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A higher order scalar curvature

1 ≤ k ≤ n/2, (Mn, g) k-th Gauss-Bonnet-Chern curvature:

Rk :=
1

2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k ,

1. R1 = R, scalar curvature.

2. R2 = |Riem|2 − 4|Ric|2 +R2 = |W |2 + 8(n− 2)(n− 3)σ2

3. k = n
2 , it is the Euler density. Gauss-Bonnet-Chern theorem.∫

M
Rn

2
= cχ(M),

The Gauss-Bonnet-Chern curvature was first appeared in the
paper of Lanczos in 1938 for n = 4 and k = 2.

Gauss-Bonnet-Chern curvature has been intensively studied in
Gauss-Bonnet gravity, as a generalization of Einstein gravity.



Scalar curvature:

Rk :=
1

2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k ,

• k-Ricci Tensor:

Ricab := k
2k
δ
i1i2···i2k−1i2k
b j2···j2k−1j2k

Ri1i2
aj2Ri3i4

j3j4 .... Ri2k−1i2kdk
j2k−1j2k

= kRi1i2
aj2Pbj2

i1i2

• k-Einstein tensor

Ea
b = − 1

2k+1 δ
ai1i2···i2k−1i2k
bj1j2···j2k−1i2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k

= Ricab − 1
2Rkδ

a
b



We write Rk red

Rk = P ij
klRij

kl,

where

P ij
kl :=

1

2k
δ
i1i2···i2k−3i2k−2ij
j1j2···j2k−3j2k−2kl

Ri1i2
j1j2 · · ·Ri2k−3i2k−2

j2k−3j2k−2 .

It is important that P is divergence-free, i.e.

P ij
kl,i = 0

and P has the same symmetry as Riem. It implies that

Eij,i = 0

.



Variation of total Rk-curvature

Lemma (Variation of total Rk-curvature)

The first variation of Fk =
∫
Lk(g)dv(g) is given by

δFk(g)[h] =

∫
M
⟨Ek, h⟩dv(g). (δg = h)

Proposition

1. A critical point of Fk(g) =
∫
Rk(g)dv(g) in the class of fixed

volume is a k-Stein metric, i.e.

Rick = λg.

2. A critical point of Fk(g) =
∫
Rk(g)dv(g) in a conformal class of

fixed volume is a k-metric, i.e.

Rk = const..

d
dtF(g) = −

∫
M ⟨E , h⟩dv(g) = −

∫
M tr Edv(g) =

∫
(n2 − k)Lkdv(g)



R1 = R, E = Ric− 1

2
Rg, P(1)

ij
kl
=

1

2
(δikδ

j
l − δilδ

j
k).

R2 = 1
4δ

i1i2i3i4
j1j2j3j4

Rj1j2
i1i2R

j3j4
i3i4 = |Rm|2 − 4|Ric|2 +R2

= |W |2 + 8(n− 2)(n− 3)σ2

E i
j = 2RRi

j − 4Ri
lR

l
j − 4RklR

ki
lj + 2Ri

klmRj
klm − 1

2
δijR2

(P(2))
ij
kl = Rij

kl −Ri
kδ

j
l +Ri

lδ
j
k −Rj

l δ
i
k +Rj

kδ
i
l +

1

2
R(δikδ

j
l − δilδ

j
k).

Riem = P(2) +Ric ∧⃝ g +
1

4
Rg ∧⃝ g

= W +
1

n− 2
Ric ∧⃝ g − R

(n− 1)(n− 2)

1

2
g ∧⃝ g

= W + S ∧⃝ g,

Schouten tensor: S = 1
n−2

(
Ric− R

2(n−1)g
)



Examples: σk-scalar curvatures

• Schouten Tensor S = 1
n−2(Ric− R

2(n−1))g.
• σk-scalar curvature:

σk(g) := σk(g
−1 · S).

σ1(g) = Rg/(n− 1)
Riem = W + S ∧⃝ g, i.e,

Rij
kl = W ij

kl + Si
kδ

j
l − Si

l δ
j
k + Sj

l δ
i
k − Sj

kδ
i
l .

If W = 0, then

Rk = k!2kσk



Mean curvature in Rn+1

• Let Σ ⊂ Rn+1. Rij
kl = hikh

j
l − hilh

j
k.

