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Recent advances in comparison geometry

Hangzhou, 26 February 2024

Stefano Borghini Comparison geometry for substatic manifolds 26 February 2024 0 / 24



Substatic manifolds with horizon boundary

Riemannian manifolds (M, g) with a nonnegative smooth function f (substatic
potential) such that

(i) f Ric − ∇∇f + ∆f g ≥ 0

(ii) The boundary ∂M = {f = 0} (horizon) is a minimal closed hypersurface and a
regular level set for f .
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Physical motivation: static spacetimes

A spacetime is a Lorentzian 4-manifold (L, γ) satisfying

Ricγ +
(

Λ − 1
2Rγ

)
γ = T ,

where T is the stress-energy tensor and Λ ∈ R is the cosmological constant.

(L, γ) is static if it splits as

L = R × M , and γ = −f 2 dt ⊗ dt + g ,

with (M, g) Riemannian 3-manifold, f : M → R+ smooth.

If we assume vacuum (T = 0) we get f Ric − ∇∇f + ∆f g = 0.
(Other interesting cases: Einstein–Maxwell, perfect fluids, scalar fields, ...)
If we assume Null Energy Condition (T (X ,X ) ≥ 0 ∀ X such that
γ(X ,X ) = 0), we get (Wang–Wang–Zhang ’17)

f Ric − ∇∇f + ∆f g ≥ 0
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Examples

We will consider noncompact substatic manifolds. Main model solution:

M = [r0,+∞) × Σ , g = dr ⊗ dr
f (r)2 + r2gΣ, r0 > 0

f =
√

1 − 2mr2−n , RicΣ ≥ (n − 2)gΣ

▶ If Σ = Sn−1 and m > 0 this is Schwarzschild (black hole in vacuum).
▶ If Σ = Sn−1 and m = 0 this is Rn.

f =
√

1 − 2mr2−n + q2r4−2n RicΣ ≥ (n − 2)gΣ.

▶ If Σ = Sn−1 and m > |q| this is Reissner-Nordstrom (charged black hole).

f =
√

1 − 2mr2−n + r2 RicΣ ≥ (n − 2)gΣ.

▶ If Σ = Sn−1 and m > 0 this is Anti de Sitter-Schwarzschild.
▶ If Σ = Sn−1 and m = 0 this is the hyperbolic space.
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Natural connection with CD(0, 1) condition
(M, g̃) satisfies the CD(0,N) condition if there exists ψ ∈ C 2(M) such that the
N-Bakry–Émery Ricci tensor is nonnegative

Ricg̃ + ∇̃∇̃ψ − dψ ⊗ dψ
N − n ≥ 0.

Let (M, g , f ) be substatic. Consider (Brendle, Chrusciél, Woolgar, Reiris, ...)

g̃ = g
f 2 , ψ = −(n − 1) log f .

Then g̃ satisfies
Ricg̃ + ∇̃∇̃ψ + dψ ⊗ dψ

n − 1 ≥ 0,

i.e. 1-Bakry–Émery is nonnegative.

Fundamental elements of comparison geometry in this setting have been recently
studied (Wylie, Wylie–Yeroshkin, Ohta, Lu–Minguzzi–Ohta, Kuwae–Sakurai,
Kuwae–Li, Sakurai, ...)!
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Laplacian comparison
ρ distance from x ∈ M with respect to g̃ = g/f 2. We define the reparametrized
distance ηx via {

∂
∂ρηx = f 2 in M ,

ηx (x) = 0

This is a first order PDE ⇒ it gives a smooth ηx outside the cut locus.
(ηx is the length of the radial g̃-geodesics with respect to f 4g̃ = f 2g .)

Riccati equation for the g-mean curvature H of the level sets of ρ:

∂

∂ρ

(
f
H − ηx

n − 1

)
≥ 0 .

Proposition (Wylie ’16)

0 <
H
f = ∆ρ+ 1

f ⟨∇f | ∇ρ⟩ ≤ n − 1
ηx

within the cut locus of x.
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Horizon and ends

Let (M, g) be substatic.

With respect to g̃ = g/f 2, the horizon ∂M becomes an end (ρ → +∞). On the
other hand, the reparametrized distance η has finite limit.

