# Drawstrings and scalar curvature in dimension three 

Kai Xu, Duke University

(joint with Demetre Kazaras)
Recent advances in comparison geometry Hangzhou 2024.2.26

## Contents

1. Introducing drawstrings.
2. Construction of drawstrings.

## Geroch conjecture and its stability

## Theorem (Geroch conjecture)

If $g$ is a smooth metric on $T^{3}$ with $R_{g} \geqslant 0$, then $g$ is flat.
Notation: $T^{3}=3$-torus, $\quad R_{g}=$ scalar curvature of $g$.
Proofs:

- Schoen-Yau (minimal surfaces)
- Gromov-Lawson (spinors)
- Stern (harmonic functions)


## Geroch conjecture and its stability

## Theorem (Geroch conjecture)

If $g$ is a smooth metric on $T^{3}$ with $R_{g} \geqslant 0$, then $g$ is flat.

## Problem (stability)

Let $g$ be a metric on $T^{3}$ such that

$$
R_{g} \geqslant-\varepsilon, \quad \operatorname{diam}(g) \leqslant D, \quad V_{1} \leqslant \operatorname{Vol}(g) \leqslant V_{2}
$$

where $\varepsilon \ll 1$. What can we conclude about $g$ (is it close to a flat torus in some sense)?

## General stability problems

The stability problem can be asked in the context of:

- Positive mass theorem,
- Penrose inequality,
- Larrull's theorem, etc...


## General stability problems

The stability problem can be asked in the context of:

- Positive mass theorem, Penrose inequality, Larrull's theorem, etc...


## Problem (compactness; Gromov)

Consider the space of manifolds $(M, g)$ with

$$
R_{g} \geqslant \lambda, \quad \operatorname{diam}(g) \leqslant D, \quad \operatorname{Vol}(g) \leqslant V, \quad \text { etc } \ldots
$$

Problems:

- Find a suitable topology under which this space is precompact.
- Find a suitable notion of weak scalar curvature lower bound for the limit spaces.


## Stability of Geroch conjecture

## Problem

Let $g$ be a metric on $T^{3}$ such that

$$
R_{g} \geqslant-\varepsilon, \quad \operatorname{diam}(g) \leqslant D, \quad \operatorname{Vol}(g) \leqslant V
$$

where $\varepsilon \ll 1$. Is $g$ is close to a flat torus?
Answer: extreme examples need to be considered.

## Gromov-Lawson and Schoen-Yau connected sum

See also Basilio-Dodziuk-Sormani, Sweeney Jr. for constructions.


## Induced constructions



Kai Xu, Duke University
Drawstrings and scalar curvature in dimension three

## Induced constructions

Example 1: Ilmanen's sphere (dense thin splines). Effect: GH diverging.

Example 2: Basilio-Dodziuk-Sormani sewing (dense small tunnels). Effect: collapsing a certain subset of the manifold.

## minA-IF stability conjecture

$$
\min \mathrm{A}(M, g)=\inf \left\{|\Sigma|_{g}: \Sigma \text { is a closed minimal surface }\right\}
$$

## Conjecture (Gromov-Sormani)

Suppose $\left(M_{i}, g_{i}\right)$ is a sequence of 3-tori, such that

$$
\inf _{M_{i}} R_{g_{i}} \rightarrow 0, \quad \operatorname{minA}\left(M, g_{i}\right) \geqslant A_{0}>0
$$

and

$$
\operatorname{diam}\left(g_{i}\right) \leqslant D, \quad \operatorname{Vol}\left(g_{i}\right) \leqslant V
$$

Then a subsequence of $M_{i}$ converges to a flat $T^{3}$ in the (volume-preserving) Sormani-Wenger intrinsic flat sense.

## Drawstrings

## Theorem (Kazaras-X.)

Let $\left(T^{3}, g_{0}\right)$ be a fixed flat 3-torus, and $\gamma$ be a vertical closed geodesic. For any $\varepsilon>0$ there exists a smooth metric $g$ such that:
(1) $g=g_{0}$ outside the $\varepsilon$-neighborhood of $\gamma$,
(2) lengthg $(\gamma) \leqslant \varepsilon$,
(3) $R_{g} \geqslant-\varepsilon$.
(4) $g$ has a minA lower bound independent of $\varepsilon$.

