Towards a further comprehension for mass inequalities

Jintian Zhu Westlake University

IASM-BIRS 5-days workshop Recent Advances in Comparison Geometry Hangzhou, Feb. 25-Mar. 1, 2024 This talk is based on the following works

- Positive mass theorem with arbitrary ends and its application [Z. '23] (Int. Math. Res. Not. IMRN)
- Riemannian Penrose inequality without horizon in dimension three [Z. '23⁺] (arXiv:2304.01769, to appear in Trans. Amer. Math. Soc.)

Outline

- 1. Asymptotically flat manifolds and previous mass inequalities
- 2. Recent developments and a conjecture on mass-systole inequality
- 3. Some progress on the mass-systole conjecture

1 Asymptotically flat manifolds and previous mass inequality

1.1 Asymptotically flat manifolds

- The interest on asymptotically flat manifolds comes from *general relativity*
- isolated gravity system
 - no substance gives flat space (Euclidean)
 - substance causes bending (curvature) with effect decay as distance increasing (model of space: asymptotically flat manifolds)
- Complete $(M^{n \ge 3}, g)$ is called asymptotically flat if
 - *M* \ *K* has finitely many ends for compact *K*, each diffeomorphic to $\mathbb{R}^n \setminus B$
 - On each end *E* the metric *g* has expansion

$$g_{ij} = \delta_{ij} + O_2(r^{-\mu})$$
 with $\mu > \frac{n-2}{2}$

 $- R(g) \in L^1$

1.2 Geometric quantities of asymptotically flat manifolds

- Arnowitt-Deser-Misner (ADM) mass
 - Let (*E*, *g*) be one asymptotically flat end.

$$m_{ADM}(M,g,E) := \frac{1}{2(n-1)\omega_{n-1}} \int_{S_{\infty}} (\partial_j g_{ij} - \partial_i g_{jj}) v_{\mathbb{E}}^i \, \mathrm{d}\sigma_{\mathbb{E}},$$

where

$$\partial_i \left(\partial_j g_{ij} - \partial_i g_{jj} \right) = R(g) + O(r^{-2-2\mu}).$$

- Examples
 - * Euclidean space (one end *E*) with $m_{ADM}(M, g, E) = 0$
 - * Schwarzschild manifold (*M*, *g*)

$$M = \mathbb{R}^n \setminus \{O\} \text{ and } g = \left(1 + \frac{m}{r^{n-2}}\right)^{\frac{4}{n-2}} g_{\mathbb{E}}$$

has two ends E_1 and E_2 corresponding to O and ∞ respectively with $m(M, g, E_1) = m(M, g, E_2) = 2m$.

- Separation systole (used in mass-systole conjecture later)
 - Let *E* be an end of (*M*, *g*) and Σ be the boundary of a region Ω satisfying that $E\Delta\Omega$ is bounded. Let us call Σ a separation of *E*. Define

 $sys(M, g, E) := inf\{area(\Sigma) : \Sigma \text{ is a separation of } E\}.$

– Separation of *E*

- Examples
 - * Euclidean space (manifolds with one end *E*) has sys(M, g, E) = 0
 - * Schwarzschild manifold (two ends) with a fixed end *E* satisfies

sys(M, g, E) = area of the unique closed minimal hypersurface

1.3 Previous mass inequalities

• Riemannian positive mass theorem

(*n*_{*}: dimension where generic regularity from GMT holds, known for $n_* \leq 10$ [Smale '93, Chodosh-Mantoulidis-Schulze '23⁺])

- Theorem: Let (M^{n_*}, g) be an asymptotically flat manifold with nonnegative scalar curvature. Then for each end *E* it holds $m_{ADM}(M, g, E) \ge 0$, where equality holds for some end *E* if and only if (M, g) is isometric to the Euclidean space $(\mathbb{R}^{n_*}, g_{\mathbb{E}})$.
- Related works:

[Schoen-Yau '79 '81] (non-compact) minimal surface (3D)
[Witten '81] spinor method (3D)
[Schoen '89] non-compact dimension descent argument (*n**D)
[Lohkamp '99] Lohkamp compactification (PMT⇒PSC obstruction)
[Schoen-Yau '17+/'21] a claim for all dimensions

- Riemannian-Penrose inequality
 - Theorem: Let $(M^{n \le 7}, \partial M, g)$ be a complete Riemannian manifold with compact inner boundary ∂M and only one-end E, which is asymptotically flat. If (M, g) has nonnegative scalar curvature and ∂M is minimal and outer-minimizing, then we have

$$m_{ADM}(M,g,E) \geq \frac{1}{2} \left(\frac{|\partial M|_g}{\omega_{n-1}} \right)^{\frac{n-2}{n-1}},$$

where equality holds if and only if (M, g) is isometric to the half Schwarzschild manifold.

