A higher order scalar curvature

Guofang Wang (Freiburg)

IASM-BIRS, Hangzhou, Feb.29.2024
With Yuxin Ge (Toulouse) and Jie Wu (Zhejiang Uni.)

A higher order scalar curvature

$$
\begin{gathered}
1 \leq k \leq n / 2,\left(M^{n}, g\right) k \text {-th Gauss-Bonnet-Chern curvature: } \\
R_{k}:=\frac{1}{2^{k}} \delta_{j_{1} j_{2} \cdots j_{2 k-1} j_{2 k}}^{i_{1} i_{2} \cdots i_{2 k-1} i_{2 k}} R_{i_{1} i_{2}}^{j_{1} j_{2}} \cdots R_{i_{2 k-1} i_{2 k}}{ }^{j_{2 k-1} j_{2 k}},
\end{gathered}
$$

1. $R_{1}=R$, scalar curvature.
2. $R_{2}=\mid$ Riem $\left.\right|^{2}-4 \mid$ Ric $\left.\right|^{2}+R^{2}=|W|^{2}+8(n-2)(n-3) \sigma_{2}$
3. $k=\frac{n}{2}$, it is the Euler density. Gauss-Bonnet-Chern theorem.

$$
\int_{M} R_{\frac{n}{2}}=c \chi(M)
$$

The Gauss-Bonnet-Chern curvature was first appeared in the paper of Lanczos in 1938 for $n=4$ and $k=2$.

Gauss-Bonnet-Chern curvature has been intensively studied in Gauss-Bonnet gravity, as a generalization of Einstein gravity.

Scalar curvature:

$$
R_{k}:=\frac{1}{2^{k}} \delta_{j_{1} j_{2} \cdots j_{2 k-1} j_{2 k}}^{i_{1} i_{2} \cdots i_{2 k-1} i_{2 k}} R_{i_{1} i_{2}}^{j_{1} j_{2}} \cdots R_{i_{2 k-1} i_{2 k}}^{j_{2 k-1} j_{2 k}},
$$

- k-Ricci Tensor:

$$
\begin{aligned}
\mathcal{R} i c_{b}^{a} & :=\frac{k}{2^{k}} \delta_{b j_{2} \cdots j_{2 k-1} j_{2 k}}^{i_{1} i_{2} \cdots i_{2 k-1} i_{2 k}} R_{i_{1} i_{2}}^{a j_{2}} R_{i_{3} i_{4}}^{j_{3} j_{4}} \ldots R_{i_{2 k-1} i_{2 k} d_{k}}{ }^{j_{2 k-1} j_{2 k}} \\
& =k R_{i_{1} i_{2}}{ }^{a j_{2}} P_{b j_{2}}{ }_{1} i_{1} i_{2}
\end{aligned}
$$

- k-Einstein tensor

$$
\begin{aligned}
\mathcal{E}_{b}^{a} & =-\frac{1}{2^{k+1}} \delta_{b j_{1} j_{2} \cdots j_{2 k-1} i_{2 k}}^{a i_{1} i_{2} \cdots i_{2 k-1} i_{2 k}} R_{i_{1} i_{2}}{ }^{j_{1} j_{2}} \cdots R_{i_{2 k-1} i_{2 k}}{ }^{j_{2 k-1} j_{2 k}} \\
& =\mathcal{R} i c_{b}^{a}-\frac{1}{2} R_{k} \delta_{b}^{a}
\end{aligned}
$$

We write R_{k} red

$$
R_{k}=P^{i j}{ }_{k l} R_{i j}{ }^{k l},
$$

where

$$
P^{i j}{ }_{k l}:=\frac{1}{2^{k}} \delta_{j_{1} j_{2} \cdots j_{2 k-3} j_{2 k-2} k l}^{i_{1} i_{2} \cdots i_{2 k-3} i_{2 k-2} i j} R_{i_{1} i_{2}}{ }^{j_{1} j_{2}} \cdots R_{i_{2 k-3} i_{2 k-2}}{ }^{j_{2 k-3} j_{2 k-2}} .
$$

It is important that P is divergence-free, i.e.

$$
P^{i j}{ }_{k l, i}=0
$$

and P has the same symmetry as Riem. It implies that

$$
\mathcal{E}_{i j, i}=0
$$

Variation of total R_{k}-curvature

Lemma (Variation of total R_{k}-curvature)

The first variation of $\mathcal{F}_{k}=\int L_{k}(g) d v(g)$ is given by

$$
\delta \mathcal{F}_{k}(g)[h]=\int_{M}\left\langle\mathcal{E}_{k}, h\right\rangle d v(g) . \quad(\delta g=h)
$$

