
Two-sided Lorentzian area comparison, integral
curvature bounds and singularity theorems

(j/w Kontou, Ohanyan, Schinnerl)

Melanie Graf

University of Hamburg

IASM Hangzhou, February 27, 2024

Melanie Graf (University of Hamburg) Lorentzian Comparison Geometry IASM Hangzhou, Feb. 27 1 / 16



Outline

1 Introduction

2 Comparison results
Setup
Two-sided area comparison
From volume integral bounds to integral bounds along geodesics

3 Singularity Theorems

4 Outlook

Melanie Graf (University of Hamburg) Lorentzian Comparison Geometry IASM Hangzhou, Feb. 27 2 / 16



Singularity Theorems – Popular Science Intro
”Black holes and big bangs/big crunches are fun and these theorems from

Lorentzian Geometry predict their existence”

Picture ©EHT Collaboration

(As with most popular science this is an oversimplification. Really:
Geodesic incompleteness.)

’Pop-Differential Geometry’ Intro
Lorentzian analogues of well-known Riemannian results like Bonnet-Myers

Importance has been recognized: 2020 Physics Nobel Prize for Roger
Penrose (Penrose singularity theorem (1965))
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The story continued
Riemannian Comparison Geometry has come a long way since
Bonnet-Myers

. . . and clearly some very nice research is ongoing

Global Lorentzian Geometry and Lorentzian Comparison Geometry
have also come a long way since the first singularity theorems:

Splitting theorems (Eschenburg, Galloway, Andersson, Howard, . . . )
Triangle comparison results (Harris, Alexander-Bishop)
Causality Theory, Conformal structure, Causal boundary, . . .

. . . and research is ongoing: Many active topics and open questions
Lorentzian Alexandrov/CD/. . . Theory (Kunzinger, Sämann, Cavalletti,
Mondino, McCann, Braun, Suhr, Minguzzi, Ohta, Müller . . . )
Low-regularity metrics on smooth spacetimes: (In-)extendibility
results, causal peculiarities, etc. (Chrusciel, Grant, Sbierski, Ling, . . . )
and also: Improvements upon classical results by e.g. relaxing
curvature conditions
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Riemannian context
Theorem (Sprouse ’00)
Let (M, g) be a complete Riemannian manifold with Ric > (n − 1)k (k < 0). Then for
any R, δ > 0 there exists ε = ε(n, k, R, δ) such that if

sup
x

1
vol(B(x , R))

∫
B(x,R)

((n − 1) − Ric−)+dV < ε

then (M, g) is compact, with diam(M) < π + δ.

Proof of [S] based on going from volume integrals to integrals along geodesics via:

"Segment inequality" (Cheeger-Colding ’96)
Let (M, g) be Riemannian with Ric ≥ −(n − 1). For A1, A2 ⊆ B(p, r) with r ≤ R and ϕ
non-negative, continuous∫

A1×A2

Fϕ(x , y) dvol(x)dvol(y) ≤ r C(n, R)(|A1| + |A2|)
∫

B(p,2R)
ϕ dvol

where Fϕ(x , y) := supγ∈Γ(x,y)
∫ |xy|

0 ϕ(γ(s))ds

The proof of [CG] uses a two-sided Bishop-Gromov estimate for the area element.
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Goal: Apply similar strategy to Hawking’s Singularity
theorem

(A variant of) The Hawking singularity theorem (Hawking (’67))
A (smooth) spacetime is future timelike geodesically incomplete if

1. Ric(X , X ) ≥ 0 for every timelike vector X
2. There exists a smooth spacelike Cauchy hypersurface Σ in M
3. The mean curvature vector of Σ is past pointing timelike, i.e. ∃β > 0

with H := −g(H⃗, n⃗) < β < 0 (where n⃗=future unit normal to Σ and
H=mean curvature w.r.t. n⃗).

More precisely one has τ(Σ, p) ≤ n−1
β for any p ∈ I+(Σ).

Remark: This is an inherently asymmetric situation, so

Hawking’s Singularity Theorem ↭ Myers Theorem with boundary
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Global hyperbolicity – an incomplete replacement for
completeness
Global hyperbolicity (GH) : ⇐⇒ existence of a Cauchy hypersurface Σ, which is a
subset of M that is met exactly once by every inextendible timelike curve

Guarantees (among other things)
1. a topological splitting M ∼= R × Σ
2. a smooth splitting M ∼= R × Σ̃ with Σ̃ homeomorphic to Σ and

g = −β(t, x)2dt2 + h(t, x) (Bernal-Sanchez ’06)
3. compactness of causal diamonds J+(p) ∩ J−(q) ∀p, q ∈ M and non-existence of

closed causal curvesa

4. existence of causal geodesics γ from p to q with L(γ) = max. Morally:
”Lorentzian analogue to assuming completeness in the Riemannian setting”

