Towards a further comprehension for mass inequalities

Jintian Zhu
Westlake University

IASM-BIRS 5-days workshop
Recent Advances in Comparison Geometry
Hangzhou, Feb. 25-Mar. 1, 2024

This talk is based on the following works

- Positive mass theorem with arbitrary ends and its application [Z. '23] (Int. Math. Res. Not. IMRN)
- Riemannian Penrose inequality without horizon in dimension three [Z. '23 ${ }^{+}$] (arXiv:2304.01769, to appear in Trans. Amer. Math. Soc.)

Outline

1. Asymptotically flat manifolds and previous mass inequalities
2. Recent developments and a conjecture on mass-systole inequality
3. Some progress on the mass-systole conjecture

1 Asymptotically flat manifolds and previous mass inequality

1.1 Asymptotically flat manifolds

- The interest on asymptotically flat manifolds comes from general relativity
- isolated gravity system
- no substance gives flat space (Euclidean)
- substance cause bending (curvature) with effect decay as distance increasing (model of space: asymptotically flat manifolds)
- Complete $\left(M^{n \geq 3}, g\right)$ is called asymptotically flat if
- $M \backslash K$ has finitely many ends for compact K, each diffeomorphic to $\mathbb{R}^{n} \backslash B$
- On each end E the metric g has expansion

$$
g_{i j}=\delta_{i j}+O_{2}\left(r^{-\mu}\right) \text { with } \mu>\frac{n-2}{2}
$$

$-R(g) \in L^{1}$

1.2 Geometric quantities of asymptotically flat manifolds

- Arnowitt-Deser-Misner (ADM) mass
- Let (E, g) be one asymptotically flat end.

$$
m_{A D M}(M, g, E):=\frac{1}{2(n-1) \omega_{n-1}} \int_{S_{\infty}}\left(\partial_{j} g_{i j}-\partial_{i} g_{j j}\right) v_{\mathbb{E}}^{i} \mathrm{~d} \sigma_{\mathbb{E}},
$$

where

$$
\partial_{i}\left(\partial_{j} g_{i j}-\partial_{i} g_{j j}\right)=R(g)+O\left(r^{-2-2 \mu}\right)
$$

- Examples
* Euclidean space (one end E) with $m_{A D M}(M, g, E)=0$
* Schwarzschild manifold (M, g)

$$
M=\mathbb{R}^{n} \backslash\{O\} \text { and } g=\left(1+\frac{m}{r^{n-2}}\right)^{\frac{4}{n-2}} g_{\mathbb{E}}
$$

has two ends E_{1} and E_{2} corresponding to O and ∞ respectively with $m\left(M, g, E_{1}\right)=m\left(M, g, E_{2}\right)=2 m$.

- Separation systole (used in mass-systole conjecture later)
- Let E be an end of (M, g) and Σ be the boundary of a region Ω satisfying that $E \Delta \Omega$ is bounded. Let us call Σ a separation of E. Define

$$
\operatorname{sys}(M, g, E):=\inf \{\operatorname{area}(\Sigma): \Sigma \text { is a separation of } E\} .
$$

- Separation of E

- Examples
* Euclidean space (manifolds with one end E) has $\operatorname{sys}(M, g, E)=0$
* Schwarzschild manifold (two ends) with a fixed end E satisfies $\operatorname{sys}(M, g, E)=$ area of the unique closed minimal hypersurface

1.3 Previous mass inequalities

- Riemannian positive mass theorem
(n_{*} : dimension where generic regularity from GMT holds, known for $n_{*} \leq 10$ [Smale '93, Chodosh-Mantoulidis-Schulze '23 ${ }^{+}$])
- Theorem: Let $\left(M^{n_{*}}, g\right)$ be an asymptotically flat manifold with nonnegative scalar curvature. Then for each end E it holds $m_{A D M}(M, g, E) \geq 0$, where equality holds for some end E if and only if (M, g) is isometric to the Euclidean space $\left(\mathbb{R}^{n_{*}}, g_{\mathbb{E}}\right)$.
- Related works:
[Schoen-Yau '79 '81] (non-compact) minimal surface (3D)
[Witten '81] spinor method (3D)
[Schoen '89] non-compact dimension descent argument ($n{ }^{*} \mathrm{D}$)
[Lohkamp '99] Lohkamp compactification (PMT \Rightarrow PSC obstruction) [Schoen-Yau ' $17^{+} /{ }^{\prime} 21$] a claim for all dimensions
- Riemannian-Penrose inequality
- Theorem: Let $\left(M^{n \leq 7}, \partial M, g\right)$ be a complete Riemannian manifold with compact inner boundary ∂M and only one-end E, which is asymptotically flat. If (M, g) has nonnegative scalar curvature and ∂M is minimal and outer-minimizing, then we have

$$
m_{A D M}(M, g, E) \geq \frac{1}{2}\left(\frac{|\partial M|_{g}}{\omega_{n-1}}\right)^{\frac{n-2}{n-1}},
$$

where equality holds if and only if (M, g) is isometric to the half Schwarzschild manifold.