– Related works:

[Huisken-Ilmanen '01] IMCF (3D, ∂M connected, $H_2(M, \partial M) = 0$)

[Bray '01] conformal flow (and Gauss-Bonnet formula) (3D)

[Bray-Lee '09] conformal flow (nD, $n \le 7$)

Also see recent nonlinear potential methods by [Agostiniani-Mantegazza-Mazzieri-Oronzio '22+ '23, Hirsch-Miao-Tam '22+]

– Open for n > 7 due to singularity issue from GMT in Bray's conformal flow

2 Recent developments and a conjecture on mass-systole inequality

2.1 Recent developments

- Liouville theorem for locally conformally flat manifolds
 - Theorem: Let $(M^{n\geq 3}, g)$ be a complete locally conformally flat manifold with nonnegative scalar curvature, whose conformal structure is induced by a conformal map $\Phi : M \to \mathbb{S}^n$. Then Φ is injective and $\partial \Phi(M)$ has zero Newtonian capacity.
 - known cases before recent development

[Schoen-Yau '94, Lectures on Differential Geometry]

a1.
$$d(M, [g]) < \frac{(n-2)^2}{n}$$
 when $n \ge 5$

a2.
$$d(M, [g]) < \frac{(n-2)^2}{n}$$
 and $R(g) \le C$ when $n = 3, 4$

- b. Riemannian positive mass theorem holds for some more general class of asymptotically flat manifolds (made clear in next slide)
- known fact (at that time): $d(M, [g]) \le \frac{n}{2}$ and so Liouville theorem reduced to generalized Riemannian positive mass theorem with $n \le 6$.

- asymptotically flat manifolds (with arbitrary ends)
 - complete Riemannian manifolds (*M*, *g*) with a distinguished asymptotically flat end \mathcal{E}
- Riemannian positive mass theorem (with arbitrary ends)
 - Theorem: Let $(M^{n_*}, g, \mathcal{E})$ be an asymptotically flat manifold with nonnegative scalar curvature. Then we have $m(M, g, \mathcal{E}) \ge 0$, where the equality holds if and only if (M, g) is the Euclidean space $(\mathbb{R}^{n_*}, g_{\mathbb{E}})$.
 - Related works: [Lesourd-Unger-Yau '21⁺] asymptotically Schwarzwchild [Lee-Lesourd-Unger '23] general asymptotically flat (density theorem)
 [Z. '23] general asymptotically flat (through Geroch's compactification)
- Another approach to the Liouville theorem: generalized Geroch conjecture (raised in [Lesourd-Unger-Yau '20⁺])
 - *Tⁿ*^{*} #*N* (*N* can be non-compact) admits no complete metric with positive scalar curvature [Chodosh-Li '20⁺]
 - [Wang-Zhang '22] proves generalized Geroch conjecture in all dimensions with extra spin assumption

2.2 A conjecture on mass-systole inequality

- Invalid case for Riemannian-Penrose inequality (no horizon)
 - extreme black hole (at infinity)
 - extreme Reissner-Nordström space

$$M = \mathbb{R}^3 \setminus \{O\}$$
 and $g = \left(1 + \frac{m}{r}\right)^2 g_{\mathbb{E}}$ with $m > 0$

– The intuition (mean-convex foliation)

- My mass-systole inequality conjecture
 - Conjecture: Let (M^n, g, \mathcal{E}) be an asymptotically flat manifold (with arbitrary ends) with nonnegative scalar curvature. Then we have

$$m_{ADM}(M,g,\mathcal{E}) \geq \frac{1}{2} \left(\frac{\operatorname{sys}(M,g,\mathcal{E})}{\omega_{n-1}} \right)^{\frac{n-2}{n-1}},$$

where equality holds if and only if the following happens:

- 1. either sys(M, g, \mathcal{E}) = 0 and (M, g) is the Euclidean space ($\mathbb{R}^n, g_{\mathbb{E}}$)
- 2. or sys(M, g, \mathcal{E}) > 0 and there exists a separation sphere Σ of \mathcal{E} with

 $\operatorname{area}(\Sigma) = \operatorname{sys}(M, g, \mathcal{E})$

enclosing the half Schwarzschild manifold (on the side of \mathcal{E}).

