く 伺 ト く ヨ ト く ヨ ト

Application 3: Kuznetsov's Fano 3fold conjecture

We denote the moduli stack of index *i* degree *d* prime Fano 3folds by M_d^i .

Conjecture (Kuznetsov)

For any $1 \leq d \leq 5$, there is a correspondence $Z \subset M^1_{4d+2} \times M^2_d$ dominants each factor, such that for any point $(X_{4d+2}, Y_d) \in Z$, there is an equivalence $\mathcal{K}u(X_{4d+2}) \simeq \mathcal{K}u(Y_d)$.

The case $3 \le d \le 5$ is proved by Kuznetsov. For d = 1, the conjecture does not hold for HH(-) reason. The remaining case d = 2 is disproved by Bayer–Perry and Zhang using different methods.

Corollary

Let X be a general Gushel–Mukai 3fold and Y a quartic double solid. Then $\mathcal{K}u(X)$ is not equivalent to $\mathcal{K}u(Y)$.

Thanks!

Zhiyu Liu (Zhejiang University)

Brill–Noether reconstruction for Fano 3folds

э