Drawstrings and scalar curvature in dimension three

Kai Xu, Duke University

(joint with Demetre Kazaras)

Recent advances in comparison geometry Hangzhou 2024.2.26

Contents

- 1. Introducing drawstrings.
- 2. Construction of drawstrings.

Theorem (Geroch conjecture)

If g is a smooth metric on T^3 with $R_g \ge 0$, then g is flat.

Notation: $T^3 = 3$ -torus, R_g = scalar curvature of g.

Proofs:

- · Schoen-Yau (minimal surfaces)
- · Gromov-Lawson (spinors)
- · Stern (harmonic functions)

Theorem (Geroch conjecture)

If g is a smooth metric on T^3 with $R_g \ge 0$, then g is flat.

Problem (stability)

Let g be a metric on T^3 such that

 $R_g \geqslant -\varepsilon$, diam $(g) \leqslant D$, $V_1 \leqslant Vol(g) \leqslant V_2$,

where $\varepsilon \ll 1$. What can we conclude about g (is it close to a flat torus in some sense)?

General stability problems

The stability problem can be asked in the context of:

- · Positive mass theorem,
- · Penrose inequality,
- · Larrull's theorem, etc...

The stability problem can be asked in the context of:

 \cdot Positive mass theorem, Penrose inequality, Larrull's theorem, etc...

Problem (compactness; Gromov)

Consider the space of manifolds (M,g) with

 ${\it R_g} \geqslant \lambda, ~~ {
m diam}(g) \leqslant D, ~~ {
m Vol}(g) \leqslant V, ~~ etc...$

Problems:

· Find a suitable topology under which this space is precompact.

• Find a suitable notion of weak scalar curvature lower bound for the limit spaces.

Stability of Geroch conjecture

Problem

Let g be a metric on T^3 such that

$$R_g \ge -\varepsilon$$
, diam $(g) \le D$, $Vol(g) \le V$,

where $\varepsilon \ll 1$. Is g is close to a flat torus?

Answer: extreme examples need to be considered.

Gromov-Lawson and Schoen-Yau connected sum

See also Basilio-Dodziuk-Sormani, Sweeney Jr. for constructions.

Induced constructions

Induced constructions

Example 1: Ilmanen's sphere (dense thin splines). Effect: GH diverging.

Example 2: Basilio-Dodziuk-Sormani sewing (dense small tunnels).

Effect: collapsing a certain subset of the manifold.

minA-IF stability conjecture

$$\min A(M,g) = \inf \left\{ |\Sigma|_g : \Sigma \text{ is a closed minimal surface} \right\}$$

Conjecture (Gromov-Sormani)

Suppose (M_i, g_i) is a sequence of 3-tori, such that

$$\inf_{M_i} R_{g_i} \to 0, \quad \min \mathsf{A}(M, g_i) \geqslant A_0 > 0,$$

and

$$\operatorname{diam}(g_i) \leqslant D$$
, $\operatorname{Vol}(g_i) \leqslant V$.

Then a subsequence of M_i converges to a flat T^3 in the (volume-preserving) Sormani-Wenger intrinsic flat sense.

Theorem (Kazaras – X.)

Let (T^3, g_0) be a fixed flat 3-torus, and γ be a vertical closed geodesic. For any $\varepsilon > 0$ there exists a smooth metric g such that: (1) $g = g_0$ outside the ε -neighborhood of γ , (2) $length_g(\gamma) \leq \varepsilon$, (3) $R_g \geq -\varepsilon$. (4) g has a minA lower bound independent of ε .

We call such construction an ε -drawstring around γ .

Theorem (Kazaras – X.)

Let (T^3, g_0) be a fixed flat 3-torus, and γ be a vertical closed geodesic. For any $\varepsilon > 0$ there exists a smooth metric g such that: (1) $g = g_0$ outside the ε -neighborhood of γ , (2) $length_g(\gamma) \leq \varepsilon$, (3) $R_g \geq -\varepsilon$. (4) g has a minA lower bound independent of ε ,

We call such construction an ε -drawstring around γ .

Note. Drawstrings can also be constructed in $S^2 \times S^1$ and $H^2 \times S^1$ (with $R \ge 2 - \varepsilon$ resp. $R \ge -2 - \varepsilon$).

Taking $\varepsilon \rightarrow 0$, we have:

(1) the length of γ becomes 0.