Rk =
1

2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k

= δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

hj1i1h
j2
i2
· · ·hj2k−1

i2k−1
hj2ki2k

= H2k

• Let Σ ⊂ Hn+1. Rij
kl = −(δikδ

j
l − δilδ

j
k) + hikh

j
l − hilh

j
k

Rk =

k∑
i=0

(−1)iH2k−2i

R1 = H2 − 1, and R2 = H4 − 2H2 + 1



one may ask:

• Geroch type conjecture: No metric on Tn with Rk > 0?
When k = 1, it is Schoen-Yau, Gromov-Lawson
When k = n/2, it is trivially true from the

Gauss-Bonnet-Chern theorem.

• Llarull type Theorem? (k < n/2) Any (M, g) with g ≥ gSn ,
Rk(g) ≥ Rk(Sn) with a nonzero degree map from M to Sn is
isometric to Sn?

No any idea! The big problem: No analytic methods to study
Rk.

1. Minimal surfaces method of Schoen-Yau?

2. Spin method?

3. Harmonic functions (or maps) of Stern?



Minimal surfaces? Very naive idea:

Area functional A(Σ) =
∫
Σ 1 =

∫
S R0.

The minimal surface method can be viewed: when we study
problems related to the scalar curvature R1, we use the functional∫
ΣR0.

When we consider problems related to R2, we may use the
functional

∫
SR1. Its Euler-Lagrange equation is:

Eg ·A = 0, (0.1)

where A is the 2nd Fundamental form.
Hence the 2-minimal surface is defined by (0.1).
If Σ ⊂ Rn, then (0.1) is

H3 = 0.

It is fully nonlinear. The ellipticity requires restrictive conditions.



Aasymptotically flat (AF) of decay order τ if there is a compact
set K such that M \K is diffeomorphic to Rn \BR(0)

gij = δij + σij , with |σij |+ r|∂σij |+ r2|∂2σij | = O(r−τ )

ADM mass (Arnowitt-Deser-Misner):

m1(g) := mADM :=
1

2(n− 1)ωn−1
lim
r→∞

∫
Sr

(gij,i − gii,j)νjdS,

Bartnik: mAMD is well-defined and a geometric invariant, if

τ >
n− 2

2
and R ∈ L1(M).



Aasymptotically flat (AF) of decay order τ if there is a compact
set K such that M \K is diffeomorphic to Rn \BR(0)

gij = δij + σij , with |σij |+ r|∂σij |+ r2|∂2σij | = O(r−τ )

ADM mass (Arnowitt-Deser-Misner):

m1(g) := mADM :=
1

2(n− 1)ωn−1
lim
r→∞

∫
Sr

(gij,i − gii,j)νjdS,

Bartnik: mAMD is well-defined and a geometric invariant, if

τ >
n− 2

2
and R ∈ L1(M).



Aasymptotically flat (AF) of decay order τ if there is a compact
set K such that M \K is diffeomorphic to Rn \BR(0)

gij = δij + σij , with |σij |+ r|∂σij |+ r2|∂2σij | = O(r−τ )

ADM mass (Arnowitt-Deser-Misner):

m1(g) := mADM :=
1

2(n− 1)ωn−1
lim
r→∞

∫
Sr

(gij,i − gii,j)νjdS,

Bartnik: mAMD is well-defined and a geometric invariant, if

τ >
n− 2

2
and R ∈ L1(M).



The Gauss-Bonnet-Chern mass

We expend

Rk = c(n, k)∂i

(
gjk,lP

ijkl

)
+O(r−(k+1)τ−2k)

and define

mk(g) := mGBC(g) = ck(n) lim
r→∞

∫
Sr

P ijkl∂lgjkνidS,

Theorem (Ge-W.-Wu Adv Math (2014))

Suppose that (Mn, g) (k < n
2 ) is AF of decay order τ > n−2k

k+1 and
Rk is integrable on (Mn, g). Then the Gauss-Bonnet-Chern mass
mk is well-defined and invariant.

