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A higher order scalar curvature

1<k<n/2, (M" g) k-th Gauss-Bonnet-Chern curvature:
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1. Ry = R, scalar curvature.

2. Ry = |Riem|? — 4|Ric]?> + R? = |[W|? +8(n — 2)(n — 3)02
3. k= % it is the Euler density. Gauss-Bonnet-Chern theorem.

/M Rn = cx(M),

The Gauss-Bonnet-Chern curvature was first appeared in the
paper of Lanczos in 1938 for n = 4 and k = 2.

Gauss-Bonnet-Chern curvature has been intensively studied in
Gauss-Bonnet gravity, as a generalization of Einstein gravity.



Scalar curvature:

- siieeiok—1iok o jij2 ... P, . J2k—1J2k
Ry, = 2k 5j1j2"~j2k71j2kRZ”2 Rl?k*”% ’
e k-Ricci Tensor:
J2k—1J2k

ca .k gWieiok—1l2k po ajop. . j3ja . .
Ricy = debj?”j%ilj% Ri5, 2 Rip0, 2370 oo Rigy Liondy

_ aj i1
— k?Rilig J2ij2 122

e k-Einstein tensor
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We write Ry, red
Ry = P9 Ri;*,
where
1
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It is important that P is divergence-free, i.e.
Py =0
and P has the same symmetry as Riem. It implies that

&iji =0



Variation of total Rj-curvature

Lemma (Variation of total Rj-curvature)

The first variation of Fi, = [ Ly(g)dv(g) is given by

5Fu(g)lh] = /A (Euh)dvle). (Gg =)

Proposition

1. A critical point of F;(g) = [ Ri(g)dv(g) in the class of fixed
volume is a k-Stein metrlc i.e.

Rick = Ag.

2. A critical point of Fi(g9) = [ Ri(g9)dv(g) in a conformal class of
fixed volume is a k- metrlc i.e.

Ry, = const..




Ry, = %15;122361Rj1j2iliQRj3j4i3i4 — |Rm|? — 4|Ric|? + R?
[W|? + 8(n — 2)(n — 3)oy
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Riem = Py +Ric@® g+ ZRg@g
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Schouten tensor: S = —L- (Ric _ 2(nRL1)g>



Examples: oj-scalar curvatures

e Schouten Tensor S = —1-(Ric — 2(niR_l))g.
e oj-scalar curvature:

or(g) ==or(g™" - 9).

o1(9) = Rg/(n—1)
Riem =W +S® g, i.e,

Ry = W9y + Sio7 — Siol + SIo% — Sl
If W =0, then

Ry = k!12F0y,



Mean curvature in R*t!

e Let ¥ C R RYy = hih! — hih].
Ry = L giviz ok ik R, JU2.. . R. . J2k—1J2k
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Ry =Hy—1,and Ry = Hy — 2Hy + 1



one may ask:

e Geroch type conjecture: No metric on 7" with Ry > 07
When k£ =1, it is Schoen-Yau, Gromov-Lawson
When k = n/2, it is trivially true from the

Gauss-Bonnet-Chern theorem.

e Llarull type Theorem? (k < n/2) Any (M, g) with g > gsn,
Ry(g) > Ri(S™) with a nonzero degree map from M to S™ is
isometric to S™7?

No any idea! The big problem: No analytic methods to study
Ry.

1. Minimal surfaces method of Schoen-Yau?
2. Spin method?

3. Harmonic functions (or maps) of Stern?



Minimal surfaces? Very naive idea:
Area functional A(X) = [ 1 = [, Ro.

The minimal surface method can be viewed: when we study
problems related to the scalar curvature R, we use the functional

f Ry.
)
When we consider problems related to R2, we may use the

functional fS R;. lts Euler-Lagrange equation is:

E,-A=0, (0.1)

where A is the 2nd Fundamental form.
Hence the 2-minimal surface is defined by (0.1).
If ¥ C R", then (0.1) is

H; = 0.

It is fully nonlinear. The ellipticity requires restrictive conditions.



