Recent Advances in Comparison Geometry

Network flow: the charm of the (apparent) simplicity

Alessandra Pluda

j.w. J. Lira, R. Mazzeo & M. Saez, M. Pozzetta, C. Mantegazza & M. Novaga, Y. Tonegawa

Dipartimento di Matematica

Università di Pisa

Mean Curvature Flow

$$\Sigma$$
 surface, $\varphi : [0, T) \times \Sigma \to \mathbb{R}^3$

$$\partial_t \varphi = H\nu$$

* Variational nature* Geometric evolution equation* System of second order PDE

Alessandra Pluda

Mean Curvature Flow

$$\Sigma$$
 surface, $\varphi : [0, T) \times \Sigma \to \mathbb{R}^3$

 $\partial_t \varphi = H\nu$

* Variational nature
* Geometric evolution equation
* System of second order PDE

Surfaces

Huisken J.diff Geom. '84, Ecker-Huisken Ann. of Math '89, Invent. Math '91 Ilmanen Mem. Amer. Math. Soc. '94, Huisken-Sinestrari Acta Math '99 White JAMS '03 Ann. of Math '05, Colding-Minicozzi Ann. of Math '12, Ann. of Math '15 ...

Alessandra Pluda

Mean Curvature Flow

$$\Sigma$$
 surface, $\varphi : [0, T) \times \Sigma \to \mathbb{R}^3$

 $\partial_t \varphi = H\nu$

- * Variational nature
- * Geometric evolution equation
- \ast System of second order PDE

Curves

Gage-Hamilton J.diff Geom. '86 Grayson JdG '87, Ann. of Math '89 Angenent Ann. of Math '90, JdG '91 Surfaces

Huisken J.diff Geom. '84, Ecker-Huisken Ann. of Math '89, Invent. Math '91 Ilmanen Mem. Amer. Math. Soc. '94, Huisken-Sinestrari Acta Math '99 White JAMS '03 Ann. of Math '05, Colding-Minicozzi Ann. of Math '12, Ann. of Math '15 ...

Alessandra Pluda

Curve shortening flow

Curve shortening flow

$$(\partial_t \gamma)^\perp = k\nu$$

Grayson's theorem

A simple closed curve evolving by curvature becomes eventually convex and then shrinks to a round point in finite time.

Gage-Hamilton J.diff Geom. '86, Grayson J.diff Geom. '87, Ann. of Math '89

Alessandra Pluda

Curve shortening flow

Curve shortening flow

$$(\partial_t \gamma)^\perp = k\nu$$

Grayson's theorem

A simple closed curve evolving by curvature becomes eventually convex and then shrinks to a round point in finite time.

Gage-Hamilton J.diff Geom. '86, Grayson J.diff Geom. '87, Ann. of Math '89

Alessandra Pluda

Curve shortening flow

Curve shortening flow

$$(\partial_t \gamma)^\perp = k\nu$$

Grayson's theorem

A simple closed curve evolving by curvature becomes eventually convex and then shrinks to a round point in finite time.

$$\|k\|_{2} \ge \frac{\int |k| \, ds}{(L(\gamma))^{1/2}} \ge \frac{2\pi}{(L(\gamma))^{1/2}}$$

 $T_{\text{max}} = \frac{A_0}{2\pi}$ with A_0 initial area

Gage-Hamilton J.diff Geom. '86, Grayson J.diff Geom. '87, Ann. of Math '89

Alessandra Pluda

A step further: singular surfaces

Network \mathcal{N} : connected set, composed of finitely many regular embedded curves γ^i that meet at their endpoints in junctions.

Network flow: gradient flow of the length

A step further: singular surfaces

Network \mathcal{N} : connected set, composed of finitely many regular embedded curves γ^i that meet at their endpoints in junctions.

