An overdetermined eigenvalue problem in \mathbb{S}^{2} and the Critical Catenoid conjecture

José M. Espinar
Universidad de Granada

Joint work with D. Marín

30.RP.23.00.04-CONSOLIDACION2022

PID2020-118137GB-I00

In this talk

We relate solutions to the overdetermined eigenvalue problem

$$
\left\{\begin{array}{ccc}
\Delta u+2 u=0 & \text { in } & \Omega \subset \mathbb{S}^{2}, \\
u=0 & \text { along } & \partial \Omega, \\
u>0 & \text { in } & \Omega \\
|\nabla u| \text { locally constant } & \text { along } & \partial \Omega .
\end{array}\right.
$$

In this talk

We relate solutions to the overdetermined eigenvalue problem

$$
\begin{aligned}
& \left\{\begin{array}{ccc}
\Delta u+2 u=0 & \text { in } & \Omega \subset \mathbb{S}^{2}, \\
u=0 & \text { along } & \partial \Omega, \\
u>0 & \text { in } & \Omega \\
|\nabla u| \text { locally constant } & \text { along } & \partial \Omega .
\end{array}\right. \\
& \text { and free boundary minimal surfaces in } \mathbb{B}^{3}
\end{aligned}
$$

Introduction

Let (M, g) be a Riem. mfld., $\Omega \subset M$ bounded domain, $f \in \operatorname{Lip}(\mathbb{R})$:

$$
\begin{align*}
& \left\{\begin{array}{c}
\Delta u+f(u)=0 \quad \text { in } \quad \Omega, \\
u=0 \quad \text { along } \quad \partial \Omega .
\end{array}\right. \tag{1}\\
& \frac{\partial u}{\partial \nu}=c \quad \text { along } \quad \partial \Omega, \quad c \in \mathbb{R}^{+} . \tag{2}
\end{align*}
$$

$(1)+(2)$ is an overdetermined problem

Introduction

Let (M, g) be a Riem. mfld., $\Omega \subset M$ bounded domain, $f \in \operatorname{Lip}(\mathbb{R})$:

$$
\begin{align*}
& \left\{\begin{array}{c}
\Delta u+f(u)=0 \quad \text { in } \quad \Omega, \\
u=0 \quad \text { along } \quad \partial \Omega .
\end{array}\right. \tag{1}\\
& \frac{\partial u}{\partial \nu}=c \quad \text { along } \quad \partial \Omega, \quad c \in \mathbb{R}^{+} . \tag{2}
\end{align*}
$$

(1) $+(2)$ is an overdetermined problem and solutions, if they do exist, often determine the shape of Ω.

A classical result

Question: What can we say about the geometry of Ω ?

A classical result

Question: What can we say about the geometry of Ω ?
J. Serrin considered the case: $(M, g)=\left(\mathbb{R}^{n},\langle\rangle,\right), f=1, \Omega \in \mathcal{C}^{2}$:

Theorem (Serrin, 1971)

If $u \in \mathcal{C}^{2}(\Omega)$ is a solution to the equation $\Delta u+1=0$ with zero Dirichlet data and $\frac{\partial u}{\partial n}=c>0$ along $\partial \Omega$ then Ω is a metric ball and u a radial function. ($u>0$ by the Maximum Principle)

A classical result

Question: What can we say about the geometry of Ω ?
J. Serrin considered the case: $(M, g)=\left(\mathbb{R}^{n},\langle\rangle,\right), f=1, \Omega \in \mathcal{C}^{2}$:

Theorem (Serrin, 1971)

If $u \in \mathcal{C}^{2}(\Omega)$ is a solution to the equation $\Delta u+1=0$ with zero Dirichlet data and $\frac{\partial u}{\partial n}=c>0$ along $\partial \Omega$ then Ω is a metric ball and u a radial function. ($u>0$ by the Maximum Principle)

Two proofs:

- Method of moving planes (Serrin, 1971): Extends Alexandrov reflection method for embedded CMC hypersurfaces
- Method of P-functions (Weingberger, 1971): $P(u)=|\nabla u|^{2}+\frac{2}{n}$ is subharmonic and (Ω, u) is the ball solution $\Longleftrightarrow P \equiv c$

Related results with equation $\Delta u+f(u)=0$

Moving planes method has been generalized:

- Works for positive solutions if f is a Lipchitz function: Pucci-Serrin.
- Bounded domains in Space forms \mathbb{S}_{+}^{n} and \mathbb{H}^{n} : Kumaresan-Prajapat.

