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This talk is based on the following works

• Positive mass theorem with arbitrary ends and its application [Z. ’23]

(Int. Math. Res. Not. IMRN)

• Riemannian Penrose inequality without horizon in dimension three [Z. ’23+]

(arXiv:2304.01769, to appear in Trans. Amer. Math. Soc.)

Outline

1. Asymptotically flat manifolds and previous mass inequalities

2. Recent developments and a conjecture on mass-systole inequality

3. Some progress on the mass-systole conjecture
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1 Asymptotically flat manifolds and previous mass inequality

1.1 Asymptotically flat manifolds

• The interest on asymptotically flat manifolds comes from general relativity

• isolated gravity system

– no substance gives flat space (Euclidean)

– substance causes bending (curvature) with effect decay as distance increasing
(model of space: asymptotically flat manifolds)

• Complete (Mn≥3, g) is called asymptotically flat if

– M \ K has finitely many ends for compact K, each diffeomorphic to Rn
\ B

– On each end E the metric g has expansion

gi j = δi j + O2(r−µ) with µ >
n − 2

2

– R(g) ∈ L1
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1.2 Geometric quantities of asymptotically flat manifolds

• Arnowitt-Deser-Misner (ADM) mass

– Let (E, g) be one asymptotically flat end.

mADM(M, g,E) :=
1

2(n − 1)ωn−1

∫
S∞

(∂ jgi j − ∂ig j j)νi
E dσE,

where
∂i

(
∂ jgi j − ∂ig j j

)
= R(g) +O(r−2−2µ).

– Examples

* Euclidean space (one end E) with mADM(M, g,E) = 0

* Schwarzschild manifold (M, g)

M = Rn
\ {O} and g =

(
1 +

m
rn−2

) 4
n−2

gE

has two ends E1 and E2 corresponding to O and∞ respectively
with m(M, g,E1) = m(M, g,E2) = 2m.
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• Separation systole (used in mass-systole conjecture later)

– Let E be an end of (M, g) and Σ be the boundary of a regionΩ satisfying that
E∆Ω is bounded. Let us call Σ a separation of E. Define

sys(M, g,E) := inf{area(Σ) : Σ is a separation of E}.

– Separation of E

– Examples

* Euclidean space (manifolds with one end E) has sys(M, g,E) = 0

* Schwarzschild manifold (two ends) with a fixed end E satisfies

sys(M, g,E) = area of the unique closed minimal hypersurface
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1.3 Previous mass inequalities

• Riemannian positive mass theorem

(n∗: dimension where generic regularity from GMT holds, known for n∗ ≤ 10
[Smale ’93, Chodosh-Mantoulidis-Schulze ’23+])

– Theorem: Let (Mn∗, g) be an asymptotically flat manifold with nonnegative
scalar curvature. Then for each end E it holds mADM(M, g,E) ≥ 0, where
equality holds for some end E if and only if (M, g) is isometric to the Euclidean
space (Rn∗, gE).

– Related works:
[Schoen-Yau ’79 ’81] (non-compact) minimal surface (3D)
[Witten ’81] spinor method (3D)
[Schoen ’89] non-compact dimension descent argument (n∗D)
[Lohkamp ’99] Lohkamp compactification (PMT⇒PSC obstruction)
[Schoen-Yau ’17+/’21] a claim for all dimensions

6



• Riemannian-Penrose inequality

– Theorem: Let (Mn≤7, ∂M, g) be a complete Riemannian manifold with compact
inner boundary ∂M and only one-end E, which is asymptotically flat. If (M, g)
has nonnegative scalar curvature and ∂M is minimal and outer-minimizing,
then we have

mADM(M, g,E) ≥
1
2

(
|∂M|g
ωn−1

)n−2
n−1

,

where equality holds if and only if (M, g) is isometric to the half Schwarzschild
manifold.

– Related works:
[Huisken-Ilmanen ’01] IMCF (3D, ∂M connected, H2(M, ∂M) = 0)
[Bray ’01] conformal flow (and Gauss-Bonnet formula) (3D)
[Bray-Lee ’09] conformal flow (nD, n ≤ 7)
Also see recent nonlinear potential methods by [Agostiniani-Mantegazza-
Mazzieri-Oronzio ’22+ ’23, Hirsch-Miao-Tam ’22+]

– Open for n > 7 due to singularity issue from GMT in Bray’s conformal flow
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2 Recent developments and a conjecture on mass-systole inequality

2.1 Recent developments

• Liouville theorem for locally conformally flat manifolds

– Theorem: Let (Mn≥3, g) be a complete locally conformally flat manifold with
nonnegative scalar curvature, whose conformal structure is induced by a con-
formal map Φ : M→ Sn. Then Φ is injective and ∂Φ(M) has zero Newtonian
capacity.

