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In this talk

We relate solutions to the overdetermined eigenvalue problem

∆u+ 2u = 0 in Ω ⊂ S2,

u = 0 along ∂Ω,

u > 0 in Ω

|∇u| locally constant along ∂Ω.

and free boundary minimal surfaces in B3
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Introduction

Let (M, g) be a Riem. mfld., Ω ⊂M bounded domain, f ∈ Lip(R):{
∆u+ f(u) = 0 in Ω,

u = 0 along ∂Ω.
(1)

∂u

∂ν
= c along ∂Ω, c ∈ R+. (2)

(1) + (2) is an overdetermined problem

and solutions, if they do
exist, often determine the shape of Ω.
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A classical result

Question: What can we say about the geometry of Ω?

J. Serrin considered the case: (M, g) = (Rn, 〈, 〉), f = 1, Ω ∈ C2:

Theorem (Serrin, 1971)
If u ∈ C2(Ω) is a solution to the equation ∆u+ 1 = 0 with zero Dirichlet
data and ∂u

∂n = c > 0 along ∂Ω then Ω is a metric ball and u a radial
function. (u > 0 by the Maximum Principle)

Two proofs:
Method of moving planes (Serrin, 1971): Extends Alexandrov
reflection method for embedded CMC hypersurfaces
Method of P-functions (Weingberger, 1971): P (u) = |∇u|2 + 2

n is
subharmonic and (Ω, u) is the ball solution ⇐⇒ P ≡ c
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Related results with equation ∆u+ f(u) = 0

Moving planes method has been generalized:
Works for positive solutions if f is a Lipchitz function:
Pucci-Serrin.
Bounded domains in Space forms Sn+ and Hn:
Kumaresan-Prajapat.
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Disclaimer:

Serrin’s result is not true in general. There are
non-rotationally symmetric domains that support a solution
to an overdetermined problem:

For the first eigenvalue of the laplacian in a general compact
manifold (Delay-Sicbaldi, 2013).
Sign-changing solutions to equation ∆u+ f(u) = 0 (Ruiz, 2023).
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More boundary components

In Serrin’s case (∆u+ 1 = 0, Ω ⊂ Rn)

∂u

∂ν
= c (equal!) along ∂Ω =⇒ ∂Ω connected.

But there are rotationally symmetric solutions to the Dirichlet problem
defined in annular domains:

u(|x|) =
1−A · |x|2

4
+B · Γ(|x|), |x| ∈ [r1(A,B), r2(A,B)].

Question: Can we classify more general rotationally symmetric solu-
tions? (different Neumann boundary condition!)
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Let (Ω, u) be a solution to the Dirichlet problem. |π0(∂Ω)| ≥ 2

∂u

∂ν
is locally constant along ∂Ω (3)

There are some results in exterior domains:

Theorem (Reichel, 1995), (Sirakov, 2001)
Let (Ω, u) a positive solution to

∆u+ f(u) = 0 in Ω ⊂ Rn,

u = a > 0 in Γi,

u = 0 along Γo,

where ∂Ω = Γi ∪ Γo, being Γi the inner component and Γo the outter
component. Suppose that u satisfies (3) and that ∂u∂ν ≤ 0 along Γi.
Then Ω is a rotationally symmetric annulus and u is radially symmetric.
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Case of Agostiniani-Borghini-Mazzieri

Consider problem {
∆u+ 1 = 0 in Ω ⊂ R2,

u = 0 along ∂Ω,
(4)

|∇u| is constant along some Γ ∈ π0(∂Ω). (5)

Theorem (Agostiniani-Borghini-Mazzieri, 2021)
If (Ω, u) is a solution to (4),(5) and u has infinitely many maximum
points, then Ω is a rotationally symmetric annulus and u depends on
the distance to the center of the annulus.

Theorem (Agostiniani-Borghini-Mazzieri, 2021)
There exist non-rotationally symmetric solutions to problem (4), with
∂u
∂n locally constant along ∂Ω.
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Our case

We study the equation
∆u+ 2u = 0 in Ω ⊂ S2,

u = 0 along ∂Ω,

u > 0 in Ω.