Proposition

1. A critical point of $\mathcal{F}_{k}(g)=\int R_{k}(g) d v(g)$ in the class of fixed volume is a k-Stein metric, i.e.

$$
\mathcal{R} i c_{k}=\lambda g .
$$

2. A critical point of $\mathcal{F}_{k}(g)=\int R_{k}(g) d v(g)$ in a conformal class of fixed volume is a k-metric, i.e.

$$
R_{k}=\text { const.. }
$$

$$
\begin{aligned}
& R_{1}=R, \quad \mathcal{E}=\operatorname{Ric}-\frac{1}{2} R g, \quad P_{(1)}{ }_{k l}^{i j}=\frac{1}{2}\left(\delta_{k}^{i} \delta_{l}^{j}-\delta_{l}^{i} \delta_{k}^{j}\right) . \\
& R_{2}=\frac{1}{4} \delta_{j_{1} j_{2} j_{3} j_{4}}^{i_{1} i_{2} i_{3} i_{4}} R^{j_{1} j_{2}}{ }_{i_{1} i_{2}} R^{j_{3} j_{4}}{ }_{i_{3} i_{4}}=|R m|^{2}-4|R i c|^{2}+R^{2} \\
& =|W|^{2}+8(n-2)(n-3) \sigma_{2} \\
& \mathcal{E}_{j}^{i}=2 R R_{j}^{i}-4 R_{l}^{i} R^{l}{ }_{j}-4 R_{k l} R^{k i}{ }_{l j}+2 R^{i}{ }_{k l m} R_{j}{ }^{k l m}-\frac{1}{2} \delta_{j}^{i} R_{2} \\
& \left(P_{(2)}\right)_{k l}^{i j}=R_{k l}^{i j}-R_{k}^{i} \delta_{l}^{j}+R_{l}^{i} \delta_{k}^{j}-R_{l}^{j} \delta_{k}^{i}+R_{k}^{j} \delta_{l}^{i}+\frac{1}{2} R\left(\delta_{k}^{i} \delta_{l}^{j}-\delta_{l}^{i} \delta_{k}^{j}\right) . \\
& \operatorname{Riem}=P_{(2)}+\operatorname{Ric} \boxtimes g+\frac{1}{4} R g \bowtie g \\
& =W+\frac{1}{n-2} \operatorname{Ric} \boxtimes g-\frac{R}{(n-1)(n-2)} \frac{1}{2} g \circledast g \\
& =W+S \boxtimes g \text {, }
\end{aligned}
$$

Schouten tensor: $S=\frac{1}{n-2}\left(\right.$ Ric $\left.-\frac{R}{2(n-1)} g\right)$

Examples: σ_{k}-scalar curvatures

- Schouten Tensor $S=\frac{1}{n-2}\left(\right.$ Ric $\left.-\frac{R}{2(n-1)}\right) g$.
- σ_{k}-scalar curvature:

$$
\sigma_{k}(g):=\sigma_{k}\left(g^{-1} \cdot S\right)
$$

$$
\sigma_{1}(g)=R_{g} /(n-1)
$$

Riem $=W+S \boxtimes g$, i.e,

$$
R^{i j}{ }_{k l}=W^{i j}{ }_{k l}+S_{k}^{i} \delta_{l}^{j}-S_{l}^{i} \delta_{k}^{j}+S_{l}^{j} \delta_{k}^{i}-S_{k}^{j} \delta_{l}^{i} .
$$

If $W=0$, then

$$
R_{k}=k!2^{k} \sigma_{k}
$$

Mean curvature in \mathbb{R}^{n+1}

- Let $\Sigma \subset \mathbb{R}^{n+1} . R^{i j}{ }_{k l}=h_{k}^{i} h_{l}^{j}-h_{l}^{i} h_{k}^{j}$.

$$
\begin{aligned}
R_{k} & =\frac{1}{2^{k}} \delta_{j_{1} j_{2} \cdots j_{2 k-1} j_{2 k}}^{i_{1} i_{2} \cdots i_{2 k} i_{2 k}} R_{i_{1} i_{2}}{ }^{j_{1} j_{2}} \cdots R_{i_{2 k-1} i_{2 k}}{ }^{j_{2 k-1} j_{2 k}} \\
& =\delta_{j_{1} j_{2} \cdots j_{2 k-1} j_{2 k}}^{i_{1} i_{2} \cdots i_{2 k-1} i_{2 k}} h_{i_{2}}^{j_{1}} h_{i_{2}}^{j_{2}} \cdots h_{i_{2 k-1}}^{j_{2 k-1}} h_{i_{2 k}}^{j_{2 k}}=H_{2 k}
\end{aligned}
$$

- Let $\Sigma \subset \mathbb{H}^{n+1} . R^{i j}{ }_{k l}=-\left(\delta_{k}^{i} \delta_{l}^{j}-\delta_{l}^{i} \delta_{k}^{j}\right)+h_{k}^{i} h_{l}^{j}-h_{l}^{i} h_{k}^{j}$

$$
R_{k}=\sum_{i=0}^{k}(-1)^{i} H_{2 k-2 i}
$$

$$
R_{1}=H_{2}-1, \text { and } R_{2}=H_{4}-2 H_{2}+1
$$

one may ask:

- Geroch type conjecture: No metric on T^{n} with $R_{k}>0$?

