Ricci flow smoothing and its application to scalar curvature rigidity

Man-Chun Lee

The Chinese University of Hong Kong

Feb, 2024 IASM-BIRS 5 day workshop

Man-Chun Lee (CUHK)

scalar curvature

Feb, 2024

イロト イポト イヨト イヨト

Rigidity related to scalar curvature:

		 CIL	
N/lan I	hun		нк
Ivian-	Chun	00	

イロン イヨン イヨン

æ

Rigidity related to scalar curvature:

Theorem (Gromov-Lawson)

Riemannian metric g on n-torus \mathbb{T}^n are flat.

Rigidity related to scalar curvature:

```
Theorem (Gromov-Lawson)
```

Riemannian metric g on n-torus \mathbb{T}^n are flat.

Theorem (Llarull)

If (M, g) is closed spin manifold with $\mathcal{R} \ge n(n-1)$ and admits 1-lipschitz map $f : M \to \mathbb{S}^n$, then f is an isometry or of zero degree.

Rigidity related to scalar curvature:

```
Theorem (Gromov-Lawson)
```

Riemannian metric g on n-torus \mathbb{T}^n are flat.

Theorem (Llarull)

If (M, g) is closed spin manifold with $\mathcal{R} \ge n(n-1)$ and admits 1-lipschitz map $f : M \to \mathbb{S}^n$, then f is an isometry or of zero degree.

Question: What if g (and f in case of sphere) is non-smooth?

Motivating (related) Questions:

- Gromov: What is the most reasonable compactness in scalar curvature geometry?
- Gromov: Define the notion of $\mathcal{R} \geq \kappa$ for non-smooth metrics

イロト イポト イヨト イヨト 二日

- Gromov: What is the most reasonable compactness in scalar curvature geometry?
- Gromov: Define the notion of $\mathcal{R} \geq \kappa$ for non-smooth metrics
- Schoen: If g is a L[∞] metric on Tⁿ \ S outside some singularity S such that R ≥ 0 on R_{reg}, is S a removable singularity?

- Gromov: What is the most reasonable compactness in scalar curvature geometry?
- Gromov: Define the notion of $\mathcal{R} \geq \kappa$ for non-smooth metrics
- Schoen: If g is a L[∞] metric on Tⁿ \ S outside some singularity S such that R ≥ 0 on R_{reg}, is S a removable singularity?
- Do we have positive Theorem for manifolds with "corners"?

Given a C^0 metric g on closed manifold M, we say that $\mathcal{R} \ge \kappa$ if there is a sequence of smooth metrics g_i on M such that $\mathcal{R}_i \ge \kappa - o(1)$ and $g_i \rightarrow g$ in C^0 .

イロト 不得 トイヨト イヨト

Given a C^0 metric g on closed manifold M, we say that $\mathcal{R} \ge \kappa$ if there is a sequence of smooth metrics g_i on M such that $\mathcal{R}_i \ge \kappa - o(1)$ and $g_i \rightarrow g$ in C^0 . We might as well replace κ by a continuous function on M

(日)

Given a C^0 metric g on closed manifold M, we say that $\mathcal{R} \ge \kappa$ if there is a sequence of smooth metrics g_i on M such that $\mathcal{R}_i \ge \kappa - o(1)$ and $g_i \rightarrow g$ in C^0 . We might as well replace κ by a continuous function on M

Que: How natural is this?

Given a C^0 metric g on closed manifold M, we say that $\mathcal{R} \ge \kappa$ if there is a sequence of smooth metrics g_i on M such that $\mathcal{R}_i \ge \kappa - o(1)$ and $g_i \rightarrow g$ in C^0 . We might as well replace κ by a continuous function on M

Que: How natural is this?

e.g. If $\mathcal{R} \geq 0$ in this sense on \mathbb{T}^n , is g a flat torus?

Suppose g_i is a metric on M with $\mathcal{R}_i \geq \kappa$ such that $g_i \rightarrow g_{\infty}$ in C^0 for some smooth metric g_{∞} , then $\mathcal{R}_{\infty} \geq \kappa$.

