On Bernstein type theorems for minimal graphs under Ricci lower bounds

joint works with G. Colombo, E.S. Gama, M. Magliaro and M. Rigoli

Luciano Mari
Università degli Studi di Milano

Hangzhou, February 26 to March 1, 2024

MINIMAL GRAPHS ON MANIFOLDS
(M, σ) complete Riemannian manifold, dimension m

endow $M \times \mathbb{R}$ with metric $\sigma+\mathrm{d} t^{2}$

MINIMAL GRAPHS ON MANIFOLDS
(M, σ) complete Riemannian manifold, dimension m

endow $M \times \mathbb{R}$ with metric $\sigma+\mathrm{d} t^{2}$

MINIMAL GRAPHS ON MANIFOLDS

(M, σ) complete Riemannian manifold, dimension m

endow $M \times \mathbb{R}$ with metric $\sigma+\mathrm{d} t^{2}$
g induced metric on Σ
where D Levi-Civita connection in (M, σ)

MINIMAL GRAPHS ON MANIFOLDS

(M, σ) complete Riemannian manifold, dimension m

$$
\begin{aligned}
w: M & \rightarrow \mathbb{R} \\
\bar{F}: M & \rightarrow M \times \mathbb{R} \\
x & \mapsto(n, \mu(x))
\end{aligned}
$$

endow $M \times \mathbb{R}$ with metric $\sigma+\mathrm{d} t^{2}$
g induced metric on $\Sigma \quad \Longrightarrow \quad \Sigma=(M, g)$

MINIMAL GRAPHS ON MANIFOLDS

(M, σ) complete Riemannian manifold, dimension m

$$
\begin{aligned}
w: M & \rightarrow \mathbb{R} \\
F: M & \rightarrow M \times \mathbb{R} \\
x & \mapsto(x, \mu(x))
\end{aligned}
$$

endow $M \times \mathbb{R}$ with metric $\sigma+\mathrm{d} t^{2}$
g induced metric on $\Sigma \quad \Longrightarrow \quad \Sigma=(M, g)$

where D Levi-Civita connection in (M, σ).

MINIMAL GRAPHS ON MANIFOLDS

(M, σ) complete Riemannian manifold, dimension m

$$
\begin{aligned}
w: M & \rightarrow \mathbb{R} \\
F: M & \rightarrow M \times \mathbb{R} \\
x & \mapsto(x, \mu(x))
\end{aligned}
$$

endow $M \times \mathbb{R}$ with metric $\sigma+\mathrm{d} t^{2}$
g induced metric on $\Sigma \quad \Longrightarrow \quad \Sigma=(M, g)$

where D Levi-Civita connection in (M, σ).
Notice: (MS) writes as

$$
\Delta_{g} u=0
$$

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0 \tag{MS}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0 \tag{MS}
\end{equation*}
$$

BERNSTEIN THEOREM: property
($\mathscr{B} 1$) all solutions to (MS) on \mathbb{R}^{m} are affine
holds if and only if $m \leq 7$.
(Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)
Solutions to (MS) on \mathbb{R}^{m} with $u_{-}(x)=O(|x|)$ are affine (Bombieri-De Giorgi-Miranda '69, Moser '61).

Positive solutions to (MS) on \mathbb{R}^{m} are constant
(Bombieri-De Giorgi-Miranda '69)

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0 \tag{MS}
\end{equation*}
$$

BERNSTEIN THEOREM: property
($\mathscr{B} 1$) all solutions to (MS) on \mathbb{R}^{m} are affine
holds if and only if $m \leq 7$.
(Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)
($\mathscr{B} 2$) Solutions to (MS) on \mathbb{R}^{m} with $u_{-}(x)=\mathcal{O}(|x|)$ are affine (Bombieri-De Giorgi-Miranda '69, Moser '61).

Positive solutions to (MS) on \mathbb{R}^{m} are constant
(Bombieri-De Giorgi-Miranda '69)

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0 \tag{MS}
\end{equation*}
$$

BERNSTEIN THEOREM: property
($\mathscr{B} 1$) all solutions to (MS) on \mathbb{R}^{m} are affine
holds if and only if $m \leq 7$.
(Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)
($\mathscr{B} 2)$ Solutions to (MS) on \mathbb{R}^{m} with $u_{-}(x)=\mathcal{O}(|x|)$ are affine (Bombieri-De Giorgi-Miranda '69, Moser '61).
($\mathscr{B} 3$) Positive solutions to (MS) on \mathbb{R}^{m} are constant
(Bombieri-De Giorgi-Miranda '69)

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0 \tag{MS}
\end{equation*}
$$

BERNSTEIN THEOREM: property
($\mathscr{B} 1$) all solutions to (MS) on \mathbb{R}^{m} are affine
holds if and only if $m \leq 7$.
(Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)
($\mathscr{B} 2$) Solutions to (MS) on \mathbb{R}^{m} with $u_{-}(x)=\mathcal{O}(|x|)$ are affine (Bombieri-De Giorgi-Miranda '69, Moser '61).
($\mathscr{B} 3$) Positive solutions to (MS) on \mathbb{R}^{m} are constant
(Bombieri-De Giorgi-Miranda '69)
Notice: $(\mathscr{B} 1) \Rightarrow(\mathscr{B} 2) \Rightarrow(\mathscr{B} 3)$.

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0 \tag{MS}
\end{equation*}
$$

BERNSTEIN THEOREM: property
($\mathscr{B} 1$) all solutions to (MS) on \mathbb{R}^{m} are affine
holds if and only if $m \leq 7$.
(Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)
($\mathscr{B} 2$) Solutions to (MS) on \mathbb{R}^{m} with $u_{-}(x)=\mathcal{O}(|x|)$ are affine (Bombieri-De Giorgi-Miranda '69, Moser '61).
($\mathscr{B} 3$) Positive solutions to (MS) on \mathbb{R}^{m} are constant
(Bombieri-De Giorgi-Miranda '69)
Notice: $(\mathscr{B} 1) \Rightarrow(\mathscr{B} 2) \Rightarrow(\mathscr{B} 3)$.
CONJECTURE (Bombieri-Giusti '72): solutions to (MS) grow polynomially

QUESTION:

for which manifolds M properties $(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ hold?
If $M=\mathbb{H}^{m}$, completely different picture: Plateau's problem at infinity is always solvable!

$\forall \phi \in C\left(\partial_{\infty} \mathbb{H}^{m}\right), \exists$! solution u to (MS) on \mathbb{H}^{m} such that $u_{\mid \partial_{\infty}} \mathbb{H}^{m}=\phi$ (Nelli-Rosenberg '02, do Espírito Santo-Fornari-Ripoll '10)

QUESTION:

for which manifolds M properties $(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ hold?