Related results with equation $\Delta u+f(u)=0$

Moving planes method has been generalized:

- Works for positive solutions if f is a Lipchitz function:

Pucci-Serrin.

- Bounded domains in Space forms \mathbb{S}_{+}^{n} and \mathbb{H}^{n} : Kumaresan-Prajapat.

Related results with equation $\Delta u+f(u)=0$

Geometric methods have been introduced recently:

- Works for positive solutions if f is a Lipchitz function: Pucci-Serrin.
- Bounded domains in Space forms \mathbb{S}_{+}^{n} and \mathbb{H}^{n} : Kumaresan-Prajapat.

Related results with equation $\Delta u+f(u)=0$

Geometric methods have been introduced recently:

- Works for positive solutions if f is a Lipchitz function:

Pucci-Serrin.

- Bounded domains in Space forms \mathbb{S}_{+}^{n} and \mathbb{H}^{n} : Kumaresan-Prajapat.
- Non-compact domains in Space Forms \mathbb{R}^{n} and \mathbb{H}^{n}, extending techniques from CMC hypersurfaces: Scibaldi-Ros-Ruíz, E.-Mao, E.-Farina-Mazet.
- Simply-connected domains in \mathbb{S}^{2}, Index method: E.-Mazet

Related results with equation $\Delta u+f(u)=0$

Geometric methods have been introduced recently:

- Works for positive solutions if f is a Lipchitz function:

Pucci-Serrin.

- Bounded domains in Space forms \mathbb{S}_{+}^{n} and \mathbb{H}^{n} : Kumaresan-Prajapat.
- Non-compact domains in Space Forms \mathbb{R}^{n} and \mathbb{H}^{n}, extending techniques from CMC hypersurfaces: Scibaldi-Ros-Ruíz, E.-Mao, E.-Farina-Mazet.
- Simply-connected domains in \mathbb{S}^{2}, Index method: E.-Mazet P-function method has been generalized:
- Weak solutions of divergence-form equations: Garofalo-Lewis.
- Serrin's result in product manifolds: Farina-Roncoroni.

Disclaimer:

Serrin's result is not true in general. There are non-rotationally symmetric domains that support a solution to an overdetermined problem:

Disclaimer:

Serrin's result is not true in general. There are non-rotationally symmetric domains that support a solution to an overdetermined problem:

- For the first eigenvalue of the laplacian in a general compact manifold (Delay-Sicbaldi, 2013).

Disclaimer:

Serrin's result is not true in general. There are non-rotationally symmetric domains that support a solution to an overdetermined problem:

- For the first eigenvalue of the laplacian in a general compact manifold (Delay-Sicbaldi, 2013).
- Sign-changing solutions to equation $\Delta u+f(u)=0$ (Ruiz, 2023).

More boundary components

In Serrin's case $\left(\Delta u+1=0, \Omega \subset \mathbb{R}^{n}\right)$

$$
\frac{\partial u}{\partial \nu}=c \text { (equal!) along } \partial \Omega \Longrightarrow \partial \Omega \quad \text { connected. }
$$

More boundary components

In Serrin's case $\left(\Delta u+1=0, \Omega \subset \mathbb{R}^{n}\right)$

$$
\frac{\partial u}{\partial \nu}=c \text { (equal!) along } \partial \Omega \Longrightarrow \partial \Omega \quad \text { connected. }
$$