Aasymptotically flat (AF) of decay order 7 if there is a compact
set K such that M \ K is diffeomorphic to R™ \ Br(0)

9ij = 0ij + 04, With |oy;] + 7|0045] + 172|020 = O(r™")



Aasymptotically flat (AF) of decay order 7 if there is a compact
set K such that M \ K is diffeomorphic to R™ \ Br(0)

9ij = 0ij + 04, With |oy;] + 7|0045] + 172|020 = O(r™")

ADM mass (Arnowitt-Deser-Misner):

1 .
mi(g) :=mapm = m Tlggo ST(gW — ii,j)VjdS,



Aasymptotically flat (AF) of decay order 7 if there is a compact
set K such that M \ K is diffeomorphic to R™ \ Br(0)

gij = 5ij + 0y, with ’Uij‘ aF 7"80’1']'| aF 7"2’820'ij| =0(r ")

ADM mass (Arnowitt-Deser-Misner):

1 .
mi(g) :=mapm = m Tlggo ST(gW — ii,j)VjdS,

Bartnik: mapnsp is well-defined and a geometric invariant, if

n—2

5 and Re L'(M).
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The Gauss-Bonnet-Chern mass

We expend

Ry = ¢(n, k)& <gjk,lpiﬂd) + O(r~ (1T =2k)




The Gauss-Bonnet-Chern mass
We expend
Ry = c(n, k)8; (ijpijkl) 4 O(T—(k+1)r—2k)
and define

mi(g) = mapc(g) = c(n) lim PiIMQyge1idS,
Sy




The Gauss-Bonnet-Chern mass

We expend

Rk _ c(n, k)& (gjk,lpijkl) + O(T—(k-i-l)T—Qk)
and define

mi(g) := mapc(g) = cx(n) lim | PMOyg;0:dS,
S,

Theorem (Ge-W.-Wu Adv Math (2014))

Suppose that (M", g) (k < %) is AF of decay order 7 > "=2 and

Ry, is integrable on (M™,g). Then the Gauss-Bonnet-Chern mass
my, is well-defined and invariant.




The Gauss-Bonnet-Chern mass

We expend

Rk _ c(n, k)& (gjk,lpijkl) + O(T—(k-i-l)T—Qk)
and define

mi(g) == mapco(g) = ck(n) 7~li_>r101C Pijklalgjkyids,
Js,

Theorem (Ge-W.-Wu Adv Math (2014))

Suppose that (M", g) (k < %) is AF of decay order 7 > "=2 and

Ry, is integrable on (M™,g). Then the Gauss-Bonnet-Chern mass
my, is well-defined and invariant.

Li-Nguyen had a similar mass



Positive mass theorem

Positive mass theorem is true for my, if
(1) (R", e2%|dz|?) (Ge-W.-Wu, IMRN (2014))
(2) graphical AF manifolds (Ge-W.-Wu)




Positive mass theorem

Positive mass theorem is true for my, if

(1) (R, e?¥|dz|?) (Ge-W.-Wu, IMRN (2014))

(2) graphical AF manifolds (Ge-W.-Wu)
Theorem (Positive Mass Theorem (Ge-W.-Wu))

Let (M",g) = (R™,6 +df ®df) and Ly, € L*(M), then

- cx(n) / Ly v
2 Jun JI|VIE

In particular, Ly, > 0 yields my > 0.




Positive mass theorem

Positive mass theorem is true for my, if

(1) (R™, e*¥|dz|?) (Ge-W.-Wu, IMRN (2014))

(2) graphical AF manifolds (Ge-W.-Wu)
Theorem (Positive Mass Theorem (Ge-W.-Wu))

Let (M",g) = (R™,6 +df ®df) and Ly, € L*(M), then

- cx(n) / Ly v
2 Jun JI|VIE

In particular, Ly, > 0 yields my > 0.

k =1, Lam (2010), de Lima-Girao, Huang-Wu.



Positive mass theorem

Positive mass theorem is true for my, if

(1) (R, e?¥|dz|?) (Ge-W.-Wu, IMRN (2014))

(2) graphical AF manifolds (Ge-W.-Wu)
Theorem (Positive Mass Theorem (Ge-W.-Wu))

Let (M",g) = (R™,6 +df ®df) and Ly, € L*(M), then

- cx(n) / Ly v
2 Jun JI|VIE

In particular, Ly, > 0 yields my > 0.

k =1, Lam (2010), de Lima-Girao, Huang-Wu.
Key Lemma. Ly (g) = c(n)d;(PU*9,g1.).