(2) the remaining part $T^3 \setminus \gamma$ is flat.

The limit space is a *pulled string space*.

Taking $\varepsilon \rightarrow 0$, we have:

```
(1) the length of \gamma becomes 0.
```

```
(2) the remaining part T^3 \setminus \gamma is flat.
```

The limit space is a *pulled string space*.

Theorem (Basilio-Dodziuk-Sormani, Basilio-Sormani)

When $\varepsilon \rightarrow 0$, the ε -drawstring metrics converge in GH and intrinsic flat sense to a pulled string space

 $X = T^3/(\gamma \sim pt).$

minA-IF stability conjecture

Taking $\varepsilon \rightarrow 0$, we have:

the length of γ becomes 0.
 the remaining part T³ \ γ is flat.

The limit space is a *pulled string space*.

Conclusion: drawstrings lead to counterexamples of the minA-IF stability conjecture.

Taking $\varepsilon \rightarrow 0$, we have:

the length of γ becomes 0.
 the remaining part T³ \ γ is flat.

The limit space is a *pulled string space*.

Conclusion: drawstrings lead to counterexamples of the minA-IF stability conjecture.

Note. Place drawstrings densely \rightarrow convergence to a point or zero current. (Difficult to verify minA lower bound.)

Theorem (Lee-Naber-Neumayer)

Drawstring phenomena exist in dimensions 4 or above.

Namely: given (T^n, g_0) flat torus, $n \ge 4$, γ closed geodesic. Then for any $\varepsilon > 0$ we can construct a metric satisfying the same conditions as in our main theorem.

Observations on the codimension

Connected sum (and surgery) operation Lee-Naber-Neumayer construction

occur in codimension \geq 3.

Observations on the codimension

Connected sum (and surgery) operation Lee-Naber-Neumayer construction

occur in codimension \geq 3.

On the other hand, the main theorem occurs in codimension 2.

Conjecture (disproved by drawstring)

Suppose M (compact 3-manifold) satisfies

 $R \ge \lambda > 0$, minA $\ge A_0 > 0$.

Moreover, $\partial M = \Sigma_1 \cup \Sigma_2$, where Σ_i stable minimal spheres. Then there exists $\varepsilon = \varepsilon(R, A_0)$ such that: (1) if $d(\Sigma_1, \Sigma_2) \leq \varepsilon$, then $M \cong S^2 \times S^1$. (2) if $d(\Sigma_1, \Sigma_2) \leq \varepsilon$, then $d_H(\Sigma_1, \Sigma_2) \leq C(R, A_0) d(\Sigma_1, \Sigma_2)$.

Notation: d_H = Hausdorff distance.

Related results and questions

(M,g) closed hyperbolic 3-manifold. Define the volume entropy

$$h(M,g) = \lim_{R \to \infty} R^{-1} \log \left[\operatorname{Vol} \left(\widetilde{B}(x_0, R) \right) \right],$$

where B denote geodesic balls in the universal cover.

Problem (Agol-Storm-Thurston)

Does $R_g \ge -6$ imply $h(M,g) \le 2$?

Theorem (Kazaras–Song–X.)

On any closed hyperbolic 3-manifold M, there exists a metric g with $R_g \ge -6$ and h(M,g) > 2.

Related results and questions

(M,g) closed hyperbolic 3-manifold. Define the volume entropy

$$h(M,g) = \lim_{R \to \infty} R^{-1} \log \Big[\operatorname{Vol} \big(\widetilde{B}(x_0, R) \big) \Big],$$

where B denote geodesic balls in the universal cover.

Problem (Agol-Storm-Thurston)

Does $R_g \ge -6$ imply $h(M,g) \le 2$?

Theorem (Kazaras–Song–X.)

On any closed hyperbolic 3-manifold M, there exists a metric g with $R_g \ge -6$ and h(M,g) > 2.

Proof: start with the hyperbolic metric, construct a drawstring around a shortest geodesic in $\pi_1(M)$.

Part II: construction of drawstrings

Drawstring as a warped product

The drawstring metric is a warped product $g = h + \varphi^2 dt^2$.

Fact: the scalar curvature of such metric is

$$R_{g}=2\big(K_{h}-\frac{\Delta_{h}\varphi}{\varphi}\big),$$

where $K_h = \text{Gauss curvature of } h$.