But there are rotationally symmetric solutions to the Dirichlet problem defined in annular domains:

$$
u(|x|)=\frac{1-A \cdot|x|^{2}}{4}+B \cdot \Gamma(|x|), \quad|x| \in\left[r_{1}(A, B), r_{2}(A, B)\right]
$$

More boundary components

In Serrin's case $\left(\Delta u+1=0, \Omega \subset \mathbb{R}^{n}\right)$

$$
\frac{\partial u}{\partial \nu}=c \text { (equal!) along } \partial \Omega \Longrightarrow \partial \Omega \quad \text { connected. }
$$

But there are rotationally symmetric solutions to the Dirichlet problem defined in annular domains:

$$
u(|x|)=\frac{1-A \cdot|x|^{2}}{4}+B \cdot \Gamma(|x|), \quad|x| \in\left[r_{1}(A, B), r_{2}(A, B)\right]
$$

Question: Can we classify more general rotationally symmetric solutions? (different Neumann boundary condition!)

Let (Ω, u) be a solution to the Dirichlet problem. $\left|\pi_{0}(\partial \Omega)\right| \geq 2$

$$
\begin{equation*}
\frac{\partial u}{\partial \nu} \text { is locally constant along } \partial \Omega \tag{3}
\end{equation*}
$$

Let (Ω, u) be a solution to the Dirichlet problem. $\left|\pi_{0}(\partial \Omega)\right| \geq 2$

$$
\frac{\partial u}{\partial \nu} \text { is locally constant along } \partial \Omega
$$

There are some results in exterior domains:

Theorem (Reichel, 1995), (Sirakov, 2001)

Let (Ω, u) a positive solution to

$$
\left\{\begin{array}{ccc}
\Delta u+f(u)=0 & \text { in } & \Omega \subset \mathbb{R}^{n}, \\
u=a>0 & \text { in } & \Gamma_{i}, \\
u=0 & \text { along } & \Gamma_{o},
\end{array}\right.
$$

where $\partial \Omega=\Gamma_{i} \cup \Gamma_{o}$, being Γ_{i} the inner component and Γ_{o} the outter component. Suppose that u satisfies (3) and that $\frac{\partial u}{\partial \nu} \leq 0$ along Γ_{i}. Then Ω is a rotationally symmetric annulus and u is radially symmetric.

Case of Agostiniani-Borghini-Mazzieri

Consider problem

$$
\left\{\begin{array}{ccc}
\Delta u+1=0 & \text { in } & \Omega \subset \mathbb{R}^{2} \tag{4}\\
u=0 & \text { along } & \partial \Omega
\end{array}\right.
$$

$|\nabla u| \quad$ is constant along some $\quad \Gamma \in \pi_{0}(\partial \Omega)$.

Case of Agostiniani-Borghini-Mazzieri

Consider problem

$$
\left\{\begin{array}{ccc}
\Delta u+1=0 & \text { in } & \Omega \subset \mathbb{R}^{2} \tag{4}\\
u=0 & \text { along } & \partial \Omega
\end{array}\right.
$$

$|\nabla u|$ is constant along some $\quad \Gamma \in \pi_{0}(\partial \Omega)$.

Theorem (Agostiniani-Borghini-Mazzieri, 2021)

If (Ω, u) is a solution to (4),(5) and u has infinitely many maximum points, then Ω is a rotationally symmetric annulus and u depends on the distance to the center of the annulus.

Case of Agostiniani-Borghini-Mazzieri

Consider problem

$$
\left\{\begin{array}{ccc}
\Delta u+1=0 \quad \text { in } & \Omega \subset \mathbb{R}^{2} \tag{4}\\
u=0 & \text { along } & \partial \Omega
\end{array}\right.
$$

$|\nabla u| \quad$ is constant along some $\quad \Gamma \in \pi_{0}(\partial \Omega)$.

