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Geroch conjecture and its stability

Theorem (Geroch conjecture)

If g is a smooth metric on T 3 with Rg ⩾ 0, then g is flat.

Notation: T 3 = 3– torus, Rg = scalar curvature of g .

Proofs:
· Schoen-Yau (minimal surfaces)
· Gromov-Lawson (spinors)
· Stern (harmonic functions)
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Geroch conjecture and its stability

Theorem (Geroch conjecture)

If g is a smooth metric on T 3 with Rg ⩾ 0, then g is flat.

Problem (stability)

Let g be a metric on T 3 such that

Rg ⩾ −ε, diam(g) ⩽ D, V1 ⩽ Vol(g) ⩽ V2,

where ε ≪ 1. What can we conclude about g (is it close to a flat
torus in some sense)?
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General stability problems

The stability problem can be asked in the context of:

· Positive mass theorem,
· Penrose inequality,
· Larrull’s theorem, etc...
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General stability problems

The stability problem can be asked in the context of:

· Positive mass theorem, Penrose inequality, Larrull’s theorem,
etc...

Problem (compactness; Gromov)

Consider the space of manifolds (M, g) with

Rg ⩾ λ, diam(g) ⩽ D, Vol(g) ⩽ V , etc...

Problems:
· Find a suitable topology under which this space is precompact.
· Find a suitable notion of weak scalar curvature lower bound for
the limit spaces.
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Stability of Geroch conjecture

Problem

Let g be a metric on T 3 such that

Rg ⩾ −ε, diam(g) ⩽ D, Vol(g) ⩽ V ,

where ε ≪ 1. Is g is close to a flat torus?

Answer: extreme examples need to be considered.
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Gromov-Lawson and Schoen-Yau connected sum

See also Basilio-Dodziuk-Sormani, Sweeney Jr. for constructions.

M1 : R ⩾ λ

M2 : R ⩾ λ

M1#M2 : R ⩾ λ− ε

neck: ⩽ ε
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Induced constructions

Bubble

Spline

Tunnel

Kai Xu, Duke University Drawstrings and scalar curvature in dimension three



Induced constructions

Example 1: Ilmanen’s sphere (dense thin splines).
Effect: GH diverging.

Example 2: Basilio-Dodziuk-Sormani sewing (dense small
tunnels).
Effect: collapsing a certain subset of the manifold.
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minA-IF stability conjecture

minA(M, g) = inf
{
|Σ|g : Σ is a closed minimal surface

}
Conjecture (Gromov-Sormani)

Suppose (Mi , gi ) is a sequence of 3-tori, such that

inf
Mi

Rgi → 0, minA(M, gi ) ⩾ A0 > 0,

and
diam(gi ) ⩽ D, Vol(gi ) ⩽ V .

Then a subsequence of Mi converges to a flat T 3 in the
(volume-preserving) Sormani-Wenger intrinsic flat sense.
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Drawstrings

Theorem (Kazaras –X.)

Let (T 3, g0) be a fixed flat 3-torus, and γ be a vertical closed
geodesic. For any ε > 0 there exists a smooth metric g such that:

(1) g = g0 outside the ε-neighborhood of γ,
(2) lengthg (γ) ⩽ ε,
(3) Rg ⩾ −ε.
(4) g has a minA lower bound independent of ε.

We call such construction an ε-drawstring around γ.
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Drawstrings

Theorem (Kazaras –X.)

Let (T 3, g0) be a fixed flat 3-torus, and γ be a vertical closed
geodesic. For any ε > 0 there exists a smooth metric g such that:

(1) g = g0 outside the ε-neighborhood of γ,
(2) lengthg (γ) ⩽ ε,
(3) Rg ⩾ −ε.
(4) g has a minA lower bound independent of ε,

We call such construction an ε-drawstring around γ.

Note. Drawstrings can also be constructed in S2 × S1 and
H2 × S1 (with R ⩾ 2− ε resp. R ⩾ −2− ε).
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The limit space

Taking ε → 0, we have:

(1) the length of γ becomes 0.
(2) the remaining part T 3 \ γ is flat.

The limit space is a pulled string space.
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The limit space

Taking ε → 0, we have:

(1) the length of γ becomes 0.
(2) the remaining part T 3 \ γ is flat.

The limit space is a pulled string space.

Theorem (Basilio-Dodziuk-Sormani, Basilio-Sormani)

When ε → 0, the ε-drawstring metrics converge in GH and
intrinsic flat sense to a pulled string space

X = T 3/(γ ∼ pt).
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minA-IF stability conjecture

Taking ε → 0, we have:

(1) the length of γ becomes 0.
(2) the remaining part T 3 \ γ is flat.

The limit space is a pulled string space.

Conclusion: drawstrings lead to counterexamples of the minA-IF
stability conjecture.
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minA-IF stability conjecture

Taking ε → 0, we have:

(1) the length of γ becomes 0.
(2) the remaining part T 3 \ γ is flat.

The limit space is a pulled string space.