- Some comments
 - * Riemannian positive mass theorem (with arbitrary ends) is a special case
 - * Riemannian-Penrose inequality follows from a doubling argument
 - * This conjecture is open even in dimension three

- **3** Some progress on the conjecture
- 3.1 My recent results
 - Riemannian positive mass theorem (with arbitrary ends) [Z. '23]
 - Riemannian-Penrose inequality (with arbitrary ends) [Z. '23⁺]
 - Theorem: Consider complete manifold (M, g, \mathcal{E}) with

 $M = \mathbb{R}^3 \setminus \{O\}, \mathcal{E} = \mathbb{R}^3 \setminus B_1$ and (\mathcal{E}, g) is asymptotically flat.

Then we have

$$m_{ADM}(M, g, \mathcal{E}) \geq \sqrt{\frac{\operatorname{sys}(M, g, \mathcal{E})}{16\pi}},$$

where equality holds if and only if $sys(M, g, \mathcal{E}) > 0$ and there is a separation minimal 2-sphere Σ of \mathcal{E} such that

$$\operatorname{area}(\Sigma) = \operatorname{sys}(M, g, \mathcal{E})$$

and the outside region is isometric to half Schwarzschild manifold.

3.2 Proof of Riemannian-Penrose inequality (with arbitrary ends)

3.2.1 The inequality

- Techniques:
 - an approximation scheme of μ -bubbles
- Starting point
 - ADM-Hawking mass inequality [Huisken-Ilmanen '01] Let $(M^3, \partial M, g)$ be a complete Riemannian manifold with compact inner boundary ∂M and a unique end E, which is asymptotically flat. If M has nonnegative scalar curvature and satisfies $H_2(M, \partial M) = 0$, and the boundary ∂M is connected and outer-minimizing, then we have

$$m(M,g,E) \geq \sqrt{\frac{|\partial M|_g}{16\pi}} \left(1 - \frac{1}{16\pi} \int_{\partial M} H^2 \mathrm{d}\sigma_g\right).$$

- Plan: find for each small $\epsilon > 0$ a 3-ball Ω_{ϵ} containing the origin O such that * $area(\partial \Omega_{\epsilon}) \le A_0$ with A_0 independent of ϵ * $H(\partial \Omega_{\epsilon}) = \epsilon$ • The *µ*-bubble method

- Let (V, ∂_{\pm}) be a Riemannian band with a smooth function $h : V \to \mathbb{R}$.
- Consider the functional

$$\mathcal{A}^{h}(\Sigma, \Omega) = \operatorname{area}(\Sigma) + \int_{\Omega} h \, \mathrm{d}\mu_{g}.$$

– existence of a smooth minimizer needs $h - H_+ < 0$ on ∂_+ and $h + H_- > 0$ on ∂_-

- The set-up of our *μ*-bubble problem
 - ∂_+ is taken to be some coordinate sphere with $H_+ \ge \epsilon_0 > 0$
 - − ∂_{-} is taken to be *h* = +∞ after *h* is determined
 - Take $h_{\epsilon,\beta}(t) = \epsilon \coth\left(-\frac{3}{4}\epsilon t + \beta\right)$ with $0 < \epsilon < \epsilon_0$ and β to be determined later, which satisfies

- Let ρ be the distance function to ∂_+ (only $|d\rho| \le 1$ used so assuming smooth) and $h = h_{\epsilon,\beta} \circ \rho$ satisfying

$$-2|\mathbf{d}h| + \frac{3}{2}h^2 \ge \frac{3}{2}\epsilon^2.$$

• fixing phenomenon when $sys(M, g, \mathcal{E}) > 0$

we have

$$\int_{\Omega_{\epsilon,\beta}} h \, \mathrm{d}\mu_g + \operatorname{area}(\Sigma_{\epsilon,\beta}) \leq \operatorname{area}(\partial_+) =: A_0$$

and

$$\int_{\Omega_{\epsilon,\beta}} h \, \mathrm{d}\mu_g \geq \epsilon \cdot \operatorname{sys}(M, g, \mathcal{E}) \cdot \operatorname{dist}(\partial_+, \Sigma_{\epsilon,\beta}).$$