(日)

Suppose g_i is a metric on M with $\mathcal{R}_i \geq \kappa$ such that $g_i \rightarrow g_{\infty}$ in C^0 for some smooth metric g_{∞} , then $\mathcal{R}_{\infty} \geq \kappa$. (localizable, just lazy)

(日)

Suppose g_i is a metric on M with $\mathcal{R}_i \geq \kappa$ such that $g_i \rightarrow g_{\infty}$ in C^0 for some smooth metric g_{∞} , then $\mathcal{R}_{\infty} \geq \kappa$. (localizable, just lazy)

Hence, definition of C^0 metric is a direct generalization of smooth setting!

• Gromov: formulate $\mathcal{R} \ge 0$ using non-existence of local cube C^0 data

Suppose g_i is a metric on M with $\mathcal{R}_i \geq \kappa$ such that $g_i \rightarrow g_{\infty}$ in C^0 for some smooth metric g_{∞} , then $\mathcal{R}_{\infty} \geq \kappa$. (localizable, just lazy)

Hence, definition of C^0 metric is a direct generalization of smooth setting!

- Gromov: formulate $\mathcal{R} \geq 0$ using non-existence of local cube C^0 data
- Bamler: using Ricci flow smoothing (seems more flexible)

$$\partial_t g_{ij} = -R_{ij} + \nabla_i V_j + \nabla_j V_i; \quad V^k = g^{ij} (\Gamma^k_{ij} - \tilde{\Gamma}^k_{ij})$$
(1)

where \tilde{g} is a fixed chosen metrc on M.

<ロ> <四> <四> <四> <四> <四</p>

$$\partial_t g_{ij} = -R_{ij} + \nabla_i V_j + \nabla_j V_i; \quad V^k = g^{ij} (\Gamma^k_{ij} - \tilde{\Gamma}^k_{ij})$$
(1)

where \tilde{g} is a fixed chosen metrc on M.

This is diffeomorphic to Ricci flow:

$$\partial_t g = -2\operatorname{Ric}(g(t)).$$

イロト 不得 トイヨト イヨト

$$\partial_t g_{ij} = -R_{ij} + \nabla_i V_j + \nabla_j V_i; \quad V^k = g^{ij} (\Gamma^k_{ij} - \tilde{\Gamma}^k_{ij})$$
(1)

where \tilde{g} is a fixed chosen metrc on M.

This is diffeomorphic to Ricci flow:

$$\partial_t g = -2\operatorname{Ric}(g(t)).$$

Why Ricci flow is useful?

イロト 不得 トイヨト イヨト

$$\partial_t g_{ij} = -R_{ij} + \nabla_i V_j + \nabla_j V_i; \quad V^k = g^{ij} (\Gamma^k_{ij} - \tilde{\Gamma}^k_{ij})$$
(1)

where \tilde{g} is a fixed chosen metrc on M.

This is diffeomorphic to Ricci flow:

$$\partial_t g = -2\operatorname{Ric}(g(t)).$$

Why Ricci flow is useful? Because this is indeed the best second order variation to increase \mathcal{R} :

$$\left(\frac{\partial}{\partial t}-\Delta\right)\mathcal{R}=2|\operatorname{Ric}|^2\geq \frac{2}{n}\mathcal{R}^2.$$

Theorem (Simon, Koch-Lamn, Burkhardt-Guim)

Suppose g_0 is a continuous metric on closed manifold (M, \tilde{g}) such that

$$(1-\varepsilon_n)\tilde{g} \leq g_0 \leq (1+\varepsilon_n)\tilde{g}$$

on *M*, then there exists a short-time solution to the Ricci-Deturck flow g(t) (with respect to \tilde{g}) such that $g(t) \to g_0$ as $t \to 0$ in C^0 and

$$| ilde{
abla}^k g(t)| \leq o(1)t^{-k/2} \leq C(n,k, ilde{g})t^{-k/2}$$

for all k > 0. Moreover, the solution is unique within the class of solution achieving g_0 in C^0 .

Theorem (Simon, Koch-Lamn, Burkhardt-Guim)

Suppose g_0 is a continuous metric on closed manifold (M, \tilde{g}) such that

$$(1-\varepsilon_n)\tilde{g} \leq g_0 \leq (1+\varepsilon_n)\tilde{g}$$

on *M*, then there exists a short-time solution to the Ricci-Deturck flow g(t) (with respect to \tilde{g}) such that $g(t) \to g_0$ as $t \to 0$ in C^0 and

$$|\tilde{
abla}^k g(t)| \leq o(1)t^{-k/2} \leq C(n,k,\tilde{g})t^{-k/2}$$

for all k > 0. Moreover, the solution is unique within the class of solution achieving g_0 in C^0 .

