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The isoperimetric profile

The isoperimetric profile

Let M be a Riemannian manifold with volume measure vol and
perimeter measure Per.
For v ∈ (0, vol(M)), the isoperimetric profile function IM at v is

IM(v) := inf{Per(F ) : vol(F ) = v}.

If IM(vol(E )) = Per(E ) we say that E is an isoperimetric set.

? Balls are (unique) isoperimetric sets in Rn. Thus, IRn(v) = n(ωn)
1
n v

n−1
n ;

? The definition makes sense also in metric measure spaces [Ambrosio,
’02, Adv. Math.], [Miranda, ’03, JMPA].
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Ricci curvature (bounded below) affects isoperimetry

Theorem (Lévy–Gromov isoperimetric inequality, Gromov, ’80, Preprint)
Let n ≥ 2, and M be a smooth n-dimensional complete Riemannian
manifold with Ric ≥ n − 1. Hence, for every t ∈ [0, 1],

IM(t · vol(M))

vol(M)
≥ ISn(t · vol(Sn))

vol(Sn)
.
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What about isoperimetric sets in
noncompact spaces

(with nonnegative curvature)?
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Nonexistence can happen

Theorem (A.–Glaudo, ’23, Preprint)

For every n ≥ 3 there is a smooth complete noncompact Riemannian
manifold with Sec > 0 that does not have isoperimetric sets with volume
v < 1, while it does for v > 1.

? Similarly for the relative isoperimetric problem in unbounded convex
bodies in Rn;

? n ≥ 3 is sharp due to [Ritoré, ’02, JGEA]; v > 1 is sharp among
examples with nondegenerate asymptotic cones
[A.–Bruè–Fogagnolo–Pozzetta, ’22, Calc. Var. PDE].
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Sketch.

? Construct a convex body by cutting Σ× R, where Σ ⊆ Rn is a convex
cone in the upper halfspace;
? Then, take the boundary and approximate it with smooth hypersurfaces.
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Pointed Gromov–Hausdorff convergence (Gromov, ’81)

(Mi , di , pi ) −→pGH (X ,dX , p)
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Ricci-limit spaces

Theorem (Gromov, ’81, Pub. Math. IHES)

Let K ∈ R, n ∈ N. The class of smooth pointed n-dimensional complete
Riemannian manifolds (M, p) with Ric ≥ K is precompact in the pGH
topology.

1 Any limit is called Ricci-limit space (RLS). Structure properties of
RLS investigated in the seminal works [Cheeger–Colding, ’96–’00,
Ann. of Math., JDG].

2 Impulse to the study of geometry of CD and RCD spaces [Sturm, ’06,
Acta Math.], [Lott–Villani, ’09, Ann. of Math.],
[Ambrosio–Gigli–Savaré, ’14, Duke Math. J. + Inv. Math.]...
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When the isoperimetric set wants to escape at infinity

Theorem (A.–Nardulli–Pozzetta, ’22, ESAIM:COCV;
A.–Pasqualetto–Pozzetta–Semola, ’22, ASENS)

Let (M, d) be a smooth complete n-dimensional noncompact Riemannian
manifold with Ric ≥ 0, and infp∈M vol(B1(p)) > 0. Let v ∈ (0, vol(M)).
If there is no isoperimetric set of volume v in M, then the following holds.
There exists a limit at infinity X , i.e.,

(M, d, pi ) −→pGH (X , dX , p) for diverging pi ,

with IX (v) = IM(v), and there is an isoperimetric set of volume v in X .

Moral: Either you have an isoperimetric set in M or in one of its
limits at infinity.
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Sketch.

? It is proved by concentration-compactness;

? It holds for arbitrary Ricci lower bounds and in the nonsmooth setting.
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Application:
Sharp concavity of the

isoperimetric profile on spaces with
Ricci curvature bounded below
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The concavity result

Theorem (A.–Pasqualetto–Pozzetta–Semola, ’22, ASENS)

Let n ≥ 2, and M be an n-dimensional complete Riemannian manifold
with Ric ≥ 0. Then

I
n

n−1

M is concave.

? In the compact case known from [Bavard–Pansu, ’86, ASENS] (n = 2),
and [PhD Thesis, ’97, Bray], [Bayle, ’04, IMRN].
Two ingredients: existence of isoperimetric sets, second variation of
the area on isoperimetric boundaries;

? ... It is not clear whether the [concavity] can hold outside a Riemannian
setting... [Ledoux, ’11] referring to [Milman, ’09, Inv. Math.]. Our result
holds in the nonsmooth setting (e.g., Alexandrov spaces, RCD spaces),
and for arbitrary Ricci lower bounds.
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Quick overview of consequences of the concavity of I
n

n−1

? Connectedness of isoperimetric regions;

? Lipschitz continuity for the isoperimetric profile;

? Uniform density estimates for isoperimetric sets;

? Uniform diameter bounds for isoperimetric sets;

? Stability of mean curvature under pointed Gromov–Hausdorff
convergence;

? A new proof of the sharp isoperimetric inequality in n-dimensional metric
measure spaces with Ric ≥ 0 and nondegenerate asymptotic cones
[A.–Pasqualetto–Pozzetta–Semola, ’22, Math. Ann.]. First proved in
[Agostiniani–Fogagnolo–Mazzieri, ’20, Inv. Math.];

? An alternative proof of the Lévy–Gromov isoperimetric inequality;

? Small/large asymptotics and monotonicity of the isoperimetric profile...
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How to survive without 2nd variation
and prove the concavity of the profile:

Mean curvature barriers
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Mean curvature in the nonsmooth setting

Theorem (A.–Pasqualetto–Pozzetta, ’22, Nonlinear Anal.;
A.–Pasqualetto–Pozzetta–Semola, ’22, ASENS)

Let (X , d) be an n-dimensional RLS with Ric ≥ 0, and E ⊂ X be an
isoperimetric set. Then, for some H ≥ 0, we have in the distributional
sense

∆dE ≥
H

1 + H
n−1dE

, on E

∆dE ≤
H

1 + H
n−1dE

on X \ E .

where dE is the signed (> 0 outside, < 0 inside) distance function from E .