Network flow: gradient flow of the length

Consider a network $\mathcal{N} = \{\gamma^i\}_{i=1}^N$ and a variation $\widetilde{\mathcal{N}} = \{\widetilde{\gamma}^i\}_{i=1}^N = \{\gamma^i + t\varphi^i\}_{i=1}^N$

$$\frac{d}{dt}L(\widetilde{\mathcal{N}}(t)) = \frac{d}{dt}\left(\sum_{i}\int |\dot{\gamma^{i}} + t\dot{\varphi^{i}}|\,\mathrm{d}x\right) = \sum_{i}\int \left\langle -\vec{\kappa}^{i},\varphi^{i}\right\rangle\,\mathrm{d}s + \langle\sum_{i}\tau^{i},\varphi^{i}\rangle|_{\mathrm{bdry}}$$

Alessandra Pluda

A step further: singular surfaces

Network \mathcal{N} : connected set, composed of finitely many regular embedded curves γ^i that meet at their endpoints in junctions.

Network flow: gradient flow of the length

Consider a network $\mathcal{N} = \{\gamma^i\}_{i=1}^N$ and a variation $\widetilde{\mathcal{N}} = \{\widetilde{\gamma}^i\}_{i=1}^N = \{\gamma^i + t\varphi^i\}_{i=1}^N$

$$\frac{d}{dt}L(\widetilde{\mathcal{N}}(t)) = \frac{d}{dt}\left(\sum_{i}\int |\dot{\gamma^{i}} + t\dot{\varphi^{i}}|\,\mathrm{d}x\right) = \sum_{i}\int \left\langle -\vec{\kappa}^{i}, \varphi^{i} \right\rangle\,\mathrm{d}s + \langle \sum_{i}\tau^{i}, \varphi^{i} \rangle|_{\mathrm{bdry}}$$

Alessandra Pluda

A step further: singular surfaces

Network \mathcal{N} : connected set, composed of finitely many regular embedded curves γ^i that meet at their endpoints in junctions.

Network flow: gradient flow of the length

Consider a network $\mathcal{N} = \{\gamma^i\}_{i=1}^N$ and a variation $\widetilde{\mathcal{N}} = \{\widetilde{\gamma}^i\}_{i=1}^N = \{\gamma^i + t\varphi^i\}_{i=1}^N$

$$\frac{d}{dt}L(\widetilde{\mathcal{N}}(t)) = \frac{d}{dt}\left(\sum_{i}\int |\dot{\gamma^{i}} + t\dot{\varphi^{i}}|\,\mathrm{d}x\right) = \sum_{i}\int \left\langle -\vec{\kappa}^{i}, \varphi^{i} \right\rangle\,\mathrm{d}s + \langle \sum_{i}\tau^{i}, \varphi^{i} \rangle|_{\mathrm{bdry}}$$

We expect to see networks with only triple junctions for almost all times.

Alessandra Pluda

PDE formulation

Consider as initial datum a network with triple junctions.

Simplest example: triod $p^{2} - p^{3}$ $p^{2} - p^{2}$

Alessandra Pluda

PDE formulation

Consider as initial datum a network with triple junctions.

+ fixed endpoints

or periodic boundary conditions

Simplest example: triod

* Junctions are free to move* Tangential motion

* Develop a theory of strong solutions to mean curvature flow for surfaces with mild singularities

* Enrich the list of generic singularities in mean curvature flow \hookrightarrow topological singularities with bounded curvature

* Close the gap between simulation and theory \hookrightarrow capture the coarsening behavior of the network flow

Expected evolution

Initial network with complex topology

Then, \exists solution in the maximal time interval [0, T) with singularities at times $t_1 < t_2 < \ldots < T$

* if $T < \infty$: everything vanishes (example: closed curve) * if $T = \infty$: convergence to a network composed of straight segments with drastically simpler topology/structure