5. If Σ is smooth and spacelike, then we also get existence of length maximizing past
directed timelike geodesics from p to Σ for any p ∈ I+(Σ)

a3. is equivalent to (GH). Hounnonkpe-Minguzzi ’19: For n ≥ 3 and M non-compact
it is sufficient to assume J+(p) ∩ J−(q) ∀p, q ∈ M.
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Interlude: Setting, notation and exponential coordinates
Let Σ be a smooth spacelike Cauchy hypersurface

We can use the future normal exponential map exp+
Σ to locally write

the metric as

g = −dt2 + hij(t, x)dx i dx j , dvolg = A(t, x)dtdσ(0, x), (∂tA)(t, x)
A(t, x) = H(t, x)

where hij(t, x)dx idx j is a family of Riemannian metrics on Σ, dσ(t, x)
the volume element and H(t, x) the mean curvature (w.r.t. the future
unit normal VF U(t, x)) of {t} × Σ ↪→ M

Breaks down once we hit cut points!

Define

Reg+
η (T ) := {x ∈ Σ : γn⃗x does not have a cut point before T + η} ⊆ Σ

Melanie Graf (University of Hamburg) Lorentzian Comparison Geometry IASM Hangzhou, Feb. 27 9 / 16
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Two-sided comparison estimates
Same setup as before + Ric(U, U) ≥ nκ for some κ < 0.

Lemma (Mean curvature comparison)
For all T , η > 0 there are positive constants
C□− = C□−(n, κ, η) = (n − 1)

√
|κ| coth(η

√
|κ|) > 0 and

C□+ = C□+(n, κ, T ) and such that for all t ∈ [0, T ] and all x ∈ Reg+
η (T ),

−C□− ≤ (∂tA)(t, x)
A(t, x) ≤ C□+

Lemma (Area comparison)
For all T , η > 0 there are positive constants CA+ = CA+(n, κ, T ) and

CA− = CA−(n, κ, T , η) = sinh(η
√

|κ|)n−1 sinh(
√

|κ|(T + η))−(n−1)

such that for all t ∈ [0, T ] and all x ∈ Reg+
η (T ),

CA− ≤ A(t, x) ≤ CA+.
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Lorentzian segment type inequality
Same assumptions as before. Define

FT
f : Σ → [0, ∞], FT

f (x) :=
∫ min(T ,s+(x))

0
f (exp+

Σ(t, x))dt

(where f : M → [0, ∞) cont., T > 0, s+ the future cut function of Σ)

Lorentzian Segment type inequality
Then for any η > 0 and any measurable subset B ⊂ Reg+

η (T ) such that
0 < σB < ∞ we have that

inf
x∈B

FT
f ≤ 1

CA−(n, κ, T , η)
1

σB

∫
Ω+

T (B)
f dvolg ,

where CA− = CA−(n, κ, T , η) is the backward area comparison constant
and σ is the (Riemannian) volume measure on Σ.

Note: Again asymmetric ⇝ not a real segment inequality
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Consequence 1: Bound on σ(Reg+
η (T ))

Let (M, g) be a globally hyperbolic spacetime with a smooth, spacelike
Cauchy surface Σ ⊆ M.

Theorem (G.-Kontou-Ohanyan-Schinnerl ’22 )
Assume that Ric(v , v) ≥ nκ for all unit timelike v ∈ TM and H ≤ β on Σ
for some constants 0 > κ, β ∈ R with β ≥ −(n − 1)

√
|κ|.a

Let B ⊆ Σ with 0 < σ(B) < ∞. If for any 0 < T , η ∈ R
1

σ(B)

∫
Ω+

T (B)
| Ric(Up , Up)−| dvolg (p) < CA−(n, κ, η, T )(|β| −

n − 1
T

),

then B ̸⊆ Reg+
η (T ).

aThis just ensures that the usual singularity theorems don’t apply.

In other words:

B ⊆ Reg+
η (T ) =⇒ σ(B) ≤

∫
Ω+

T (B) | Ric(Up , Up)−| dvolg (p)

CA−(n, κ, η, T )(|β| − n−1
T )

∀T , η > 0
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Consequence 2: An actual singularity theorem
Theorem (G.-Kontou-Ohanyan-Schinnerl ’22 )
Let C□

max(n, κ, η) = (n − 1)
√

|κ| coth(η
√

|κ|). If:
(i) There is κ < 0 such that Ric(v , v) ≥ nκ for all unit timelike v ∈ TM.