? Encoding info on the mean curvature through Laplacian comparison has
appeared in the smooth setting in [Wu, ’79, Acta Math.],
[Caffarelli–Cordoba, ’93, Diff. Int. Equations].

.
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Concavity: producing the line touching above I
n

n−1

Proposition (A.–Glaudo, ’23, Preprint, and where else? )

Let (X , d) be an n-dimensional RLS with Ric ≥ 0, and E ⊂ X be an
isoperimetric set. Then there is H ≥ 0 for which

R 3 t 7→ Per(Et)
n

n−1 − n

n − 1
HPer(E )

n
n−1vol(Et),

achieves its maximum at t = 0.
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Another application:
When generalized existence

is improved to existence
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How to visualize nonnegative curvature (à la Alexandrov)
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Existence for all volumes in 2D

Theorem (A.–Pozzetta, ’23, Preprint)

Let (X , d) be a 2-dimensional nonnegatively curved metric space. Then
isoperimetric sets exist for every volume.

For smooth surfaces [Ritoré, ’02, JGEA].

? Sketch. Use generalized existence. If the mass is lost at infinity:

Every limit at infinity splits as R× Y .

? Then models at infinity are: R2, or R× [0,+∞), or R× S1(ρ), or
R× [0, `]. In each case find isoperimetrically more convenient sets on the
space.

Gioacchino Antonelli (Courant Institute) Isoperimetry and nonnegative curvature February 28, 2024 19 / 27



Existence for all volumes in 2D

Theorem (A.–Pozzetta, ’23, Preprint)

Let (X , d) be a 2-dimensional nonnegatively curved metric space. Then
isoperimetric sets exist for every volume.

For smooth surfaces [Ritoré, ’02, JGEA].
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Sharp isoperimetric inequality: maximal volume growth

Theorem (Balogh–Kristaly, ’22, Math. Ann.)

Let (X , d) be an n-dimensional space with nonnegative curvature. Let us
assume (nondegenerate asymptotic cones)

AVR(X , d) := lim
r→+∞

vol(Br (x))

ωnrn
> 0,

for some (hence all) x ∈ X . Thus, for every set E of finite perimeter in X ,
it holds

Per(E ) ≥ n(ωnAVR)
1
n vol(E )

n−1
n .
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Existence for large volumes under maximal volume growth

Theorem (A.–Bruè–Fogagnolo–Pozzetta, ’22, Calc. Var. PDE)

Let (X , d) be an n-dimensional noncompact nonnegatively curved space,
and assume AVR(X , d) > 0.
Hence isoperimetric sets exist for sufficiently large volumes.
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Future directions
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Positive mass and foliations of isoperimetric sets

Theorem (Chodosh–Eichmair–Shi–Yu, ’21, CPAM)

Let (M, g) be a C 2, 1
2

+ε-asymptotically flat 3-manifold with R ≥ 0, which
is not R3. Then there is V0 > 0 such that for every V > V0 there exists a
unique isoperimetric set with volume V .

? Linked to the existence of foliations of stable CMC. Related results:
[Huisken–Yau, ’96, Inv. Math.], [Bray, ’97, PhD Thesis],
[Eichmair–Metzger, ’13, Inv. Math.], [Nerz, ’15, Calc. Var.],
[Chodosh–Eichmair–Volkmann, ’17, JDG], [Yu, ’22, Math. Ann.], ...

? Isoperimetric sets detect the ADM mass:

mADM = lim
v→+∞

2

IM(v)

(
v − IM(v)3/2

6
√
π

)
.
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An adaptation to Ric ≥ 0, work in progress

Theorem (A.–Bruè–Pozzetta–Semola, Forthcoming)

Let M be a complete n-dimensional Riemannian manifold that does not
split such that:

1 Ric ≥ 0;

2 it has a nondegenerate asymptotic cones (AVR > 0), and
|Riem| = O(r−2).

Then there is a set G ⊂ R+ such that

L1(G∩(V ,2V ))
V → 1, as V → +∞,

and for every V ∈ G there is a unique isoperimetric set with volume V .
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Isoperimetric PMT?

Weak notion of R ≥ 0 for C 0-Riemannian metrics in [Gromov, ’14, C. Eur.
Math. J.], [Burkhardt–Guim, ’19, GAFA], [Huisken, ’21, Oberwolfach
Report].

Conjecture (Continuous Positive Mass Theorem, Huisken)

Let M be a smooth 3-manifold endowed with a C 0 metric g .

Rg ≥ 0⇒ miso := sup
(Ωj ):P(Ωj )→+∞

lim sup
j→+∞

2

|∂Ωj |

(
|Ωj | −

|∂Ωj |3/2

6
√
π

)
≥ 0.

Gioacchino Antonelli (Courant Institute) Isoperimetry and nonnegative curvature February 28, 2024 26 / 27



Thank you for the attention
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