Penrose inequality

Theorem (Penrose Inequality (k =1 Lam, k > 2 Ge-W.-Wu))

QCRY, D =00. f:R*\Q =R, (M,g) = (R\Q, 8+ df x df).
Y is in a level set of f and |V f(z)| — oo asx — X. Then

mg = cx(n

in, /
———dV, +¢(n Ho—
), e tVa ) | Haien

In particular, if Ly, > 0 (dominant energy condition) holds, then
the Alexandrov-Fenchel inequality yields a Penrose inequality

1 [.R = AT AR R

n—3 n—1

My > = » Y > = 2] '
4\ (n—-1)(n - 2)wp-1 4\ wp—1




Penrose Inequality for AF graphs

n—2

k
> 1 |Z‘ n—1
me =1m = o
k GBC Z of \ o



Penrose Inequality for AF graphs

n—2k

> 1 |E‘ n—1
mr = MgBC = °
k GBC 2 g \

Optimality: The generalized anti-de Sitter Schwarzschild
space-time is given by

2m
—2

)_ldr2 + T2ggn_1,
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Penrose Inequality for AF graphs

my = MGBC = b2
’ Qk Wn—1

Optimality: The generalized anti-de Sitter Schwarzschild
space-time is given by

2m

(1-— 2)_1al1"2 + 12 ggn-1,

n__
rk

Penrose conjecture for GBC mass for general AF manifolds
could be proposed as:

mg = MGBC = |E‘
21” Wn—1

Zk




Hyperbolic Gauss-Bonnet-Chern mass

H", b = dr? + sinh? rggn-1 = ﬁdp2 + p2ggn—1



Hyperbolic Gauss-Bonnet-Chern mass
H", b = dr? + sinh? rggn-1 = ﬁd,o2 + p2ggn—1

Ny := {V € C*°(H")|Hess"V = Vb}.

v = —V2dt? + b is a static solution of the Einstein equation
Ric(y) + ny =0.



Hyperbolic Gauss-Bonnet-Chern mass
H", b = dr? + sinh? rggn-1 = ﬁd/ﬁ + p2ggn—1

Ny := {V € C*°(H")|Hess"V = Vb}.

v = —V2dt? + b is a static solution of the Einstein equation
Ric(y) + ny =0.
dimN, =n+1

Vioy = coshr, V(1) = zlsinhr, -, Viny = 2" sinhr,

where r is the hyperbolic distance from an arbitrary fixed point on
H" and z!,22,--- , 2™ are the coordinate functions restricted to
Sl c R



Hyperbolic Gauss-Bonnet-Chern mass
H", b = dr? + sinh? rggn-1 = ﬁd/ﬁ + p2ggn—1

Ny := {V € C*°(H")|Hess"V = Vb}.

v = —V2dt? + b is a static solution of the Einstein equation
Ric(y) +ny =0.
dimN, =n+1

Vioy = coshr, V(1) = zlsinhr, -, Viny = 2" sinhr,

where r is the hyperbolic distance from an arbitrary fixed point on
H" and z!,22,--- , 2™ are the coordinate functions restricted to
SP=1 ¢ R™. We equip the vector space Ny with a Lorentz metric

Vo), Vioy) = 1, and 7(Vi), Vi) =—1 for i=1,---,n.



Hyperbolic Gauss-Bonnet-Chern mass

H}?(V) = lim; 00 fS,» <<Vvl€j& 6Jévlv) (LJ;Z> vidp

Theorem (Ge-W.-Wu)

Suppose (M™, g)(2k: <n) is an asymptotically hyperbolic manifold
of decay order T > k+1 and for Ve N,, VL € L', then the mass
functional H? (V') is well-defined.

k =1, X. Wang, Chrusciel-Herzlich, Zhang



Hyperbolic Gauss-Bonnet-Chern mass
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Theorem (Ge-W.-Wu)

Suppose (M™, g)(2k: <n) is an asymptotically hyperbolic manifold
of decay order T > k+1 and for Ve N,, VL, € L', then the mass
functional H? (V') is well-defined.

k =1, X. Wang, Chrusciel-Herzlich, Zhang

VL =2V; ((V?lejs—ejﬁﬂ/)ﬁ”sl>+2(vﬁlV—Vbil)ejsﬁijsl+0(e<—(k+1>T



Hyperbolic Gauss-Bonnet-Chern mass

H}?(V) = lim; 00 fS,‘ <<Vvl€j& 6J5VZV) (LJ;Z> vidp

Theorem (Ge-W.-Wu)

Suppose (M™, g)(2k: <n) is an asymptotically hyperbolic manifold
of decay order T > k+1 and for Ve N,, VL, € L', then the mass
functional H? (V') is well-defined.