We call such construction an $\varepsilon$-drawstring around $\gamma$.

## Drawstrings

## Theorem (Kazaras-X.)

Let $\left(T^{3}, g_{0}\right)$ be a fixed flat 3-torus, and $\gamma$ be a vertical closed geodesic. For any $\varepsilon>0$ there exists a smooth metric $g$ such that:
(1) $g=g_{0}$ outside the $\varepsilon$-neighborhood of $\gamma$,
(2) lengthg $(\gamma) \leqslant \varepsilon$,
(3) $R_{g} \geqslant-\varepsilon$.
(4) $g$ has a minA lower bound independent of $\varepsilon$,

We call such construction an $\varepsilon$-drawstring around $\gamma$.
Note. Drawstrings can also be constructed in $S^{2} \times S^{1}$ and $H^{2} \times S^{1}$ (with $R \geqslant 2-\varepsilon$ resp. $R \geqslant-2-\varepsilon$ ).

## The limit space

Taking $\varepsilon \rightarrow 0$, we have:
(1) the length of $\gamma$ becomes 0 . (2) the remaining part $T^{3} \backslash \gamma$ is flat.

The limit space is a pulled string space.

## The limit space

Taking $\varepsilon \rightarrow 0$, we have:
(1) the length of $\gamma$ becomes 0 .
(2) the remaining part $T^{3} \backslash \gamma$ is flat.

The limit space is a pulled string space.

## Theorem (Basilio-Dodziuk-Sormani, Basilio-Sormani)

When $\varepsilon \rightarrow 0$, the $\varepsilon$-drawstring metrics converge in GH and intrinsic flat sense to a pulled string space

$$
X=T^{3} /(\gamma \sim p t)
$$

## minA-IF stability conjecture

Taking $\varepsilon \rightarrow 0$, we have:
(1) the length of $\gamma$ becomes 0 .
(2) the remaining part $T^{3} \backslash \gamma$ is flat.

The limit space is a pulled string space.
Conclusion: drawstrings lead to counterexamples of the minA-IF stability conjecture.

## minA-IF stability conjecture

Taking $\varepsilon \rightarrow 0$, we have:
(1) the length of $\gamma$ becomes 0 .
(2) the remaining part $T^{3} \backslash \gamma$ is flat.

The limit space is a pulled string space.
Conclusion: drawstrings lead to counterexamples of the minA-IF stability conjecture.

Note. Place drawstrings densely $\rightarrow$ convergence to a point or zero current. (Difficult to verify minA lower bound.)

## The case of dimension $\geqslant 4$

## Theorem (Lee-Naber-Neumayer)

Drawstring phenomena exist in dimensions 4 or above.
Namely: given $\left(T^{n}, g_{0}\right)$ flat torus, $n \geqslant 4, \gamma$ closed geodesic. Then for any $\varepsilon>0$ we can construct a metric satisfying the same conditions as in our main theorem.

## Observations on the codimension

$\left.\begin{array}{l}\text { Connected sum (and surgery) operation } \\ \text { Lee-Naber-Neumayer construction }\end{array}\right\}$
occur in codimension $\geqslant 3$.

## Observations on the codimension

$\left.\begin{array}{l}\text { Connected sum (and surgery) operation } \\ \text { Lee-Naber-Neumayer construction }\end{array}\right\}$
occur in codimension $\geqslant 3$.
On the other hand, the main theorem occurs in codimension 2.

## Related results and questions

## Conjecture (disproved by drawstring)

Suppose M (compact 3-manifold) satisfies

$$
R \geqslant \lambda>0, \quad \min \mathrm{~A} \geqslant A_{0}>0
$$

Moreover, $\partial M=\Sigma_{1} \cup \Sigma_{2}$, where $\Sigma_{i}$ stable minimal spheres. Then there exists $\varepsilon=\varepsilon\left(R, A_{0}\right)$ such that:
(1) if $d\left(\Sigma_{1}, \Sigma_{2}\right) \leqslant \varepsilon$, then $M \cong S^{2} \times S^{1}$.
(2) if $d\left(\Sigma_{1}, \Sigma_{2}\right) \leqslant \varepsilon$, then

$$
d_{H}\left(\Sigma_{1}, \Sigma_{2}\right) \leqslant C\left(R, A_{0}\right) d\left(\Sigma_{1}, \Sigma_{2}\right)
$$

Notation: $d_{H}=$ Hausdorff distance.