If $M=\mathbb{H}^{m}$, completely different picture: Plateau's problem at infinity is always solvable!

QUESTION:

for which manifolds M properties $(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ hold?

If $M=\mathbb{H}^{m}$, completely different picture: Plateau's problem at infinity is always solvable!

$\forall \phi \in C\left(\partial_{\infty} \mathbb{H}^{m}\right), \exists$! solution u to (MS) on \mathbb{H}^{m} such that $u_{\mid \partial_{\infty} \mathbb{H}^{m}}=\phi$ (Nelli-Rosenberg '02, do Espírito Santo-Fornari-Ripoll '10)

- Generalizations to manifolds with pinched, negative curvature
\qquad

QUESTION:

for which manifolds M properties $(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ hold?

If $M=\mathbb{H}^{m}$, completely different picture: Plateau's problem at infinity is always solvable!

$\forall \phi \in C\left(\partial_{\infty} \mathbb{H}^{m}\right), \exists$! solution u to (MS) on \mathbb{H}^{m} such that $u_{\mid \partial_{\infty} \mathbb{H}^{m}}=\phi$ (Nelli-Rosenberg '02, do Espírito Santo-Fornari-Ripoll '10)

- Generalizations to manifolds with pinched, negative curvature (Ripoll-Telichevesky '15, Casteras-Holopainen-Ripoll-Heinonen '17-'19)

CURVATURE CONDITIONS

$(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ might hold if $\mathrm{Sec} \geq 0$ or Ric ≥ 0 :

CURVATURE CONDITIONS

$(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ might hold if $\mathrm{Sec} \geq 0$ or Ric ≥ 0 :

1) Analogy with the theory of harmonic functions (recall: $\Delta_{g} u=0$)
(M_{∞} is a tangent cone at infinity (blowdown))

CURVATURE CONDITIONS

$(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ might hold if $\mathrm{Sec} \geq 0$ or Ric ≥ 0 :

1) Analogy with the theory of harmonic functions (recall: $\Delta_{g} u=0$)
2) Cheeger-Colding's theory is available: if $o \in M, \lambda_{j} \rightarrow+\infty$, then $\left(M, \lambda_{j}^{-2} \sigma, o\right) \leftrightarrow\left(M_{\infty}, \mathrm{d}, o_{\infty}\right) \quad$ for some (nonsmooth) M_{∞} with Ric ≥ 0. (M_{∞} is a tangent cone at infinity (blowdown))

PROPERTY (:尺1)

Theorem

Iet M^{m} he complete. Ric ≥ 0. Fix $o \in M$ and assume that

Let u be a non-constant solution to (MS). Then,

Theorem

Let M^{m} be complete, Ric ≥ 0. Fix $o \in M$ and assume that

$$
\begin{equation*}
\int^{\infty} \frac{r}{\left|B_{r}(o)\right|} \mathrm{d} r=+\infty \tag{1}
\end{equation*}
$$

Let u be a non-constant solution to (MS). Then,

Theorem

Let M^{m} be complete, Ric ≥ 0. Fix $o \in M$ and assume that

$$
\begin{equation*}
\int^{\infty} \frac{r}{\left|B_{r}(o)\right|} \mathrm{d} r=+\infty \tag{1}
\end{equation*}
$$

Let u be a non-constant solution to (MS). Then,

- $M=N \times \mathbb{R}$ with the product metric $\sigma_{N}+\mathrm{ds}^{2}$,

Theorem

Let M^{m} be complete, Ric ≥ 0. Fix $o \in M$ and assume that

$$
\begin{equation*}
\int^{\infty} \frac{r}{\left|B_{r}(o)\right|} \mathrm{d} r=+\infty \tag{1}
\end{equation*}
$$

Let u be a non-constant solution to (MS). Then,

- $M=N \times \mathbb{R}$ with the product metric $\sigma_{N}+\mathrm{d} s^{2}$,
- In the variables $(y, s) \in N \times \mathbb{R}$ it holds $u(y, s)=a s+b$ for some $a, b \in \mathbb{R}$.

Thus, ($\mathscr{B} 1$) holds.
In particular it applies to surfaces with $\mathrm{Sec} \geq 0$.

Theorem

Let M^{m} be complete, Ric ≥ 0. Fix $o \in M$ and assume that

$$
\begin{equation*}
\int^{\infty} \frac{r}{\left|B_{r}(o)\right|} \mathrm{d} r=+\infty \tag{1}
\end{equation*}
$$

Let u be a non-constant solution to (MS). Then,

- $M=N \times \mathbb{R}$ with the product metric $\sigma_{N}+\mathrm{d} s^{2}$,
- In the variables $(y, s) \in N \times \mathbb{R}$ it holds $u(y, s)=a s+b$ for some $a, b \in \mathbb{R}$.

Thus, ($\mathscr{B} 1$) holds.
In particular, it applies to surfaces with $\operatorname{Sec} \geq 0$.

Theorem

Let M^{m} be complete, Ric ≥ 0. Fix $o \in M$ and assume that

$$
\begin{equation*}
\int^{\infty} \frac{r}{\left|B_{r}(o)\right|} \mathrm{d} r=+\infty \tag{1}
\end{equation*}
$$

Let u be a non-constant solution to (MS). Then,

- $M=N \times \mathbb{R}$ with the product metric $\sigma_{N}+\mathrm{d} s^{2}$,
- In the variables $(y, s) \in N \times \mathbb{R}$ it holds $u(y, s)=a s+b$ for some $a, b \in \mathbb{R}$.

Thus, ($\mathscr{B} 1$) holds.
In particular, it applies to surfaces with $\operatorname{Sec} \geq 0$.
is ($\mathscr{B} 1)$ true on manifolds with $\operatorname{Sec} \geq 0$ and low dimension ($m \leq 7$?)?

Theorem (Colombo, Gama, M-, Rigoli 2022)
Iet M he commlete $\operatorname{Sec}>0$ Iet u he a non-constant solution to (MS) and assume that

In particular; (פB2) and ($\mathscr{B} 3)$ hold.

Theorem (Colombo, Gama, M-, Rigoli 2022)

Let M be complete, $\mathrm{Sec} \geq 0$. Let u be a non-constant solution to (MS) and assume that

$$
u_{-}(x)=\mathcal{O}(r(x)) \quad \text { as } r(x)=\operatorname{dist}(x, o) \rightarrow \infty .
$$

Then,

In particular, $(\mathscr{B} 2)$ and ($\mathscr{B} 3)$ hold.

Theorem (Colombo, Gama, M-, Rigoli 2022)

Let M be complete, $\mathrm{Sec} \geq 0$. Let u be a non-constant solution to (MS) and assume that

$$
u_{-}(x)=\mathcal{O}(r(x)) \quad \text { as } r(x)=\operatorname{dist}(x, o) \rightarrow \infty .
$$

Then,

- $M=N \times \mathbb{R}$ with the product metric $\sigma_{N}+\mathrm{d} s^{2}$,

In particular, $(\mathscr{B} 2)$ and $(\mathscr{B} 3)$ hold.