In particular, if $g(t), t \in (0, T]$ is a solution smooth for t > 0 which attains a smooth metric g_0 as $t \to 0$ in C^0 , then g(t) coincides with the standard solution.

Man-Chun Lee (CUHK)

• g_i are all ε_n away from some fixed background metric \tilde{g}

イロト 不得下 イヨト イヨト 二日

- g_i are all ε_n away from some fixed background metric \tilde{g}
- take $g_i(t)$, the geometric deformation of each g_i such that $\mathcal{R}(g_i(t)) \geq \kappa$ for t > 0.

3

8/22

- g_i are all ε_n away from some fixed background metric \tilde{g}
- take $g_i(t)$, the geometric deformation of each g_i such that $\mathcal{R}(g_i(t)) \geq \kappa$ for t > 0.
- Parabolic smoothing implies $g_i(t) o g_\infty(t)$ smoothly so that $\mathcal{R}(g_\infty(t)) \geq \kappa.$

イロト イポト イヨト イヨト 二日

- g_i are all ε_n away from some fixed background metric \tilde{g}
- take $g_i(t)$, the geometric deformation of each g_i such that $\mathcal{R}(g_i(t)) \geq \kappa$ for t > 0.
- Parabolic smoothing implies $g_i(t) o g_\infty(t)$ smoothly so that $\mathcal{R}(g_\infty(t)) \geq \kappa.$
- $g_{\infty}(t)$ coincides with the classicial smooth solution, result follows by letting $t \to 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- g_i are all ε_n away from some fixed background metric \tilde{g}
- take $g_i(t)$, the geometric deformation of each g_i such that $\mathcal{R}(g_i(t)) \geq \kappa$ for t > 0.
- Parabolic smoothing implies $g_i(t) o g_\infty(t)$ smoothly so that $\mathcal{R}(g_\infty(t)) \geq \kappa.$
- $g_{\infty}(t)$ coincides with the classicial smooth solution, result follows by letting $t \to 0$.
- Huang-L. generalize Gromov's Theorem: if $g_i \to g$ in C^0 and $||\mathcal{R}_i \kappa||_{L^{n/2}} \to 0$, then $\mathcal{R} \ge \kappa$ (indeed localizable).

イロト 不得下 イヨト イヨト 二日

- g_i are all ε_n away from some fixed background metric \tilde{g}
- take $g_i(t)$, the geometric deformation of each g_i such that $\mathcal{R}(g_i(t)) \geq \kappa$ for t > 0.
- Parabolic smoothing implies $g_i(t) o g_\infty(t)$ smoothly so that $\mathcal{R}(g_\infty(t)) \geq \kappa.$
- $g_{\infty}(t)$ coincides with the classicial smooth solution, result follows by letting $t \to 0$.
- Huang-L. generalize Gromov's Theorem: if $g_i \to g$ in C^0 and $||\mathcal{R}_i \kappa||_{L^{n/2}} \to 0$, then $\mathcal{R} \ge \kappa$ (indeed localizable). This is related to Miao's PMT with corners.

イロト 不得下 イヨト イヨト 二日

Why care C^0 metrics?

This is related to positive mass Theorem with "singularity".

<ロ> <四> <四> <四> <四> <四</p>

This is related to positive mass Theorem with "singularity".

Setting: g is smooth on $\mathbb{T}^n \setminus S$ (take M to be Asymptotically flat if you like PMT) with $\mathcal{R}(g) \geq 0$ outside S.

イロト 不得 トイヨト イヨト 二日

This is related to positive mass Theorem with "singularity".

Setting: g is smooth on $\mathbb{T}^n \setminus S$ (take M to be Asymptotically flat if you like PMT) with $\mathcal{R}(g) \geq 0$ outside S.

Question: under what conditions of S we can conclude g to be flat?

イロト 不得下 イヨト イヨト 二日

This is related to positive mass Theorem with "singularity".

Setting: g is smooth on $\mathbb{T}^n \setminus S$ (take M to be Asymptotically flat if you like PMT) with $\mathcal{R}(g) \geq 0$ outside S.