Conclusion: drawstrings lead to counterexamples of the minA-IF
stability conjecture.

Note. Place drawstrings densely → convergence to a point or zero
current. (Difficult to verify minA lower bound.)
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The case of dimension ⩾ 4

Theorem (Lee-Naber-Neumayer)

Drawstring phenomena exist in dimensions 4 or above.

Namely: given (T n, g0) flat torus, n ⩾ 4, γ closed geodesic. Then
for any ε > 0 we can construct a metric satisfying the same
conditions as in our main theorem.
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Observations on the codimension

Connected sum (and surgery) operation

Lee-Naber-Neumayer construction

}
occur in codimension ⩾ 3.
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Observations on the codimension

Connected sum (and surgery) operation

Lee-Naber-Neumayer construction

}
occur in codimension ⩾ 3.

On the other hand, the main theorem occurs in codimension 2.
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Related results and questions

Conjecture (disproved by drawstring)

Suppose M (compact 3-manifold) satisfies

R ⩾ λ > 0, minA ⩾ A0 > 0.

Moreover, ∂M = Σ1 ∪ Σ2, where Σi stable minimal spheres. Then
there exists ε = ε(R,A0) such that:
(1) if d(Σ1,Σ2) ⩽ ε, then M ∼= S2 × S1.
(2) if d(Σ1,Σ2) ⩽ ε, then

dH(Σ1,Σ2) ⩽ C (R,A0)d(Σ1,Σ2).

Notation: dH = Hausdorff distance.
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Related results and questions

(M, g) closed hyperbolic 3-manifold. Define the volume entropy

h(M, g) = lim
R→∞

R−1 log
[
Vol

(
B̃(x0,R)

)]
,

where B̃ denote geodesic balls in the universal cover.

Problem (Agol – Storm –Thurston)

Does Rg ⩾ −6 imply h(M, g) ⩽ 2?

Theorem (Kazaras – Song –X.)

On any closed hyperbolic 3-manifold M, there exists a metric g
with Rg ⩾ −6 and h(M, g) > 2.
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Related results and questions

(M, g) closed hyperbolic 3-manifold. Define the volume entropy

h(M, g) = lim
R→∞

R−1 log
[
Vol

(
B̃(x0,R)

)]
,

where B̃ denote geodesic balls in the universal cover.

Problem (Agol – Storm –Thurston)

Does Rg ⩾ −6 imply h(M, g) ⩽ 2?

Theorem (Kazaras – Song –X.)

On any closed hyperbolic 3-manifold M, there exists a metric g
with Rg ⩾ −6 and h(M, g) > 2.

Proof: start with the hyperbolic metric, construct a drawstring
around a shortest geodesic in π1(M).
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Part II: construction of drawstrings
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Drawstring as a warped product

The drawstring metric is a warped product g = h + φ2dt2.

Fact: the scalar curvature of such metric is

Rg = 2
(
Kh −

∆hφ

φ

)
,

where Kh = Gauss curvature of h.

Goal: find a metric h and function φ such that
(1) {h is flat, φ = 1} outside a small neighborhood of r0,
(2) φ(0) ⩽ ε,
(3) ∆hφ ⩽ (Kh + ε)φ.
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Drawstring in dimension ⩾ 4

Lee-Naber-Neumayer construction (h is 3-dimensional):

(1) h forms a cone near x0 (appropriately smoothed),

(2) φ approaches zero near x0 at the rate of r δ,

with δ ≪ π − (cone angle) ≪ ε.

x0

o(ε)

1

h

φ = φ(r)
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Drawstring in dimension ⩾ 4

Lee-Naber-Neumayer construction (h is 3-dimensional):

(1) h forms a cone near x0 (appropriately smoothed),

(2) φ approaches zero near x0 at the rate of r δ,

with δ ≪ π − (cone angle) ≪ ε.

In the cone region:

Rg = Rh − 2
∆gφ

φ
= O(

1

r2
)− O(

1

r2
)

= +O(
1

r2
).
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Difficulty in dimension 3

Fact: 3-dimensional cone has scalar curvature O( 1
r2
), while

2-dimensional cone is flat.

Rg = 2Kh − 2
∆gφ

φ
= 0− O(

1

r2
)
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Smoothing a 2D cone

Observation (smoothing cone heuristic).
The vertex of a 2D cone carries distributional curvature.
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Smoothing a 2D cone

Observation (smoothing cone heuristic).
The vertex of a 2D cone carries distributional curvature.

Question: can we smooth the cone to create sufficiently large
curvature?
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The building block

Lemma (Kazaras-X.)

Consider the metric

g = e−2u
(
dr2 + f (r)2dθ2

)
+ e2udt2,

where

f (r) = r
(
1− c1

log(1/r)

)
, u(r) = −c2 log log(

1

r
)

(c1, c2 > 0), then we have

Rg =
2

r2 log(1/r)2+2c2

[ c1(c1 + 2)

log(1/r)− c1
+ c1 − c22

]
.
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Global picture of 3D drawstring

x0

o(ε)

1
φ = φ(r)

hcone

↓
main building block
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Form of the metric?

g = e−2u
(
dr2 + f (r)2dθ2

)
+ e2udt2.

