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Singularity Theorems — Popular Science Intro

"Black holes and big bangs/big crunches are fun and these theorems from
Lorentzian Geometry predict their existence”

Picture ©EHT Collaboration
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Singularity Theorems — Popular Science Intro

"Black holes and big bangs/big crunches are fun and these theorems from
Lorentzian Geometry predict their existence”

Picture ©EHT Collaboration

(As with most popular science this is an oversimplification. Really:
Geodesic incompleteness.)

'Pop-Differential Geometry' Intro

Lorentzian analogues of well-known Riemannian results like Bonnet-Myers

Importance has been recognized: 2020 Physics Nobel Prize for Roger
Penrose (Penrose singularity theorem (1965))
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The story continued

@ Riemannian Comparison Geometry has come a long way since
Bonnet-Myers
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The story continues

@ Riemannian Comparison Geometry has come a long way since
Bonnet-Myers
... and clearly some very nice research is ongoing

@ Global Lorentzian Geometry and Lorentzian Comparison Geometry
have also come a long way since the first singularity theorems:

e Splitting theorems (Eschenburg, Galloway, Andersson, Howard, .. .)
o Triangle comparison results (Harris, Alexander-Bishop)
o Causality Theory, Conformal structure, Causal boundary, ...

... and research is ongoing: Many active topics and open questions

o Lorentzian Alexandrov/CD/. .. Theory (Kunzinger, Samann, Cavalletti,
Mondino, McCann, Braun, Suhr, Minguzzi, Ohta, Miller . )

o Low-regularity metrics on smooth spacetimes: (In-)extendibility
results, causal peculiarities, etc. (Chrusciel, Grant, Sbierski, Ling, ...)

e and also: Improvements upon classical results by e.g.
relaxing curvature conditions
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Riemannian context

Theorem (Sprouse '00)

Let (M, g) be a complete Riemannian manifold with Ric > (n — 1)k (k < 0). Then for
any R,6 > 0 there exists e = e(n, k, R, §) such that if

1
sup —————— n—1) —Ric_)+dV <¢
« vol(B(x,R)) /B<X,R)(( ) )+

then (M, g) is compact, with diam(M) < w4+ 4.
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any R,6 > 0 there exists e = e(n, k, R, §) such that if

1
sup —————— n—1) —Ric_)+dV <¢
P Vol(B(x, R)) /B<X,R)(( ) )+

then (M, g) is compact, with diam(M) < w4+ 4.

Proof of [S] based on going from volume integrals to integrals along geodesics via:

"Segment inequality" (Cheeger-Colding '96)

Let (M, g) be Riemannian with Ric > —(n— 1). For Ay, A2 C B(p,r) with r < R and ¢
non-negative, continuous

/ Fs(x,y) dvol(x)dvol(y) < r C(n, R)(JAL] + |A2|)/ ¢ dvol
A1 X Az B(p,2R)

where Fy(x,y) = sup,cry) fo”! $(1(s))ds
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then (M, g) is compact, with diam(M) < w4+ 4.

Proof of [S] based on going from volume integrals to integrals along geodesics via:

"Segment inequality" (Cheeger-Colding '96)

Let (M, g) be Riemannian with Ric > —(n— 1). For Ay, A2 C B(p,r) with r < R and ¢
non-negative, continuous

/ Fs(x,y) dvol(x)dvol(y) < r C(n, R)(JAL] + |A2|)/ ¢ dvol
A1 X Az B(p,2R)

where Fy(x,y) = sup,cry) fo”! $(1(s))ds

The proof of [CG] uses a two-sided Bishop-Gromov estimate for the area element.
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Goal: Apply similar strategy to Hawking's Singularity
theorem

(A variant of) The Hawking singularity theorem (Hawking ('67))
A (smooth) spacetime is future timelike geodesically incomplete if

1. Ric(X, X) > 0 for every timelike vector X

2. There exists a smooth spacelike Cauchy hypersurface > in M

3. The mean curvature vector of ¥ is past pointing timelike, i.e. 96 > 0
with H := —g(H, ) < 8 < 0 (where ri=future unit normal to ¥ and
H=mean curvature w.r.t. n).

More precisely one has 7(X, p) < ”El for any p € I1(X).
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Goal: Apply similar strategy to Hawking's Singularity
theorem

(A variant of) The Hawking singularity theorem (Hawking ('67))
A (smooth) spacetime is future timelike geodesically incomplete if

1. Ric(X, X) > 0 for every timelike vector X

2. There exists a smooth spacelike Cauchy hypersurface > in M

3. The mean curvature vector of ¥ is past pointing timelike, i.e. 96 > 0
with H := —g(H, ) < 8 < 0 (where ri=future unit normal to ¥ and
H=mean curvature w.r.t. n).