We consider two kinds of ends for a substatic solution (M, g , f ).

(i) An end is f -complete if any ray γ has infinite g̃-length (ρ → +∞) and
ˆ +∞

0
f (γ(t))dt = +∞ . (⇒ η → +∞)

Main example: Schwarzschild (in particular Rn).

(ii) An end is conformally compact if any ray has finite g̃-length. The end
becomes a boundary. We also require the metric to extend smoothly to the
conformal boundary.
Main example: Anti de Sitter–Schwarzschild (in particular hyperbolic space).

Stefano Borghini Comparison geometry for substatic manifolds 26 February 2024 6 / 24



Horizon and ends

Let (M, g) be substatic.

With respect to g̃ = g/f 2, the horizon ∂M becomes an end (ρ → +∞). On the
other hand, the reparametrized distance η has finite limit.

We consider two kinds of ends for a substatic solution (M, g , f ).

(i) An end is f -complete if any ray γ has infinite g̃-length (ρ → +∞) and
ˆ +∞

0
f (γ(t))dt = +∞ . (⇒ η → +∞)

Main example: Schwarzschild (in particular Rn).

(ii) An end is conformally compact if any ray has finite g̃-length. The end
becomes a boundary. We also require the metric to extend smoothly to the
conformal boundary.
Main example: Anti de Sitter–Schwarzschild (in particular hyperbolic space).

Stefano Borghini Comparison geometry for substatic manifolds 26 February 2024 6 / 24



Horizon and ends

Let (M, g) be substatic.

With respect to g̃ = g/f 2, the horizon ∂M becomes an end (ρ → +∞). On the
other hand, the reparametrized distance η has finite limit.

We consider two kinds of ends for a substatic solution (M, g , f ).

(i) An end is f -complete if any ray γ has infinite g̃-length (ρ → +∞) and
ˆ +∞

0
f (γ(t))dt = +∞ . (⇒ η → +∞)

Main example: Schwarzschild (in particular Rn).

(ii) An end is conformally compact if any ray has finite g̃-length. The end
becomes a boundary. We also require the metric to extend smoothly to the
conformal boundary.
Main example: Anti de Sitter–Schwarzschild (in particular hyperbolic space).

Stefano Borghini Comparison geometry for substatic manifolds 26 February 2024 6 / 24



Horizon and ends

Let (M, g) be substatic.

With respect to g̃ = g/f 2, the horizon ∂M becomes an end (ρ → +∞). On the
other hand, the reparametrized distance η has finite limit.

We consider two kinds of ends for a substatic solution (M, g , f ).

(i) An end is f -complete if any ray γ has infinite g̃-length (ρ → +∞) and
ˆ +∞

0
f (γ(t))dt = +∞ . (⇒ η → +∞)

Main example: Schwarzschild (in particular Rn).

(ii) An end is conformally compact if any ray has finite g̃-length. The end
becomes a boundary. We also require the metric to extend smoothly to the
conformal boundary.
Main example: Anti de Sitter–Schwarzschild (in particular hyperbolic space).

Stefano Borghini Comparison geometry for substatic manifolds 26 February 2024 6 / 24



Substatic Splitting Theorems

Theorem (Wylie ’16, B.–Fogagnolo)
Let (M, g) be substatic.
(i) If (M, g) has two f -complete ends, then

M = R × L , g = f 2ds ⊗ ds + gL.

Consequence: if ∂M ̸= ∅ then ∂M = R × ∂L noncompact, contradiction
⇒ if ∂M ̸= ∅ there is only one f -complete end.

(ii) (M, g) cannot have two conformally compact ends, or an f -complete and a
conformally compact one.

Proof.
Standard Cheeger–Gromoll/Kasue argument with the Busemann function/distance
from the boundary

(ii) generalizes a result of Chruściel–Simon for vacuum static metrics.
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Substatic Bishop–Gromov monotonicity
Classical Bishop–Gromov Theorem for nonnegative Ricci: for every x ∈ M,
r = dist(x , ·), the functions

|∂B(x , r)|
rn−1|Sn−1|

,
|B(x , r)|
rn|Bn|

are monotonically nonincreasing

Theorem (B.–Fogagnolo)
The following functionals are monotonically nonincreasing:

Ax (t) = 1
|Sn−1|

ˆ
{ρ=t}

1
ηn−1

x
dσ

Vx (t) = 1
tn|Bn|

ˆ
{ρ≤t}

1
f

(
ρ

ηx

)n−1
dσ
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Proof (monotonicity of A(t)).
The Laplacian comparison can be rephrased as

div(X ) ≤ 0,

where
X = f

ηn−1 ∇ρ.