Li-Nguyen had a similar mass
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Positive mass theorem

Positive mass theorem is true for mk, if
(1) (Rn, e2u|dx|2) (Ge-W.-Wu, IMRN (2014))
(2) graphical AF manifolds (Ge-W.-Wu)

Theorem (Positive Mass Theorem (Ge-W.-Wu))

Let (Mn, g) = (Rn, δ + df ⊗ df) and Lk ∈ L1(M), then

mk =
ck(n)

2

∫
Mn

Lk√
1 + |∇f |2

dVg,

In particular, Lk ≥ 0 yields mk ≥ 0.

k = 1, Lam (2010), de Lima-Girao, Huang-Wu.
Key Lemma. Lk(g) = c(n)∂i(P

ijkl∂lgjk).
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Penrose inequality

Theorem (Penrose Inequality (k = 1 Lam, k ≥ 2 Ge-W.-Wu))

Ω ⊂ Rn, Σ = ∂Ω. f : Rn \ Ω → R, (M, g) = (Rn\Ω, δ + df × df).
Σ is in a level set of f and |∇f(x)| → ∞ as x → Σ. Then

mk = ck(n)

∫
Mn

Lk√
1 + |∇f |2

dVg + c(n)

∫
Σ
H2k−1

In particular, if Lk ≥ 0 (dominant energy condition) holds, then
the Alexandrov-Fenchel inequality yields a Penrose inequality

m2 ≥
1

4

( ∫
ΣRΣ

(n− 1)(n− 2)ωn−1

)n−4
n−3

≥ 1

4

(
|Σ|
ωn−1

)n−4
n−1

.



Penrose Inequality for AF graphs

mk = mGBC ≥ 1

2k

(
|Σ|
ωn−1

)n−2k
n−1

.

Optimality: The generalized anti-de Sitter Schwarzschild
space-time is given by

(1− 2m

r
n
k
−2

)−1dr2 + r2gSn−1 ,

Penrose conjecture for GBC mass for general AF manifolds
could be proposed as:

mk = mGBC ≥ 1

2k

(
|Σ|
ωn−1

)n−2k
n−1

.
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Hyperbolic Gauss-Bonnet-Chern mass

Hn, b = dr2 + sinh2 rgSn−1 = 1
1+ρ2

dρ2 + ρ2gSn−1

Nb := {V ∈ C∞(Hn)|HessbV = V b}.

γ = −V 2dt2 + b is a static solution of the Einstein equation
Ric(γ) + nγ = 0.

dimNb = n+ 1

V(0) = cosh r, V(1) = x1 sinh r, · · · , V(n) = xn sinh r,

where r is the hyperbolic distance from an arbitrary fixed point on
Hn and x1, x2, · · · , xn are the coordinate functions restricted to
Sn−1 ⊂ Rn. We equip the vector space Nb with a Lorentz metric

η(V(0), V(0)) = 1, and η(V(i), V(i)) = −1 for i = 1, · · · , n.
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Hyperbolic Gauss-Bonnet-Chern mass

HΦ
k (V ) = limr→∞

∫
Sr

((
V ∇̄lejs − ejs∇̄lV

)
P̃ ijsl
(k)

)
νidµ

Theorem (Ge-W.-Wu)

Suppose (Mn, g)(2k ≤ n) is an asymptotically hyperbolic manifold
of decay order τ > n

k+1 and for V ∈ Nb, V L̃k ∈ L1, then the mass

functional HΦ
k (V ) is well-defined.

k = 1, X. Wang, Chruściel-Herzlich, Zhang

V L̃k = 2∇̄i

(
(V ∇̄lejs−ejs∇̄lV )P̃ ijsl

)
+2(∇̄i∇̄lV−V bil)ejsP̃

ijsl+O(e(−(k+1)τ+1)r).

Hyperbolic GBC mass: If HΦ
k (V ) > 0 ∀V ,

mH
k := c(n, k) inf

Nb∩{V >0,η(V,V )=1}
HΦ

k (V )
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k = 1, X. Wang, Chruściel-Herzlich, Zhang

V L̃k = 2∇̄i

(
(V ∇̄lejs−ejs∇̄lV )P̃ ijsl

)
+2(∇̄i∇̄lV−V bil)ejsP̃

ijsl+O(e(−(k+1)τ+1)r).