Theorem (Agostiniani-Borghini-Mazzieri, 2021)

If (Ω, u) is a solution to (4),(5) and u has infinitely many maximum points, then Ω is a rotationally symmetric annulus and u depends on the distance to the center of the annulus.

Theorem (Agostiniani-Borghini-Mazzieri, 2021)

There exist non-rotationally symmetric solutions to problem (4), with $\frac{\partial u}{\partial n}$ locally constant along $\partial \Omega$.

Our case

We study the equation

$$
\left\{\begin{array}{ccc}
\Delta u+2 u=0 & \text { in } & \Omega \subset \mathbb{S}^{2}, \tag{6}\\
u=0 & \text { along } & \partial \Omega, \\
u>0 & \text { in } & \Omega .
\end{array}\right.
$$

$|\nabla u|$ is locally constant along $\partial \Omega$.

Our case

We study the equation

$$
\left\{\begin{array}{ccc}
\Delta u+2 u=0 & \text { in } & \Omega \subset \mathbb{S}^{2} \tag{6}\\
u=0 & \text { along } & \partial \Omega \\
u>0 & \text { in } & \Omega
\end{array}\right.
$$

$|\nabla u|$ is locally constant along $\partial \Omega$.

Objective: Classify rotationally symmetric solutions to (6) $+(7)$. Difficulty: The moving plane method is not available. Observation: $P(u)=|\nabla u|^{2}+u^{2}$ is a P-function, $\Delta P \geq 0$

Statement of the result

Theorem (Espinar-M., 2023)

Let (Ω, u) a solution to $\Delta u+2 u=0$, where $\Omega \subset \mathbb{S}^{2}$ is a ring-shaped domain with \mathcal{C}^{2}-boundary. Suppose that
(1) $u=0$ along $\partial \Omega$
(2) $|\nabla u|$ is locally constant along $\partial \Omega$
(3) u has infinitely many maximum points.

Then Ω is a rotationally symmetric neighborhood of an equator and u exhibits rotational symmetry with respect to the axis perpendicular to the plane defining this equator.

Sketch of the proof

Based on the approach of Agostiniani-Borghini-Mazzieri in "On Serrin problem for ring-shaped domains".
(1) Describe a 1-parameter family of rotationally symmetric model solutions.

Sketch of the proof

Based on the approach of Agostiniani-Borghini-Mazzieri in "On Serrin problem for ring-shaped domains".
(1) Describe a 1-parameter family of rotationally symmetric model solutions.
(2) Given $\mathcal{U} \in \pi_{0}(\Omega \backslash \operatorname{Max}(u))$, construct a correspondence between (\mathcal{U}, u) and $\left(\mathcal{U}_{R}, u_{R}\right)$, with $\mathcal{U}_{R} \in \pi_{0}\left(\Omega_{R} \backslash \operatorname{Max}\left(u_{R}\right)\right)$.

Sketch of the proof

Based on the approach of Agostiniani-Borghini-Mazzieri in "On Serrin problem for ring-shaped domains".
(1) Describe a 1-parameter family of rotationally symmetric model solutions.
(2) Given $\mathcal{U} \in \pi_{0}(\Omega \backslash \operatorname{Max}(u))$, construct a correspondence between (\mathcal{U}, u) and $\left(\mathcal{U}_{R}, u_{R}\right)$, with $\mathcal{U}_{R} \in \pi_{0}\left(\Omega_{R} \backslash \operatorname{Max}\left(u_{R}\right)\right)$.
(3) Compare the geometry of the level sets of (\mathcal{U}, u) with those of $\left(\mathcal{U}_{R}, u_{R}\right)$:

Sketch of the proof

Based on the approach of Agostiniani-Borghini-Mazzieri in "On Serrin problem for ring-shaped domains".
(1) Describe a 1-parameter family of rotationally symmetric model solutions.
(2) Given $\mathcal{U} \in \pi_{0}(\Omega \backslash \operatorname{Max}(u))$, construct a correspondence between (\mathcal{U}, u) and $\left(\mathcal{U}_{R}, u_{R}\right)$, with $\mathcal{U}_{R} \in \pi_{0}\left(\Omega_{R} \backslash \operatorname{Max}\left(u_{R}\right)\right)$.
(3) Compare the geometry of the level sets of (\mathcal{U}, u) with those of $\left(\mathcal{U}_{R}, u_{R}\right)$: norm of the gradient, curvature, length.