Alessandra Pluda

Basic properties

Consider a region bounded by a loop ℓ composed of m curves. By Gauss-Bonnet we have $\partial_t A = (m/3 - 2)\pi$ Von Neumann law and

$$|2-m/3|\pi \le \int_{\ell} |k| \,\mathrm{d}s \le ||k||_2 \sqrt{L(\ell)}$$

Basic properties

Consider a region bounded by a loop ℓ composed of m curves. By Gauss-Bonnet we have $\partial_t A = (m/3 - 2)\pi$ Von Neumann law and

$$|2-m/3|\pi \le \int_{\ell} |k| \,\mathrm{d}s \le ||k||_2 \sqrt{L(\ell)}$$

Suppose that t̃ is a singular time
Then, as t ≯ t̃ at least one of the following happens:
i) the inferior limit of the length of at least one curve is zero;
ii) the L²-norm of the curvature becomes unbounded.

Mantegazza-Novaga-Pluda-Schulze Astérisque '2x

Alessandra Pluda

Singularities

Example of singularities

Type-0 singularities When two triple junctions coalesce without the vanishing of a region the curvature remains bounded.

Mantegazza-Novaga-Pluda J. Reine Angew. Math. (Crelle's J.) '22

Alessandra Pluda

Flow past singularities

Solution $\mathcal{N}(t)_{t \in [0,T)}$ with $0 \le t_1 < \ldots < t_N \le T$ singular times

Alessandra Pluda

Flow past singularities

Solution $\mathcal{N}(t)_{t \in [0,T)}$ with $0 \le t_1 < \ldots < t_N \le T$ singular times

 \mathcal{P}^{4} PZ

* issue 1: jump of topology from $t = t_i$ to $t > t_i$ * issue 2: non-uniqueness

Flow past singularities

Solution $\mathcal{N}(t)_{t \in [0,T)}$ with $0 \le t_1 < \ldots < t_N \le T$ singular times

- * issue 1: jump of topology from $t = t_i$ to $t > t_i$ * issue 2: non-uniqueness
- * $\mathcal{N}(t)$ solves the network flow $\forall t \in (t_i, t_{i+1})$ * $\mathcal{N}(t)$, as a set, is continuous at t_1, \ldots, t_N

A special case

$\mathcal{N}(t)$ at a singular time \tilde{t} is a fan \mathcal{F} of half-lines h_1, \ldots, h_ℓ

Then, all expanding solitons with non-compact branches $\gamma^1, \ldots, \gamma^\ell$ asymptotic at infinity to h_1, \ldots, h_ℓ are network flows out of \mathcal{F} . In particular, there exists a flow past singularity.

Alessandra Pluda

A special case

$\mathcal{N}(t)$ at a singular time \tilde{t} is a fan \mathcal{F} of half-lines h_1, \ldots, h_ℓ

Then, all expanding solitons with non-compact branches $\gamma^1, \ldots, \gamma^\ell$ asymptotic at infinity to h_1, \ldots, h_ℓ are network flows out of \mathcal{F} . In particular, there exists a flow past singularity.

Expanding solitons evolve selfsimilarly by magnification.

 $\gamma(t,x) = \lambda(t)\eta(x/\lambda(t)) \quad \ k - \eta^{\perp} = 0 \text{ and } \lambda = \sqrt{2t}$

Variational proof - expanding solitons are critical point of the length in (\mathbb{R}^2, g) with $g = e^{|x|^2} |dx|$

Alessandra Pluda

General case - asymptotic expansion

Let \mathcal{N} be a network of four curves meeting at the origin.

Suppose there exists a solution past singularity

Let $(t, x) \in [0, T) \times [0, 1] =: Q^i$.