- topology and intrinsic diameter bound
 - 2nd variation formula

$$\int_{\Sigma_{\epsilon,\beta}} |\nabla \phi|^2 - (\operatorname{Ric}(\nu,\nu) + |A|^2 - \partial_{\nu}h)\phi^2 \ge 0$$

- Schoen-Yau's rearrangement

$$\int_{\Sigma} |\nabla \phi|^2 - \frac{1}{2} (R_M - R_{\Sigma} + \frac{3}{2} H^2 + |\mathring{A}|^2 + 2\partial_{\nu} h) \phi^2 \ge 0$$

From the construction of h we see

$$\lambda_1(-\Delta + K_{\Sigma}) \ge \frac{3}{4}\epsilon^2$$

- properties of $\Sigma_{\epsilon,\beta}$
 - * (topology) $\Sigma_{\epsilon,\beta}$ is a sphere
 - * (geometry) diam(Σ) $\leq D_0$ (D_0 depending only on λ_1) [Schoen-Yau '83, Gromov '18]

- Take Σ_{ϵ} to be the limit of $\Sigma_{\epsilon,\beta}$. Then Σ_{ϵ} is the desired surface in the sense that
 - Σ_{ϵ} has uniform area bound A_0 (independent of ϵ)
 - Σ_{ϵ} has constant mean curvature ϵ
 - Σ_{ϵ} is embedded 2-sphere
- some technical modification
 - need to do component-picking: there is a unique component Σ_{ϵ}^{o} enclosing the origin *O*. We illustrate by the following figures (where the blue part is Ω_{ϵ}^{c})

3.2.2 The rigidity

- Strategy: find the separation sphere attaining the separation systole
- Start from the equality

$$m=\sqrt{\frac{\operatorname{sys}(M,g,\mathcal{E})}{16\pi}}.$$

- Improved area control for approximating μ -bubble
 - former estimate area(Σ_{ϵ}) $\leq A_0$
 - improved one area(Σ_{ϵ}) \leq sys(M, g, \mathcal{E}) + $C\epsilon^2$ with C independent of ϵ

$$\sqrt{\frac{|\Sigma_{\epsilon}|}{16\pi}} \left(1 - \frac{\epsilon^2}{16\pi} |\Sigma_{\epsilon}| \right) \le m = \sqrt{\frac{\operatorname{sys}(M, g, \mathcal{E})}{16\pi}}.$$

• Iterated approximating μ -bubbles and new fixing phenomenon

- With Σ_{ϵ} as one boundary for $0 < \epsilon' < \epsilon$ we can construct approximation μ -bubble $\Sigma_{\epsilon'}$ (with respect to Σ_{ϵ})
- we have volume bound for jumped region $\operatorname{vol}(\Omega_{\epsilon,\epsilon'}) \leq C\epsilon^2/\epsilon'$

 $\operatorname{sys}(M, g, \mathcal{E}) \leq |\Sigma_{\epsilon'}| \leq |\Sigma_{\epsilon}| - \epsilon' \operatorname{vol}(\Omega_{\epsilon, \epsilon'}) \leq \operatorname{sys}(M, g, \mathcal{E}) + C\epsilon^2 - \epsilon' \operatorname{vol}(\Omega_{\epsilon, \epsilon'}).$

- Bootstraping
 - Fix $\gamma \in (1, 2)$. Find iterated approximating μ -bubbles

$$\Sigma_{\epsilon}, \Sigma_{\epsilon^{\gamma}}, \Sigma_{\epsilon^{\gamma^2}}, \ldots$$

- uniform volume bound for jumped regions

$$\operatorname{vol}(\Sigma_{\epsilon}, \Sigma_{\epsilon^{\gamma^{k}}}) \leq C \sum_{k} \left(\epsilon^{\gamma^{k}} \right)^{2-\gamma} \leq C \Rightarrow \operatorname{dist}(\Sigma_{\epsilon^{\gamma^{k}}}, \Sigma_{\epsilon}) \leq \frac{C}{\operatorname{sys}(M, g, \mathcal{E})}$$

– $\Sigma_{e^{\gamma^k}}$ pointed converges to a stable minimal surface Σ_0

• compactness criterion [Gromov-Lawson '83] If Σ is a stable minimal surface in 3-manifold (*M*, *g*) with $R(g) \ge 0$, then

 Σ is non-compact $\Leftrightarrow |\Sigma| = +\infty$.

• $|\Sigma_0| \le A_g \Rightarrow \Sigma_0$ is a closed minimal surface and this returns to the classical case.

Thank you for your attention!