Sketch of the proof

Based on the approach of Agostiniani-Borghini-Mazzieri in "On Serrin problem for ring-shaped domains".
(1) Describe a 1-parameter family of rotationally symmetric model solutions.
(2) Given $\mathcal{U} \in \pi_{0}(\Omega \backslash \operatorname{Max}(u))$, construct a correspondence between (\mathcal{U}, u) and $\left(\mathcal{U}_{R}, u_{R}\right)$, with $\mathcal{U}_{R} \in \pi_{0}\left(\Omega_{R} \backslash \operatorname{Max}\left(u_{R}\right)\right)$.
(3) Compare the geometry of the level sets of (\mathcal{U}, u) with those of $\left(\mathcal{U}_{R}, u_{R}\right)$: norm of the gradient, curvature, length.
(4) \mathcal{U} or $\Omega \backslash \mathcal{U}$ contained on an hemisphere \Longrightarrow moving planes.

Model solutions

Return to equation

$$
(*)\left\{\begin{array}{rlrl}
\Delta u+2 u & =0, u>0 & & \text { in } \\
u & =0 & & \Omega \subset \mathbb{S}^{2}, \\
\text { along } & & \partial \Omega .
\end{array}\right.
$$

Consider cylindrical coordinates in \mathbb{S}^{2} :

$$
\mathbb{S}^{2}=\left\{\left(\sqrt{1-r^{2}} \cos \theta, \sqrt{1-r^{2}} \sin \theta, r\right): r \in[-1,1], \theta \in[0,2 \pi)\right\}
$$

Model solutions

Return to equation

$$
(*)\left\{\begin{array}{rlrl}
\Delta u+2 u & =0, u>0 & & \text { in } \\
u & =0 & & \Omega \subset \mathbb{S}^{2} \\
u l o n g & & \partial \Omega
\end{array}\right.
$$

Consider cylindrical coordinates in \mathbb{S}^{2} :

$$
\mathbb{S}^{2}=\left\{\left(\sqrt{1-r^{2}} \cos \theta, \sqrt{1-r^{2}} \sin \theta, r\right): r \in[-1,1], \theta \in[0,2 \pi)\right\}
$$

Rotationally symmetric solutions to $(*)$:
$\Omega_{R}=\left\{r \in\left[r_{-}(R), r_{+}(R)\right]\right\}, \quad u_{R}(r)=\alpha(R)(1-r \operatorname{arctanh}(r)+\omega(R) r)$,
$\omega(R)$ is such that $\operatorname{Max}\left(u_{R}\right)=\{r=R\}, \alpha(R)=r_{+}(R) \sqrt{1-r_{+}(R)^{2}}>0$. $R:=$ critical height.

Left: Graphs of some of the model functions.
Right: Radial graph of the model solution of critical radius $R=0$.

$$
\begin{gathered}
\partial \Omega_{R}=\left\{r=r_{-}(R)\right\} \cup\left\{r=r_{+}(R)\right\}=\Gamma_{-}(R) \cup \Gamma_{+}(R) \\
\Omega_{R} \backslash \operatorname{Max}\left(u_{R}\right)=\Omega_{R} \backslash \gamma_{R}=\Omega_{-}(R) \cup \Omega_{+}(R)
\end{gathered}
$$