Theorem (Colombo, Gama, M-, Rigoli 2022)

Let M be complete, $\mathrm{Sec} \geq 0$. Let u be a non-constant solution to (MS) and assume that

$$
u_{-}(x)=\mathcal{O}(r(x)) \quad \text { as } r(x)=\operatorname{dist}(x, o) \rightarrow \infty .
$$

Then,

- $M=N \times \mathbb{R}$ with the product metric $\sigma_{N}+\mathrm{d} s^{2}$,
- $u(y, s)=a s+b$ for some $a, b \in \mathbb{R}$.

In particular, $(\mathscr{B} 2)$ and $(\mathscr{B} 3)$ hold.

- Borrowed from Cheeger-Colding-Minicozzi '95 and Moser '61.

Rough Strategy to prove ($\mathscr{B} 2)$:

- Borrowed from Cheeger-Colding-Minicozzi '95 and Moser '61.
- STEP 1: $\quad u_{-}(x)=\mathcal{O}(r(x)) \quad \Longrightarrow \quad|D u| \in L^{\infty}(M)$.

Rough Strategy to prove ($\mathscr{B} 2)$:

- Borrowed from Cheeger-Colding-Minicozzi '95 and Moser '61.
- STEP 1: $\quad u_{-}(x)=\mathcal{O}(r(x)) \quad \Longrightarrow \quad|D u| \in L^{\infty}(M)$.
- STEP 2: blowdowns $\left(M, \lambda_{j}^{-2} \sigma, o\right) \rightarrow M_{\infty}$ split: $\quad M_{\infty}=N_{\infty} \times \mathbb{R}$.
- Borrowed from Cheeger-Colding-Minicozzi '95 and Moser '61.
- STEP 1: $\quad u_{-}(x)=\mathcal{O}(r(x)) \quad \Longrightarrow \quad|D u| \in L^{\infty}(M)$.
- STEP 2: blowdowns $\left(M, \lambda_{j}^{-2} \sigma, o\right) \rightarrow M_{\infty}$ split: $\quad M_{\infty}=N_{\infty} \times \mathbb{R}$.
- First:

$$
|D u| \in L^{\infty}(M) \quad \Longrightarrow \quad u_{j}=\frac{u-u(o)}{\lambda_{j}} \rightarrow u_{\infty}: M_{\infty} \rightarrow \mathbb{R}
$$

- Borrowed from Cheeger-Colding-Minicozzi '95 and Moser '61.
- STEP 1: $\quad u_{-}(x)=\mathcal{O}(r(x)) \quad \Longrightarrow \quad|D u| \in L^{\infty}(M)$.
- STEP 2: blowdowns $\left(M, \lambda_{j}^{-2} \sigma, o\right) \rightarrow M_{\infty}$ split: $\quad M_{\infty}=N_{\infty} \times \mathbb{R}$.
- First:

$$
|D u| \in L^{\infty}(M) \quad \Longrightarrow \quad u_{j}=\frac{u-u(o)}{\lambda_{j}} \rightarrow u_{\infty}: M_{\infty} \rightarrow \mathbb{R}
$$

- Key inequalities for balls $B_{R} \subset(M, \sigma)$ centered at o :
(i) $\quad \lim _{R \rightarrow \infty} f_{B_{R}}|D u|^{2}=\sup _{M}|D u|^{2}$
(ii) $\quad \lim _{R \rightarrow \infty} R^{2} f_{B_{R}}\left|D^{2} u\right|^{2}=0$.
- Borrowed from Cheeger-Colding-Minicozzi '95 and Moser '61.
- STEP 1: $\quad u_{-}(x)=\mathcal{O}(r(x)) \quad \Longrightarrow \quad|D u| \in L^{\infty}(M)$.
- STEP 2: blowdowns $\left(M, \lambda_{j}^{-2} \sigma, o\right) \rightarrow M_{\infty}$ split: $\quad M_{\infty}=N_{\infty} \times \mathbb{R}$.
- First:

$$
|D u| \in L^{\infty}(M) \quad \Longrightarrow \quad u_{j}=\frac{u-u(o)}{\lambda_{j}} \rightarrow u_{\infty}: M_{\infty} \rightarrow \mathbb{R} .
$$

- Key inequalities for balls $B_{R} \subset(M, \sigma)$ centered at o :

$$
\begin{aligned}
& \text { (i) } \quad \lim _{R \rightarrow \infty} f_{B_{R}}|D u|^{2}=\sup _{M}|D u|^{2} \\
& \text { (ii) } \quad \lim _{R \rightarrow \infty} R^{2} f_{B_{R}}\left|D^{2} u\right|^{2}=0 .
\end{aligned}
$$

- Take limits: $\left|D u_{\infty}\right| \neq 0, \quad\left|D^{2} u_{\infty}\right|=0 \quad$ on M_{∞}.

Flow of $D u_{\infty}$ gives splitting.

- STEP 3: $\quad M_{\infty}=N_{\infty} \times \mathbb{R} \quad \Rightarrow \quad M=N \times \mathbb{R}$
known fact that strongly requires $\mathrm{Sec} \geq 0$.
$\sigma=\sigma_{N}+\mathrm{d} s^{2}$

STEP 4: u is affine in some split \mathbb{R}-direction.
The function Osu solves
L uniformly elliptic, linear operator on (M, σ). By Harnack inequality,
$\partial_{s} u$ is constant. Iterate..

- STEP 3: $\quad M_{\infty}=N_{\infty} \times \mathbb{R} \quad \Rightarrow \quad M=N \times \mathbb{R}$
known fact that strongly requires $\mathrm{Sec} \geq 0$.
$\sigma=\sigma_{N}+\mathrm{d} s^{2}$
- STEP 4: u is affine in some split \mathbb{R}-direction.

The function $\partial_{s} u$ solves

$$
L\left(\partial_{s} u\right)=0,
$$

L uniformly elliptic, linear operator on (M, σ). By Harnack inequality, $\partial_{s} u$ is constant. Iterate..