– known cases before recent development
[Schoen-Yau ’94 , Lectures on Differential Geometry]

a1. d(M, [g]) < (n−2)2

n when n ≥ 5

a2. d(M, [g]) < (n−2)2

n and R(g) ≤ C when n = 3, 4
b. Riemannian positive mass theorem holds for some more general class of

asymptotically flat manifolds (made clear in next slide)

– known fact (at that time): d(M, [g]) ≤ n
2 and so Liouville theorem reduced to

generalized Riemannian positive mass theorem with n ≤ 6.
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• asymptotically flat manifolds (with arbitrary ends)

– complete Riemannian manifolds (M, g) with a distinguished asymptotically
flat end E

• Riemannian positive mass theorem (with arbitrary ends)

– Theorem: Let (Mn∗, g,E) be an asymptotically flat manifold with nonnegative
scalar curvature. Then we have m(M, g,E) ≥ 0, where the equality holds if
and only if (M, g) is the Euclidean space (Rn∗, gE).

– Related works: [Lesourd-Unger-Yau ’21+] asymptotically Schwarzwchild
[Lee-Lesourd-Unger ’23] general asymptotically flat (density theorem)
[Z. ’23] general asymptotically flat (through Geroch’s compactification)

• Another approach to the Liouville theorem: generalized Geroch conjecture

(raised in [Lesourd-Unger-Yau ’20+])

– Tn∗♯N (N can be non-compact) admits no complete metric with positive scalar
curvature [Chodosh-Li ’20+]

– [Wang-Zhang ’22] proves generalized Geroch conjecture in all dimensions
with extra spin assumption
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2.2 A conjecture on mass-systole inequality

• Invalid case for Riemannian-Penrose inequality (no horizon)

– extreme black hole (at infinity)

– extreme Reissner-Nordström space

M = R3
\ {O} and g =

(
1 +

m
r

)2
gE with m > 0

– The intuition (mean-convex foliation)
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• My mass-systole inequality conjecture

– Conjecture: Let (Mn, g,E) be an asymptotically flat manifold (with arbitrary
ends) with nonnegative scalar curvature. Then we have

mADM(M, g,E) ≥
1
2

(
sys(M, g,E)
ωn−1

)n−2
n−1

,

where equality holds if and only if the following happens:

1. either sys(M, g,E) = 0 and (M, g) is the Euclidean space (Rn, gE)
2. or sys(M, g,E) > 0 and there exists a separation sphere Σ of Ewith

area(Σ) = sys(M, g,E)

enclosing the half Schwarzschild manifold (on the side of E).

– Some comments

* Riemannian positive mass theorem (with arbitrary ends) is a special case

* Riemannian-Penrose inequality follows from a doubling argument

* This conjecture is open even in dimension three
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3 Some progress on the conjecture

3.1 My recent results

• Riemannian positive mass theorem (with arbitrary ends) [Z. ’23]

• Riemannian-Penrose inequality (with arbitrary ends) [Z. ’23+]

– Theorem: Consider complete manifold (M, g,E) with

M = R3
\ {O}, E = R3

\ B1 and (E, g) is asymptotically flat.

Then we have

mADM(M, g,E) ≥

√
sys(M, g,E)

16π
,

where equality holds if and only if sys(M, g,E) > 0 and there is a separation
minimal 2-sphere Σ of E such that

area(Σ) = sys(M, g,E)

and the outside region is isometric to half Schwarzschild manifold.
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3.2 Proof of Riemannian-Penrose inequality (with arbitrary ends)

3.2.1 The inequality

• Techniques:

– an approximation scheme of µ-bubbles

• Starting point

– ADM-Hawking mass inequality [Huisken-Ilmanen ’01]
Let (M3, ∂M, g) be a complete Riemannian manifold with compact inner
boundary ∂M and a unique end E, which is asymptotically flat. If M has
nonnegative scalar curvature and satisfies H2(M, ∂M) = 0, and the boundary
∂M is connected and outer-minimizing, then we have

m(M, g,E) ≥

√
|∂M|g
16π

(
1 −

1
16π

∫
∂M

H2dσg

)
.

– Plan: find for each small ϵ > 0 a 3-ball Ωϵ containing the origin O such that

* area(∂Ωϵ) ≤ A0 with A0 independent of ϵ

* H(∂Ωϵ) = ϵ
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• The µ-bubble method

– Let (V, ∂±) be a Riemannian band with a smooth function h : V → R.