Applying the Divergence Theorem in {t ≤ ρ ≤ T} one gets
ˆ

{ρ=t}

〈
X , ∇ρ

|∇ρ|

〉
dσ ≥

ˆ
{ρ=T}

〈
X , ∇ρ

|∇ρ|

〉
dσ.

ˆ
{ρ=t}

f
ηn−1 |∇ρ|dσ ≥

ˆ
{ρ=T}

f
ηn−1 |∇ρ|dσ.

|∇ρ| = 1/f ⇒ A(t) ≥ A(T )
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Proof (monotonicity of V (t)).
Coarea formula:

V (t) = 1
tn|Bn|

ˆ
{ρ≤t}

1
f

(
ρ

η

)n−1
dµ = n

tn|Sn−1|

ˆ t

0

ˆ
{ρ=τ}

(
ρ

η

)n−1
dσdτ

= n
tn

ˆ t

0
τn−1A(τ)dτ

On the one hand, exploiting area monotonicity:

V (t) = n
tn

ˆ t

0
τn−1A(τ)dτ ≥ n

tn A(t)
ˆ t

0
τn−1dτ = A(t)

On the other hand, differentiating:

V ′(t) = n
tn tn−1A(t) − n2

tn+1

ˆ t

0
τn−1A(τ)dτ = n

t [A(t) − V (t)] ≤ 0 .

Stefano Borghini Comparison geometry for substatic manifolds 26 February 2024 10 / 24



Proof (monotonicity of V (t)).
Coarea formula:

V (t) = 1
tn|Bn|

ˆ
{ρ≤t}

1
f

(
ρ

η

)n−1
dµ = n

tn|Sn−1|

ˆ t

0

ˆ
{ρ=τ}

(
ρ

η

)n−1
dσdτ

= n
tn

ˆ t

0
τn−1A(τ)dτ

On the one hand, exploiting area monotonicity:

V (t) = n
tn

ˆ t

0
τn−1A(τ)dτ ≥ n

tn A(t)
ˆ t

0
τn−1dτ = A(t)

On the other hand, differentiating:

V ′(t) = n
tn tn−1A(t) − n2

tn+1

ˆ t

0
τn−1A(τ)dτ = n

t [A(t) − V (t)] ≤ 0 .

Stefano Borghini Comparison geometry for substatic manifolds 26 February 2024 10 / 24



Proof (monotonicity of V (t)).
Coarea formula:

V (t) = 1
tn|Bn|

ˆ
{ρ≤t}

1
f

(
ρ

η

)n−1
dµ = n

tn|Sn−1|

ˆ t

0

ˆ
{ρ=τ}

(
ρ

η

)n−1
dσdτ

= n
tn

ˆ t

0
τn−1A(τ)dτ

On the one hand, exploiting area monotonicity:

V (t) = n
tn

ˆ t

0
τn−1A(τ)dτ ≥ n

tn A(t)
ˆ t

0
τn−1dτ = A(t)

On the other hand, differentiating:

V ′(t) = n
tn tn−1A(t) − n2

tn+1

ˆ t

0
τn−1A(τ)dτ = n

t [A(t) − V (t)] ≤ 0 .

Stefano Borghini Comparison geometry for substatic manifolds 26 February 2024 10 / 24



Distance from a hypersurface

Ω compact domain ∂Ω = ∂M ⊔ Σ, where Σ hypersurface with

HΣ > 0 .

ρ distance from Σ with respect to g̃ = g/f 2. Define reparametrized distance ηΣ by
∂

∂ρηΣ = f 2 in M \ Ω

ηΣ = (n − 1) f
HΣ

on Σ.