k =1, X. Wang, Chrusciel-Herzlich, Zhang
VL =2V, ((V?lejs—ejﬁl\/)ﬁ”sl>+2(vﬁlV—Vbil)ejsﬁijsl+0(e<—(k+1>T
Hyperbolic GBC mass: If HE (V) > 0 VYV,

H . [}
2 o= Lk f H, (V
mj 1= c(n )Nm{vxl)?z(v,w:l} V)



Theorem (Penrose Inequality for AH graphs (Ge-W.-Wu))

k>2 If f:H*\Q— R with (M",g) = (H"\ Q,b+ V2df ® df)
is AH of decay order T > 25 and V Ly € L'. Assume that
¥ = 08 is in a level set of f and |V f(x)| — o0 asx — X.

1 Ly 2k — 1)!
mi = c(n, k) < Vi ——dV,; + ( ) / V Hap—1df
2 Jun 1+ V2V S|? 2 s

n n—2k k
H 1 ‘Z| k(n—1) N |2‘ k(n—1)
s = 2k Wn—1 Wn—1 ’

if L, > 0 and ¥ C H" is horospherical convex. Moreover, equality
is achieved by an anti-de Sitter Schwarzschild type metric.

k = 1, Dahl-Gicquaud-Sakovich, de Lima and Girdo



Alexandrov-Fenchel inequaliy in H"

Theorem (Ge-W.-Wu, JDG (2014), W.-Xia, Adv. Math
(2014))

Let 1 <k <n—1. Any horospherical convex hypersurface 3. in
H"™ satisfies

2 2
Y| \* Y| \*
/deuan—1{<—| | ) + <—| | >
> Wn—1 Wn—1

Equality holds if and only if 3 is a geodesic sphere.

(n—k—1)

k
n—1 }2




Alexandrov-Fenchel inequaliy in H"

Theorem (Ge-W.-Wu, JDG (2014), W.-Xia, Adv. Math
(2014))

Let 1 < k <n — 1. Any horospherical convex hypersurface ¥ in
H" satisfies

2 2
Y| \* Y| \*
/deNan_1{(| | ) + <| | >
> Wn—1 Wn—1

Equality holds if and only if 3 is a geodesic sphere.

(n—k—1)

k
n—1 }2

= 2 Li-Wei-Xiong, H; > 0, Hs > 0 and star-shaped.



Alexandrov-Fenchel inequaliy in H"

Theorem (Ge-W.-Wu, JDG (2014), W.-Xia, Adv. Math
(2014))

Let 1 < k <n — 1. Any horospherical convex hypersurface ¥ in
H" satisfies

2 2
Y| \* Y| \*
/deMan_1{(| | > + <| | >
> Wn—1 Wn—1

Equality holds if and only if 3 is a geodesic sphere.

(n—k

-1) &k
n—1 }2

= 2 Li-Wei-Xiong, H; > 0, Hs > 0 and star-shaped.

It solves a conjecture in integral geometry in H" proposed by
Gao-Hug-Schneider, at least in the case of horospherical convex.



Weighted Alexandrov-Fenchel inequalites in H"

Theorem (Ge-W.-Wu)

Let 33 be a horospherical convex hypersurface in H'", V = cosh r

o negk—z ~ kHl
|X] | FFDE-D 12 (Gayo=y
/VH2k+1du>wn_1 — i
X Wn—1 Wn—1

Equality holds if and only if 3 is a centered geodesic sphere in H". |

k =1 de Lima-Girao, Dahl-Gicquaud-Sakovich motivated by a
similar inequality by Brendle-Hung-Wang

Ideas: Inverse curvature flow by Gerhardt, Heintze-Karcher
type inequality of Brendle, optimal geometric inequalities on S”~!
of Guan-W. and Alexandrov-Fenchel inequalites in H".



Analysis in a conformal class

Analysis of Ry in a conformal class is rich and successful.

e 0,-Yamabe problem Find a metric is a given conformal class
such that oy, is constant. (Viaclovsky, Chang-Gursky-Yang,
Guan-W. Ge-W., Li-Li, Sheng-Trudinger-Wang, ...)

e A conformal spherical theorem of Chang-Gursky-Yang: (M*, g)
with positive Yamabe constant and [,, 02 > [, |[W|*is
diffeomorphic to S* or RP*.

e (Ge-W.-Lin JDG (2009)) (M3, g) with positive Yamabe constant
and [, 02 > 0 is diffeomorphic to S3.



Thank you very much!