MANIFOLDS $\quad(M, \sigma) \quad$ WITH \quad Ric ≥ 0

Steps 1 and 2 use the distance r on (M, σ) to localize
need to evaluate

MANIFOLDS $\quad(M, \sigma) \quad$ WITH \quad Ric ≥ 0

Steps 1 and 2 use the distance r on (M, σ) to localize need to evaluate

$$
\Delta_{g} r=g^{i j}\left(D^{2} r\right)_{i j},
$$

MANIFOLDS $\quad(M, \sigma) \quad$ WITH \quad Ric ≥ 0

Steps 1 and 2 use the distance r on (M, σ) to localize need to evaluate

$$
\Delta_{g} r=g^{i j}\left(D^{2} r\right)_{i j},
$$

but Ric ≥ 0 only allows to estimate $\sigma^{i j}\left(D^{2} r\right)_{i j}$

PROPERTY (:83)

Theorem (Colombo, Magliaro, M-, Rigoli '21, Q. Ding '21)
A complete manifold M with $\mathrm{Ric} \geq 0$ satisfies ($\mathscr{B} 3)$
positive minimal graphs over M are constant.

Previously shown by Rosenberg, Schulze, Spruck '13 under the further condition Sec $\geq-\kappa^{2}, \kappa \in \mathbb{R}^{+}$

Theorem (Colombo, Magliaro, M-, Rigoli '21, Q. Ding '21)

A complete manifold M with Ric ≥ 0 satisfies ($\mathscr{B} 3$):
positive minimal graphs over M are constant.

Theorem (Colombo, Magliaro, M-, Rigoli '21, Q. Ding '21)

A complete manifold M with Ric ≥ 0 satisfies ($\mathscr{B} 3$):
positive minimal graphs over M are constant.

Previously shown by Rosenberg, Schulze, Spruck ' 13 under the further condition $\mathrm{Sec} \geq-\kappa^{2}, \kappa \in \mathbb{R}^{+}$.

Theorem (Colombo, Magliaro, M-, Rigoli '21, Q. Ding '21)

A complete manifold M with Ric ≥ 0 satisfies ($\mathscr{B} 3)$:
positive minimal graphs over M are constant.

Previously shown by Rosenberg, Schulze, Spruck ' 13 under the further condition $\mathrm{Sec} \geq-\kappa^{2}, \kappa \in \mathbb{R}^{+}$.

- Analogue for harmonic functions is due to Cheng-Yau '75

Theorem (Colombo, Magliaro, M-, Rigoli '21, Q. Ding '21)

A complete manifold M with Ric ≥ 0 satisfies ($\mathscr{B} 3)$:
positive minimal graphs over M are constant.

Previously shown by Rosenberg, Schulze, Spruck ' 13 under the further condition $\mathrm{Sec} \geq-\kappa^{2}, \kappa \in \mathbb{R}^{+}$.

- Analogue for harmonic functions is due to Cheng-Yau '75

Theorem (Colombo, Magliaro, M-, Rigoli '21, Q. Ding '21)

A complete manifold M with Ric ≥ 0 satisfies ($\mathscr{B} 3)$:
positive minimal graphs over M are constant.

Previously shown by Rosenberg, Schulze, Spruck ' 13 under the further condition $\mathrm{Sec} \geq-\kappa^{2}, \kappa \in \mathbb{R}^{+}$.

- Analogue for harmonic functions is due to Cheng-Yau '75

Theorem (Colombo, M-, Rigoli, preprint)

M complete, Ric ≥ 0.

$$
u \text { solves }(\mathrm{MS}), \quad u_{-}(x)=\mathcal{O}\left(\frac{r(x)}{\log r(x)}\right) \quad \Longrightarrow \quad u \text { is constant. }
$$

PROPERTY (:g2)

Theorem (Colombo, Gama, M-, Rigoli '23)
M^{m} complete. $\mathrm{Ric}>0$. Let u solve (MS) and $|L u| \in L \propto(M)$. Then, every
tangent cone at infinity of M splits off a line.

Remark: M may not split off any line! (examples if $m \geq 4$)

Theorem (Colombo, Gama, M-, Rigoli '23)

M^{m} complete, Ric ≥ 0. Let u solve (MS) and $|D u| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Theorem (Colombo, Gama, M-, Rigoli '23)

M^{m} complete, Ric ≥ 0. Let u solve (MS) and $|D u| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: M may not split off any line! (examples if $m \geq 4$)

Theorem (Colombo, Gama, M-, Rigoli '23)

M^{m} complete, Ric ≥ 0. Let u solve (MS) and $|D u| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: M may not split off any line! (examples if $m \geq 4$)

- Analogue for harmonic functions is by Cheeger-Colding-Minicozzi ' 95

Theorem (Colombo, Gama, M-, Rigoli '23)

M^{m} complete, Ric ≥ 0. Let u solve (MS) and $|D u| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: M may not split off any line! (examples if $m \geq 4$)

- Analogue for harmonic functions is by Cheeger-Colding-Minicozzi ' 95
- $u_{-}(x)=\mathcal{O}(r(x))$ implies $|D u| \in L^{\infty}(M)$ up to further requiring
- $\operatorname{Ric}^{(m-2)}(\nabla r) \geq-\frac{C}{1+r^{2}} \quad$ on $M \backslash \operatorname{cut}(o)$
- Q. Ding (arXiv '22): $\left|B_{r}(o)\right| \geq c r^{m}$
- Q. Ding (arXiv '24): limsup $u_{-}(x) / r(x)$ small enough.

$$
x \rightarrow \infty
$$

Theorem (Colombo, Magliaro, M., Rigoli)
If M is complete and $\mathrm{Ric} \geq 0$, then positive minimal graphs are constant.

Theorem (Colombo, Magliaro, M., Rigoli)

If M is complete and $\mathrm{Ric} \geq 0$, then positive minimal graphs are constant.

- Previous strategies: local gradient estimates: if $0<u: B_{R}(x) \rightarrow \mathbb{R}$ solve (MS),

$$
|D u(x)| \leq c_{1} \exp \left\{c_{2} \frac{u(x)}{R}\right\}, \quad c_{j}=c_{j}(m)
$$

Our main gradient estimate

Theorem
Let M^{m} complete with Ric $\geq-(m-1) \kappa^{2}$, for constant $\kappa \geq 0$.
Let u be a positive solution to (MS) on an open set $\Omega \subset M$.

Our main gradient estimate

Theorem
Let M^{m} complete with Ric $\geq-(m-1) \kappa^{2}$, for constant $\kappa \geq 0$.
Let u be a positive solution to (MS) on an open set $\Omega \subset M$.
If either

Our main gradient estimate

Theorem
Let M^{m} complete with Ric $\geq-(m-1) \kappa^{2}$, for constant $\kappa \geq 0$.
Let u be a positive solution to (MS) on an open set $\Omega \subset M$.
If either
(i) $\partial \Omega$ locally Lipschitz and $\left|\partial \Omega \cap B_{R}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\}$, or

Our main gradient estimate

Theorem

Let M^{m} complete with Ric $\geq-(m-1) \kappa^{2}$, for constant $\kappa \geq 0$.
Let u be a positive solution to (MS) on an open set $\Omega \subset M$. If either
(i) $\partial \Omega$ locally Lipschitz and $\left|\partial \Omega \cap B_{R}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\}$, or
(ii) $u \in C(\bar{\Omega})$ and is constant on $\partial \Omega$.
\qquad

Our main gradient estimate

Theorem

Let M^{m} complete with Ric $\geq-(m-1) \kappa^{2}$, for constant $\kappa \geq 0$.
Let u be a positive solution to (MS) on an open set $\Omega \subset M$.