## Related results and questions

$(M, g)$ closed hyperbolic 3-manifold. Define the volume entropy

$$
h(M, g)=\lim _{R \rightarrow \infty} R^{-1} \log \left[\operatorname{Vol}\left(\widetilde{B}\left(x_{0}, R\right)\right)\right],
$$

where $\widetilde{B}$ denote geodesic balls in the universal cover.

## Problem (Agol - Storm - Thurston)

Does $R_{g} \geqslant-6$ imply $h(M, g) \leqslant 2$ ?

## Theorem (Kazaras - Song - X.)

On any closed hyperbolic 3-manifold $M$, there exists a metric $g$ with $R_{g} \geqslant-6$ and $h(M, g)>2$.

## Related results and questions

$(M, g)$ closed hyperbolic 3-manifold. Define the volume entropy

$$
h(M, g)=\lim _{R \rightarrow \infty} R^{-1} \log \left[\operatorname{Vol}\left(\widetilde{B}\left(x_{0}, R\right)\right)\right],
$$

where $\widetilde{B}$ denote geodesic balls in the universal cover.

## Problem (Agol - Storm - Thurston)

Does $R_{g} \geqslant-6$ imply $h(M, g) \leqslant 2$ ?

## Theorem (Kazaras - Song - X.)

On any closed hyperbolic 3-manifold $M$, there exists a metric $g$ with $R_{g} \geqslant-6$ and $h(M, g)>2$.

Proof: start with the hyperbolic metric, construct a drawstring around a shortest geodesic in $\pi_{1}(M)$.

## Contents

## Part II: construction of drawstrings

## Drawstring as a warped product

The drawstring metric is a warped product $g=h+\varphi^{2} d t^{2}$.
Fact: the scalar curvature of such metric is

$$
R_{g}=2\left(K_{h}-\frac{\Delta_{h} \varphi}{\varphi}\right)
$$

where $K_{h}=$ Gauss curvature of $h$.
Goal: find a metric $h$ and function $\varphi$ such that (1) $\{h$ is flat, $\varphi=1\}$ outside a small neighborhood of $r_{0}$, (2) $\varphi(0) \leqslant \varepsilon$,
(3) $\Delta_{h} \varphi \leqslant\left(K_{h}+\varepsilon\right) \varphi$.

## Drawstring in dimension $\geqslant 4$

Lee-Naber-Neumayer construction ( $h$ is 3-dimensional):
(1) $h$ forms a cone near $x_{0}$ (appropriately smoothed),
(2) $\varphi$ approaches zero near $x_{0}$ at the rate of $r^{\delta}$, with $\delta \ll \pi-$ (cone angle) $\ll \varepsilon$.


## Drawstring in dimension $\geqslant 4$

Lee-Naber-Neumayer construction ( $h$ is 3-dimensional):
(1) $h$ forms a cone near $x_{0}$ (appropriately smoothed),
(2) $\varphi$ approaches zero near $x_{0}$ at the rate of $r^{\delta}$, with $\delta \ll \pi-$ (cone angle) $\ll \varepsilon$.

In the cone region:

$$
\begin{aligned}
R_{g}=R_{h}-2 \frac{\Delta_{g} \varphi}{\varphi} & =O\left(\frac{1}{r^{2}}\right)-O\left(\frac{1}{r^{2}}\right) \\
& =+O\left(\frac{1}{r^{2}}\right)
\end{aligned}
$$

## Difficulty in dimension 3

Fact: 3-dimensional cone has scalar curvature $O\left(\frac{1}{r^{2}}\right)$, while 2-dimensional cone is flat.

$$
R_{g}=2 K_{h}-2 \frac{\Delta_{g} \varphi}{\varphi}=0-O\left(\frac{1}{r^{2}}\right)
$$

## Smoothing a 2D cone

Observation (smoothing cone heuristic).
The vertex of a 2D cone carries distributional curvature.