We interpret each curve γ^i as a map $(t,x) \to (t,\gamma^i(t,x)) \in \mathbb{R}^+_t \times \mathbb{R}^2_{x,y} =: Z$

+ a new curve γ^5 defined of $P := \{(t, x) \in \mathbb{R}^+_t \times \mathbb{R} \mid 0 \le x \le \sqrt{t}\}$

Alessandra Pluda

 $Q_h^i :=$ blow-up of Q^i obtained parabolically blowing up the singular point (0,0)

$$t \begin{bmatrix} t \\ 0,0 \end{bmatrix} \begin{bmatrix} x \\ 0,1 \end{bmatrix} (0,1)$$

Alessandra Pluda

 $Q_h^i :=$ blow-up of Q^i obtained parabolically blowing up the singular point (0,0)namely, by introducing parabolic polar coordinate near (0,0)

$$t = \rho \cos \omega, x = \rho^2 \sin \omega \Leftrightarrow \rho = \sqrt{t + x^2} \ge 0, \ \omega = \arcsin(\frac{t}{\rho^2}) = \arccos(\frac{x}{\rho}) \in [0, \pi/2]$$

Alessandra Pluda

 $Q_h^i :=$ blow-up of Q^i obtained parabolically blowing up the singular point (0,0)namely, by introducing parabolic polar coordinate near (0,0)

$$t = \rho \cos \omega, x = \rho^2 \sin \omega \Leftrightarrow \rho = \sqrt{t + x^2} \ge 0, \ \omega = \arcsin(\frac{t}{\rho^2}) = \arccos(\frac{x}{\rho}) \in [0, \pi/2]$$

ff:
$$\rho = 0, \, \omega \in [0, \pi/2]$$

Alessandra Pluda

 $Q_h^i :=$ blow-up of Q^i obtained parabolically blowing up the singular point (0,0)namely, by introducing parabolic polar coordinate near (0,0)

$$t = \rho \cos \omega, x = \rho^2 \sin \omega \Leftrightarrow \rho = \sqrt{t + x^2} \ge 0, \ \omega = \arcsin(\frac{t}{\rho^2}) = \arccos(\frac{x}{\rho}) \in [0, \pi/2]$$

ff:
$$\rho = 0, \, \omega \in [0, \pi/2]$$

bf: $\omega = 0$ initial data

Alessandra Pluda

 $Q_h^i :=$ blow-up of Q^i obtained parabolically blowing up the singular point (0,0)namely, by introducing parabolic polar coordinate near (0,0)

$$t = \rho \cos \omega, x = \rho^2 \sin \omega \Leftrightarrow \rho = \sqrt{t + x^2} \ge 0, \ \omega = \arcsin(\frac{t}{\rho^2}) = \arccos(\frac{x}{\rho}) \in [0, \pi/2]$$

ff: $\rho = 0, \, \omega \in [0, \pi/2]$ bf: $\omega = 0$ initial data lf: $\omega = \pi/2$ Herring cond.

Alessandra Pluda

 $Q_h^i :=$ blow-up of Q^i obtained parabolically blowing up the singular point (0,0)namely, by introducing parabolic polar coordinate near (0,0)

$$t = \rho \cos \omega, x = \rho^2 \sin \omega \Leftrightarrow \rho = \sqrt{t + x^2} \ge 0, \ \omega = \arcsin(\frac{t}{\rho^2}) = \arccos(\frac{x}{\rho}) \in [0, \pi/2]$$

ff: $\rho = 0, \ \omega \in [0, \pi/2]$ bf: $\omega = 0$ initial data lf: $\omega = \pi/2$ Herring cond.

where
$$\tau = \sqrt{t}, s = \frac{x}{\sqrt{t}}$$

Network flow

 $Q_h^i :=$ blow-up of Q^i obtained parabolically blowing up the singular point (0,0)namely, by introducing parabolic polar coordinate near (0,0)

$$t = \rho \cos \omega, x = \rho^2 \sin \omega \Leftrightarrow \rho = \sqrt{t + x^2} \ge 0, \ \omega = \arcsin(\frac{t}{\rho^2}) = \arccos(\frac{x}{\rho}) \in [0, \pi/2]$$

$$t \int x \int (0,1) \int (\tau,s) \int (\tau,y)$$

where $\tau = \sqrt{t}$, $s = \frac{x}{\sqrt{t}}$ and $T = \frac{t}{\tau^2}$, $y = 1$

ff: $\varrho = 0, \, \omega \in [0, \pi/2]$ bf: $\omega = 0$ initial data lf: $\omega = \pi/2$ Herring cond.