As before, one proves:

∂

∂ρ

(
f
H − ηΣ

n − 1

)
≥ 0 ⇒ 0 <

H
f = ∆ρ+ 1

f ⟨∇f | ∇ρ⟩ ≤ n − 1
ηΣ

⇝ AΣ(t) = 1
|Sn−1|

ˆ
{ρ=t}

1
ηn−1

Σ
dσ monotonically nonincreasing.
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Towards a Willmore-type inequality
ˆ

Σ

[
H

(n − 1)f

]n−1
dσ = |Sn−1|AΣ(0) ≥ |Sn−1| lim

t→+∞
AΣ(t)

Proposition
If, for any Σ1, Σ2, ∣∣∣∣ηΣ1

ηΣ2

(x) − 1
∣∣∣∣ → 0 (1)

uniformly as ρ(x) → +∞, then

AVRf (g) := lim
t→+∞

AΣ(t) = lim
t→+∞

VΣ(t)

does not depend on Σ.

When (1) holds we say that the end is uniform.
This is ensured e.g. if f → 1 or |∇ log f | ≤ Cρ−1−ϵ.
Asymptotically flat ends are uniform f -complete and AVRf (g) = 1.
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Substatic Willmore inequality

Theorem (B.–Fogagnolo)
Let (M, g) be substatic with a uniform f -complete end. Let Ω be a compact
domain with ∂Ω = ∂M ⊔ Σ, where Σ has strictly positive mean-curvature. Then

ˆ
Σ

(
H
f

)n−1
dσ ≥ (n − 1)n−1|Sn−1|AVRf (g) .

If equality holds, then in M \ Ω it holds

g = f 2dρ⊗ dρ+ η2g0 ,

where g0 is a metric on Σ.

In non-negative Ricci curvature: proved by Agostiniani–Fogagnolo–Mazzieri.
Proof in terms of distances and Riccati due to X. Wang.
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Towards an isoperimetric inequality

We follow the approach of Fogagnolo–Mazzieri, that uses the Willmore inequality.

The Willmore inequality being in terms of H/f , suggests to look at the problem

inf{P(E ), E homologous to ∂M}

with fixed
|ΩΣ|f =

ˆ
Ω

f dµ = V ,

where
∂ΩΣ = Σ ⊔ ∂M,

because these f -isoperimetric sets have

H
f = cnst.
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Substatic isoperimetric inequality

Theorem (B.–Fogagnolo)
Let (M, g) be substatic of dimension n ≤ 7 with a uniform f -complete end.
Assume there exists an exhaustion of outward minimizing hypersurfaces homologous
to ∂M.

Then, for any Σ homologous to ∂M, it holds

|Σ|
n

n−1 − |∂M|
n

n−1 ≥ n(AVRf (g)|Sn−1|)
1

n−1 |ΩΣ|f .

Equality holds if and only if g is a warped product

g = dr ⊗ dr
f (r)2 + r2g0

and Σ is a cross-section {r = r}.

Previous works in non-negative Ricci:
Inequality for n ≤ 7 (Fogagnolo–Mazzieri). Inequality in every dimension (Brendle).
Rigidity in every dimension (Antonelli–Pasqualetto–Pozzetta–Semola).
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Proof (heuristic).
Let ΣV be isoperimetric for the f -volume homologous to ∂M for any volume V .
Then, H/f is constant.

We have by Willmore(
H
f

)n−1
|ΣV | =

ˆ
ΣV

(
H
f

)n−1
dσ ≥ (n − 1)n−1|Sn−1|AVRf (g)

In particular

I ′
f (V ) = H

f ≥ (n − 1)
(

|Sn−1|AVRf (g)
If (V )

) 1
n−1

where If is the isoperimetric profile, that is |ΣV |.
Integrating in V , and using

lim
V →0+

If (V ) = |∂M|,

one gets
|ΣV |

n
n−1 − |∂M|

n
n−1 ≥ n

(
AVRf (g)|Sn−1|

) 1
n−1 V .
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f ≥ (n − 1)
(

|Sn−1|AVRf (g)
If (V )

) 1
n−1

where If is the isoperimetric profile, that is |ΣV |.
Integrating in V , and using

lim
V →0+

If (V ) = |∂M|,

one gets
|ΣV |

n
n−1 − |∂M|

n
n−1 ≥ n

(
AVRf (g)|Sn−1|

) 1
n−1 V .
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Comments on the proof: existence of isoperimetrics

ΣV may not exist (the space is noncompact) ⇝ consider the isoperimetric problem
constrained in an outward minimising set B (idea due to Kleiner).
Here the problem has a solution.