The $\bar{\tau}$-function

Let (Ω, u) be a solution to $(*)$ and $\mathcal{U} \in \pi_{0}(\Omega \backslash \operatorname{Max}(u))$. Define the Normalised Wall Shear Stress (NWSS) of the region as

$$
\bar{\tau}(\mathcal{U}):=\max \left\{\max _{\Gamma}\left(|\nabla u| / u_{\max }\right): \Gamma \in \pi_{0}(\partial \Omega \cap \mathrm{cl}(\mathcal{U}))\right\} .
$$

The $\bar{\tau}$-function

Let (Ω, u) be a solution to $(*)$ and $\mathcal{U} \in \pi_{0}(\Omega \backslash \operatorname{Max}(u))$. Define the Normalised Wall Shear Stress (NWSS) of the region as

$$
\bar{\tau}(\mathcal{U}):=\max \left\{\max _{\Gamma}\left(|\nabla u| / u_{\max }\right): \Gamma \in \pi_{0}(\partial \Omega \cap \mathrm{cl}(\mathcal{U}))\right\}
$$

- It is a scale-invariant quantity.
- If $\bar{\tau}_{ \pm}(R):=\bar{\tau}\left(\Omega_{ \pm}(R)\right), \quad \forall R \in[0,1)$, then $\bar{\tau}_{+}(0)=\bar{\tau}_{-}(0)=\tau_{0}>1$.
- $\bar{\tau}_{+}:[0,1) \rightarrow\left[\tau_{0},+\infty\right)$ and $\bar{\tau}_{-}:[0,1) \rightarrow\left(1, \tau_{0}\right]$ are monotone functions.

Theorem

Let (Ω, u) be a solution to the Dirichlet problem and let $\mathcal{U} \in \pi_{0}(\Omega \backslash \operatorname{Max}(u))$. If $\bar{\tau}(\mathcal{U}) \leq 1$, then Ω is an open hemisphere and $u(r, \theta)=\alpha r$ for some $\alpha>0$.

Theorem

Let (Ω, u) be a solution to the Dirichlet problem and let $\mathcal{U} \in \pi_{0}(\Omega \backslash \operatorname{Max}(u))$. If $\bar{\tau}(\mathcal{U}) \leq 1$, then Ω is an open hemisphere and $u(r, \theta)=\alpha r$ for some $\alpha>0$.

Idea of the proof:

(1) If $\operatorname{cl}(\mathcal{U})=\operatorname{cl}(\Omega)(\operatorname{Max}(u)$ does not separate):

Condition $\bar{\tau}(\mathcal{U}) \leq 1$ implies that $P(u)=|\nabla u|^{2}+u^{2}$ attains its maximum inside $\Omega \Longrightarrow$ rigidity.
(2) The function

$$
E(t)=\frac{1}{u_{\max }^{2}-t^{2}} \int_{\mathrm{Cl}(\mathcal{U}) \cap\{u=t\}}|\nabla u| .
$$

is non-incresing if $\bar{\tau}(\mathcal{U}) \leq 1$.
(3) If $\mathrm{cl}(\mathcal{U}) \neq \mathrm{cl}(\Omega)(\operatorname{Max}(u)$ does separate $): E(t) \rightarrow+\infty$ as $t \rightarrow u_{\text {max }}$ and $E(t) \leq E(0)<+\infty$; contradiction!

The correspondence

Definition (Expected critical height)

Let (Ω, u) be a solution to the Dirichlet problem and $\mathcal{U} \in \pi_{0}(\Omega \backslash \operatorname{Max}(\xi))$. Suppose Ω is not a topological disk. Then:

- if $\bar{\tau}(\mathcal{U})<\tau_{0}$, we set

$$
\begin{equation*}
\bar{R}(\mathcal{U})=\bar{\tau}_{-}^{-1}(\bar{\tau}(\mathcal{U})), \tag{8}
\end{equation*}
$$

- if $\bar{\tau}(\mathcal{U}) \geq \tau_{0}$, we set

$$
\begin{equation*}
\bar{R}(\mathcal{U})=\bar{\tau}_{+}^{-1}(\bar{\tau}(\mathcal{U})) . \tag{9}
\end{equation*}
$$