Alessandra Pluda

Blown–up construction: range

 $Z_h :=$ blow-up of Z obtained parabolically blowing up x = y = t = 0,

projective coordinates valid away from bf: $\tau = \sqrt{2t}$ and $\zeta = \frac{z}{\sqrt{2t}}$ $(t, \gamma^i(t, x))$ lifts to $(\frac{1}{2}\tau^2, \tau\eta^i(\tau, s))$ $\tau = 0$ is a defining function for ff

Network flow

The lifted equation

We lift each γ^i from Q_h^i to Z_h . This lifting is effected simply by writing

$$\partial_t \gamma = \frac{\partial_x^2 \gamma}{|\partial_x \gamma|^2}$$

using the coordinate systems (τ, s) on Q_h^i and (τ, ζ) on Z_h

Alessandra Pluda

The lifted equation

We lift each γ^i from Q_h^i to Z_h . This lifting is effected simply by writing

$$\partial_t \gamma = \frac{\partial_x^2 \gamma}{|\partial_x \gamma|^2}$$

using the coordinate systems (τ, s) on Q_h^i and (τ, ζ) on Z_h We get $\partial_t = \tau^{-2}(\tau \partial_\tau - s \partial_s)$ and $\partial_x = \tau^{-1} \partial_s$, hence

$$\left(\tau\partial_{\tau} + 1 - s\partial_{s}\right)\eta = \frac{\partial_{s}^{2}\eta}{|\partial_{s}\eta|^{2}}$$

Alessandra Pluda

The lifted equation

We lift each γ^i from Q_h^i to Z_h . This lifting is effected simply by writing

$$\partial_t \gamma = \frac{\partial_x^2 \gamma}{|\partial_x \gamma|^2}$$

using the coordinate systems (τ, s) on Q_h^i and (τ, ζ) on Z_h We get $\partial_t = \tau^{-2}(\tau \partial_\tau - s \partial_s)$ and $\partial_x = \tau^{-1} \partial_s$, hence

$$\left(\tau\partial_{\tau} + 1 - s\partial_{s}\right)\eta = \frac{\partial_{s}^{2}\eta}{|\partial_{s}\eta|^{2}}$$

Herring condition at s = 0 $\eta^{1}(\tau, 0) = \eta^{2}(\tau, 0) = \eta^{5}(\tau, 0)$ and $\eta^{3}(\tau, 0) = \eta^{4}(\tau, 0) = \eta^{5}(\tau, 1)$ $\frac{\partial_{s}\eta^{1}(\tau, 0)}{|\partial_{s}\eta^{1}(\tau, 0)|} = \frac{\partial_{s}\eta^{2}(\tau, 0)}{|\partial_{s}\eta^{5}(\tau, 0)|} = \frac{\partial_{s}\eta^{5}(\tau, 0)}{|\partial_{s}\eta^{5}(\tau, 0)|}$ and $\frac{\partial_{s}\eta^{3}(\tau, 0)}{|\partial_{s}\eta^{3}(\tau, 0)|} = \frac{\partial_{s}\eta^{4}(\tau, 0)}{|\partial_{s}\eta^{4}(\tau, 0)|} = -\frac{\partial_{s}\eta^{5}(\tau, 1)}{|\partial_{s}\eta^{5}(\tau, 1)|}$

Alessandra Pluda

Initial datum

To write the system in the new coordinate we shall as well specify an initial condition at $\tau = 0$ Note that $\tau \partial_{\tau} \eta^i |_{\tau=0} = 0$, from we deduce that

$$\frac{\partial_s^2 \eta_0}{|\partial_s \eta_0|^2} + (s\partial_s - 1) \eta_0 = 0$$

Alessandra Pluda

Initial datum

To write the system in the new coordinate we shall as well specify an initial condition at $\tau = 0$ Note that $\tau \partial_{\tau} \eta^{i}|_{\tau=0} = 0$, from we deduce that

$$\frac{\partial_s^2 \eta_0}{|\partial_s \eta_0|^2} + (s\partial_s - 1) \eta_0 = 0$$

that is nothing but the expander equation $k - \eta^{\perp} = 0$ in the new coordinate.