When $k=1$, it is Schoen-Yau, Gromov-Lawson
When $k=n / 2$, it is trivially true from the
Gauss-Bonnet-Chern theorem.

- Llarull type Theorem? $(k<n / 2)$ Any (M, g) with $g \geq g_{\mathbb{S}^{n}}$, $R_{k}(g) \geq R_{k}\left(\mathbb{S}^{n}\right)$ with a nonzero degree map from M to \mathbb{S}^{n} is isometric to \mathbb{S}^{n} ?

No any idea! The big problem: No analytic methods to study R_{k}.

1. Minimal surfaces method of Schoen-Yau?
2. Spin method?
3. Harmonic functions (or maps) of Stern?

Minimal surfaces? Very naive idea:
Area functional $A(\Sigma)=\int_{\Sigma} 1=\int_{S} R_{0}$.
The minimal surface method can be viewed: when we study problems related to the scalar curvature R_{1}, we use the functional $\int_{\Sigma} R_{0}$.

When we consider problems related to R_{2}, we may use the functional $\int_{\mathbb{S}} R_{1}$. Its Euler-Lagrange equation is:

$$
\begin{equation*}
E_{g} \cdot A=0 \tag{0.1}
\end{equation*}
$$

where A is the 2 nd Fundamental form.
Hence the 2-minimal surface is defined by (0.1).
If $\Sigma \subset \mathbb{R}^{n}$, then (0.1) is

$$
H_{3}=0 .
$$

It is fully nonlinear. The ellipticity requires restrictive conditions.

Aasymptotically flat (AF) of decay order τ if there is a compact set K such that $M \backslash K$ is diffeomorphic to $\mathbb{R}^{n} \backslash B_{R}(0)$

$$
g_{i j}=\delta_{i j}+\sigma_{i j}, \text { with }\left|\sigma_{i j}\right|+r\left|\partial \sigma_{i j}\right|+r^{2}\left|\partial^{2} \sigma_{i j}\right|=O\left(r^{-\tau}\right)
$$

ADM mass (Arnowitt-Deser-Misner):

Bartnik: $m_{A M D}$ is well-defined and a geometric invariant, if

Aasymptotically flat (AF) of decay order τ if there is a compact set K such that $M \backslash K$ is diffeomorphic to $\mathbb{R}^{n} \backslash B_{R}(0)$

$$
g_{i j}=\delta_{i j}+\sigma_{i j}, \text { with }\left|\sigma_{i j}\right|+r\left|\partial \sigma_{i j}\right|+r^{2}\left|\partial^{2} \sigma_{i j}\right|=O\left(r^{-\tau}\right)
$$

ADM mass (Arnowitt-Deser-Misner):

$$
m_{1}(g):=m_{A D M}:=\frac{1}{2(n-1) \omega_{n-1}} \lim _{r \rightarrow \infty} \int_{S_{r}}\left(g_{i j, i}-g_{i i, j}\right) \nu_{j} d S
$$

Aasymptotically flat (AF) of decay order τ if there is a compact set K such that $M \backslash K$ is diffeomorphic to $\mathbb{R}^{n} \backslash B_{R}(0)$

$$
g_{i j}=\delta_{i j}+\sigma_{i j}, \text { with }\left|\sigma_{i j}\right|+r\left|\partial \sigma_{i j}\right|+r^{2}\left|\partial^{2} \sigma_{i j}\right|=O\left(r^{-\tau}\right)
$$

ADM mass (Arnowitt-Deser-Misner):

$$
m_{1}(g):=m_{A D M}:=\frac{1}{2(n-1) \omega_{n-1}} \lim _{r \rightarrow \infty} \int_{S_{r}}\left(g_{i j, i}-g_{i i, j}\right) \nu_{j} d S
$$

Bartnik: $m_{A M D}$ is well-defined and a geometric invariant, if

$$
\tau>\frac{n-2}{2} \quad \text { and } \quad R \in L^{1}(M)
$$

The Gauss-Bonnet-Chern mass

We expend

$$
R_{k}=c(n, k) \partial_{i}\left(g_{j k, l} P^{i j k l}\right)+O\left(r^{-(k+1) \tau-2 k}\right)
$$

and define

Theorem (Ge-W.-Wu Adv Math (2014))
Suppose that $\left(M^{n}, g\right)\left(1,<\frac{n}{2}\right)$ is AF of decay order $\tau>\frac{n-2 k}{k-1}$ and
R_{k} is integrable on $\left(M^{n}, g\right)$. Then the Gauss-Bonnet-Chern mass
m_{k} is well-defined and invariant.
Li-Nguyen had a similar mass