(6)

|∇u| is locally constant along ∂Ω. (7)

Objective: Classify rotationally symmetric solutions to (6) + (7).
Difficulty: The moving plane method is not available.
Observation: P (u) = |∇u|2 + u2 is a P−function, ∆P ≥ 0
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Statement of the result

Theorem (Espinar-M., 2023)
Let (Ω, u) a solution to ∆u+ 2u = 0, where Ω ⊂ S2 is a ring-shaped
domain with C2-boundary. Suppose that

1 u = 0 along ∂Ω

2 |∇u| is locally constant along ∂Ω

3 u has infinitely many maximum points.
Then Ω is a rotationally symmetric neighborhood of an equator and u
exhibits rotational symmetry with respect to the axis perpendicular to
the plane defining this equator.
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Sketch of the proof

Based on the approach of Agostiniani-Borghini-Mazzieri in “On Serrin
problem for ring-shaped domains”.

1 Describe a 1-parameter family of rotationally symmetric model
solutions.

2 Given U ∈ π0(Ω \Max(u)), construct a correspondence between
(U , u) and (UR, uR), with UR ∈ π0(ΩR \Max(uR)).

3 Compare the geometry of the level sets of (U , u) with those of
(UR, uR): norm of the gradient, curvature, length.

4 U or Ω \ U contained on an hemisphere =⇒ moving planes.
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Model solutions

Return to equation

(∗)

{
∆u+ 2u = 0, u > 0 in Ω ⊂ S2,

u = 0 along ∂Ω.

Consider cylindrical coordinates in S2:

S2 =
{

(
√

1− r2 cos θ,
√

1− r2 sin θ, r) : r ∈ [−1, 1], θ ∈ [0, 2π)
}
.

Rotationally symmetric solutions to (∗):

ΩR = {r ∈ [r−(R), r+(R)]}, uR(r) = α(R) (1− r arctanh(r) + ω(R)r) ,

ω(R) is such that Max(uR) = {r = R}, α(R) = r+(R)
√

1− r+(R)2 > 0.
R :=critical height.
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Left: Graphs of some of the model functions.
Right: Radial graph of the model solution of critical radius R = 0.

∂ΩR = {r = r−(R)} ∪ {r = r+(R)} = Γ−(R) ∪ Γ+(R)

ΩR \Max(uR) = ΩR \ γR = Ω−(R) ∪ Ω+(R)
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The τ -function

Let (Ω, u) be a solution to (∗) and U ∈ π0(Ω \ Max(u)). Define the
Normalised Wall Shear Stress (NWSS) of the region as

τ(U) := max

{
max

Γ
(|∇u| /umax) : Γ ∈ π0(∂Ω ∩ cl(U))

}
.

It is a scale-invariant quantity.
If τ±(R) := τ(Ω±(R)), ∀R ∈ [0, 1), then τ+(0) = τ−(0) = τ0 > 1.
τ+ : [0, 1)→ [τ0,+∞) and τ− : [0, 1)→ (1, τ0] are monotone
functions.
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Theorem
Let (Ω, u) be a solution to the Dirichlet problem and let
U ∈ π0(Ω \Max(u)). If τ(U) ≤ 1, then Ω is an open hemisphere and
u(r, θ) = αr for some α > 0.

Idea of the proof:
1 If cl(U) = cl(Ω) (Max(u) does not separate):

Condition τ(U) ≤ 1 implies that P (u) = |∇u|2 + u2 attains its
maximum inside Ω =⇒ rigidity.