We prove that ΣV does not touch the horizon (but it can touch ∂B).

To apply Willmore we need H > 0:

If ΣV touches ∂B then(
H
f

)
∂ΣV \∂B

≥
(

H
f

)
∂ΣV ∩∂B

> 0

H cannot be zero: there are no minimal hypersurfaces homologous to ∂M
(B.–Fogagnolo, a combination of Riccati and MCF).

If H/f is negative, the outward minimizing hull is minimal
(Fogagnolo–Mazzieri)⇒ impossible.
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Further directions

Improve the isoperimetric inequality:
▶ remove the assumption on the existence of an exhaustion of outward minimizing

hypersurfaces (IMCF?).
▶ remove the dimensional threshold n ≤ 7 (Brendle’s strategy? RCD framework?).

Other results from comparison geometry? Minkowski inequality (through IMCF
perhaps)? Compact case (Schwarzschild–de Sitter)?

Study
f Ric − ∇2f + (∆f )g ≥ −µg , µ ∈ R

Equality given by V -static solutions (related to Besse conjecture).

Can we replace η with the f 2g -distance? If so, we would get rid of the uniform
assumption.
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Substatic Heintze–Karcher inequality

Theorem (Li–Xia ’17, Fogagnolo–Pinamonti ’22)
Let (M, g) be substatic and assume

∇∇f
f ∈ C0,α(M ∪ ∂M)

Let Ω be a compact domain with ∂Ω = ∂M ⊔ Σ, where Σ is a connected, smooth
strictly mean-convex hypersurface. Then

ˆ
Σ

f
H dσ ≥ n

n − 1

ˆ
Ω

f dµ+
(ˆ

∂M
|∇f | dσ

)2 (ˆ
∂M

|∇f |2 H
f dσ

)−1
,

where Ω is the bounded set enclosed by Σ and ∂M.
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f dσ

)−1
,

where Ω is the bounded set enclosed by Σ and ∂M.
In case of equality, then Ω is isometric to a warped product

g = dr ⊗ dr
f (r)2 + r2g0 .
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Substatic warped products

We now focus on substatic warped products(
[r0, r ] × N ,

dr ⊗ dr
f (r)2 + r2gN

)
,

where f is the substatic potential.

It always holds (
Ric − ∇∇f

f + ∆f
f g

)
(∇r ,∇r) = 0 .

∇f is constant on the boundary, the level sets have H/f = (n − 1)/r .
⇝ the Heintze–Karcher inequality rewrites as:

(n − 1)
ˆ

Σ

f
H dσ ≥ n

ˆ
Ω

f dµ+ r0|∂M| .
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CMC hypersurfaces in substatic warped products

Brendle’s contribution:
Heintze–Karcher inequality for hypersurfaces Σ in a substatic warped product.
If equality then Σ is umbilic. (weaker, but no hypothesis on ∇∇f /f )

CMC hypersurfaces saturate the Heintze–Karcher inequality (⇒ umbilic).
Σ umbilic CMC. If RicgN ≥ (n − 2)cgN and

(H4) r f (r)f ′(r) − f (r)2 + c > 0 ,

then Σ cross section.

Theorem (Brendle ’13)
In a substatic warped product satisfying (H4), the cross sections are the only CMC
hypersurfaces.

Stefano Borghini Comparison geometry for substatic manifolds 26 February 2024 21 / 24



CMC hypersurfaces in substatic warped products

Brendle’s contribution:
Heintze–Karcher inequality for hypersurfaces Σ in a substatic warped product.
If equality then Σ is umbilic. (weaker, but no hypothesis on ∇∇f /f )
CMC hypersurfaces saturate the Heintze–Karcher inequality (⇒ umbilic).

Σ umbilic CMC. If RicgN ≥ (n − 2)cgN and

(H4) r f (r)f ′(r) − f (r)2 + c > 0 ,

then Σ cross section.