The Gauss-Bonnet-Chern mass

We expend

$$
R_{k}=c(n, k) \partial_{i}\left(g_{j k, l} P^{i j k l}\right)+O\left(r^{-(k+1) \tau-2 k}\right)
$$

and define

$$
m_{k}(g):=m_{G B C}(g)=c_{k}(n) \lim _{r \rightarrow \infty} \int_{S_{r}} P^{i j k l} \partial_{l} g_{j k} \nu_{i} d S
$$

The Gauss-Bonnet-Chern mass

We expend

$$
R_{k}=c(n, k) \partial_{i}\left(g_{j k, l} P^{i j k l}\right)+O\left(r^{-(k+1) \tau-2 k}\right)
$$

and define

$$
m_{k}(g):=m_{G B C}(g)=c_{k}(n) \lim _{r \rightarrow \infty} \int_{S_{r}} P^{i j k l} \partial_{l} g_{j k} \nu_{i} d S
$$

Theorem (Ge-W.-Wu Adv Math (2014))
Suppose that $\left(M^{n}, g\right)\left(k<\frac{n}{2}\right)$ is AF of decay order $\tau>\frac{n-2 k}{k+1}$ and R_{k} is integrable on $\left(M^{n}, g\right)$. Then the Gauss-Bonnet-Chern mass m_{k} is well-defined and invariant.

The Gauss-Bonnet-Chern mass

We expend

$$
R_{k}=c(n, k) \partial_{i}\left(g_{j k, l} P^{i j k l}\right)+O\left(r^{-(k+1) \tau-2 k}\right)
$$

and define

$$
m_{k}(g):=m_{G B C}(g)=c_{k}(n) \lim _{r \rightarrow \infty} \int_{S_{r}} P^{i j k l} \partial_{l} g_{j k} \nu_{i} d S
$$

Theorem (Ge-W.-Wu Adv Math (2014))
Suppose that $\left(M^{n}, g\right)\left(k<\frac{n}{2}\right)$ is AF of decay order $\tau>\frac{n-2 k}{k+1}$ and R_{k} is integrable on $\left(M^{n}, g\right)$. Then the Gauss-Bonnet-Chern mass m_{k} is well-defined and invariant.

Li-Nguyen had a similar mass

Positive mass theorem

Positive mass theorem is true for m_{k}, if
(1) $\left(\mathbb{R}^{n}, e^{2 u}|d x|^{2}\right)(G e-W .-W u$, IMRN (2014))
(2) graphical AF manifolds (Ge-W.-Wu)

In particular, $L_{k} \geq 0$ yields $m_{k} \geq 0$.
$k=1$, Lam (2010), de Lima-Girao, Huang-Wu.
Key Lemma. $L_{k}(q)=c(n) \partial_{i}\left(P^{i j k l} \partial_{l} q_{i k}\right)$.

Positive mass theorem

Positive mass theorem is true for m_{k}, if
(1) $\left(\mathbb{R}^{n}, e^{2 u}|d x|^{2}\right)(G e-W .-W u$, IMRN (2014))
(2) graphical AF manifolds (Ge-W.-Wu)

Theorem (Positive Mass Theorem (Ge-W.-Wu))
Let $\left(M^{n}, g\right)=\left(\mathbb{R}^{n}, \delta+d f \otimes d f\right)$ and $L_{k} \in L^{1}(M)$, then

$$
m_{k}=\frac{c_{k}(n)}{2} \int_{M^{n}} \frac{L_{k}}{\sqrt{1+|\nabla f|^{2}}} d V_{g}
$$

In particular, $L_{k} \geq 0$ yields $m_{k} \geq 0$.

Positive mass theorem

Positive mass theorem is true for m_{k}, if
(1) $\left(\mathbb{R}^{n}, e^{2 u}|d x|^{2}\right)(G e-W .-W u$, IMRN (2014))
(2) graphical AF manifolds (Ge-W.-Wu)

Theorem (Positive Mass Theorem (Ge-W.-Wu))
Let $\left(M^{n}, g\right)=\left(\mathbb{R}^{n}, \delta+d f \otimes d f\right)$ and $L_{k} \in L^{1}(M)$, then

$$
m_{k}=\frac{c_{k}(n)}{2} \int_{M^{n}} \frac{L_{k}}{\sqrt{1+|\nabla f|^{2}}} d V_{g}
$$

In particular, $L_{k} \geq 0$ yields $m_{k} \geq 0$.