Fact: the scalar curvature Rg = 2e2u
[
− f ′′

f − (u′)2
]
does not

involve u′′.
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Form of the metric?

g = e−2u
(
dr2 + f (r)2dθ2

)
+ e2udt2.

Fact: the scalar curvature Rg = 2e2u
[
− f ′′

f − (u′)2
]
does not

involve u′′.

This fact (and similar observations) can be tracked in:

· hyperbolic drawstring (Kazaras-Song-X.),

· counterexamples relating intermediate curvature (X.).
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Form of the metric?

g = e−2u
(
dr2 + f (r)2dθ2

)
+ e2udt2.

Facts:

(1) the mean curvature of
{
d(−, γ) = r

}
is eu f ′

f (containing no
derivatives of u).

(2) The expression of Rg does not involve u′′.

Higher-dimensional drawstring, collapsing a (n − 2)-plane in T n:

g = e−2(n−2)u
(
dr2 + f (r)2dθ2

)
+ e2u

(
dx21 + · · ·+ dx2n−2

)
.
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The warping factors

Question: why the choice

f (r) = r
(
1− c1

log(1/r)

)
, u(r) = −c2 log log(

1

r
)?
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Conformal inversion heuristic

Ingredient 1

Let φ > 0 be a function on (Σ, g), and consider g̃ = φ4g . Then

∆gφ ⩽ Kgφ ⇔ ∆g̃φ
−1 ⩽ Kg̃φ

−1.

Namely: g + φ2dt2 PSC ⇔ φ4g + φ−2dt2 PSC.
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Conformal inversion heuristic

Ingredient 1

Let φ > 0 be a function on (Σ, g), and consider g̃ = φ4g . Then

∆gφ ⩽ Kgφ ⇔ ∆g̃φ
−1 ⩽ Kg̃φ

−1.

Ingredient 2

Let (S2, g0) be the round sphere. There exists function φ
satisfying ∆φ ⩽ φ but is arbitrarily large near a point.
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Conformal inversion heuristic

Ingredient 1

Let φ > 0 be a function on (Σ, g), and consider g̃ = φ4g . Then

∆gφ ⩽ Kgφ ⇔ ∆g̃φ
−1 ⩽ Kg̃φ

−1.

Ingredient 2

Let (S2, g0) be the round sphere. There exists function φ
satisfying ∆φ ⩽ φ but is arbitrarily large near a point.

Example by Sormani-Tian-Wang:

φδ(r) =
1

2
log

( 1 + δ

sin2 r + δ

)
+ 1

where δ ≪ 1.
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Combining the ingredients

Consider

g = φ4
(
dr2 + sin2 dθ2

)
+ φ−2dt2, φ(r) = log

1

sin r
+ 1.

Changing variable dr̃ = φdr , we have

Lemma (Kazaras-X.)

Near r̃ = 0 the leading behavior is

g = e2 log log(1/r̃)+···
[
dr̃2 + r̃2

(
1− 1

log(1/r̃)
+ · · ·

)2
dθ2

]
e−2 log log(1/r̃)+···dt2.
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Thank you!
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Visualizing drawstrings

The drawstring metric: g = h + φ2dt2, where φ(x0) = ε while
φ = 1 outside B(x0, ε).

x ∈ T 2

t ∈ S1

t = 0

t = 1

γ
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Observations on the codimension

Connected sum (and surgery) operation

Lee-Naber-Neumayer construction

}
are codimension ⩾ 3 phenomena.

Theorem (Gromov-Lawson and Schoen-Yau surgery)

Let Σn−k ⊂ Mn (k ⩾ 3), denote M ′ = M \ Σ. For any ε > 0 there
is a metric g on M ′ such that:
(1) g ′ = g outside the ε-neighborhood of Σ,
(2) ∂M ′ is a minimal surface.
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Observations on the codimension

Connected sum (and surgery) operation

Lee-Naber-Neumayer construction

}
are codimension ⩾ 3 phenomena.

Theorem (Gromov-Lawson and Schoen-Yau surgery)

Let Σn−k ⊂ Mn (k ⩾ 3), denote M ′ = M \ Σ. For any ε > 0 there
is a metric g on M ′ such that:
(1) g ′ = g outside the ε-neighborhood of Σ,
(2) ∂M ′ is a minimal surface.

Related fact: Sk−1-bundles (k ⩾ 3) admit metrics with R ≫ 1
(while S1 bundles may not).
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Flat base metric

Supposing h is flat:

⇒ ∆hφ ⩽ εφ

⇒ Moser’s Harnack inequality: infB(x0,1/4) φ ⩾ C
∫
B(x0,1/2)

φ

⇒ Drawstring does not exist.

Suggest: concentrate large curvature in a region.
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The picture of 3D drawstring

x0

o(ε)

1
φ = φ(r)

hcone

↓
main building block

L-N-N construction
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