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MINIMAL GRAPHS ON MANIFOLDS

(M, σ) complete Riemannian manifold, dimension m

endow M × R with metric σ + dt2

g induced metric on Σ =⇒ Σ = (M, g)

Σ is minimal ⇐⇒ div

(
Du√

1 + |Du|2

)
= 0 on M (MS)

where D Levi-Civita connection in (M, σ).

Notice: (MS) writes as ∆gu = 0
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Minimal graphs over Rm

div

(
Du√

1 + |Du|2

)
= 0 (MS)

BERNSTEIN THEOREM: property

(B1) all solutions to (MS) on Rm are affine

holds if and only if m ≤ 7.
(Bernstein ’15, De Giorgi ’65, Almgren ’66, Simons ’68, Bombieri-De Giorgi-Giusti ’69)

(B2) Solutions to (MS) on Rm with u−(x) = O(|x|) are affine
(Bombieri-De Giorgi-Miranda ’69, Moser ’61).

(B3) Positive solutions to (MS) on Rm are constant
(Bombieri-De Giorgi-Miranda ’69)

Notice: (B1)⇒ (B2)⇒ (B3).

CONJECTURE (Bombieri-Giusti ’72): solutions to (MS) grow
polynomially
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QUESTION:

for which manifolds M properties (B1), (B2), (B3) hold?

If M = Hm, completely different picture: Plateau’s problem at infinity is
always solvable!

∀φ ∈ C(∂∞Hm), ∃! solution u to (MS) on Hm such that u|∂∞Hm = φ
(Nelli-Rosenberg ’02, do Espírito Santo-Fornari-Ripoll ’10)

Generalizations to manifolds with pinched, negative curvature
(Ripoll-Telichevesky ’15, Casteras-Holopainen-Ripoll-Heinonen ’17-’19)
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CURVATURE CONDITIONS

(B1), (B2), (B3) might hold if Sec ≥ 0 or Ric ≥ 0:

1) Analogy with the theory of harmonic functions (recall: ∆gu = 0)

2) Cheeger-Colding’s theory is available: if o ∈ M, λj → +∞, then

(M, λ−2
j σ, o) # (M∞, d, o∞) for some (nonsmooth) M∞ with Ric ≥ 0.

(M∞ is a tangent cone at infinity (blowdown))
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PROPERTY (B1)

Theorem
Let Mm be complete, Ric ≥ 0. Fix o ∈ M and assume that

ˆ ∞ r
|Br(o)|

dr = +∞ (1)

Let u be a non-constant solution to (MS). Then,

- M = N × R with the product metric σN + ds2,

- In the variables (y, s) ∈ N × R it holds u(y, s) = as + b for some a, b ∈ R.

Thus, (B1) holds.

In particular, it applies to surfaces with Sec ≥ 0.

is (B1) true on manifolds with Sec ≥ 0 and low dimension (m ≤ 7?)?
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PROPERTIES (B2), (B3) IF Sec ≥ 0

Theorem (Colombo, Gama, M-, Rigoli 2022)

Let M be complete, Sec ≥ 0. Let u be a non-constant solution to (MS) and
assume that

u−(x) = O
(
r(x)

)
as r(x) = dist(x, o)→∞.

Then,
- M = N × R with the product metric σN + ds2,

- u(y, s) = as + b for some a, b ∈ R.

In particular, (B2) and (B3) hold.
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Rough Strategy to prove (B2):

- Borrowed from Cheeger-Colding-Minicozzi ’95 and Moser ’61.

- STEP 1: u−(x) = O(r(x)) =⇒ |Du| ∈ L∞(M).

- STEP 2: blowdowns (M, λ−2
j σ, o)→ M∞ split: M∞ = N∞ × R.

First:

|Du| ∈ L∞(M) =⇒ uj =
u− u(o)

λj
→ u∞ : M∞ → R.