$$
k=1 \text {, Lam (2010), de Lima-Girao, Huang-Wu. }
$$

Positive mass theorem

Positive mass theorem is true for m_{k}, if
(1) $\left(\mathbb{R}^{n}, e^{2 u}|d x|^{2}\right)(G e-W .-W u$, IMRN (2014))
(2) graphical AF manifolds (Ge-W.-Wu)

Theorem (Positive Mass Theorem (Ge-W.-Wu))
Let $\left(M^{n}, g\right)=\left(\mathbb{R}^{n}, \delta+d f \otimes d f\right)$ and $L_{k} \in L^{1}(M)$, then

$$
m_{k}=\frac{c_{k}(n)}{2} \int_{M^{n}} \frac{L_{k}}{\sqrt{1+|\nabla f|^{2}}} d V_{g}
$$

In particular, $L_{k} \geq 0$ yields $m_{k} \geq 0$.
$k=1$, Lam (2010), de Lima-Girao, Huang-Wu.
Key Lemma. $L_{k}(g)=c(n) \partial_{i}\left(P^{i j k l} \partial_{l} g_{j k}\right)$.

Penrose inequality

Theorem (Penrose Inequality $(k=1$ Lam, $k \geq 2$ Ge-W.-Wu))
$\Omega \subset \mathbb{R}^{n}, \Sigma=\partial \Omega . f: \mathbb{R}^{n} \backslash \Omega \rightarrow \mathbb{R},(M, g)=\left(\mathbb{R}^{n} \backslash \Omega, \delta+d f \times d f\right)$. Σ is in a level set of f and $|\nabla f(x)| \rightarrow \infty$ as $x \rightarrow \Sigma$. Then

$$
m_{k}=c_{k}(n) \int_{M^{n}} \frac{L_{k}}{\sqrt{1+|\nabla f|^{2}}} d V_{g}+c(n) \int_{\Sigma} H_{2 k-1}
$$

In particular, if $L_{k} \geq 0$ (dominant energy condition) holds, then the Alexandrov-Fenchel inequality yields a Penrose inequality

$$
m_{2} \geq \frac{1}{4}\left(\frac{\int_{\Sigma} R_{\Sigma}}{(n-1)(n-2) \omega_{n-1}}\right)^{\frac{n-4}{n-3}} \geq \frac{1}{4}\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-4}{n-1}}
$$

Penrose Inequality for AF graphs

$$
m_{k}=m_{G B C} \geq \frac{1}{2^{k}}\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2 k}{n-1}}
$$

Optimality: The generalized anti-de Sitter Schwarzschild s oace-time is given by

$$
\left(1-\frac{2 m}{r^{\frac{n}{k}-2}}\right)^{-1} d r^{2}+r^{2} g_{\mathbb{S}^{n-1}},
$$

Penrose conjecture for GBC mass for general AF manifolds could be proposed as:

Penrose Inequality for AF graphs

$$
m_{k}=m_{G B C} \geq \frac{1}{2^{k}}\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2 k}{n-1}}
$$

Optimality: The generalized anti-de Sitter Schwarzschild space-time is given by

$$
\left(1-\frac{2 m}{r^{\frac{n}{k}-2}}\right)^{-1} d r^{2}+r^{2} g_{\mathbb{S}^{n-1}},
$$

Penrose conjecture for GBC mass for general AF manifolds could be proposed as:

Penrose Inequality for AF graphs

$$
m_{k}=m_{G B C} \geq \frac{1}{2^{k}}\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2 k}{n-1}}
$$

Optimality: The generalized anti-de Sitter Schwarzschild space-time is given by

$$
\left(1-\frac{2 m}{r^{\frac{n}{k}-2}}\right)^{-1} d r^{2}+r^{2} g_{\mathbb{S}^{n-1}},
$$

Penrose conjecture for GBC mass for general AF manifolds could be proposed as:

$$
m_{k}=m_{G B C} \geq \frac{1}{2^{k}}\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2 k}{n-1}}
$$

Hyperbolic Gauss-Bonnet-Chern mass

$$
\begin{gathered}
\mathbb{H}^{n}, b=d r^{2}+\sinh ^{2} r g_{\mathbb{S}^{n-1}}=\frac{1}{1+\rho^{2}} d \rho^{2}+\rho^{2} g_{\mathbb{S}^{n-1}} \\
\mathbb{N}_{b}:=\left\{V \in C^{\infty}\left(\mathbb{H}^{n}\right) \mid \text { Hess }^{b} V=V b\right\} . \\
\gamma=-V^{2} d t^{2}+b \text { is a static solution of the Einstein equation } \\
R i c(\gamma)+n \gamma=0 \text {. } \\
\text { dim } \mathbb{N}_{b}=n+1 \\
V(0)=\cosh r, V_{(1)}=x^{1} \text { sinh } r, \cdots, V(n)=x^{n} \text { sinh } r, \\
\text { where } r \text { is the hyperbolic distance from an arbitrary fixed point on } \\
\mathbb{H}^{n} \text { and } x^{1}, x^{2}, \cdots, x^{n} \text { are the coordinate functions restricted to } \\
\mathbb{S}^{n-1} \subset \mathbb{R}^{n} \text { We equip the vector space } \mathbb{N}_{b} \text { with a Lorentz metric } \\
\eta(V(0), V(0))=1, \quad \text { and } \eta\left(V_{(i)}, V_{(i)}\right)=-1 \text { for } i=1, \cdots, n .
\end{gathered}
$$