- Related works:
[Huisken-Ilmanen '01] IMCF (3D, ∂M connected, $H_{2}(M, \partial M)=0$)
[Bray '01] conformal flow (and Gauss-Bonnet formula) (3D)
[Bray-Lee '09] conformal flow ($n \mathrm{D}, n \leq 7$)
Also see recent nonlinear potential methods by [Agostiniani-Mantegazza-Mazzieri-Oronzio '22+ '23, Hirsch-Miao-Tam '22 ${ }^{+}$]
- Open for $n>7$ due to singularity issue from GMT in Bray's conformal flow

2 Recent developments and a conjecture on mass-systole inequality

2.1 Recent developments

- Liouville theorem for locally conformally flat manifolds
- Theorem: Let $\left(M^{n \geq 3}, g\right)$ be a complete locally conformally flat manifold with nonnegative scalar curvature, whose conformal structure is induced by a conformal map $\Phi: M \rightarrow \mathbb{S}^{n}$. Then Φ is injective and $\partial \Phi(M)$ has zero Newtonian capacity.
- known cases before recent development
[Schoen-Yau '94, Lectures on Differential Geometry]
a1. $d(M,[g])<\frac{(n-2)^{2}}{n}$ when $n \geq 5$
a2. $d(M,[g])<\frac{(n-2)^{2}}{n}$ and $R(g) \leq C$ when $n=3,4$
b. Riemannian positive mass theorem holds for some more general class of asymptotically flat manifolds (made clear in next slide)
- known fact (at that time): $d(M,[g]) \leq \frac{n}{2}$ and so Liouville theorem reduced to generalized Riemannian positive mass theorem with $n \leq 6$.
- asymptotically flat manifolds (with arbitrary ends)
- complete Riemannian manifolds (M, g) with a distinguished asymptotically flat end \mathcal{E}
- Riemannian positive mass theorem (with arbitrary ends)
- Theorem: Let $\left(M^{n_{*}}, g, \mathcal{E}\right)$ be an asymptotically flat manifold with nonnegative scalar curvature. Then we have $m(M, g, \mathcal{E}) \geq 0$, where the equality holds if and only if (M, g) is the Euclidean space $\left(\mathbb{R}^{n_{*}}, g_{\mathbb{E}}\right)$.
- Related works: [Lesourd-Unger-Yau '21+] asymptotically Schwarzwchild [Lee-Lesourd-Unger '23] general asymptotically flat (density theorem) [Z. '23] general asymptotically flat (through Geroch's compactification)
- Another approach to the Liouville theorem: generalized Geroch conjecture (raised in [Lesourd-Unger-Yau ' 20^{+}])
- $T^{n} \sharp N$ (N can be non-compact) admits no complete metric with positive scalar curvature [Chodosh-Li ' 20^{+}]
- [Wang-Zhang '22] proves generalized Geroch conjecture in all dimensions with extra spin assumption

2.2 A conjecture on mass-systole inequality

- Invalid case for Riemannian-Penrose inequality (no horizon)
- extreme black hole (at infinity)
- extreme Reissner-Nordström space

$$
M=\mathbb{R}^{3} \backslash\{O\} \text { and } g=\left(1+\frac{m}{r}\right)^{2} g_{\mathbb{E}} \text { with } m>0
$$

- The intuition (mean-convex foliation)

- My mass-systole inequality conjecture
- Conjecture: Let $\left(M^{n}, g, \mathcal{E}\right)$ be an asymptotically flat manifold (with arbitrary ends) with nonnegative scalar curvature. Then we have

$$
m_{A D M}(M, g, \mathcal{E}) \geq \frac{1}{2}\left(\frac{\operatorname{sys}(M, g, \mathcal{E})}{\omega_{n-1}}\right)^{\frac{n-2}{n-1}}
$$

where equality holds if and only if the following happens:

1. either $\operatorname{sys}(M, g, \mathcal{E})=0$ and (M, g) is the Euclidean space $\left(\mathbb{R}^{n}, g_{\mathbb{E}}\right)$
2. or $\operatorname{sys}(M, g, \mathcal{E})>0$ and there exists a separation sphere Σ of \mathcal{E} with

$$
\operatorname{area}(\Sigma)=\operatorname{sys}(M, g, \mathcal{E})
$$

enclosing the half Schwarzschild manifold (on the side of \mathcal{E}).