If either

(i) $\partial \Omega$ locally Lipschitz and $\left|\partial \Omega \cap B_{R}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\}$, or
(ii) $u \in C(\bar{\Omega})$ and is constant on $\partial \Omega$.

Then

$$
\begin{equation*}
\frac{\sqrt{1+|D u|^{2}}}{e^{\kappa \sqrt{m-1} u}} \leq \max \left\{1, \limsup _{x \rightarrow \partial \Omega} \frac{\sqrt{1+|D u(x)|^{2}}}{e^{\kappa \sqrt{m-1} u(x)}}\right\} \quad \text { on } \Omega \tag{2}
\end{equation*}
$$

As a consequence, if $\Omega=M$ it holds

$$
\begin{equation*}
\sqrt{1+|D u|^{2}} \leq e^{\kappa \sqrt{m-1} u} \quad \text { on } M \tag{3}
\end{equation*}
$$

Proof based on the Jacobi equation for $W \doteq \sqrt{1+|D u|^{2}}$

$$
\Delta_{g} W^{-1}+\left[\|\mathrm{II}\|^{2}+\operatorname{Ric}\left(\frac{D u}{W}\right)\right] W^{-1}=0 \quad \text { on } \Sigma .
$$

Korevaar's method: compute $\Delta_{g}(W \eta)$, for η a (carefully crafted) cutoff depending on u and r, the distance in (M, σ) from a fixed point.

Problem: need to evaluate
but Ric ≥ 0 only allows to estimate $\sigma^{i j}\left(D^{2} r\right)_{i j}$

Proof based on the Jacobi equation for $W \doteq \sqrt{1+|D u|^{2}}$

$$
\Delta_{g} W^{-1}+\left[\|\mathrm{II}\|^{2}+\operatorname{Ric}\left(\frac{D u}{W}\right)\right] W^{-1}=0 \quad \text { on } \Sigma .
$$

Korevaar's method: compute $\Delta_{g}(W \eta)$, for η a (carefully crafted) cutoff depending on u and r, the distance in (M, σ) from a fixed point.

Problem: need to evaluate
but Ric ≥ 0 only allows to estimate $\sigma^{i j}\left(D^{2} r\right)_{i j}$

Proof based on the Jacobi equation for $W \doteq \sqrt{1+|D u|^{2}}$

$$
\Delta_{g} W^{-1}+\left[\|\mathrm{II}\|^{2}+\operatorname{Ric}\left(\frac{D u}{W}\right)\right] W^{-1}=0 \quad \text { on } \Sigma .
$$

Korevaar's method: compute $\Delta_{g}(W \eta)$, for η a (carefully crafted) cutoff depending on u and r, the distance in (M, σ) from a fixed point.

Problem: need to evaluate

$$
\Delta_{g} r=g^{i j}\left(D^{2} r\right)_{i j}
$$

but Ric ≥ 0 only allows to estimate $\sigma^{i j}\left(D^{2} r\right)_{i j}$

Proof based on the Jacobi equation for $W \doteq \sqrt{1+|D u|^{2}}$

$$
\Delta_{g} W^{-1}+\left[\|\mathrm{II}\|^{2}+\operatorname{Ric}\left(\frac{D u}{W}\right)\right] W^{-1}=0 \quad \text { on } \Sigma .
$$

Korevaar's method: compute $\Delta_{g}(W \eta)$, for η a (carefully crafted) cutoff depending on u and r, the distance in (M, σ) from a fixed point.

Problem: need to evaluate

$$
\Delta_{g} r=g^{i j}\left(D^{2} r\right)_{i j}
$$

but Ric ≥ 0 only allows to estimate $\sigma^{i j}\left(D^{2} r\right)_{i j}$

IDEA: in place of r, we use an exhaustion ϱ built via potential theory (stochastic geometry)
(M-, Pessoa, Valtorta '13,'20)

The proof

Fix $C>\kappa \sqrt{m-1}, \quad z=W e^{-C u}$

Once the claim is shown, thesis follows by letting $\tau \rightarrow 0$, $C \downarrow \kappa \sqrt{m-1}$.

The proof

Fix $C>\kappa \sqrt{m-1}, \quad z=W e^{-C u}$

- CLAIM: the following set is empty for every $\tau>0$:

$$
\Omega^{\prime}:=\left\{x \in \Omega: z(x)>\max \left\{1, \limsup _{y \rightarrow \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1} u(y)}}\right\}+\tau\right\}
$$

The proof

Fix $C>\kappa \sqrt{m-1}, \quad z=W e^{-C u}$

- CLAIM: the following set is empty for every $\tau>0$:

$$
\Omega^{\prime}:=\left\{x \in \Omega: z(x)>\max \left\{1, \limsup _{y \rightarrow \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1} u(y)}}\right\}+\tau\right\}
$$

Once the claim is shown, thesis follows by letting $\tau \rightarrow 0$, $C \downarrow \kappa \sqrt{m-1}$.

The proof

Fix $C>\kappa \sqrt{m-1}, \quad z=W e^{-C u}$

- CLAIM: the following set is empty for every $\tau>0$:

$$
\Omega^{\prime}:=\left\{x \in \Omega: z(x)>\max \left\{1, \limsup _{y \rightarrow \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1} u(y)}}\right\}+\tau\right\}
$$

Once the claim is shown, thesis follows by letting $\tau \rightarrow 0$, $C \downarrow \kappa \sqrt{m-1}$.

By contradiction: suppose that $\Omega^{\prime} \neq \emptyset$.
Define

The proof

Fix $C>\kappa \sqrt{m-1}, \quad z=W e^{-C u}$

- CLAIM: the following set is empty for every $\tau>0$:

$$
\Omega^{\prime}:=\left\{x \in \Omega: z(x)>\max \left\{1, \limsup _{y \rightarrow \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1} u(y)}}\right\}+\tau\right\}
$$

Once the claim is shown, thesis follows by letting $\tau \rightarrow 0$, $C \downarrow \kappa \sqrt{m-1}$.