Goal: find a metric *h* and function φ such that (1) {*h* is flat, $\varphi = 1$ } outside a small neighborhood of r_0 , (2) $\varphi(0) \leq \varepsilon$, (3) $\Delta_h \varphi \leq (K_h + \varepsilon) \varphi$.

Drawstring in dimension ≥ 4

Lee-Naber-Neumayer construction (*h* is 3-dimensional): (1) *h* forms a *cone* near x_0 (appropriately smoothed), (2) φ approaches zero near x_0 at the rate of r^{δ} , with $\delta \ll \pi - (\text{cone angle}) \ll \varepsilon$.

Drawstring in dimension ≥ 4

Lee-Naber-Neumayer construction (*h* is 3-dimensional): (1) *h* forms a *cone* near x_0 (appropriately smoothed), (2) φ approaches zero near x_0 at the rate of r^{δ} , with $\delta \ll \pi - (\text{cone angle}) \ll \varepsilon$.

In the cone region:

$$R_g = R_h - 2\frac{\Delta_g \varphi}{\varphi} = O(\frac{1}{r^2}) - O(\frac{1}{r^2})$$
$$= +O(\frac{1}{r^2}).$$

Difficulty in dimension 3

Fact: 3-dimensional cone has scalar curvature $O(\frac{1}{r^2})$, while 2-dimensional cone is flat.

$$R_g = 2K_h - 2\frac{\Delta_g\varphi}{\varphi} = 0 - O(\frac{1}{r^2})$$

Smoothing a 2D cone

Observation (smoothing cone heuristic).

The vertex of a 2D cone carries distributional curvature.

Smoothing a 2D cone

Observation (smoothing cone heuristic).

The vertex of a 2D cone carries distributional curvature.

Question: can we smooth the cone to create sufficiently large curvature?

The building block

Lemma (Kazaras-X.)

Consider the metric

$$g=e^{-2u}\big(dr^2+f(r)^2d\theta^2\big)+e^{2u}dt^2,$$

where

$$f(r) = r\left(1 - \frac{c_1}{\log(1/r)}\right), \quad u(r) = -c_2 \log\log(\frac{1}{r})$$

 $(c_1, c_2 > 0)$, then we have

$$R_g = \frac{2}{r^2 \log(1/r)^{2+2c_2}} \Big[\frac{c_1(c_1+2)}{\log(1/r) - c_1} + c_1 - c_2^2 \Big]$$

Global picture of 3D drawstring

Kai Xu, Duke University Drawstrings and scalar curvature in dimension three

Form of the metric?

$$g = e^{-2u} \left(dr^2 + f(r)^2 d\theta^2 \right) + e^{2u} dt^2.$$

Fact: the scalar curvature $R_g = 2e^{2u} \left[-\frac{f''}{f} - (u')^2 \right]$ does not involve u''.

$$g = \frac{e^{-2u}}{dr^2} \left(dr^2 + f(r)^2 d\theta^2 \right) + \frac{e^{2u}}{dt^2} dt^2.$$

Fact: the scalar curvature $R_g = 2e^{2u} \left[-\frac{f''}{f} - (u')^2 \right]$ does not involve u''.

This fact (and similar observations) can be tracked in:

- · hyperbolic drawstring (Kazaras-Song-X.),
- \cdot counterexamples relating intermediate curvature (X.).

Form of the metric?

$$g = \frac{e^{-2u}(dr^2 + f(r)^2d\theta^2) + \frac{e^{2u}dt^2}{e^{2u}dt^2}.$$

Facts:

(1) the mean curvature of $\{d(-, \gamma) = r\}$ is $e^{u} \frac{f'}{f}$ (containing no derivatives of u).

(2) The expression of R_g does not involve u''.

Higher-dimensional drawstring, collapsing a (n-2)-plane in T^n :

$$g = e^{-2(n-2)u} (dr^2 + f(r)^2 d\theta^2) + e^{2u} (dx_1^2 + \cdots + dx_{n-2}^2).$$

The warping factors

Question: why the choice

$$f(r) = r\left(1 - \frac{c_1}{\log(1/r)}\right), \quad u(r) = -c_2 \log \log(\frac{1}{r})?$$

Conformal inversion heuristic

Ingredient 1

Let $\varphi > 0$ be a function on (Σ, g) , and consider $\widetilde{g} = \varphi^4 g$. Then

$$\Delta_g \varphi \leqslant K_g \varphi \quad \Leftrightarrow \quad \Delta_{\widetilde{g}} \varphi^{-1} \leqslant K_{\widetilde{g}} \varphi^{-1}.$$

Namely: $g + \varphi^2 dt^2$ PSC $\Leftrightarrow \varphi^4 g + \varphi^{-2} dt^2$ PSC.