Key inequalities for balls BR ⊂ (M, σ) centered at o:

(i) lim
R→∞

 
BR

|Du|2 = sup
M
|Du|2

(ii) lim
R→∞

R2
 

BR

|D2u|2 = 0.

Take limits: |Du∞| 6= 0, |D2u∞| = 0 on M∞.

Flow of Du∞ gives splitting.
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Rough Strategy to prove (B2):

- STEP 3: M∞ = N∞ × R ⇒ M = N × R

known fact that strongly requires Sec ≥ 0.

σ = σN + ds2

- STEP 4: u is affine in some split R-direction.

The function ∂su solves
L(∂su) = 0,

L uniformly elliptic, linear operator on (M, σ). By Harnack inequality,
∂su is constant. Iterate..
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∆gr = gij(D2r)ij,

but Ric ≥ 0 only allows to estimate σij(D2r)ij
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PROPERTY (B3)

Theorem (Colombo, Magliaro, M-, Rigoli ’21, Q. Ding ’21)

A complete manifold M with Ric ≥ 0 satisfies (B3) :

positive minimal graphs over M are constant.

Previously shown by Rosenberg, Schulze, Spruck ’13 under the further
condition Sec ≥ −κ2, κ ∈ R+.

Analogue for harmonic functions is due to Cheng-Yau ’75

Theorem (Colombo, M-, Rigoli, preprint)

M complete, Ric ≥ 0.

u solves (MS), u−(x) = O
(

r(x)

log r(x)

)
=⇒ u is constant.
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Theorem (Colombo, M-, Rigoli, preprint)

M complete, Ric ≥ 0.

u solves (MS), u−(x) = O
(

r(x)

log r(x)

)
=⇒ u is constant.



PROPERTY (B2)

Theorem (Colombo, Gama, M-, Rigoli ’23)

Mm complete, Ric ≥ 0. Let u solve (MS) and |Du| ∈ L∞(M). Then, every
tangent cone at infinity of M splits off a line.

Remark: M may not split off any line! (examples if m ≥ 4)

Analogue for harmonic functions is by Cheeger-Colding-Minicozzi ’95

u−(x) = O(r(x)) implies |Du| ∈ L∞(M) up to further requiring

• Ric(m−2)(∇r) ≥ − C
1 + r2 on M\cut(o)

• Q. Ding (arXiv ’22): |Br(o)| ≥ crm

• Q. Ding (arXiv ’24): lim sup
x→∞

u−(x)/r(x) small enough.
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PROPERTY (B3)

Theorem (Colombo, Magliaro, M., Rigoli)

If M is complete and Ric ≥ 0, then positive minimal graphs are constant.

Previous strategies: local gradient estimates: if 0 < u : BR(x)→ R
solve (MS),

|Du(x)| ≤ c1 exp

{
c2

u(x)

R

}
, cj = cj(m)
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Our main gradient estimate

Theorem

Let Mm complete with Ric ≥ −(m− 1)κ2, for constant κ ≥ 0.

Let u be a positive solution to (MS) on an open set Ω ⊂ M.

If either

(i) ∂Ω locally Lipschitz and |∂Ω ∩ BR| ≤ C1 exp
{

C2R2}, or

(ii) u ∈ C(Ω) and is constant on ∂Ω.

Then√
1 + |Du|2

eκ
√

m−1u
≤ max

{
1, lim sup

x→∂Ω

√
1 + |Du(x)|2

eκ
√

m−1u(x)

}
on Ω. (2)

As a consequence, if Ω = M it holds√
1 + |Du|2 ≤ eκ

√
m−1u on M. (3)
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Proof based on the Jacobi equation for W .
=
√

1 + |Du|2

∆gW−1 +

[
‖ II ‖2 + Ric

(
Du
W

)]
W−1 = 0 on Σ.

Korevaar’s method: compute ∆g(Wη), for η a (carefully crafted) cutoff
depending on u and r, the distance in (M, σ) from a fixed point.