Hyperbolic Gauss-Bonnet-Chern mass

$$
\begin{aligned}
& \quad \mathbb{H}^{n}, b=d r^{2}+\sinh ^{2} r g_{\mathbb{S}^{n-1}}=\frac{1}{1+\rho^{2}} d \rho^{2}+\rho^{2} g_{\mathbb{S}^{n-1}} \\
& \mathbb{N}_{b}:=\left\{V \in C^{\infty}\left(\mathbb{H}^{n}\right) \mid \operatorname{Hess}^{b} V=V b\right\} . \\
& \gamma=-V^{2} d t^{2}+b \text { is a static solution of the Einstein equation } \\
& \operatorname{Ric}(\gamma)+n \gamma=0 \text {. } \\
& \quad \text { dim } \mathbb{N}_{b}=n+1 \\
& V_{(0)}=\cosh r, V_{(1)}=x^{1} \text { sinh } r, \cdots, V(n)=x^{n} \text { sinh } r \text {, } \\
& \text { where } r \text { is the hyperbolic distance from an arbitrary fixed point on } \\
& \mathbb{H}^{n} \text { and } x^{1}, x^{2}, \ldots, x^{n} \text { are the coordinate functions restricted to } \\
& \mathbb{S}^{n-1} \subset \mathbb{R}^{n} \text {. We equip the vector space } \mathbb{N}_{b} \text { with a Lorentz metric } \\
& \eta\left(V_{(0), ~} V_{(0)}\right)=1, \quad \text { and } \eta\left(V_{(i)}, V_{(i)}\right)=-1 \quad \text { for } i=1, \cdots, n \text {. }
\end{aligned}
$$

Hyperbolic Gauss-Bonnet-Chern mass

$$
\begin{gathered}
\mathbb{H}^{n}, b=d r^{2}+\sinh ^{2} r g_{\mathbb{S}^{n-1}}=\frac{1}{1+\rho^{2}} d \rho^{2}+\rho^{2} g_{\mathbb{S}^{n-1}} \\
\mathbb{N}_{b}:=\left\{V \in C^{\infty}\left(\mathbb{H}^{n}\right) \mid \operatorname{Hess}^{b} V=V b\right\} .
\end{gathered}
$$

$\gamma=-V^{2} d t^{2}+b$ is a static solution of the Einstein equation $\operatorname{Ric}(\gamma)+n \gamma=0$. $\operatorname{dim} \mathbb{N}_{b}=n+1$

$$
V_{(0)}=\cosh r, V_{(1)}=x^{1} \sinh r, \cdots, V_{(n)}=x^{n} \sinh r
$$

where r is the hyperbolic distance from an arbitrary fixed point on \mathbb{H}^{n} and $x^{1}, x^{2}, \cdots, x^{n}$ are the coordinate functions restricted to $\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$.

Hyperbolic Gauss-Bonnet-Chern mass

$$
\begin{gathered}
\mathbb{H}^{n}, b=d r^{2}+\sinh ^{2} r g_{\mathbb{S}^{n-1}}=\frac{1}{1+\rho^{2}} d \rho^{2}+\rho^{2} g_{\mathbb{S}^{n-1}} \\
\mathbb{N}_{b}:=\left\{V \in C^{\infty}\left(\mathbb{H}^{n}\right) \mid \operatorname{Hess}^{b} V=V b\right\} .
\end{gathered}
$$

$\gamma=-V^{2} d t^{2}+b$ is a static solution of the Einstein equation $\operatorname{Ric}(\gamma)+n \gamma=0$. $\operatorname{dim} \mathbb{N}_{b}=n+1$

$$
V_{(0)}=\cosh r, V_{(1)}=x^{1} \sinh r, \cdots, V_{(n)}=x^{n} \sinh r
$$

where r is the hyperbolic distance from an arbitrary fixed point on \mathbb{H}^{n} and $x^{1}, x^{2}, \cdots, x^{n}$ are the coordinate functions restricted to $\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$. We equip the vector space \mathbb{N}_{b} with a Lorentz metric $\eta\left(V_{(0)}, V_{(0)}\right)=1, \quad$ and $\quad \eta\left(V_{(i)}, V_{(i)}\right)=-1 \quad$ for $\quad i=1, \cdots, n$.