Question: under what conditions of S we can conclude g to be flat?

- Miao: need assumption on mean curvature across the co-dim 1 singularity
- Gromov, Li-Mantoulidis: some condition on angle for co-dim 2
- Schoen: there should be no requirement on high codimension singularity (even for L^{∞} metrics ?)

イロト イポト イヨト イヨト 二日

• Question: does C^0 metric g satisfy $\mathcal{R}(g) \ge 0$ in the sense of approximation

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

C^0 metrics

- Question: does C^0 metric g satisfy $\mathcal{R}(g) \ge 0$ in the sense of approximation
- If it does, then we can find using Ricci flow approach g(t) from g such that $\operatorname{Rm}(g(t)) \equiv 0$ and $g(t) \to g$ in C^0 .

イロト イポト イヨト イヨト 二日

- Question: does C^0 metric g satisfy $\mathcal{R}(g) \ge 0$ in the sense of approximation
- If it does, then we can find using Ricci flow approach g(t) from g such that $\operatorname{Rm}(g(t)) \equiv 0$ and $g(t) \to g$ in C^0 .
- In particular, using Ricci flow perspective implies g = Φ*g_{flat} outside S for some bi-Lipschitz homeomorphism Φ ∈ C[∞](M \ S).

イロト 不得 トイヨト イヨト 二日

(isolated) high codimension is invisible

Theorem (L.-Tam)

Given $M = \mathbb{T}^n$. Suppose $g \in C^0(M) \cap C^{\infty}_{loc}(M \setminus S)$ such that co-dim of S is at least 3 and $\mathcal{R}(g) \ge 0$ outside S, then $\mathcal{R}(g) \ge 0$ in the sense of approximation. In particular, there exists a bi-lipschitz homeomorphism $\Phi \in C^{\infty}(M \setminus S)$ such that Φ is an isometry from (M,g) to (M,g_{flat}) and $g = \Phi^*g_{flat}$ outside S.

11/22

(isolated) high codimension is invisible

Theorem (L.-Tam)

Given $M = \mathbb{T}^n$. Suppose $g \in C^0(M) \cap C^{\infty}_{loc}(M \setminus S)$ such that co-dim of S is at least 3 and $\mathcal{R}(g) \ge 0$ outside S, then $\mathcal{R}(g) \ge 0$ in the sense of approximation. In particular, there exists a bi-lipschitz homeomorphism $\Phi \in C^{\infty}(M \setminus S)$ such that Φ is an isometry from (M, g) to (M, g_{flat}) and $g = \Phi^*g_{flat}$ outside S.

 Proved by Li-Mantoulidis in 3D under only L[∞] across S using minimal surface;

11/22

(isolated) high codimension is invisible

Theorem (L.-Tam)

Given $M = \mathbb{T}^n$. Suppose $g \in C^0(M) \cap C^{\infty}_{loc}(M \setminus S)$ such that co-dim of S is at least 3 and $\mathcal{R}(g) \ge 0$ outside S, then $\mathcal{R}(g) \ge 0$ in the sense of approximation. In particular, there exists a bi-lipschitz homeomorphism $\Phi \in C^{\infty}(M \setminus S)$ such that Φ is an isometry from (M, g) to (M, g_{flat}) and $g = \Phi^*g_{flat}$ outside S.

- Proved by Li-Mantoulidis in 3D under only L[∞] across S using minimal surface;
- Ricci flow method also work for manifold with non-positive Yamabe invariant $\sigma(M) \leq 0$ and critical scalar lower bound.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Maximum principle with singular initial data

Proposition (L.-Tam)

There is $\delta>0$ such that if g(t) is Ricci-Deturck flow on $M\times(0,T]$ such that

•
$$g(t)$$
 is bi-Lip to h;
• $|\nabla^h g(t)|^2 + |\nabla^{h,2}g(t)| \le \delta t^{-1};$
• $g_0 \in C^{\infty}_{loc}(M \setminus \Sigma)$ for $\operatorname{co} - \dim(\Sigma) \ge 3;$
If $\mathcal{R}(g_0) \ge \sigma_0 \le 0$ on Σ^c , then on $M \times (0, T]$,

$$\mathcal{R}(g(t)) \geq \sigma_0 \left(1-\frac{2}{n}\sigma_0 t\right)^{-1}.$$

Man-	Chun	Lee	(CL	HK)