Hyperbolic GBC mass: If HΦ
k (V ) > 0 ∀V ,

mH
k := c(n, k) inf

Nb∩{V >0,η(V,V )=1}
HΦ

k (V )



Theorem (Penrose Inequality for AH graphs (Ge-W.-Wu))

k ≥ 2. If f : Hn \ Ω → R with (Mn, g) = (Hn \ Ω, b+ V 2df ⊗ df)
is AH of decay order τ > n

k+1 and V L̃k ∈ L1. Assume that
Σ = ∂Ω is in a level set of f and |∇̄f(x)| → ∞ as x → Σ.

mH
k = c(n, k)

(
1

2

∫
Mn

V L̃k√
1 + V 2|∇̄f |2

dVg +
(2k − 1)!

2

∫
Σ
V H2k−1dµ

)
.

mH
k ≥ 1

2k

((
|Σ|
ωn−1

) n
k(n−1)

+

(
|Σ|
ωn−1

) n−2k
k(n−1)

)k

,

if L̃k ≥ 0 and Σ ⊂ Hn is horospherical convex. Moreover, equality
is achieved by an anti-de Sitter Schwarzschild type metric.

k = 1, Dahl-Gicquaud-Sakovich, de Lima and Girão



Alexandrov-Fenchel inequaliy in Hn

Theorem (Ge-W.-Wu, JDG (2014), W.-Xia, Adv. Math
(2014))

Let 1 ≤ k ≤ n− 1. Any horospherical convex hypersurface Σ in
Hn satisfies∫

Σ
Hkdµ ≥ ωn−1

{(
|Σ|
ωn−1

) 2
k

+

(
|Σ|
ωn−1

) 2
k

(n−k−1)
n−1

} k
2

.

Equality holds if and only if Σ is a geodesic sphere.

k = 2 Li-Wei-Xiong, H1 > 0, H2 > 0 and star-shaped.

It solves a conjecture in integral geometry in Hn proposed by
Gao-Hug-Schneider, at least in the case of horospherical convex.
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Theorem (Ge-W.-Wu, JDG (2014), W.-Xia, Adv. Math
(2014))

Let 1 ≤ k ≤ n− 1. Any horospherical convex hypersurface Σ in
Hn satisfies∫

Σ
Hkdµ ≥ ωn−1

{(
|Σ|
ωn−1

) 2
k

+

(
|Σ|
ωn−1

) 2
k

(n−k−1)
n−1

} k
2

.

Equality holds if and only if Σ is a geodesic sphere.

k = 2 Li-Wei-Xiong, H1 > 0, H2 > 0 and star-shaped.

It solves a conjecture in integral geometry in Hn proposed by
Gao-Hug-Schneider, at least in the case of horospherical convex.



Weighted Alexandrov-Fenchel inequalites in Hn

Theorem (Ge-W.-Wu)

Let Σ be a horospherical convex hypersurface in Hn, V = cosh r

∫
Σ
V H2k+1dµ ≥ ωn−1

((
|Σ|
ωn−1

) n
(k+1)(n−1)

+

(
|Σ|
ωn−1

) n−2k−2
(k+1)(n−1)

)k+1

.

Equality holds if and only if Σ is a centered geodesic sphere in Hn.

k = 1 de Lima-Girao, Dahl-Gicquaud-Sakovich motivated by a
similar inequality by Brendle-Hung-Wang

Ideas: Inverse curvature flow by Gerhardt, Heintze-Karcher
type inequality of Brendle, optimal geometric inequalities on Sn−1

of Guan-W. and Alexandrov-Fenchel inequalites in Hn.



Analysis in a conformal class

Analysis of Rk in a conformal class is rich and successful.

• σk-Yamabe problem Find a metric is a given conformal class
such that σk is constant. (Viaclovsky, Chang-Gursky-Yang,
Guan-W. Ge-W., Li-Li, Sheng-Trudinger-Wang, ...)

• A conformal spherical theorem of Chang-Gursky-Yang: (M4, g)
with positive Yamabe constant and

∫
M σ2 >

∫
M |W |2 is

diffeomorphic to S4 or RP 4.

• (Ge-W.-Lin JDG (2009)) (M3, g) with positive Yamabe constant
and

∫
M σ2 > 0 is diffeomorphic to S3.



Thank you very much!