2 The function

E(t) =
1

u2
max − t2

∫
cl(U)∩{u=t}

|∇u|.

is non-incresing if τ(U) ≤ 1.
3 If cl(U) 6= cl(Ω) (Max(u) does separate): E(t)→ +∞ as t→ umax

and E(t) ≤ E(0) < +∞; contradiction!
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The correspondence

Definition (Expected critical height)
Let (Ω, u) be a solution to the Dirichlet problem and
U ∈ π0(Ω \Max(ξ)). Suppose Ω is not a topological disk. Then:

if τ(U) < τ0, we set

R̄(U) = τ−1
− (τ(U)) , (8)

if τ(U) ≥ τ0, we set

R̄(U) = τ−1
+ (τ(U)) . (9)

Remark
R(U) ∈ [0, 1) is well defined because of the previous result.
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Pseudo-radial functions

Remark
By definition: Ψ(r, θ) = r if (U , u) = (Ω±(R), uR).
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Pseudo-radial functions

Let R(U) = R, and suppose that umax = (uR)max. Define the function
F : [0, umax]× [r−(R), r+(R)]→ R by

F (u, r) = u− α(R)(1− r arctanh(r) + ω(R)r).

∂F
∂r = 0 if, and only if, r = R =⇒ Implicit function theorem:

χ− : [0, umax]→ [r−(R), R] and χ+ : [0, umax]→ [R, r+(R)]

such that
F (u, χ±(u)) = 0 for all u ∈ [0, umax].

Definition (Pseudo-radial functions)
If τ(U) ≥ τ0, define Ψ(p) = χ+(u(p)) for all p ∈ U .
If τ(U) < τ0, define Ψ(p) = χ−(u(p)) for all p ∈ U .
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F (u, χ±(u)) = 0 for all u ∈ [0, umax].

Definition (Pseudo-radial functions)
If τ(U) ≥ τ0, define Ψ(p) = χ+(u(p)) for all p ∈ U .
If τ(U) < τ0, define Ψ(p) = χ−(u(p)) for all p ∈ U .
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Gradient estimates

Theorem
It holds

|∇u|2 (p) ≤ |∇uR|2 ◦Ψ(p) for all p ∈ U .

Moreover, if the equality holds at one single point of U , then
(Ω, ξ) ≡ (ΩR, uR) up to rotation and change of scale.

Idea of the proof:
1 Define a function β = β(Ψ) > 0 such that β · (|∇u|2 − |∇uR|2 ◦Ψ)

satisfies an elliptic inequality.
2 As R = R(U) then |∇u|2 ≤ |∇uR|2 ◦Ψ along

cl(U) ∩ ∂Ω =⇒ |∇u|2 ≤ |∇uR|2 ◦Ψ in U by the maximum
principle.

3 Equality at one single point =⇒ |∇u|2 = |∇uR|2 ◦Ψ in U . Then
the level sets have constant curvature.
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Curvature and length estimates

Proposition

Let p ∈ ∂Ω such that |∇ξ|2 (p) = max∂Ω∩cl(U) |∇ξ|2, r̄± := r±(R), and
κ(p) curvature with respect to the inner orientation. Then

κ(p) ≤ − r̄+√
1−r̄2+

if τ(U) ≥ τ0

κ(p) ≤ r̄−√
1−r̄2−

if τ(U) < τ0.

Theorem
Suppose that cl(U) ∩Max(u) = γU and cl(U) ∩ ∂Ω = ΓU are sets of
analytic closed curves. Then∣∣γU ∣∣ ≤ √

1−R2√
1−r̄2+

∣∣ΓU ∣∣ if τ(U) ≥ τ0,∣∣γU ∣∣ ≤ √
1−R2√
1−r̄2−

∣∣ΓU ∣∣ if τ(U) < τ0,
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Overdetermined problem

Now we can prove the main result:

Theorem (Espinar-M., 2023)
Let Ω ⊂ S2 ring shaped domain with C2-boundary, u ∈ C2(Ω) solution
to {

∆u+ 2u = 0, u > 0 in Ω ⊂ S2,

u = 0 along ∂Ω.

Suppose that |∇u| is locally constant along ∂Ω, and also that u has
infinitely many maximum points. Then (Ω, u) ≡ (ΩR, uR) for some
R ∈ [0, 1) up to a rotation and a change of scale.
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Sketch of the proof

1 ∃ γ ∈ Max(u) analytic curve such that Ω \ γ = Ω1 ∪ Ω2 with
Ω1 ∩ ∂Ω = Γ1 and Ω2 ∩ ∂Ω = Γ2.