Hyperbolic Gauss-Bonnet-Chern mass

$$
H_{k}^{\Phi}(V)=\lim _{r \rightarrow \infty} \int_{S_{r}}\left(\left(V \bar{\nabla}_{l} e_{j s}-e_{j s} \bar{\nabla}_{l} V\right) \tilde{P}_{(k)}^{i j s l}\right) \nu_{i} d \mu
$$

Theorem (Ge-W.-Wu)
Suppose $\left(M^{n}, g\right)(2 k \leq n)$ is an asymptotically hyperbolic manifold of decay order $\tau>\frac{n}{k+1}$ and for $V \in \mathbb{N}_{b}, V \tilde{L}_{k} \in L^{1}$, then the mass functional $H_{k}^{\Phi}(V)$ is well-defined.

$$
k=1 \text {, X. Wang, Chruściel-Herzlich, Zhang }
$$

Hyperbolic Gauss-Bonnet-Chern mass

$$
H_{k}^{\Phi}(V)=\lim _{r \rightarrow \infty} \int_{S_{r}}\left(\left(V \bar{\nabla}_{l} e_{j s}-e_{j s} \bar{\nabla}_{l} V\right) \tilde{P}_{(k)}^{i j s l}\right) \nu_{i} d \mu
$$

Theorem (Ge-W.-Wu)
Suppose $\left(M^{n}, g\right)(2 k \leq n)$ is an asymptotically hyperbolic manifold of decay order $\tau>\frac{n}{k+1}$ and for $V \in \mathbb{N}_{b}, V \tilde{L}_{k} \in L^{1}$, then the mass functional $H_{k}^{\Phi}(V)$ is well-defined.
$k=1$, X. Wang, Chruściel-Herzlich, Zhang

$$
V \tilde{L}_{k}=2 \bar{\nabla}_{i}\left(\left(V \bar{\nabla}_{l} e_{j s}-e_{j s} \bar{\nabla}_{l} V\right) \tilde{P}^{i j s l}\right)+2\left(\bar{\nabla}_{i} \bar{\nabla}_{l} V-V b_{i l}\right) e_{j s} \tilde{P}^{i j s l}+O\left(e^{(-(k+1) \tau}\right.
$$

Hyperbolic Gauss-Bonnet-Chern mass

$$
H_{k}^{\Phi}(V)=\lim _{r \rightarrow \infty} \int_{S_{r}}\left(\left(V \bar{\nabla}_{l} e_{j s}-e_{j s} \bar{\nabla}_{l} V\right) \tilde{P}_{(k)}^{i j s l}\right) \nu_{i} d \mu
$$

Theorem (Ge-W.-Wu)
Suppose $\left(M^{n}, g\right)(2 k \leq n)$ is an asymptotically hyperbolic manifold of decay order $\tau>\frac{n}{k+1}$ and for $V \in \mathbb{N}_{b}, V \tilde{L}_{k} \in L^{1}$, then the mass functional $H_{k}^{\Phi}(V)$ is well-defined.
$k=1$, X. Wang, Chruściel-Herzlich, Zhang
$V \tilde{L}_{k}=2 \bar{\nabla}_{i}\left(\left(V \bar{\nabla}_{l} e_{j s}-e_{j s} \bar{\nabla}_{l} V\right) \tilde{P}^{i j s l}\right)+2\left(\bar{\nabla}_{i} \bar{\nabla}_{l} V-V b_{i l}\right) e_{j s} \tilde{P}^{i j s l}+O\left(e^{(-(k+1) \tau}\right.$
Hyperbolic GBC mass: If $H_{k}^{\Phi}(V)>0 \forall V$,

$$
m_{k}^{\mathbb{H}}:=c(n, k) \inf _{\mathbb{N}_{b} \cap\{V>0, \eta(V, V)=1\}} H_{k}^{\Phi}(V)
$$

Theorem (Penrose Inequality for AH graphs (Ge-W.-Wu))
$k \geq 2$. If $f: \mathbb{H}^{n} \backslash \Omega \rightarrow \mathbb{R}$ with $\left(M^{n}, g\right)=\left(\mathbb{H}^{n} \backslash \Omega, b+V^{2} d f \otimes d f\right)$ is AH of decay order $\tau>\frac{n}{k+1}$ and $V \tilde{L}_{k} \in L^{1}$. Assume that $\Sigma=\partial \Omega$ is in a level set of f and $|\bar{\nabla} f(x)| \rightarrow \infty$ as $x \rightarrow \Sigma$.