Maximum principle with singular initial data

Proposition (L.-Tam)

There is $\delta>0$ such that if g(t) is Ricci-Deturck flow on $M\times(0,T]$ such that

•
$$g(t)$$
 is bi-Lip to h;
• $|\nabla^h g(t)|^2 + |\nabla^{h,2} g(t)| \le \delta t^{-1}$;
• $g_0 \in C^{\infty}_{loc}(M \setminus \Sigma)$ for $\operatorname{co} - \dim(\Sigma) \ge 3$;
If $\mathcal{R}(g_0) \ge \sigma_0 \le 0$ on Σ^c , then on $M \times (0, T]$,

$$\mathcal{R}(g(t)) \geq \sigma_0 \left(1 - \frac{2}{n} \sigma_0 t\right)^{-1}.$$

Remark: coincide with smooth case

12 / 22

Applications to PMT with high co-dim singularity

Same approach also implies

Theorem (L.-Tam, Chu-L.-Zhu)

Suppose $(M^n, g), n \leq 7$ is AF manifold such that $g \in C^{\infty}_{loc}(M \setminus \Sigma)$ for some compact Σ of co-dim ≥ 3 and is locally continuous. If $\mathcal{R} \geq 0$ outside Σ , then $m_{ADM}(E) \geq 0$ for any end E of M. Moreover, if $m_{ADM}(E') = 0$ for some end E', then (M, g) is isometric to Euclidean space as a metric space.

• In smooth case: ADM mass is preserved under Ricci flow

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Applications to PMT with high co-dim singularity

Same approach also implies

Theorem (L.-Tam, Chu-L.-Zhu)

Suppose $(M^n, g), n \leq 7$ is AF manifold such that $g \in C^{\infty}_{loc}(M \setminus \Sigma)$ for some compact Σ of co-dim ≥ 3 and is locally continuous. If $\mathcal{R} \geq 0$ outside Σ , then $m_{ADM}(E) \geq 0$ for any end E of M. Moreover, if $m_{ADM}(E') = 0$ for some end E', then (M, g) is isometric to Euclidean space as a metric space.

- In smooth case: ADM mass is preserved under Ricci flow
- In non-smooth case, ADM mass is non-decreasing under smoothing. (Mcferon-Szekelyhidi)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Chu-L.)

Suppose (M, h) is a compact manifold and g_0 is a $L^{\infty} \cap W^{1,n}$ metric on M, then there is a Ricci-Deturck h-flow on $M \times (0, S]$ such that

Theorem (Chu-L.)

Suppose (M, h) is a compact manifold and g_0 is a $L^{\infty} \cap W^{1,n}$ metric on M, then there is a Ricci-Deturck h-flow on $M \times (0, S]$ such that

- **9** g(t) is smooth and uniformly bi-Lipschitz for all $t \in (0, S]$;
- 3 $\sup_M t^{k/2} |\nabla^{k,h}g(t)| = o(1)$ as $t \to 0$ for all $k \in \mathbb{N}$;

$$\ \, {\mathfrak g}(t) \to g_0 \ \, {\it in} \ \, W^{1,n} \ \, {\it as} \ t \to 0;$$

 $\textbf{ If } g_0 \in C^\infty_{loc}(\Omega) \text{ for some } \Omega \Subset M \text{, then } g(t) \to g_0 \text{ in } C^\infty_{loc}(\Omega) \text{ as } t \to 0.$

Theorem (Chu-L.)

Suppose (M, h) is a compact manifold and g_0 is a $L^{\infty} \cap W^{1,n}$ metric on M, then there is a Ricci-Deturck h-flow on $M \times (0, S]$ such that

- **9** g(t) is smooth and uniformly bi-Lipschitz for all $t \in (0, S]$;
- 3 $\sup_M t^{k/2} |\nabla^{k,h}g(t)| = o(1)$ as $t \to 0$ for all $k \in \mathbb{N}$;

$$\ \, {\mathfrak g}(t) \to g_0 \ \, {\it in} \ \, W^{1,n} \ \, {\it as} \ t \to 0;$$

• If $g_0 \in C^{\infty}_{loc}(\Omega)$ for some $\Omega \Subset M$, then $g(t) \to g_0$ in $C^{\infty}_{loc}(\Omega)$ as $t \to 0$.