Conformal inversion heuristic

Ingredient 1

Let $\varphi > 0$ be a function on (Σ, g) , and consider $\widetilde{g} = \varphi^4 g$. Then

$$\Delta_g \varphi \leqslant K_g \varphi \quad \Leftrightarrow \quad \Delta_{\widetilde{g}} \varphi^{-1} \leqslant K_{\widetilde{g}} \varphi^{-1}.$$

Ingredient 2

Let (S^2, g_0) be the round sphere. There exists function φ satisfying $\Delta \varphi \leq \varphi$ but is arbitrarily large near a point.

Ingredient 1

Let $\varphi > 0$ be a function on (Σ, g) , and consider $\widetilde{g} = \varphi^4 g$. Then

$$\Delta_g \varphi \leqslant K_g \varphi \quad \Leftrightarrow \quad \Delta_{\widetilde{g}} \varphi^{-1} \leqslant K_{\widetilde{g}} \varphi^{-1}.$$

Ingredient 2

Let (S^2, g_0) be the round sphere. There exists function φ satisfying $\Delta \varphi \leq \varphi$ but is arbitrarily large near a point.

Example by Sormani-Tian-Wang:

$$arphi_{\delta}(r) = rac{1}{2} \log \Big(rac{1+\delta}{\sin^2 r + \delta} \Big) + 1$$

where $\delta \ll 1$.

Combining the ingredients

Consider

$$g = \varphi^4 (dr^2 + \sin^2 d\theta^2) + \varphi^{-2} dt^2, \qquad \varphi(r) = \log \frac{1}{\sin r} + 1.$$

-

Changing variable $d\tilde{r} = \varphi dr$, we have

Lemma (Kazaras-X.)

Near $\tilde{r} = 0$ the leading behavior is

$$g=e^{2\log\log(1/\widetilde{r})+\cdots}\Big[d\widetilde{r}^2+\widetilde{r}^2ig(1-rac{1}{\log(1/\widetilde{r})}+\cdotsig)^2d heta^2\Big]$$
 $e^{-2\log\log(1/\widetilde{r})+\cdots}dt^2.$

Thank you!

Visualizing drawstrings

The drawstring metric: $g = h + \varphi^2 dt^2$, where $\varphi(x_0) = \varepsilon$ while $\varphi = 1$ outside $B(x_0, \varepsilon)$.

Observations on the codimension

Connected sum (and surgery) operation Lee-Naber-Neumayer construction

are codimension \geq 3 phenomena.

Theorem (Gromov-Lawson and Schoen-Yau surgery)

Let $\Sigma^{n-k} \subset M^n$ $(k \ge 3)$, denote $M' = M \setminus \Sigma$. For any $\varepsilon > 0$ there is a metric g on M' such that: (1) g' = g outside the ε -neighborhood of Σ , (2) $\partial M'$ is a minimal surface.

Observations on the codimension

Connected sum (and surgery) operation Lee-Naber-Neumayer construction

```
are codimension \geq 3 phenomena.
```

Theorem (Gromov-Lawson and Schoen-Yau surgery)

Let $\Sigma^{n-k} \subset M^n$ $(k \ge 3)$, denote $M' = M \setminus \Sigma$. For any $\varepsilon > 0$ there is a metric g on M' such that: (1) g' = g outside the ε -neighborhood of Σ , (2) $\partial M'$ is a minimal surface.

Related fact: S^{k-1} -bundles ($k \ge 3$) admit metrics with $R \gg 1$ (while S^1 bundles may not).

Supposing h is flat:

 $\Rightarrow \Delta_h \varphi \leqslant \varepsilon \varphi$

 \Rightarrow Moser's Harnack inequality: $\inf_{B(x_0,1/4)} \varphi \ge C \int_{B(x_0,1/2)} \varphi$

 \Rightarrow Drawstring does not exist.

Suggest: concentrate large curvature in a region.

The picture of 3D drawstring