The correspondence

Definition (Expected critical height)

Let (Ω, u) be a solution to the Dirichlet problem and
$\mathcal{U} \in \pi_{0}(\Omega \backslash \operatorname{Max}(\xi))$. Suppose Ω is not a topological disk. Then:

- if $\bar{\tau}(\mathcal{U})<\tau_{0}$, we set

$$
\begin{equation*}
\bar{R}(\mathcal{U})=\bar{\tau}_{-}^{-1}(\bar{\tau}(\mathcal{U})), \tag{8}
\end{equation*}
$$

- if $\bar{\tau}(\mathcal{U}) \geq \tau_{0}$, we set

$$
\begin{equation*}
\bar{R}(\mathcal{U})=\bar{\tau}_{+}^{-1}(\bar{\tau}(\mathcal{U})) . \tag{9}
\end{equation*}
$$

Remark

$R(\mathcal{U}) \in[0,1)$ is well defined because of the previous result.

Pseudo-radial functions

Remark

By definition: $\Psi(r, \theta)=r$ if $(\mathcal{U}, u)=\left(\Omega_{ \pm}(R), u_{R}\right)$.

Pseudo-radial functions

Let $R(\mathcal{U})=R$, and suppose that $u_{\max }=\left(u_{R}\right)_{\max }$. Define the function $F:\left[0, u_{\max }\right] \times\left[r_{-}(R), r_{+}(R)\right] \rightarrow \mathbb{R}$ by

$$
F(u, r)=u-\alpha(R)(1-r \operatorname{arctanh}(r)+\omega(R) r)
$$

$\frac{\partial F}{\partial r}=0$ if, and only if, $r=R \Longrightarrow$ Implicit function theorem:

Pseudo-radial functions

Let $R(\mathcal{U})=R$, and suppose that $u_{\max }=\left(u_{R}\right)_{\max }$. Define the function $F:\left[0, u_{\max }\right] \times\left[r_{-}(R), r_{+}(R)\right] \rightarrow \mathbb{R}$ by

$$
F(u, r)=u-\alpha(R)(1-r \operatorname{arctanh}(r)+\omega(R) r)
$$

$\frac{\partial F}{\partial r}=0$ if, and only if, $r=R \Longrightarrow$ Implicit function theorem:

$$
\chi_{-}:\left[0, u_{\max }\right] \rightarrow\left[r_{-}(R), R\right] \quad \text { and } \quad \chi_{+}:\left[0, u_{\max }\right] \rightarrow\left[R, r_{+}(R)\right]
$$

such that

$$
F\left(u, \chi_{ \pm}(u)\right)=0 \quad \text { for all } \quad u \in\left[0, u_{\max }\right]
$$

Pseudo-radial functions

Let $R(\mathcal{U})=R$, and suppose that $u_{\max }=\left(u_{R}\right)_{\max }$. Define the function $F:\left[0, u_{\text {max }}\right] \times\left[r_{-}(R), r_{+}(R)\right] \rightarrow \mathbb{R}$ by

$$
F(u, r)=u-\alpha(R)(1-r \operatorname{arctanh}(r)+\omega(R) r)
$$

$\frac{\partial F}{\partial r}=0 \mathrm{if}$, and only if, $r=R \Longrightarrow$ Implicit function theorem:

$$
\chi_{-}:\left[0, u_{\max }\right] \rightarrow\left[r_{-}(R), R\right] \quad \text { and } \quad \chi_{+}:\left[0, u_{\max }\right] \rightarrow\left[R, r_{+}(R)\right]
$$

such that

$$
F\left(u, \chi_{ \pm}(u)\right)=0 \quad \text { for all } \quad u \in\left[0, u_{\max }\right]
$$

Definition (Pseudo-radial functions)

- If $\bar{\tau}(\mathcal{U}) \geq \tau_{0}$, define $\Psi(p)=\chi_{+}(u(p))$ for all $p \in \mathcal{U}$.
- If $\bar{\tau}(\mathcal{U})<\tau_{0}$, define $\Psi(p)=\chi_{-}(u(p))$ for all $p \in \mathcal{U}$.