Remark: o(1) in the asymptotic measures the asymptotic flatness in weak sense

Corollary (Chu-L.)

Suppose *M* is a compact manifold with $\sigma(M) \leq 0$. If *g* is $L^{\infty} \cap W^{1,n}$ metric on *M* such that $g \in C_{loc}^{\infty}$ outside a co-dimension 3 singularity Σ , then $\operatorname{Ric}(g) \equiv 0$ outside Σ .

イロト イポト イヨト イヨト

Corollary (Chu-L.)

Suppose *M* is a compact manifold with $\sigma(M) \leq 0$. If *g* is $L^{\infty} \cap W^{1,n}$ metric on *M* such that $g \in C_{loc}^{\infty}$ outside a co-dimension 3 singularity Σ , then $\operatorname{Ric}(g) \equiv 0$ outside Σ .

Corollary (Chu-L.)

Suppose (M,g) is AF manifold such that $g \in L^{\infty} \cap W^{1,n} \cap C^{\infty}_{loc}(M \setminus \Sigma)$ for Σ of co-dim ≥ 3 . If $\mathcal{R} \geq 0$ outside Σ , then $m_{ADM}(E) \geq 0$ for any end E of M. Moreover, if $m_{ADM}(E') = 0$ for some end E', then M is diffeomorphic to \mathbb{R}^n and g is flat outside Σ .

イロト イポト イヨト イヨト 二日

Question (Gromov)

Is reguarlity making difference in sphere rigidity?

イロト 不得 トイヨト イヨト

Question (Gromov)

Is reguarlity making difference in sphere rigidity? For example: if $f: M \to \mathbb{S}^n$ is a distance non-increasing continuous map with non-zero degree, then is f a distance isometry under the same set of conditions $(\mathcal{R} \ge n(n-1), spin)$?

イロト 不得 トイヨト イヨト 二日

Question (Gromov)

Is reguarlity making difference in sphere rigidity? For example: if $f: M \to \mathbb{S}^n$ is a distance non-increasing continuous map with non-zero degree, then is f a distance isometry under the same set of conditions $(\mathcal{R} \ge n(n-1), \text{spin})$?Or more generally, g is continuous metric with weak sense of $\mathcal{R} \ge n(n-1)$.

イロト イポト イヨト イヨト 二日

Question

Suppose g is a metric on \mathbb{S}^n_+ such that $g \ge g_{sph}$, $\mathcal{R} \ge n(n-1)$ and $H(g) \ge H(g_{sph})$ (Miao's condition) on $\partial \mathbb{S}^n_+$, then is $g = g_{sph}$?

イロト 不得 トイヨト イヨト

Question

Suppose g is a metric on \mathbb{S}^n_+ such that $g \ge g_{sph}$, $\mathcal{R} \ge n(n-1)$ and $H(g) \ge H(g_{sph})$ (Miao's condition) on $\partial \mathbb{S}^n_+$, then is $g = g_{sph}$?

Why related to singular version of Llarull?

17/22

イロト イポト イヨト イヨト

Question

Suppose g is a metric on \mathbb{S}^n_+ such that $g \ge g_{sph}$, $\mathcal{R} \ge n(n-1)$ and $H(g) \ge H(g_{sph})$ (Miao's condition) on $\partial \mathbb{S}^n_+$, then is $g = g_{sph}$?

Why related to singular version of Llarull?

• Taking double of g yield $(\mathbb{S}^n, \tilde{g})$ which is Lipschitz, $\mathcal{R} \ge n(n-1)$ in distribution sense (Lee) (and hence our weak sense) and $\tilde{g} \ge g_{sph}$ on \mathbb{S}^n .

Question

Suppose g is a metric on \mathbb{S}^n_+ such that $g \ge g_{sph}$, $\mathcal{R} \ge n(n-1)$ and $H(g) \ge H(g_{sph})$ (Miao's condition) on $\partial \mathbb{S}^n_+$, then is $g = g_{sph}$?

Why related to singular version of Llarull?