By contradiction: suppose that $\Omega^{\prime} \neq \emptyset$.
Define

$$
\mathscr{L}_{g} \phi=W^{2} \operatorname{div}_{g}\left(W^{-2} \nabla \phi\right) \quad \text { on } \Sigma
$$

Fix $C>\kappa \sqrt{m-1}, \quad z=W e^{-C u}$

- CLAIM: the following set is empty for every $\tau>0$:

$$
\Omega^{\prime}:=\left\{x \in \Omega: z(x)>\max \left\{1, \limsup _{y \rightarrow \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1} u(y)}}\right\}+\tau\right\}
$$

Once the claim is shown, thesis follows by letting $\tau \rightarrow 0$, $C \downarrow \kappa \sqrt{m-1}$.

By contradiction: suppose that $\Omega^{\prime} \neq \emptyset$.
Define

$$
\mathscr{L}_{g} \phi=W^{2} \operatorname{div}_{g}\left(W^{-2} \nabla \phi\right) \quad \text { on } \Sigma
$$

Since $\|\nabla u\|^{2}=\frac{W^{2}-1}{W^{2}}$,
$\mathscr{L}_{g} z \geq\left[C^{2}-(m-1) \kappa^{2}\right]\|\nabla u\|^{2} z>C_{\tau} z \quad$ on Σ^{\prime} (the graph over Ω^{\prime})

Key information: a graph has area bounds (calibrated):

$$
\begin{aligned}
\left|B_{R}^{S}\right| & \leq\left|\sum \cap C_{R}\right| \\
& \leq 2\left|B_{R}^{\mu}\right|+2 R\left|\partial B_{R}^{\mu}\right| \\
& \leq C_{1} \exp \left\{C_{2} R\right\}
\end{aligned}
$$

LEMMA: in our assumptions, we can include $\overline{\Sigma^{\prime}}$ isometrically a complete manifold $\left(N^{m}, h\right)$ the volume of whose balls satisfies $\left|B_{R}^{h}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\}$.

Key information: a graph has area bounds (calibrated):

LEMMA: in our assumptions, we can include $\overline{\Sigma^{\prime}}$ isometrically a complete manifold (N^{m}, h) the volume of whose balls satisfies

$$
\left|B_{R}^{h}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\}
$$

Key information: a graph has area bounds (calibrated):

LEMMA: in our assumptions, we can include $\overline{\Sigma^{\prime}}$ isometrically a complete manifold (N^{m}, h) the volume of whose balls satisfies

$$
\left|B_{R}^{h}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\}
$$

THEOREM (Grigoryan '99, Pigola-Rigoli-Setti '03):

If (N, h) is complete and

THEOREM (Grigoryan '99, Pigola-Rigoli-Setti '03):
If (N, h) is complete and

$$
\left|B_{R}^{h}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\},
$$

then
$(\star):\left\{\begin{array}{l}\Delta_{h} \omega \geq \omega \text { on } \bar{U} \subset N, \\ \sup _{U} \omega<\infty\end{array} \quad \Longrightarrow \quad \sup _{U} \omega \leq \max \left\{0, \sup _{\partial U} \omega\right\}\right.$

THEOREM (Grigoryan '99, Pigola-Rigoli-Setti '03):
If (N, h) is complete and

$$
\left|B_{R}^{h}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\},
$$

then
$(\star):\left\{\begin{array}{l}\Delta_{h} \omega \geq \omega \text { on } \bar{U} \subset N, \\ \sup _{U} \omega<\infty\end{array} \quad \Longrightarrow \quad \sup _{U} \omega \leq \max \left\{0, \sup _{\partial U} \omega\right\}\right.$

AHLFORS-KHAS’MINSKII DUALITY
(M.-Valtorta '13, M.-Pessoa '20):
(N, h) satisfies (\star) if and only if there exists $v \in C^{\infty}(N)$ solving

$$
\left\{\begin{array}{l}
\Delta_{g} v \leq v \\
v \geq 1, \quad v \text { exhaustion }
\end{array}\right.
$$

setting $\varrho=\log v \in C^{\infty}(N)$,

$$
\left\{\begin{array}{l}
\Delta_{g} \varrho+\|\nabla \varrho\|^{2} \leq 1 \\
\varrho \geq 0, \quad \varrho \text { exhaustion on } N
\end{array}\right.
$$

setting $\varrho=\log v \in C^{\infty}(N)$,

$$
\left\{\begin{array}{l}
\Delta_{g} \varrho+\|\nabla \varrho\|^{2} \leq 1 \\
\varrho \geq 0, \quad \varrho \text { exhaustion on } N
\end{array}\right.
$$

Let $\delta, \varepsilon^{\prime}, \varepsilon$ be positive, small (specified later), and set

$$
z_{0}=W\left(e^{-C u-\varepsilon \varrho}-\delta\right)<z
$$

For ε, δ small enough, the upper level-set
setting $\varrho=\log v \in C^{\infty}(N)$,

$$
\left\{\begin{array}{l}
\Delta_{g} \varrho+\|\nabla \varrho\|^{2} \leq 1 \\
\varrho \geq 0, \quad \varrho \text { exhaustion on } N
\end{array}\right.
$$

Let $\delta, \varepsilon^{\prime}, \varepsilon$ be positive, small (specified later), and set

$$
z_{0}=W\left(e^{-C u-\varepsilon \varrho}-\delta\right)<z
$$

For ε, δ small enough, the upper level-set

$$
\Omega_{0}^{\prime}:=\left\{x \in \Omega: z_{0}(x)>\max \left\{1, \limsup _{y \rightarrow \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1} u(y)}}\right\}+\tau\right\} \subset \Omega^{\prime}
$$

is non-empty and relatively compact.

We compute on the graph Σ_{0}^{\prime}

$$
\begin{aligned}
\mathscr{L}_{g} z_{0} & \geq\left[\|C \nabla u+\varepsilon \nabla \varrho\|^{2}-(m-1) \kappa^{2}\|\nabla u\|^{2}-\varepsilon \Delta_{g} \varrho\right] z_{0} \\
& \geq\left\{\left[C^{2}\left(1-\varepsilon^{\prime}\right)-(m-1) \kappa^{2}\right]\|\nabla u\|^{2}-\varepsilon\left[\Delta_{g} \varrho+\|\nabla \varrho\|^{2}\right]\right\} z_{0} \\
& >\left\{C_{\tau}-\varepsilon\left[\Delta_{g} \varrho+\|\nabla \varrho\|^{2}\right]\right\} z_{0}
\end{aligned}
$$

if ε^{\prime} small enough and $\varepsilon \ll \varepsilon^{\prime}$.