On the ff we have an expander!

Existence of the flow past singularity

In the blown-up space the number of curves of the network at \tilde{t} is the same as the number of curves of the network at $t > \tilde{t}$.

We can then say that $\mathcal{N}(t)$ is a solution of the flow past singularity if $t \searrow \tilde{t}$ the maps converges in the blown-up space.

Alessandra Pluda

Existence of the flow past singularity

In the blown-up space the number of curves of the network at \tilde{t} is the same as the number of curves of the network at $t > \tilde{t}$.

We can then say that $\mathcal{N}(t)$ is a solution of the flow past singularity if $t \searrow \tilde{t}$ the maps converges in the blown-up space.

There exists the network flow past singularity.

Moreover, the set of possible flow out is classified by the collection of (expanders) compatible with the irregular junction.

Ilmanen-Neves-Schulze J. diff. Geom '19, Lira-Mazzeo-Pluda-Sáez CPAM '23

Alessandra Pluda

Topological complexity through a singularity

Flow-outs are classified by the collection of self–similar expanding solutions (expanders) compatible with the irregular junction

Topological complexity through a singularity

Flow-outs are classified by the collection of self–similar expanding solutions (expanders) compatible with the irregular junction

If up to five curves concur at an irregular junction, all the compatible expanders have no loops

Alessandra Pluda

Topological complexity through a singularity

Flow-outs are classified by the collection of self–similar expanding solutions (expanders) compatible with the irregular junction

If up to five curves concur at an irregular junction, all the compatible expanders have no loops

If a region vanishes, then

* the total number of curves decreases by at least three* the total number of triple junctions decreases by at least two.

 N^2 grains, total length $L(\mathcal{N}) = \mathcal{O}(N)$ average area of a cell $= \mathcal{O}(1/N^2)$ average length of a loop $L = \mathcal{O}(1/N)$

Alessandra Pluda

 N^2 grains, total length $L(\mathcal{N}) = \mathcal{O}(N)$ average area of a cell $= \mathcal{O}(1/N^2)$ average length of a loop $L = \mathcal{O}(1/N)$

Along each loop ℓ it holds $\int_{\ell} k^2 ds \geq \frac{C}{L(\ell)}$ with C > 0 for non-hexagonal cells.

Alessandra Pluda

 N^2 grains, total length $L(\mathcal{N}) = \mathcal{O}(N)$ average area of a cell $= \mathcal{O}(1/N^2)$ average length of a loop $L = \mathcal{O}(1/N)$

Along each loop ℓ it holds $\int_{\ell} k^2 ds \geq \frac{C}{L(\ell)}$ with C > 0 for non-hexagonal cells.

Until \sharp non-hexagonal $\sim N^2$ $\int_{\mathcal{N}} k^2 \, \mathrm{d}s \geq \frac{C}{L(\ell)} \sharp \operatorname{cells} = CN^3$

Alessandra Pluda

 N^2 grains, total length $L(\mathcal{N}) = \mathcal{O}(N)$ average area of a cell $= \mathcal{O}(1/N^2)$ average length of a loop $L = \mathcal{O}(1/N)$

Along each loop ℓ it holds $\int_{\ell} k^2 ds \geq \frac{C}{L(\ell)}$ with C > 0 for non-hexagonal cells.