Problem: need to evaluate

∆gr = gij(D2r)ij,

but Ric ≥ 0 only allows to estimate σij(D2r)ij

IDEA: in place of r, we use an exhaustion % built via potential theory
(stochastic geometry)
(M-, Pessoa, Valtorta ’13,’20)
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The proof

Fix C > κ
√

m− 1, z = We−Cu

CLAIM: the following set is empty for every τ > 0:

Ω′ :=

{
x ∈ Ω : z(x) > max

{
1, lim sup

y→∂Ω

W(y)

eκ
√

m−1u(y)

}
+ τ

}

Once the claim is shown, thesis follows by letting τ → 0,
C ↓ κ

√
m− 1.

By contradiction: suppose that Ω′ 6= ∅.

Define
Lgφ = W2divg

(
W−2∇φ

)
on Σ

Since ‖∇u‖2 = W2−1
W2 ,

Lgz ≥
[
C2 − (m− 1)κ2]‖∇u‖2z > Cτ z on Σ′ (the graph over Ω′)
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Key information: a graph has area bounds (calibrated):

LEMMA: in our assumptions, we can include Σ′ isometrically a
complete manifold (Nm, h) the volume of whose balls satisfies

|Bh
R| ≤ C1 exp

{
C2R2}.
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THEOREM (Grigoryan ’99, Pigola-Rigoli-Setti ’03):
If (N, h) is complete and

|Bh
R| ≤ C1 exp

{
C2R2},

then

(?) :

{
∆hω ≥ ω on U ⊂ N,

supU ω <∞
=⇒ sup

U
ω ≤ max

{
0, sup

∂U
ω
}

AHLFORS-KHAS’MINSKII DUALITY
(M.-Valtorta ’13, M.-Pessoa ’20):

(N, h) satisfies (?) if and only if there exists v ∈ C∞(N) solving{
∆gv ≤ v

v ≥ 1, v exhaustion
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setting % = log v ∈ C∞(N),{
∆g%+ ‖∇%‖2 ≤ 1

% ≥ 0, % exhaustion on N

Let δ, ε′, ε be positive, small (specified later), and set

z0 = W
(
e−Cu−ε% − δ

)
< z

For ε, δ small enough, the upper level-set

Ω′0 :=

{
x ∈ Ω : z0(x) > max

{
1, lim sup

y→∂Ω

W(y)

eκ
√

m−1u(y)

}
+ τ

}
⊂ Ω′.

is non-empty and relatively compact.
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We compute on the graph Σ′0

Lgz0 ≥
[
‖C∇u + ε∇%‖2 − (m− 1)κ2‖∇u‖2 − ε∆g%

]
z0

≥
{[

C2(1− ε′)− (m− 1)κ2
]
‖∇u‖2 − ε

[
∆g%+ ‖∇%‖2

]}
z0

>
{

Cτ − ε
[
∆g%+ ‖∇%‖2

]}
z0

if ε′ small enough and ε << ε′.

Using ∆%+ ‖∇%‖2 ≤ 1 and ε << 1,

Lgz0 > Cτ z0,

contradiction at a maximum point of z0 on Σ′0.
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Splitting of tangent cones if |Du| ∈ L∞

|Du| ∈ L∞(M) =⇒

L .
= W∆g =

1√
σ
∂i
(
W
√
σgij∂j

)
uniformly elliptic on (M, σ).

(i) lim
R→∞

 
BR

|Du|2 = sup
M
|Du|2

(ii) lim
R→∞

R2
 

BR

|D2u|2 = 0.



L .
= W∆g =

1√
σ
∂i
(
W
√
σgij∂j

)
- The function

f .
= (sup

M
|Du|2)− |Du|2 = (sup

M
W2)−W2

is non-negative, bounded, and

Lf ≤ −2‖ II ‖2W3 = −2|D2u|2W ≤ 0.