## Smoothing a 2D cone

Observation (smoothing cone heuristic).
The vertex of a 2D cone carries distributional curvature.
Question: can we smooth the cone to create sufficiently large curvature?

## The building block

## Lemma (Kazaras-X.)

Consider the metric

$$
g=e^{-2 u}\left(d r^{2}+f(r)^{2} d \theta^{2}\right)+e^{2 u} d t^{2}
$$

where

$$
f(r)=r\left(1-\frac{c_{1}}{\log (1 / r)}\right), \quad u(r)=-c_{2} \log \log \left(\frac{1}{r}\right)
$$

$\left(c_{1}, c_{2}>0\right)$, then we have

$$
R_{g}=\frac{2}{r^{2} \log (1 / r)^{2+2 c_{2}}}\left[\frac{c_{1}\left(c_{1}+2\right)}{\log (1 / r)-c_{1}}+c_{1}-c_{2}^{2}\right]
$$

## Global picture of 3D drawstring



## Form of the metric?

$$
g=e^{-2 u}\left(d r^{2}+f(r)^{2} d \theta^{2}\right)+e^{2 u} d t^{2}
$$

Fact: the scalar curvature $R_{g}=2 e^{2 u}\left[-\frac{f^{\prime \prime}}{f}-\left(u^{\prime}\right)^{2}\right]$ does not involve $u^{\prime \prime}$.

## Form of the metric?

$$
g=e^{-2 u}\left(d r^{2}+f(r)^{2} d \theta^{2}\right)+e^{2 u} d t^{2}
$$

Fact: the scalar curvature $R_{g}=2 e^{2 u}\left[-\frac{f^{\prime \prime}}{f}-\left(u^{\prime}\right)^{2}\right]$ does not involve $u^{\prime \prime}$.

This fact (and similar observations) can be tracked in:

- hyperbolic drawstring (Kazaras-Song-X.),
- counterexamples relating intermediate curvature (X.).


## Form of the metric?

$$
g=e^{-2 u}\left(d r^{2}+f(r)^{2} d \theta^{2}\right)+e^{2 u} d t^{2} .
$$

## Facts:

(1) the mean curvature of $\{d(-, \gamma)=r\}$ is $e^{u} \frac{f^{\prime}}{f}$ (containing no derivatives of $u$ ).
(2) The expression of $R_{g}$ does not involve $u^{\prime \prime}$.

Higher-dimensional drawstring, collapsing a $(n-2)$-plane in $T^{n}$ :

$$
g=e^{-2(n-2) u}\left(d r^{2}+f(r)^{2} d \theta^{2}\right)+e^{2 u}\left(d x_{1}^{2}+\cdots+d x_{n-2}^{2}\right) .
$$

## The warping factors

Question: why the choice

$$
f(r)=r\left(1-\frac{c_{1}}{\log (1 / r)}\right), \quad u(r)=-c_{2} \log \log \left(\frac{1}{r}\right) ?
$$

## Conformal inversion heuristic

## Ingredient 1

Let $\varphi>0$ be a function on $(\Sigma, g)$, and consider $\widetilde{g}=\varphi^{4} g$. Then

$$
\Delta_{g} \varphi \leqslant K_{g} \varphi \quad \Leftrightarrow \quad \Delta_{\tilde{g}} \varphi^{-1} \leqslant K_{\tilde{g}} \varphi^{-1} .
$$

Namely: $g+\varphi^{2} d t^{2}$ PSC $\Leftrightarrow \varphi^{4} g+\varphi^{-2} d t^{2}$ PSC.

## Conformal inversion heuristic

## Ingredient 1

Let $\varphi>0$ be a function on $(\Sigma, g)$, and consider $\widetilde{g}=\varphi^{4} g$. Then

$$
\Delta_{g} \varphi \leqslant K_{g} \varphi \Leftrightarrow \Delta_{\tilde{g}} \varphi^{-1} \leqslant K_{\tilde{g}} \varphi^{-1}
$$

## Ingredient 2

Let $\left(S^{2}, g_{0}\right)$ be the round sphere. There exists function $\varphi$ satisfying $\Delta \varphi \leqslant \varphi$ but is arbitrarily large near a point.