Theorem (Brendle ’13)
In a substatic warped product satisfying (H4), the cross sections are the only CMC
hypersurfaces.

Stefano Borghini Comparison geometry for substatic manifolds 26 February 2024 21 / 24



CMC hypersurfaces in substatic warped products

Brendle’s contribution:
Heintze–Karcher inequality for hypersurfaces Σ in a substatic warped product.
If equality then Σ is umbilic. (weaker, but no hypothesis on ∇∇f /f )
CMC hypersurfaces saturate the Heintze–Karcher inequality (⇒ umbilic).
Σ umbilic CMC. If RicgN ≥ (n − 2)cgN and

(H4) r f (r)f ′(r) − f (r)2 + c > 0 ,

then Σ cross section.

Theorem (Brendle ’13)
In a substatic warped product satisfying (H4), the cross sections are the only CMC
hypersurfaces.

Stefano Borghini Comparison geometry for substatic manifolds 26 February 2024 21 / 24



CMC hypersurfaces in substatic warped products

Brendle’s contribution:
Heintze–Karcher inequality for hypersurfaces Σ in a substatic warped product.
If equality then Σ is umbilic. (weaker, but no hypothesis on ∇∇f /f )
CMC hypersurfaces saturate the Heintze–Karcher inequality (⇒ umbilic).
Σ umbilic CMC. If RicgN ≥ (n − 2)cgN and

(H4) r f (r)f ′(r) − f (r)2 + c > 0 ,

then Σ cross section.

Theorem (Brendle ’13)
In a substatic warped product satisfying (H4), the cross sections are the only CMC
hypersurfaces.

Stefano Borghini Comparison geometry for substatic manifolds 26 February 2024 21 / 24



Heintze–Karcher inequality in substatic warped products

Theorem (B.–Fogagnolo–Pinamonti)
Let (M, g) be a substatic warped product. Let Ω be a compact domain with
∂Ω = ∂M ⊔ Σ, where Σ is a connected, smooth strictly mean-convex hypersurface.
Then

(n − 1)
ˆ

Σ

f
H dσ ≥ n

ˆ
Ω

f dµ+ r0|∂M| ,

where Ω is the bounded set enclosed by Σ and ∂M.
In case of equality, then Σ is a cross section.

Following Brendle, we then have:

Corollary
In a substatic warped product, the cross sections are the only CMC hypersurfaces.
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Proof.
It is enough to show that ∇∇f /f ∈ C0,α(M ∪ ∂M).

Following Brendle, let ρ be the g̃ -distance from Σ and let Q(t) =
´

{ρ=t}
f
H dσ.

Q′(t) = − n
n − 1

ˆ

{ρ=t}

f dσ−
ˆ

{ρ=t}

(
f
H

)2 [
|̊h|2 +

(
Ric − ∇∇f

f + ∆f
f g

)
(ν, ν)

]
dσ

⇒ Q(0) − Q(t) ≥ − n
n − 1

ˆ

{0≤ρ≤t}

f dµ (⇒ H.–K. when t → +∞)

Σ saturates Heintze–Karcher ⇒ Q constant ⇒ Σt = {ρ = t} umbilic and(
Ric − ∇∇f

f + ∆f
f g

)
(ν, ν) = 0

on Σt ∀ t.
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Proof.
On the other hand, we also have(

Ric − ∇∇f
f + ∆f

f g
)

(∇r ,∇r) = 0

Argument by Montiel: if Σ is not a cross section, ∇r and ν are a.e. linearly
independent ⇝ there exists X ⊥ ∇r such that(

Ric − ∇∇f
f + ∆f

f g
)

(X ,X ) = 0 (1)

B.–Fogagnolo–Pinamonti: substatic warped products satisfying (1) have the
form:

g = dr ⊗ dr
f (r)2 + r2 gN , RicgN ≥ (n − 2)cgN , f =

√
c − λ r2 − 2m

rn−2

where c, λ,m ∈ R. These warped products satisfy ∇∇f /f ∈ C0,α(M ∪ ∂M)!
⇝ our rigidity statement triggers ⇝ contradiction.
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Thank you!
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