We compute on the graph Σ_{0}^{\prime}

$$
\begin{aligned}
\mathscr{L}_{g} z_{0} & \geq\left[\|C \nabla u+\varepsilon \nabla \varrho\|^{2}-(m-1) \kappa^{2}\|\nabla u\|^{2}-\varepsilon \Delta_{g} \varrho\right] z_{0} \\
& \geq\left\{\left[C^{2}\left(1-\varepsilon^{\prime}\right)-(m-1) \kappa^{2}\right]\|\nabla u\|^{2}-\varepsilon\left[\Delta_{g} \varrho+\|\nabla \varrho\|^{2}\right]\right\} z_{0} \\
& >\left\{C_{\tau}-\varepsilon\left[\Delta_{g} \varrho+\|\nabla \varrho\|^{2}\right]\right\} z_{0}
\end{aligned}
$$

if ε^{\prime} small enough and $\varepsilon \ll \varepsilon^{\prime}$.
Using $\Delta \varrho+\|\nabla \varrho\|^{2} \leq 1$ and $\varepsilon \ll 1$,

$$
\mathscr{L}_{g} z_{0}>C_{\tau} z_{0}
$$

contradiction at a maximum point of z_{0} on Σ_{0}^{\prime}.

$$
\begin{aligned}
|D u| & \in L^{\infty}(M) \\
L \doteq & \Longrightarrow \\
& \doteq W \Delta_{g}=\frac{1}{\sqrt{\sigma}} \partial_{i}\left(W \sqrt{\sigma} g^{i j} \partial_{j}\right) \quad \text { uniformly elliptic on }(M, \sigma)
\end{aligned}
$$

(i) $\quad \lim _{R \rightarrow \infty} f_{B_{R}}|D u|^{2}=\sup _{M}|D u|^{2}$
(ii) $\quad \lim _{R \rightarrow \infty} R^{2} f_{B_{R}}\left|D^{2} u\right|^{2}=0$.

$$
L \doteq W \Delta_{g}=\frac{1}{\sqrt{\sigma}} \partial_{i}\left(W \sqrt{\sigma} g^{i j} \partial_{j}\right)
$$

The function

is non-negative, bounded, and

Want: $\quad \forall 0 \leq f \in L^{\infty}(M)$ solving $L f \leq 0$,

$$
L \doteq W \Delta_{g}=\frac{1}{\sqrt{\sigma}} \partial_{i}\left(W \sqrt{\sigma} g^{i j} \partial_{j}\right)
$$

- The function

$$
f \doteq\left(\sup _{M}|D u|^{2}\right)-|D u|^{2}=\left(\sup _{M} W^{2}\right)-W^{2}
$$

is non-negative, bounded, and

$$
L f \leq-2\|\mathrm{II}\|^{2} W^{3}=-2\left|D^{2} u\right|^{2} W \leq 0 .
$$

$$
L \doteq W \Delta_{g}=\frac{1}{\sqrt{\sigma}} \partial_{i}\left(W \sqrt{\sigma} g^{i j} \partial_{j}\right)
$$

- The function

$$
f \doteq\left(\sup _{M}|D u|^{2}\right)-|D u|^{2}=\left(\sup _{M} W^{2}\right)-W^{2}
$$

is non-negative, bounded, and

$$
L f \leq-2\|\mathrm{II}\|^{2} W^{3}=-2\left|D^{2} u\right|^{2} W \leq 0 .
$$

Want: $\quad \forall 0 \leq f \in L^{\infty}(M)$ solving $L f \leq 0$,

$$
f_{B_{R}} f \rightarrow \inf _{M} f, \quad R^{2} f_{B_{R}} L f \rightarrow 0 .
$$

$$
L \doteq W \Delta_{g}=\frac{1}{\sqrt{\sigma}} \partial_{i}\left(W \sqrt{\sigma} g^{i j} \partial_{j}\right)
$$

- The function

$$
f \doteq\left(\sup _{M}|D u|^{2}\right)-|D u|^{2}=\left(\sup _{M} W^{2}\right)-W^{2}
$$

is non-negative, bounded, and

$$
L f \leq-2\|\mathrm{II}\|^{2} W^{3}=-2\left|D^{2} u\right|^{2} W \leq 0
$$

Want: $\quad \forall 0 \leq f \in L^{\infty}(M)$ solving $L f \leq 0$,

$$
f_{B_{R}} f \rightarrow \inf _{M} f, \quad R^{2} f_{B_{R}} L f \rightarrow 0 .
$$

w.l.o.g. $\inf _{M} f=0$.

- (M, σ) having Ric $\geq 0, \quad L$ unif. elliptic, in divergence form.
- (M, σ) having Ric $\geq 0, \quad L$ unif. elliptic, in divergence form.
- $0 \leq f \in C(M) \cap L^{\infty}(M)$. Then,

$$
\left\{\begin{array}{ll}
\partial_{t} v=L v & \text { on } M \times \mathbb{R}^{+} \\
v\left(x, 0^{+}\right)=f(x) & \forall x \in M .
\end{array} \Longrightarrow f(x, t)=\int_{M} h(x, y, t) f(y) \mathrm{d} y\right.
$$

- (M, σ) having Ric $\geq 0, \quad L$ unif. elliptic, in divergence form.
- $0 \leq f \in C(M) \cap L^{\infty}(M)$. Then,

$$
\left\{\begin{array}{ll}
\partial_{t} v=L v & \text { on } M \times \mathbb{R}^{+} \\
v\left(x, 0^{+}\right)=f(x) & \forall x \in M .
\end{array} \Longrightarrow f(x, t)=\int_{M} h(x, y, t) f(y) \mathrm{d} y\right.
$$

Notice: $0 \leq v(x, t) \leq\|f\|_{\infty}$.

- (M, σ) having Ric $\geq 0, \quad L$ unif. elliptic, in divergence form.
- $0 \leq f \in C(M) \cap L^{\infty}(M)$. Then,

$$
\left\{\begin{array}{ll}
\partial_{t} v=L v & \text { on } M \times \mathbb{R}^{+} \\
v\left(x, 0^{+}\right)=f(x) & \forall x \in M .
\end{array} \Longrightarrow f(x, t)=\int_{M} h(x, y, t) f(y) \mathrm{d} y\right.
$$

Notice: $0 \leq v(x, t) \leq\|f\|_{\infty}$.
The L-heat kernel h satisfies (Saloff-Coste '92)
(i) $\quad\left(1+\frac{\mathrm{d}(x, y)}{\sqrt{t}}\right)^{-\frac{m}{2}} \frac{C_{1}}{\left|B_{\sqrt{t}}(x)\right|} e^{-\frac{\mathrm{d}^{2}(x, y)}{C_{2} t}}$
(ii) $\quad\left|\partial_{t} h\right| \leq \frac{1}{t}\left(1+\frac{\mathrm{d}(x, y)}{\sqrt{t}}\right)^{\frac{m}{2}} \frac{C_{5}}{\left|B_{\sqrt{t}}(x)\right|} e^{-\frac{d^{2}(x, y)}{C_{6} t}}$

Step 1: We show

$$
f_{B_{\sqrt{ }}(x)} f \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

(compare with Repnikov-Eidelman '66,'67). We follow P. Li '86.