## Conformal inversion heuristic

## Ingredient 1

Let $\varphi>0$ be a function on $(\Sigma, g)$, and consider $\widetilde{g}=\varphi^{4} g$. Then

$$
\Delta_{g} \varphi \leqslant K_{g} \varphi \quad \Leftrightarrow \quad \Delta_{\tilde{g}} \varphi^{-1} \leqslant K_{\tilde{g}} \varphi^{-1}
$$

## Ingredient 2

Let $\left(S^{2}, g_{0}\right)$ be the round sphere. There exists function $\varphi$ satisfying $\Delta \varphi \leqslant \varphi$ but is arbitrarily large near a point.

Example by Sormani-Tian-Wang:

$$
\varphi_{\delta}(r)=\frac{1}{2} \log \left(\frac{1+\delta}{\sin ^{2} r+\delta}\right)+1
$$

where $\delta \ll 1$.

## Combining the ingredients

Consider

$$
g=\varphi^{4}\left(d r^{2}+\sin ^{2} d \theta^{2}\right)+\varphi^{-2} d t^{2}, \quad \varphi(r)=\log \frac{1}{\sin r}+1
$$

Changing variable $d \widetilde{r}=\varphi d r$, we have

## Lemma (Kazaras-X.)

Near $\tilde{r}=0$ the leading behavior is

$$
\begin{aligned}
g= & e^{2 \log \log (1 / \widetilde{r})+\cdots}\left[d \widetilde{r}^{2}+\widetilde{r}^{2}\left(1-\frac{1}{\log (1 / \widetilde{r})}+\cdots\right)^{2} d \theta^{2}\right] \\
& e^{-2 \log \log (1 / \widetilde{r})+\cdots} d t^{2} .
\end{aligned}
$$

## Thank you!

## Visualizing drawstrings

The drawstring metric: $g=h+\varphi^{2} d t^{2}$, where $\varphi\left(x_{0}\right)=\varepsilon$ while $\varphi=1$ outside $B\left(x_{0}, \varepsilon\right)$.


## Observations on the codimension

Connected sum (and surgery) operation
Lee-Naber-Neumayer construction are codimension $\geqslant 3$ phenomena.

## Theorem (Gromov-Lawson and Schoen-Yau surgery)

Let $\Sigma^{n-k} \subset M^{n}(k \geqslant 3)$, denote $M^{\prime}=M \backslash \Sigma$. For any $\varepsilon>0$ there is a metric $g$ on $M^{\prime}$ such that:
(1) $g^{\prime}=g$ outside the $\varepsilon$-neighborhood of $\Sigma$,
(2) $\partial M^{\prime}$ is a minimal surface.

## Observations on the codimension

Connected sum (and surgery) operation
Lee-Naber-Neumayer construction are codimension $\geqslant 3$ phenomena.

## Theorem (Gromov-Lawson and Schoen-Yau surgery)

Let $\Sigma^{n-k} \subset M^{n}(k \geqslant 3)$, denote $M^{\prime}=M \backslash \Sigma$. For any $\varepsilon>0$ there is a metric $g$ on $M^{\prime}$ such that:
(1) $g^{\prime}=g$ outside the $\varepsilon$-neighborhood of $\Sigma$,
(2) $\partial M^{\prime}$ is a minimal surface.

Related fact: $S^{k-1}$-bundles $(k \geqslant 3)$ admit metrics with $R \gg 1$ (while $S^{1}$ bundles may not).

## Flat base metric

Supposing $h$ is flat:
$\Rightarrow \Delta_{h} \varphi \leqslant \varepsilon \varphi$
$\Rightarrow$ Moser's Harnack inequality: $\inf _{B\left(x_{0}, 1 / 4\right)} \varphi \geqslant C \int_{B\left(x_{0}, 1 / 2\right)} \varphi$
$\Rightarrow$ Drawstring does not exist.
Suggest: concentrate large curvature in a region.

## The picture of 3D drawstring