Until \sharp non-hexagonal $\sim N^2$ $\int_{\mathcal{N}} k^2 \, \mathrm{d}s \geq \frac{C}{L(\ell)} \sharp \operatorname{cells} = CN^3$

From the gradient flow structure $\frac{d}{dt}L = -\int_{\mathcal{N}} k^2 \,\mathrm{d}s$

 N^2 grains, total length $L(\mathcal{N}) = \mathcal{O}(N)$ average area of a cell $= \mathcal{O}(1/N^2)$ average length of a loop $L = \mathcal{O}(1/N)$

Along each loop ℓ it holds $\int_{\ell} k^2 ds \geq \frac{C}{L(\ell)}$ with C > 0 for non-hexagonal cells.

Until \sharp non-hexagonal $\sim N^2$ $\int_{\mathcal{N}} k^2 \,\mathrm{d}s \geq \frac{C}{L(\ell)} \sharp \,\mathrm{cells} = CN^3$

From the gradient flow structure $\frac{d}{dt}L = -\int_{\mathcal{N}} k^2 \,\mathrm{d}s$

$$\frac{d}{dt}N(t) \lesssim CN^3(t) \Rightarrow \frac{1}{N(0)^2} - \frac{1}{N(t)^2} \lesssim -2Ct \qquad \frac{1}{N(0)^2}$$

The average area grows linearly: $\frac{1}{N(t)^2} \ge 2Ct$

Alessandra Pluda

Network flow

 $\rightarrow 0$

From local to global?

Example: standard transition - topological complexity is preserved

Alessandra Pluda

From local to global?

Example: standard transition - topological complexity is preserved

Alessandra Pluda

From local to global?

Example: standard transition - topological complexity is preserved

Alessandra Pluda

Networks with triple junctions and straight segments are steady (each grain is a hexagon). Are they also attractors?

Pluda-Pozzetta Math. Ann. '23

Alessandra Pluda

Networks with triple junctions and straight segments are steady (each grain is a hexagon). Are they also attractors?

Let \mathcal{N}_* be a network with triple junctions and straight segments. Then,

 $\exists \varepsilon = \varepsilon(\mathcal{N}_*)$ such that the network flow starting from any regular network \mathcal{N}_0 with

 $\|\mathcal{N}_* - \mathcal{N}_0\|_{H^2} < \varepsilon$

exists for all times and converges to \mathcal{N}_{∞} with $L(\mathcal{N}_{\infty}) = L(\mathcal{N}_{*})$.

Pluda-Pozzetta Math. Ann. '23

Basin of attraction of critical points

Let \mathcal{N}_* be a networks with triple junctions and straight segments and d be the length of its shortest edge.

Then, $L(\mathcal{N}) \ge L(\mathcal{N}_*)$ for every \mathcal{N} with $\|\mathcal{N}_* - \mathcal{N}\|_{C^0} < \delta = \frac{\sqrt{3}}{8}d.$

Pluda-Pozzetta Bull. Lond. Math. Soc. '23

Basin of attraction of critical points

Let \mathcal{N}_* be a networks with triple junctions and straight segments and d be the length of its shortest edge.

Then, $L(\mathcal{N}) \ge L(\mathcal{N}_*)$ for every \mathcal{N} with $\|\mathcal{N}_* - \mathcal{N}\|_{C^0} < \delta = \frac{\sqrt{3}}{8}d.$

Network flow

The more complex the network, the smaller the δ .

Indication that critical points with higher complexity should have a smaller basin of attraction.

Pluda-Pozzetta Bull. Lond. Math. Soc. '23

* Topological complexity is non-increasing through singularities.

* Grains bound by less than six curves disappear during the evolution. The average area of the (surviving) grains grows linearly.

* The volume of the basin of attraction of all the many critical points of the length functional is small in the space of networks.

Chose randomly n points in \mathbb{R}^2 .

As initial datum for the network flow take the Voronoi partition associated with the given n points.

Then, $\exists \varphi(n)$ negligible with respect to n such that the probability that the limit network (as $t \to \infty$) has more than $\varphi(n)$ cells goes to zero as $n \to \infty$.

https://sites.google.com/view/thepisanworkshopssaga/home