Want: ∀ 0 ≤ f ∈ L∞(M) solving Lf ≤ 0,
 

BR

f → inf
M

f , R2
 

BR

Lf → 0.

w.l.o.g. infM f = 0.



L .
= W∆g =

1√
σ
∂i
(
W
√
σgij∂j

)
- The function

f .
= (sup

M
|Du|2)− |Du|2 = (sup

M
W2)−W2

is non-negative, bounded, and

Lf ≤ −2‖ II ‖2W3 = −2|D2u|2W ≤ 0.

Want: ∀ 0 ≤ f ∈ L∞(M) solving Lf ≤ 0,
 

BR

f → inf
M

f , R2
 

BR

Lf → 0.

w.l.o.g. infM f = 0.



L .
= W∆g =

1√
σ
∂i
(
W
√
σgij∂j

)
- The function

f .
= (sup

M
|Du|2)− |Du|2 = (sup

M
W2)−W2

is non-negative, bounded, and

Lf ≤ −2‖ II ‖2W3 = −2|D2u|2W ≤ 0.

Want: ∀ 0 ≤ f ∈ L∞(M) solving Lf ≤ 0,
 

BR

f → inf
M

f , R2
 

BR

Lf → 0.

w.l.o.g. infM f = 0.



L .
= W∆g =

1√
σ
∂i
(
W
√
σgij∂j

)
- The function

f .
= (sup

M
|Du|2)− |Du|2 = (sup

M
W2)−W2

is non-negative, bounded, and

Lf ≤ −2‖ II ‖2W3 = −2|D2u|2W ≤ 0.

Want: ∀ 0 ≤ f ∈ L∞(M) solving Lf ≤ 0,
 

BR

f → inf
M

f , R2
 

BR

Lf → 0.

w.l.o.g. infM f = 0.



- (M, σ) having Ric ≥ 0, L unif. elliptic, in divergence form.

- 0 ≤ f ∈ C(M) ∩ L∞(M). Then,{
∂tv = Lv on M × R+

v(x, 0+) = f (x) ∀ x ∈ M.
=⇒ f (x, t) =

ˆ
M

h(x, y, t)f (y)dy

Notice: 0 ≤ v(x, t) ≤ ‖f‖∞.

The L-heat kernel h satisfies (Saloff-Coste ’92)

(i)
(

1 +
d(x, y)√

t

)− m
2 C1

|B√t(x)|
e
−d2(x,y)

C2 t

≤ h(x, y, t) ≤
(

1 +
d(x, y)√

t

) m
2 C3

|B√t(x)|
e
−d2(x,y)

C4 t

(ii) |∂th| ≤
1
t

(
1 +

d(x, y)√
t

) m
2 C5

|B√t(x)|
e
−d2(x,y)

C6 t
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Step 1: We show
 

B√t(x)
f → 0 as t→∞.

(compare with Repnikov-Eidelman ’66,’67). We follow P. Li ’86.

By the lower bound on h,

v(x, t) =

ˆ
M

f (y)h(x, y, t)dy
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f ≥ 0.

=⇒ we want v(x, t)→ 0 as t→∞.
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(x, t) fixed, Ωa = {y : h(x, y, t) > a}.

∂tv(x, t) =

ˆ
M

f∂th = lim
a→0

ˆ
Ωa

f∂th

= lim
a→0

ˆ
Ωa

fL(h− a)

= lim
a→0
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∂Ωa

f∂ν(h− a) +

ˆ
Ωa

(h− a)Lf
}
≤ 0.

Thus,
v(x, t) ↓ v∞(x) as t→∞,

and
inf
M

v∞ = 0, Lv∞ = 0 =⇒ v∞ ≡ 0.
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Lf → 0 as t→∞.

We start from ˆ
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Key fact: there exists δ = δ(Cj) and k = k(Cj) such that if
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δ
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then
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THANKS!