(ii) There exist Q1, Q2 > 0 such that for all F ∈ C∞
c (M+), we have the following

integral bound on the Ricci tensor:∫
M

Ric(Up , Up)F (p)2 dvolg (p) ≥ −Q1∥F∥2
L2(M) − Q2∥U(F )∥2

L2(M).

(iii) the mean curvature of Σ satisfies
−H ≥ min

{
(n − 1)

√
|κ| coth(

√
|κ|τ), ν∗(n, κ, τ)

}
everywhere on Σ, where

ν∗(n, κ, τ) := min
{(T,η):T+η=τ}

min
τ0∈(0,T )

(
Q1 + Q2

(C□
max(n, κ, η))2

4
+ Q2

C□
max(n, κ, η)

2T

)
T
3

+ Q2

(
1 +

TC□
max(n, κ, η)

2

)(
1

τ0
+

1
T − τ0

)
+ n|κ|τ0

2
3

+
n − 1

T − τ0
.

Then no future-directed timelike curve emanating from Σ has length greater than τ and
hence (M, g) is future timelike geodesically incomplete.
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Proof idea

Play it back to worldline case of [Fewster-Kontou ’19]

Assume there exists a normal geodesic to Σ without conjugate points
until τ = T + η, i.e., ∃x0 ∈ Reg+

η (T )

Take F (t, x) ≈ 1√
A(t,x)

f (t) · δx0(x) with f ∈ C∞
c ([0, τ ])

∫ τ

0
Ric(γ̇(t), γ̇(t))f (t)2dt =

∫
M

Ric(Up , Up)F (p)2 dvolg (p)

≥ −Q1∥F∥2
L2(M) − Q2∥Ḟ∥2

L2(M) = −Q1∥f ∥2
L2([0,τ ]) − Q2

∣∣∣∣∣∣ḟ + f
(∂tA)(., x0)

2A(., x0)

∣∣∣∣∣∣2

L2([0,τ ])

≥ −
(

Q1 +
Q2(C□

max)2

4
+

Q2C□
max

2T

)
∥f ∥2

L2(R) −
(

Q2 +
Q2TC□

max
2

)
∥ḟ ∥2

L2(R).
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∥ḟ ∥2

L2(R).

Melanie Graf (University of Hamburg) Lorentzian Comparison Geometry IASM Hangzhou, Feb. 27 14 / 16



Proof idea

Play it back to worldline case of [Fewster-Kontou ’19]

Assume there exists a normal geodesic to Σ without conjugate points
until τ = T + η, i.e., ∃x0 ∈ Reg+

η (T )

Take F (t, x) ≈ 1√
A(t,x)

f (t) · δx0(x) with f ∈ C∞
c ([0, τ ])

∫ τ

0
Ric(γ̇(t), γ̇(t))f (t)2dt =

∫
M

Ric(Up , Up)F (p)2 dvolg (p)

≥ −Q1∥F∥2
L2(M) − Q2∥Ḟ∥2
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Outlook and follow-up projects
We can plug in some (more or less motivated) numbers for (massive)
non-minimally coupled scalar fields, but: estimates are not optimal

To be physically relevant beyond classical fields we would need
to allow higher order derivatives on the right hand side
and a way to get rid of the pointwise bound κ (use works on singularity
theorems/Lorentzian area estimates from Lp bounds by Paeng (p = n − 1) or Yun
(p > n/2) based on Petersen-Wei?)

What about the null case?
How would/could a two-sided Lorentzian segment inequality work?
And could such a segment inequality help towards a Lorentzian
almost splitting?
Applications to low-regularity singularity theorems:

Work in progress j/w Calisti, Hafemann, Kunzinger, Steinbauer:
Hawking’s singularity theorem for (locally) Lipschitz metrics
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Outlook and follow-up projects
We can plug in some (more or less motivated) numbers for (massive)
non-minimally coupled scalar fields, but: estimates are not optimal
To be physically relevant beyond classical fields we would need

to allow higher order derivatives on the right hand side
and a way to get rid of the pointwise bound κ (use works on singularity
theorems/Lorentzian area estimates from Lp bounds by Paeng (p = n − 1) or Yun
(p > n/2) based on Petersen-Wei?)

What about the null case?
How would/could a two-sided Lorentzian segment inequality work?
And could such a segment inequality help towards a Lorentzian
almost splitting?
Applications to low-regularity singularity theorems:

Work in progress j/w Calisti, Hafemann, Kunzinger, Steinbauer:
Hawking’s singularity theorem for (locally) Lipschitz metrics
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Thank you for your attention!
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