2 Set U ∈ {Ω1,Ω2}, Γ = ∂Ω ∩ cl(U), R(U) = R:

|Γ| ≤ 2π
√

1− r̄2+ if τ(U) ≥ τ0,

|Γ| ≤ 2π
√

1− r̄2− if τ(U) < τ0.

3 Length estimates:

|γ| ≤
√

1−R2
|Γ|√

1− r̄2
±

≤ 2π
√

1−R2.

4 |γ| ≤ 2π =⇒ γ contained on an hemisphere S2
+ or γ an equator.

First case: Ω1 ⊂ S2+ or Ω2 ⊂ S2+ =⇒ moving planes.
Second case: Cauchy-Kovalevskaya.
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Minimal surfaces with free boundaries

Definition
Let Σ ⊂ B3 be an open immersed minimal surface with boundary. We
will say that Σ has free boundaries if each boundary component of Σ
meets orthogonally a sphere centered at the origin (from the inside),
possibly of different radii.
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Model Catenoids

Consider catenoid Cα,ω parametrized by

ψα,ω(r, θ) = α

(
cos θ√
1− r2

,
sin θ√
1− r2

, arctanh(r)− ω
)
,

r ∈ (−1, 1) and θ ∈ [0, 2π), with outward Gauss map

N(r, θ) =
(√

1− r2 cos θ,
√

1− r2 sin θ,−r
)
∈ S2 \ {s,n}.

The support function u(r, θ) = 〈ψ(r, θ), N((r, θ)〉 is given by

u(r, θ) = α(1− r arctanh(r) + ωr).

Then u solves ∆S2u+ 2u = 0 in S2 \ {s,n}.

CR :=
{
ψα(R),ω(R)(r, θ) : r ∈ (r−(R), r+(R)), θ ∈ [0, 2π)

}
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Up to reflection with respct to {z = 0}, ∀R ∈ [0, 1) :

CR Model catenoid←→ (ΩR, uR) Model solution

(a) R = 1/2 (b) R = 0 (Critical Catenoid)
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Souam’s Correspondence

Proposition (Souam, 2004)

Let Σ be a minimal surface with free boundaries, ∂Σ =
⋃k
i=1 ζi, and

injective Gauss map N : Σ→ S2. Set v(p) := 〈p,N(p)〉. Then

u(z) := (v ◦N−1)(z) =
〈
N−1(z), z

〉
, ∀z ∈ N(Σ) = Ω

satisfies OEP
∆S2u+ 2u = 0 in Ω,

u = 0 along ∂Ω,

|∇S2u|2 = b2i along Γi ∈ π0(∂Ω), i ∈ {1, . . . , k},

where ∂Ω =
⋃k
i=1 Γi, N(ζi) = Γi, and |bi| is the radius of the sphere in

which ζi ∈ π0(∂Σ) is contained.
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Statement of the results

Theorem (E.-Marı́n., 2023)
Let Σ ⊂ B3 be an embedded minimal annulus with free boundaries,
∂Σ = ζ1 ∪ ζ2, such that ζ1 ⊂ S2 and ζ2 ⊂ S2(r̃) for some
0 < r̃ ≤ 1(always true up to a dilation!). Suppose that its support
function has infinitely many critical points. Then, there exists R ∈ [0, 1)
such that Σ ≡ CR, up to a rotation around the origin.

Corollary (E-Marı́n, 2023)
Let Σ ⊂ B3 be an embedded free boundary minimal annulus, and
suppose its support function has infinitely many critical points. Then Σ
is the critical catenoid.
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Proof of the Theorem

We must prove:

Theorem (E.-Marı́n, 2023)
Let Σ ⊂ B3 be an embedded minimal annulus with free boundaries,
then it has an injective Gauss map and its support function has a
constant sign in Σ.

Proposition
In the previous case, if u is its support function and |Crit(u)| = +∞,
then γ̃ = Max(u) = Crit(u) is a closed simple curve.
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THANKS FOR THE ATTENTION!

José M. Espinar OEP and minimal surfaces 31/∞


	An overdetermined problem in S2
	Minimal annuli with free boundaries in the unit ball