- Taking double of g yield $(\mathbb{S}^n, \tilde{g})$ which is Lipschitz, $\mathcal{R} \ge n(n-1)$ in distribution sense (Lee) (and hence our weak sense) and $\tilde{g} \ge g_{sph}$ on \mathbb{S}^n .
- Then $\tilde{g} = g_{sph}$ on \mathbb{S}^n and hence g! (Great :D)

Question

Suppose g is a metric on \mathbb{S}^n_+ such that $g \ge g_{sph}$, $\mathcal{R} \ge n(n-1)$ and $H(g) \ge H(g_{sph})$ (Miao's condition) on $\partial \mathbb{S}^n_+$, then is $g = g_{sph}$?

Why related to singular version of Llarull?

- Taking double of g yield $(\mathbb{S}^n, \tilde{g})$ which is Lipschitz, $\mathcal{R} \ge n(n-1)$ in distribution sense (Lee) (and hence our weak sense) and $\tilde{g} \ge g_{sph}$ on \mathbb{S}^n .
- Then $\tilde{g} = g_{sph}$ on \mathbb{S}^n and hence g! (Great :D)
- Or more generally, replace \mathbb{S}^n_+ with any $\Omega \subset \mathbb{S}^n$ with additional assumption $g = g_{sph}$ on boundary.

イロト 不得 トイラト イラト 一日

Theorem (L.-Tam, Cecchini-Hanke-Schick)

Suppose M is a closed spin manifold and g is a continuous metric on M with $\mathcal{R} \ge n(n-1)$ in the weak sense. Suppose $f : M \to \mathbb{S}^n$ is a distance non-increasing map with non-zero degree, then f is a distance isometry.

イロト 不得 トイヨト イヨト

Theorem (L.-Tam, Cecchini-Hanke-Schick)

Suppose M is a closed spin manifold and g is a continuous metric on M with $\mathcal{R} \ge n(n-1)$ in the weak sense. Suppose $f : M \to \mathbb{S}^n$ is a distance non-increasing map with non-zero degree, then f is a distance isometry.

- Cecchini-Hanke-Schick: based on developing singular Dirac operator
- L.-Tam: based on parabolic smoothing

parabolic method: Reduction to smooth case

Theorem (smooth case)

Suppose g(t) is a solution to the Ricci flow on $M \times [0, T]$ and $F: M \times [0, T] \to \mathbb{S}^n$ such that $\partial_t F = \Delta_{g(t),h(t)}F$, if $F_0^*h(0) \le g(0)$, then

 $F_t^*h(t) \leq g(t)$

on $M \times [0, T]$. Here h(t) is the standard shrinking sphere.

19/22

parabolic method: Reduction to smooth case

Theorem (smooth case)

Suppose g(t) is a solution to the Ricci flow on $M \times [0, T]$ and $F: M \times [0, T] \to \mathbb{S}^n$ such that $\partial_t F = \Delta_{g(t),h(t)}F$, if $F_0^*h(0) \le g(0)$, then

 $F_t^*h(t) \leq g(t)$

on $M \times [0, T]$. Here h(t) is the standard shrinking sphere.

General case: $F_0 = f$ is non-smooth Lipschitz map

approximate f by smooth map f_i using method of Greene-Wu;

19 / 22

parabolic method: Reduction to smooth case

Theorem (smooth case)

Suppose g(t) is a solution to the Ricci flow on $M \times [0, T]$ and $F: M \times [0, T] \to \mathbb{S}^n$ such that $\partial_t F = \Delta_{g(t),h(t)}F$, if $F_0^*h(0) \le g(0)$, then

 $F_t^*h(t) \leq g(t)$

on $M \times [0, T]$. Here h(t) is the standard shrinking sphere.

General case: $F_0 = f$ is non-smooth Lipschitz map

- approximate f by smooth map f_i using method of Greene-Wu;
- evolve f_i using harmonic map heat flow $F_i(t)$ coupled with Ricci flow;

Theorem (smooth case)

Suppose g(t) is a solution to the Ricci flow on $M \times [0, T]$ and $F: M \times [0, T] \to \mathbb{S}^n$ such that $\partial_t F = \Delta_{g(t),h(t)}F$, if $F_0^*h(0) \le g(0)$, then

 $F_t^*h(t) \leq g(t)$

on $M \times [0, T]$. Here h(t) is the standard shrinking sphere.