More precisely one has 7(X, p) < ”El for any p € I1(X).

Remark: This is an inherently asymmetric situation, so

Hawking's Singularity Theorem «~+ Myers Theorem with boundary
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Global hyperbolicity — an incomplete replacement for
completeness

Global hyperbolicity (GH) : <= existence of a Cauchy hypersurface ¥, which is a
subset of M that is met exactly once by every inextendible timelike curve
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Global hyperbolicity — an incomplete replacement for
completeness

Global hyperbolicity (GH) : <= existence of a Cauchy hypersurface X, which is a
subset of M that is met exactly once by every inextendible timelike curve

Guarantees (among other things)
1. a topological splitting M =R x ¥

2. a smooth splitting M =2 R X ¥ with ¥ homeomorphic to ¥ and
g = —B(t,x)*dt® + h(t, x) (Bernal-Sanchez '06)

3. compactness of causal diamonds J*(p) N J~(q) Vp, g € M and non-existence of
closed causal curves®

4. existence of causal geodesics v from p to g with L(y) = max. Morally:
"Lorentzian analogue to assuming completeness in the Riemannian setting”

5. If X is smooth and spacelike, then we also get existence of length maximizing past
directed timelike geodesics from p to = for any p € IT(X)

?3. is equivalent to (GH). Hounnonkpe-Minguzzi '19: For n > 3 and M non-compact
it is sufficient to assume J™(p) N J™(q) Vp,q € M.

v
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Interlude: Setting, notation and exponential coordinates

@ Let ¥ be a smooth spacelike Cauchy hypersurface
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Interlude: Setting, notation and exponential coordinates

@ Let ¥ be a smooth spacelike Cauchy hypersurface

@ We can use the future normal exponential map exp;:r to locally write
the metric as

g = —dt® + hy(t,x)dx dx’, dvoly = A(t,x)dtda(0, x), % = H(t,x) J

where h;(t,x)dx'dx’ is a family of Riemannian metrics on ¥, do(t,x)
the volume element and H(t, x) the mean curvature (w.r.t. the future
unit normal VF U(t,x)) of {t} x X — M

Melanie Graf (University of Hamburg) Lorentzian Comparison Geometry IASM Hangzhou, Feb. 27 9 /16



Interlude: Setting, notation and exponential coordinates

@ Let ¥ be a smooth spacelike Cauchy hypersurface

@ We can use the future normal exponential map exp;:r to locally write
the metric as

g = —dt® + hy(t,x)dx dx’, dvoly = A(t,x)dtda(0, x), % = H(t,x) J

where h;(t,x)dx'dx’ is a family of Riemannian metrics on ¥, do(t,x)
the volume element and H(t, x) the mean curvature (w.r.t. the future
unit normal VF U(t,x)) of {t} x X — M

@ Breaks down once we hit cut points!

Melanie Graf (University of Hamburg) Lorentzian Comparison Geometry IASM Hangzhou, Feb. 27 9 /16



Interlude: Setting, notation and exponential coordinates

@ Let ¥ be a smooth spacelike Cauchy hypersurface

@ We can use the future normal exponential map exp;:r to locally write
the metric as

g = —dt® + hy(t,x)dx dx’, dvoly = A(t,x)dtda(0, x), % = H(t,x) J

where h;(t,x)dx'dx’ is a family of Riemannian metrics on ¥, do(t,x)
the volume element and H(t, x) the mean curvature (w.r.t. the future
unit normal VF U(t,x)) of {t} x X — M

@ Breaks down once we hit cut points!

@ Define

Reg, (T) := {x € X : 7z, does not have a cut point before T + 7} C ¥ J
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Two-sided comparison estimates

Same setup as before + Ric(U, U) > nk for some x < 0.

o = = £ DA
Melanie Graf (University of Hamburg) Lorentzian Comparison Geometry



Two-sided comparison estimates
Same setup as before + Ric(U, U) > nk for some r < 0.

Lemma (Mean curvature comparison)

For all T,n > 0 there are positive constants

CY= = C"(n, k,n) = (n — 1)\/|x] coth(n\/]x]) > 0 and
CBt = CBH(n, &, T) and such that for all t € [0, T] and all x € Reg,"(T)

_ _ (0eA)(t, X)
B
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Two-sided comparison estimates
Same setup as before + Ric(U, U) > nk for some r < 0.