- Some comments
* Riemannian positive mass theorem (with arbitrary ends) is a special case
* Riemannian-Penrose inequality follows from a doubling argument
* This conjecture is open even in dimension three

3 Some progress on the conjecture

3.1 My recent results

- Riemannian positive mass theorem (with arbitrary ends) [Z. '23]
- Riemannian-Penrose inequality (with arbitrary ends) [Z. '23+]
- Theorem: Consider complete manifold (M, g, \mathcal{E}) with

$$
M=\mathbb{R}^{3} \backslash\{O\}, \mathcal{E}=\mathbb{R}^{3} \backslash B_{1} \text { and }(\mathcal{E}, g) \text { is asymptotically flat. }
$$

Then we have

$$
m_{A D M}(M, g, \mathcal{E}) \geq \sqrt{\frac{\operatorname{sys}(M, g, \mathcal{E})}{16 \pi}},
$$

where equality holds if and only if $\operatorname{sys}(M, g, \mathcal{E})>0$ and there is a separation minimal 2 -sphere Σ of \mathcal{E} such that

$$
\operatorname{area}(\Sigma)=\operatorname{sys}(M, g, \mathcal{E})
$$

and the outside region is isometric to half Schwarzschild manifold.

3.2 Proof of Riemannian-Penrose inequality (with arbitrary ends)

3.2.1 The inequality

- Techniques:
- an approximation scheme of μ-bubbles
- Starting point
- ADM-Hawking mass inequality [Huisken-Ilmanen '01]

Let $\left(M^{3}, \partial M, g\right)$ be a complete Riemannian manifold with compact inner boundary ∂M and a unique end E, which is asymptotically flat. If M has nonnegative scalar curvature and satisfies $H_{2}(M, \partial M)=0$, and the boundary ∂M is connected and outer-minimizing, then we have

$$
m(M, g, E) \geq \sqrt{\frac{|\partial M|_{g}}{16 \pi}}\left(1-\frac{1}{16 \pi} \int_{\partial M} H^{2} \mathrm{~d} \sigma_{g}\right)
$$

- Plan: find for each small $\epsilon>0$ a 3-ball Ω_{ϵ} containing the origin O such that
* $\operatorname{area}\left(\partial \Omega_{\epsilon}\right) \leq A_{0}$ with A_{0} independent of ϵ
* $H\left(\partial \Omega_{\epsilon}\right)=\epsilon$
- The μ-bubble method

- Let $\left(V, \partial_{ \pm}\right)$be a Riemannian band with a smooth function $h: V \rightarrow \mathbb{R}$.
- Consider the functional

$$
\mathcal{A}^{h}(\Sigma, \Omega)=\operatorname{area}(\Sigma)+\int_{\Omega} h \mathrm{~d} \mu_{g}
$$

- existence of a smooth minimizer needs $h-H_{+}<0$ on ∂_{+}and $h+H_{-}>0$ on ∂_{-}
- The set-up of our μ-bubble problem
$-\partial_{+}$is taken to be some coordinate sphere with $H_{+} \geq \epsilon_{0}>0$
- ∂_{-}is taken to be $h=+\infty$ after h is determined
- Take $h_{\epsilon, \beta}(t)=\epsilon \operatorname{coth}\left(-\frac{3}{4} \epsilon t+\beta\right)$ with $0<\epsilon<\epsilon_{0}$ and β to be determined later, which satisfies

$$
-2 h_{\epsilon, \beta}^{\prime}+\frac{3}{2} h_{\epsilon, \beta}^{2}=\frac{3}{2} \epsilon^{2} .
$$

- Let ρ be the distance function to ∂_{+}(only $|\mathrm{d} \rho| \leq 1$ used so assuming smooth) and $h=h_{\epsilon, \beta} \circ \rho$ satisfying

$$
-2|\mathrm{~d} h|+\frac{3}{2} h^{2} \geq \frac{3}{2} \epsilon^{2}
$$

- fixing phenomenon when $\operatorname{sys}(M, g, \mathcal{E})>0$

we have

$$
\int_{\Omega_{\epsilon, \beta}} h \mathrm{~d} \mu_{g}+\operatorname{area}\left(\Sigma_{\epsilon, \beta}\right) \leq \operatorname{area}\left(\partial_{+}\right)=: A_{0}
$$

and

$$
\int_{\Omega_{\epsilon, \beta}} h \mathrm{~d} \mu_{g} \geq \epsilon \cdot \operatorname{sys}(M, g, \mathcal{E}) \cdot \operatorname{dist}\left(\partial_{+}, \Sigma_{\epsilon, \beta}\right)
$$

- topology and intrinsic diameter bound
- 2nd variation formula

$$
\int_{\Sigma_{\epsilon, \beta}}|\nabla \phi|^{2}-\left(\operatorname{Ric}(v, v)+|A|^{2}-\partial_{v} h\right) \phi^{2} \geq 0
$$