General case: $F_0 = f$ is non-smooth Lipschitz map

- approximate f by smooth map f_i using method of Greene-Wu;
- evolve f_i using harmonic map heat flow $F_i(t)$ coupled with Ricci flow;
- Pass F_i to limiting map $F: M \to \mathbb{S}^n$ with F(0) = f as C^0 initial data

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (L.-Tam)

Under the assumption in main Theorem, there exists $F: (M, g(t)) \times (0, T] \rightarrow (\mathbb{S}^n, h(t))$ such that $\operatorname{Lip}(F) \leq 1$ and

 $d_h(F_t(x), f(x)) \leq C\sqrt{t}$

for all $x \in M$ and $|\nabla^k dF| \leq Ct^{-k/2}$ for all k. In particular, F is a distance isometry for all t > 0.

20 / 22

Theorem (L.-Tam)

Under the assumption in main Theorem, there exists $F: (M, g(t)) \times (0, T] \rightarrow (\mathbb{S}^n, h(t))$ such that $\operatorname{Lip}(F) \leq 1$ and

 $d_h(F_t(x), f(x)) \leq C\sqrt{t}$

for all $x \in M$ and $|\nabla^k dF| \leq Ct^{-k/2}$ for all k. In particular, F is a distance isometry for all t > 0.

• Taking $t \rightarrow 0$, we conclude that f is a distance isometry.

イロト 不得 トイヨト イヨト 二日

Theorem (L.-Tam)

Under the assumption in main Theorem, there exists $F: (M, g(t)) \times (0, T] \rightarrow (\mathbb{S}^n, h(t))$ such that $\operatorname{Lip}(F) \leq 1$ and

 $d_h(F_t(x), f(x)) \leq C\sqrt{t}$

for all $x \in M$ and $|\nabla^k dF| \leq Ct^{-k/2}$ for all k. In particular, F is a distance isometry for all t > 0.

• Taking $t \rightarrow 0$, we conclude that f is a distance isometry.

• smoothing is independent of spin structure!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Further "application"

Question (Gromov?)

In the smooth case, if $f : M \to \mathbb{S}^n$ is a distance non-increasing map with non-zero degree and $\mathcal{R}(M) \ge n(n-1)$, then is f is isometry without a-priori spin condition??

イロト イポト イヨト イヨト

In the smooth case, if $f : M \to \mathbb{S}^n$ is a distance non-increasing map with non-zero degree and $\mathcal{R}(M) \ge n(n-1)$, then is f is isometry without a-priori spin condition??

 Our method: this reduces the problem to non-existence of such map under *R* > n(n−1) (similar to Schoen-Yau's torus rigidity)

21/22

In the smooth case, if $f : M \to \mathbb{S}^n$ is a distance non-increasing map with non-zero degree and $\mathcal{R}(M) \ge n(n-1)$, then is f is isometry without a-priori spin condition??

- Our method: this reduces the problem to non-existence of such map under *R* > n(n−1) (similar to Schoen-Yau's torus rigidity)
- This is because if g is non-Einstein, Ricci flow smoothing yield strict inequality.

In the smooth case, if $f : M \to \mathbb{S}^n$ is a distance non-increasing map with non-zero degree and $\mathcal{R}(M) \ge n(n-1)$, then is f is isometry without a-priori spin condition??

- Our method: this reduces the problem to non-existence of such map under *R* > n(n−1) (similar to Schoen-Yau's torus rigidity)
- This is because if g is non-Einstein, Ricci flow smoothing yield strict inequality.
- Einstein case: trivial using comparison geometry (or standard harmonic map heat flow or graphical mean curvature flow)

In the smooth case, if $f : M \to \mathbb{S}^n$ is a distance non-increasing map with non-zero degree and $\mathcal{R}(M) \ge n(n-1)$, then is f is isometry without a-priori spin condition??

- Our method: this reduces the problem to non-existence of such map under *R* > n(n−1) (similar to Schoen-Yau's torus rigidity)
- This is because if g is non-Einstein, Ricci flow smoothing yield strict inequality.
- Einstein case: trivial using comparison geometry (or standard harmonic map heat flow or graphical mean curvature flow)
- This was done in 4D by Cecchini-Wang-Xie-Zhu.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THANK YOU!!

scalar curvature

Feb, 2024