By the lower bound on h,

Step 1: We show

$$
f_{B_{\sqrt{i}}(x)} f \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

(compare with Repnikov-Eidelman '66,'67). We follow P. Li '86.
By the lower bound on h,

Step 1: We show

$$
f_{B_{\sqrt{i}}(x)} f \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

(compare with Repnikov-Eidelman '66,'67). We follow P. Li '86.
By the lower bound on h,

$$
\begin{aligned}
v(x, t) & =\int_{M} f(y) h(x, y, t) \mathrm{d} y \\
& \geq \frac{C_{1}}{\left|B_{\sqrt{t}}(x)\right|} \int_{M} f(y)\left(1+\frac{\mathrm{d}(x, y)}{\sqrt{t}}\right)^{-\frac{m}{2}} e^{\frac{-\mathrm{d}^{2}(x, y)}{C_{2} t}} \mathrm{~d} y \\
& \geq \frac{C_{1}}{\left|B_{\sqrt{t}}(x)\right|} \int_{B_{\sqrt{t}}(x)} \cdots \geq \frac{C_{3}}{\left|B_{\sqrt{t}}(x)\right|} \int_{B_{\sqrt{t}}(x)} f \geq 0
\end{aligned}
$$

Step 1: We show

$$
f_{B_{\sqrt{i}}(x)} f \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

(compare with Repnikov-Eidelman '66,'67). We follow P. Li '86.
By the lower bound on h,

$$
\begin{aligned}
& v(x, t)=\int_{M} f(y) h(x, y, t) \mathrm{d} y \\
& \geq \frac{C_{1}}{\left|B_{\sqrt{t}}(x)\right|} \int_{M} f(y)\left(1+\frac{\mathrm{d}(x, y)}{\sqrt{t}}\right)^{-\frac{m}{2}} e^{\frac{-\mathrm{d}^{2}(x, y)}{C_{2} t}} \mathrm{~d} y \\
& \geq \frac{C_{1}}{\left|B_{\sqrt{t}}(x)\right|} \int_{B_{\sqrt{t}}(x)} \cdots \geq \frac{C_{3}}{\left|B_{\sqrt{t}}(x)\right|} \int_{B_{\sqrt{t}}(x)} f \geq 0 \\
& \Longrightarrow \quad \text { we want } v(x, t) \rightarrow 0 \text { as } t \rightarrow \infty
\end{aligned}
$$

- (x, t) fixed, $\Omega_{a}=\{y: h(x, y, t)>a\}$.

$$
\begin{aligned}
\partial_{t} v(x, t) & =\int_{M} f \partial_{t} h=\lim _{a \rightarrow 0} \int_{\Omega_{a}} f \partial_{t} h \\
& =\lim _{a \rightarrow 0} \int_{\Omega_{a}} f L(h-a) \\
& =\lim _{a \rightarrow 0}\left\{\int_{\partial \Omega_{a}} f \partial_{\nu}(h-a)+\int_{\Omega_{a}}(h-a) L f\right\} \leq 0 .
\end{aligned}
$$

- (x, t) fixed, $\Omega_{a}=\{y: h(x, y, t)>a\}$.

$$
\begin{aligned}
\partial_{t} v(x, t) & =\int_{M} f \partial_{t} h=\lim _{a \rightarrow 0} \int_{\Omega_{a}} f \partial_{t} h \\
& =\lim _{a \rightarrow 0} \int_{\Omega_{a}} f L(h-a) \\
& =\lim _{a \rightarrow 0}\left\{\int_{\partial \Omega_{a}} f \partial_{\nu}(h-a)+\int_{\Omega_{a}}(h-a) L f\right\} \leq 0 .
\end{aligned}
$$

- Thus,

$$
v(x, t) \downarrow v_{\infty}(x) \quad \text { as } t \rightarrow \infty,
$$

and

$$
\inf _{M} v_{\infty}=0, \quad L v_{\infty}=0 \quad \Longrightarrow \quad v_{\infty} \equiv 0 .
$$

Step 2: We show

$$
t f_{B_{\sqrt{t}}(x)} L f \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

We start from

Key fact: there exists $\delta=\delta\left(C_{j}\right)$ and $k=k\left(C_{j}\right)$ such that if

Step 2: We show

$$
t f_{B_{\sqrt{t}}(x)} L f \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

We start from

$$
\int_{\Omega_{a}} f \partial_{t} h \leq \int_{\Omega_{a}}(h-a) L f
$$

Key fact: there exists $\delta=\delta\left(C_{j}\right)$ and $k=k\left(C_{j}\right)$ such that if

Step 2: We show

$$
t f_{B_{\sqrt{t}}(x)} L f \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

We start from

$$
\int_{\Omega_{a}} f \partial_{t} h \leq \int_{\Omega_{a}}(h-a) L f
$$

Key fact: there exists $\delta=\delta\left(C_{j}\right)$ and $k=k\left(C_{j}\right)$ such that if

$$
a=\frac{\delta}{\left|B_{\sqrt{t}}(x)\right|}
$$

then

$$
B_{\sqrt{t}}(x) \subset \Omega_{2 a} \subset \Omega_{a} \subset B_{k \sqrt{t}}(x)
$$

$$
B_{\sqrt{t}}(x) \subset \Omega_{2 a} \subset \Omega_{a} \subset B_{k \sqrt{t}}(x), \quad a=\frac{\delta}{\left|B_{\sqrt{t}}(x)\right|}
$$

$$
\begin{aligned}
0 & \geq f_{B_{\sqrt{t}}(x)} L f=\frac{a}{\delta} \int_{B_{\sqrt{t}}(x)} L f \\
& \geq \frac{1}{\delta} \int_{B_{\sqrt{t}}(x)}(h-a) L f \geq \frac{1}{\delta} \int_{\Omega_{a}}(h-a) L f \\
& \geq \frac{1}{\delta} \int_{\Omega_{a}} f \partial_{t} h \\
& \geq-\frac{1}{t \delta} \frac{C_{5}}{\left|B_{\sqrt{t}}(x)\right|} \int_{B_{k \sqrt{t}}(x)} f(y)\left(1+\frac{\mathrm{d}(x, y)}{\sqrt{t}}\right)^{\frac{m}{2}} e^{\frac{-d^{2}(x, y)}{C_{6} t}} \mathrm{~d} y \\
& \geq-\frac{C_{7}}{t} \frac{\left|B_{k \sqrt{t}}(x)\right|}{\left|B_{\sqrt{t}}(x)\right|} f_{B_{k \sqrt{ }}(x)} f \geq-\frac{C_{8}}{t} f_{B_{k \sqrt{t}}(x)} f
\end{aligned}
$$

THANKS!