$$
\begin{gathered}
m_{k}^{\mathbb{H}}=c(n, k)\left(\frac{1}{2} \int_{M^{n}} \frac{V \tilde{L}_{k}}{\sqrt{1+V^{2}|\bar{\nabla} f|^{2}}} d V_{g}+\frac{(2 k-1)!}{2} \int_{\Sigma} V H_{2 k-1} d \mu\right) . \\
m_{k}^{\mathbb{H}} \geq \frac{1}{2^{k}}\left(\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n}{k(n-1)}}+\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2 k}{k(n-1)}}\right)^{k},
\end{gathered}
$$

if $\tilde{L}_{k} \geq 0$ and $\Sigma \subset \mathbb{H}^{n}$ is horospherical convex. Moreover, equality is achieved by an anti-de Sitter Schwarzschild type metric.
$k=1$, Dahl-Gicquaud-Sakovich, de Lima and Girão

Alexandrov-Fenchel inequaliy in \mathbb{H}^{n}

Theorem (Ge-W.-Wu, JDG (2014), W.-Xia, Adv. Math (2014))

Let $1 \leq k \leq n-1$. Any horospherical convex hypersurface Σ in \mathbb{H}^{n} satisfies

$$
\int_{\Sigma} H_{k} d \mu \geq \omega_{n-1}\left\{\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{2}{k}}+\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{2(n-k-1)}{k} \frac{k}{n-1}}\right\}^{\frac{k}{2}} .
$$

Equality holds if and only if Σ is a geodesic sphere.

$$
k=2 \text { Li-Wei-Xiong, } H_{1}>0, H_{2}>0 \text { and star-shaped. }
$$

Alexandrov-Fenchel inequaliy in \mathbb{H}^{n}

Theorem (Ge-W.-Wu, JDG (2014), W.-Xia, Adv. Math (2014))

Let $1 \leq k \leq n-1$. Any horospherical convex hypersurface Σ in \mathbb{H}^{n} satisfies

$$
\int_{\Sigma} H_{k} d \mu \geq \omega_{n-1}\left\{\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{2}{k}}+\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{2}{k} \frac{(n-k-1)}{n-1}}\right\}^{\frac{k}{2}}
$$

Equality holds if and only if Σ is a geodesic sphere.

$$
k=2 \text { Li-Wei-Xiong, } H_{1}>0, H_{2}>0 \text { and star-shaped. }
$$

Alexandrov-Fenchel inequaliy in \mathbb{H}^{n}

Theorem (Ge-W.-Wu, JDG (2014), W.-Xia, Adv. Math (2014))

Let $1 \leq k \leq n-1$. Any horospherical convex hypersurface Σ in \mathbb{H}^{n} satisfies

$$
\int_{\Sigma} H_{k} d \mu \geq \omega_{n-1}\left\{\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{2}{k}}+\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{2}{k} \frac{(n-k-1)}{n-1}}\right\}^{\frac{k}{2}}
$$

Equality holds if and only if Σ is a geodesic sphere.

$$
k=2 \text { Li-Wei-Xiong, } H_{1}>0, H_{2}>0 \text { and star-shaped. }
$$

It solves a conjecture in integral geometry in \mathbb{H}^{n} proposed by Gao-Hug-Schneider, at least in the case of horospherical convex.

Weighted Alexandrov-Fenchel inequalites in \mathbb{H}^{n}

Theorem (Ge-W.-Wu)

Let Σ be a horospherical convex hypersurface in $\mathbb{H}^{n}, V=\cosh r$
$\int_{\Sigma} V H_{2 k+1} d \mu \geq \omega_{n-1}\left(\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n}{(k+1)(n-1)}}+\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2 k-2}{(k+1)(n-1)}}\right)^{k+1}$.
Equality holds if and only if Σ is a centered geodesic sphere in \mathbb{H}^{n}.
$k=1$ de Lima-Girao, Dahl-Gicquaud-Sakovich motivated by a similar inequality by Brendle-Hung-Wang

Ideas: Inverse curvature flow by Gerhardt, Heintze-Karcher type inequality of Brendle, optimal geometric inequalities on \mathbb{S}^{n-1} of Guan-W. and Alexandrov-Fenchel inequalites in \mathbb{H}^{n}.

Analysis in a conformal class

Analysis of R_{k} in a conformal class is rich and successful.

- $\sigma_{k^{-}}$-Yamabe problem Find a metric is a given conformal class such that σ_{k} is constant. (Viaclovsky, Chang-Gursky-Yang, Guan-W. Ge-W., Li-Li, Sheng-Trudinger-Wang, ...)
- A conformal spherical theorem of Chang-Gursky-Yang: $\left(M^{4}, g\right)$ with positive Yamabe constant and $\int_{M} \sigma_{2}>\int_{M}|W|^{2}$ is diffeomorphic to \mathbb{S}^{4} or $R P^{4}$.
- (Ge-W.-Lin JDG (2009)) $\left(M^{3}, g\right)$ with positive Yamabe constant and $\int_{M} \sigma_{2}>0$ is diffeomorphic to \mathbb{S}^{3}.

Thank you very much!