Lemma (Mean curvature comparison)

For all T,n > 0 there are positive constants

CY= = C"(n, k,n) = (n — 1)\/|x] coth(n\/]x]) > 0 and
C™* = C™*(n, K, T) and such that for all t € [0, T] and all x € Reg,(T),

__ (0:A)(t, x)
B

Lemma (Area comparison)

For all T,n > 0 there are positive constants CAT = CA*(n,k, T) and
CA~ = C*~(n, 5, T,n) = sinh(ny/|x])™* sinh(y/|x|(T +m))~(=—1)
such that for all t € [0, T] and all x € Reg,H(T),

CA~ < A(t,x) < CAT.

™7 i = = et
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Lorentzian segment type inequality

Same assumptions as before. Define
min(T,s7(x))
Ff ¥ —0,00, F(x):= / f(expy (t,x))dt
0

(where f : M — [0,00) cont., T >0, s the future cut function of ¥)
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Lorentzian segment type inequality

Same assumptions as before. Define
T - min(T,s7(x))
FLsoled, )= | Flexpt (t.))de

(where f : M — [0,00) cont., T > 0, sT the future cut function of ¥)

Lorentzian Segment type inequality

Then for any 1 > 0 and any measurable subset B C Reg,i(T) such that
0 < 0B < oo we have that

1 1
fFl<— f dvoly,,
):28 v CA (n,k, T,n) 0B Q% (B) vO'g
where CA- = CA_(n, K, T,mn) is the backward area comparison constant

and o is the (Riemannian) volume measure on X.

Note: Again asymmetric ~» not a real segment inequality
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Consequence 1: Bound on o(Reg, (7))

Let (M, g) be a globally hyperbolic spacetime with a smooth, spacelike
Cauchy surface ¥ C M.
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Consequence 1: Bound on o(Reg, (7))

Let (M, g) be a globally hyperbolic spacetime with a smooth, spacelike
Cauchy surface ¥ C M.

Theorem (G.—Kontou-Ohanyan-Schinnerl '22 )

Assume that Ric(v, v) > nx for all unit timelike v€ TM and H < 3 on &
for some constants 0 > k., 3 € R with f > —(n — 1)4/|k|.2
Let BC X with0 < o(B) < c0. If forany0 < T,neR

1 . _ n—1
IR I RIC(UPv UP)—I dVOIg(p) < CA (I‘l, Ry, T)('B‘ - )v
a(B) i(8) T

then B Z Reg,(T).

?This just ensures that the usual singularity theorems don't apply.
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Consequence 1: Bound on o(Reg, (7))

Let (M, g) be a globally hyperbolic spacetime with a smooth, spacelike
Cauchy surface ¥ C M.

Theorem (G.—Kontou-Ohanyan-Schinnerl '22 )

Assume that Ric(v, v) > nx for all unit timelike v€ TM and H < 3 on &
for some constants 0 > k., 3 € R with f > —(n — 1)4/|k|.2
Let BC X with0 < o(B) < c0. If forany0 < T,neR

1 . _ n—1
Do) I RIC(UPv UP)—I dVOIg(p) < CA (I‘l, Ry, T)('B‘ - )v
a(B) ot (8) T
T
+
then B Z Reg, (T).
?This just ensures that the usual singularity theorems don't apply.
v
In other words:
fQ+(B) ‘ RiC(UP’ UP)*‘ dVOIg(P)
B C Reg/(T) = o(B) < —F vT,n>0

CA=(n, 5., T)(IB] = ")
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Consequence 2: An actual singularity theorem

Theorem (G.—Kontou-Ohanyan-Schinnerl '22 )

Let Co(n, 5, m) = (n — 1)y/[x] coth(ny/[w]). IF

(i) There is k < 0 such that Ric(v, v) > nk for all unit timelike v € TM.

VS

= = = =
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Consequence 2: An actual singularity theorem

Theorem (G.—Kontou-Ohanyan-Schinnerl '22 )

Let Crax(n, k,m) = (n — 1)/|s| coth(n\/[w]). If:
(i) There is k < 0 such that Ric(v, v) > nk for all unit timelike v € TM.
(ii) There exist Q1, @ > 0 such that for all F € CZ°(M™), we have the following
integral bound on the Ricci tensor:

/ Ric(Up, Up)F(P)2 dvolg(p) > —Ql||F||i2(M) - Q2HU(F)H%2(M)~
M

W

= = = =
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Consequence 2: An actual singularity theorem

Theorem (G.—Kontou-Ohanyan-Schinnerl '22 )
Let C3(n, kym) = (n — 1)/l coth(ny/Tw]). If:
(i) There is k < 0 such that Ric(v, v) > nk for all unit timelike v € TM.
(ii) There exist Q1, @ > 0 such that for all F € CZ°(M™), we have the following

integral bound on the Ricci tensor:

/ Ric(Up, Up)F(P)2 dvolg(p) > —Q1||F||i2(,\/,) - Q2HU(F)H%2(M)-
M

(iii) the mean curvature of ¥ satisfies
—H > min {(n — 1)/ |&| coth(+/|k|T), v«(n, E,T)}

everywhere on ¥, where

| 2 0
C C T
vi(n, K, 7)== min min @+ Qz( max (7, 152 1)) 4 max (M, K5 m) | T
{(T,n):T+n=7} 79€(0,T) 4 2T 3

O
TC n, K, 1 1 2 n—1
+Q 14 Dnax(mmom) ) (1 4 s 4 .
2 T0 T — 10 3 T —19

. <

= = =

IASM Hangzhou, Feb. 27 13 / 16
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Consequence 2: An actual singularity theorem

Theorem (G.—Kontou-Ohanyan-Schinnerl '22 )

Let Crax(n, k,m) = (n — 1)/|s| coth(n\/[w]). If:
(i) There is k < 0 such that Ric(v, v) > nk for all unit timelike v € TM.
(ii) There exist Q1, @ > 0 such that for all F € CZ°(M™), we have the following
integral bound on the Ricci tensor:

/ Ric(Up, Up)F(P)2 dvolg(p) > —Ql||F||i2(M) - Q2HU(F)H%2(M)~
M

(iii) the mean curvature of ¥ satisfies

—H > min {(n _ 1)\/mC0th(\/ET), vy (n, n,T)}

everywhere on ¥, where
O 2 m]
@ s Ky C LK, T
vi(n, K, T) = min min (Ql + Qz( ma><("4“'C n)) +Q max (M K "7)) ;

{(T,n):T+n=7} 79 €(0,T) 2T

O
TC n, K, 1 1 2 n—1
+Q 14 Dnax(mmom) ) (1 4 s 4 .
2 T0 T — 10 3 T —19

Then no future-directed timelike curve emanating from ¥ has length greater than T and
hence (M, g) is future timelike geodesically incomplete.

W

= = = =
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Proof idea

e Play it back to worldline case of [Fewster-Kontou '19]
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Proof idea

e Play it back to worldline case of [Fewster-Kontou '19]

@ Assume there exists a normal geodesic to > without conjugate points
until 7= T 41, i.e,, Ixo € Reg, (T)
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Proof idea

e Play it back to worldline case of [Fewster-Kontou '19]

@ Assume there exists a normal geodesic to > without conjugate points
until 7= T 41, i.e,, Ixo € Reg, (T)

o Take F(t,x) ~

\/W F(t) - 6y, (x) with £ € C2([0, 7])
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Proof idea

e Play it back to worldline case of [Fewster-Kontou '19]

@ Assume there exists a normal geodesic to > without conjugate points
until 7= T 41, i.e,, Ixo € Reg, (T)

o Take F(t,x) ~

\/W F(t) - 0x,(x) with £ € C([0, 7])

/ Ric(3(t), 4(£))F(£)°dt = / Ric(Up, Up)F(p)? dvols (p)
0 M

2 112 ; (0:A) (-, %0) 2
2 = QullFlizqwy — QellFllizqu = = Qullflizgo,y — 2| |F+ F5 02|, 0
Q CEax 2 Q Cm X Q TCm X 7
_ (Ql+ > ( 2 ) 4 %l ) 112, (Q2 #) ||f||i2(R)
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@ We can plug in some (more or less motivated) numbers for (massive)
non-minimally coupled scalar fields, but: estimates are not optimal
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Outlook and follow-up projects

@ We can plug in some (more or less motivated) numbers for (massive)
non-minimally coupled scalar fields, but: estimates are not optimal
@ To be physically relevant beyond classical fields we would need
e to allow higher order derivatives on the right hand side
e and a way to get rid of the pointwise bound kK (use works on singularity
theorems/Lorentzian area estimates from LP bounds by Paeng (p = n— 1) or Yun

(p > n/2) based on Petersen-Wei?)
o What about the null case?

@ How would/could a two-sided Lorentzian segment inequality work?
And could such a segment inequality help towards a Lorentzian
almost splitting?

@ Applications to low-regularity singularity theorems:

Work in progress j/w Calisti, Hafemann, Kunzinger, Steinbauer:
Hawking's singularity theorem for (locally) Lipschitz metrics J
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Thank you for your attention!

o = = E = 9acn

Melanie Graf (University of Hamburg)
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