– Consider the functional

A
h(Σ,Ω) = area(Σ) +

∫
Ω

h dµg.

– existence of a smooth minimizer needs h−H+ < 0 on ∂+ and h+H− > 0 on ∂−
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• The set-up of our µ-bubble problem

– ∂+ is taken to be some coordinate sphere with H+ ≥ ϵ0 > 0
– ∂− is taken to be h = +∞ after h is determined
– Take hϵ,β(t) = ϵ coth

(
−

3
4ϵt + β

)
with 0 < ϵ < ϵ0 and β to be determined later,

which satisfies
−2h′ϵ,β +

3
2

h2
ϵ,β =

3
2
ϵ2.

– Let ρ be the distance function to ∂+ (only |dρ| ≤ 1 used so assuming smooth)
and h = hϵ,β ◦ ρ satisfying

−2|dh| +
3
2

h2
≥

3
2
ϵ2.
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• fixing phenomenon when sys(M, g,E) > 0

we have ∫
Ωϵ,β

h dµg + area(Σϵ,β) ≤ area(∂+) =: A0

and ∫
Ωϵ,β

h dµg ≥ ϵ · sys(M, g,E) · dist(∂+,Σϵ,β).
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• topology and intrinsic diameter bound

– 2nd variation formula∫
Σϵ,β

|∇ϕ|2 − (Ric(ν, ν) + |A|2 − ∂νh)ϕ2
≥ 0

– Schoen-Yau’s rearrangement∫
Σ

|∇ϕ|2 −
1
2

(RM − RΣ +
3
2

H2 + |Å|2 + 2∂νh)ϕ2
≥ 0

From the construction of h we see

λ1(−∆ + KΣ) ≥
3
4
ϵ2

– properties of Σϵ,β

* (topology) Σϵ,β is a sphere

* (geometry) diam(Σ) ≤ D0 (D0 depending only on λ1)
[Schoen-Yau ’83, Gromov ’18]
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• Take Σϵ to be the limit of Σϵ,β. Then Σϵ is the desired surface in the sense that

– Σϵ has uniform area bound A0 (independent of ϵ)
– Σϵ has constant mean curvature ϵ
– Σϵ is embedded 2-sphere

• some technical modification

– need to do component-picking: there is a unique componentΣo
ϵ enclosing the

origin O. We illustrate by the following figures (where the blue part is Ωc
ϵ)

(a) Multiple enclosing spheres (b) a single enclosing sphere
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3.2.2 The rigidity

• Strategy: find the separation sphere attaining the separation systole

• Start from the equality

m =

√
sys(M, g,E)

16π
.

• Improved area control for approximating µ-bubble

– former estimate area(Σϵ) ≤ A0

– improved one area(Σϵ) ≤ sys(M, g,E) + Cϵ2 with C independent of ϵ√
|Σϵ|

16π

(
1 −

ϵ2

16π
|Σϵ|

)
≤ m =

√
sys(M, g,E)

16π
.
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• Iterated approximating µ-bubbles and new fixing phenomenon

– With Σϵ as one boundary for 0 < ϵ′ < ϵ we can construct approximation
µ-bubble Σϵ′ (with respect to Σϵ)

– we have volume bound for jumped region vol(Ωϵ,ϵ′) ≤ Cϵ2/ϵ′

sys(M, g,E) ≤ |Σϵ′| ≤ |Σϵ| − ϵ′ vol(Ωϵ,ϵ′) ≤ sys(M, g,E) + Cϵ2 − ϵ′ vol(Ωϵ,ϵ′).
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• Bootstraping

– Fix γ ∈ (1, 2). Find iterated approximating µ-bubbles

Σϵ,Σϵγ,Σϵγ2 , . . .

– uniform volume bound for jumped regions

vol(Σϵ,Σϵγk) ≤ C
∑

k

(
ϵγ

k)2−γ
≤ C⇒ dist(Σ

ϵγ
k ,Σϵ) ≤

C
sys(M, g,E)

– Σ
ϵγ

k pointed converges to a stable minimal surface Σ0

• compactness criterion [Gromov-Lawson ’83]

If Σ is a stable minimal surface in 3-manifold (M, g) with R(g) ≥ 0, then

Σ is non-compact⇔ |Σ| = +∞.

• |Σ0| ≤ Ag⇒ Σ0 is a closed minimal surface and this returns to the classical case.
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Thank you for your attention!
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