- Schoen-Yau's rearrangement

$$
\int_{\Sigma}|\nabla \phi|^{2}-\frac{1}{2}\left(R_{M}-R_{\Sigma}+\frac{3}{2} H^{2}+|\AA|^{2}+2 \partial_{\nu} h\right) \phi^{2} \geq 0
$$

From the construction of h we see

$$
\lambda_{1}\left(-\Delta+K_{\Sigma}\right) \geq \frac{3}{4} \epsilon^{2}
$$

- properties of $\Sigma_{\epsilon, \beta}$
* (topology) $\Sigma_{\epsilon, \beta}$ is a sphere
* (geometry) diam $(\Sigma) \leq D_{0}$ (D_{0} depending only on λ_{1}) [Schoen-Yau '83, Gromov '18]
- Take Σ_{ϵ} to be the limit of $\Sigma_{\epsilon, \beta}$. Then Σ_{ϵ} is the desired surface in the sense that
$-\Sigma_{\epsilon}$ has uniform area bound A_{0} (independent of ϵ)
$-\Sigma_{\epsilon}$ has constant mean curvature ϵ
- Σ_{ϵ} is embedded 2-sphere
- some technical modification
- need to do component-picking: there is a unique component Σ_{ϵ}^{o} enclosing the origin O. We illustrate by the following figures (where the blue part is Ω_{ϵ}^{c})

(a) Multiple enclosing spheres

(b) a single enclosing sphere

3.2.2 The rigidity

- Strategy: find the separation sphere attaining the separation systole
- Start from the equality

$$
m=\sqrt{\frac{\operatorname{sys}(M, g, \mathcal{E})}{16 \pi}}
$$

- Improved area control for approximating μ-bubble
- former estimate area $\left(\Sigma_{\epsilon}\right) \leq A_{0}$
- improved one area $\left(\Sigma_{\epsilon}\right) \leq \operatorname{sys}(M, g, \mathcal{E})+C \epsilon^{2}$ with C independent of ϵ

$$
\sqrt{\frac{\left|\Sigma_{\epsilon}\right|}{16 \pi}}\left(1-\frac{\epsilon^{2}}{16 \pi}\left|\Sigma_{\epsilon}\right|\right) \leq m=\sqrt{\frac{\operatorname{sys}(M, g, \mathcal{E})}{16 \pi}}
$$

- Iterated approximating μ-bubbles and new fixing phenomenon

- With Σ_{ϵ} as one boundary for $0<\epsilon^{\prime}<\epsilon$ we can construct approximation μ-bubble $\Sigma_{\epsilon^{\prime}}$ (with respect to Σ_{ϵ})
- we have volume bound for jumped region $\operatorname{vol}\left(\Omega_{\epsilon, \epsilon^{\prime}}\right) \leq C \epsilon^{2} / \epsilon^{\prime}$

$$
\operatorname{sys}(M, g, \mathcal{E}) \leq\left|\Sigma_{\epsilon^{\prime}}\right| \leq\left|\Sigma_{\epsilon}\right|-\epsilon^{\prime} \operatorname{vol}\left(\Omega_{\epsilon, \epsilon^{\prime}}\right) \leq \operatorname{sys}(M, g, \mathcal{E})+C \epsilon^{2}-\epsilon^{\prime} \operatorname{vol}\left(\Omega_{\epsilon, \epsilon^{\prime}}\right)
$$

- Bootstraping
- Fix $\gamma \in(1,2)$. Find iterated approximating μ-bubbles

$$
\Sigma_{\epsilon}, \Sigma_{\epsilon^{\gamma}}, \Sigma_{\epsilon^{\gamma^{2}}}, \ldots
$$

- uniform volume bound for jumped regions

$$
\operatorname{vol}\left(\Sigma_{\epsilon}, \Sigma_{\epsilon \gamma^{k}}\right) \leq C \sum_{k}\left(\epsilon^{\gamma^{k}}\right)^{2-\gamma} \leq C \Rightarrow \operatorname{dist}\left(\Sigma_{\epsilon \gamma^{k}}, \Sigma_{\epsilon}\right) \leq \frac{C}{\operatorname{sys}(M, g, \mathcal{E})}
$$

$-\Sigma_{\epsilon \gamma^{k}}$ pointed converges to a stable minimal surface Σ_{0}

- compactness criterion [Gromov-Lawson '83]

If Σ is a stable minimal surface in 3-manifold (M, g) with $R(g) \geq 0$, then

$$
\Sigma \text { is non-compact } \Leftrightarrow|\Sigma|=+\infty \text {. }
$$

- $\left|\Sigma_{0}\right| \leq A_{g} \Rightarrow \Sigma_{0}$ is a closed minimal surface and this returns to the classical case.

Thank you for your attention!