Gradient estimates

Theorem

It holds

$$
|\nabla u|^{2}(p) \leq\left|\nabla u_{R}\right|^{2} \circ \Psi(p) \text { for all } p \in \mathcal{U} .
$$

Moreover, if the equality holds at one single point of \mathcal{U}, then $(\Omega, \xi) \equiv\left(\Omega_{R}, u_{R}\right)$ up to rotation and change of scale.

Gradient estimates

Theorem

It holds

$$
|\nabla u|^{2}(p) \leq\left|\nabla u_{R}\right|^{2} \circ \Psi(p) \text { for all } p \in \mathcal{U} \text {. }
$$

Moreover, if the equality holds at one single point of \mathcal{U}, then $(\Omega, \xi) \equiv\left(\Omega_{R}, u_{R}\right)$ up to rotation and change of scale.

Idea of the proof:
(1) Define a function $\beta=\beta(\Psi)>0$ such that $\beta \cdot\left(|\nabla u|^{2}-\left|\nabla u_{R}\right|^{2} \circ \Psi\right)$ satisfies an elliptic inequality.
(2) As $R=R(\mathcal{U})$ then $|\nabla u|^{2} \leq\left|\nabla u_{R}\right|^{2} \circ \Psi$ along $\mathrm{cl}(\mathcal{U}) \cap \partial \Omega \Longrightarrow|\nabla u|^{2} \leq\left|\nabla u_{R}\right|^{2} \circ \Psi$ in \mathcal{U} by the maximum principle.
(3) Equality at one single point $\Longrightarrow|\nabla u|^{2}=\left|\nabla u_{R}\right|^{2} \circ \Psi$ in \mathcal{U}. Then the level sets have constant curvature.

Curvature and length estimates

Proposition

Let $p \in \partial \Omega$ such that $|\nabla \xi|^{2}(p)=\max _{\partial \Omega \cap c \mid(\mathcal{U})}|\nabla \xi|^{2}, \bar{r}_{ \pm}:=r_{ \pm}(R)$, and $\kappa(p)$ curvature with respect to the inner orientation. Then

- $\kappa(p) \leq-\frac{\bar{r}+}{\sqrt{1-\bar{r}_{+}^{2}}}$ if $\bar{\tau}(\mathcal{U}) \geq \tau_{0}$
- $\kappa(p) \leq \frac{\overline{r_{-}}}{\sqrt{1-\bar{r}_{-}^{2}}}$ if $\bar{\tau}(\mathcal{U})<\tau_{0}$.

Curvature and length estimates

Proposition

Let $p \in \partial \Omega$ such that $|\nabla \xi|^{2}(p)=\max _{\partial \Omega \cap c \mid}(\mathcal{U})|\nabla \xi|^{2}, \bar{r}_{ \pm}:=r_{ \pm}(R)$, and $\kappa(p)$ curvature with respect to the inner orientation. Then

- $\kappa(p) \leq-\frac{\bar{r}_{+}}{\sqrt{1-\bar{r}_{+}^{2}}}$ if $\bar{\tau}(\mathcal{U}) \geq \tau_{0}$
- $\kappa(p) \leq \frac{\bar{r}_{-}}{\sqrt{1-\bar{r}_{-}^{2}}}$ if $\bar{\tau}(\mathcal{U})<\tau_{0}$.

Theorem

Suppose that $\mathrm{cl}(\mathcal{U}) \cap \operatorname{Max}(u)=\gamma^{\mathcal{U}}$ and $\mathrm{cl}(\mathcal{U}) \cap \partial \Omega=\Gamma^{\mathcal{U}}$ are sets of analytic closed curves. Then
$\begin{array}{ll}\text { - }\left|\gamma^{\mathcal{U}}\right| \leq \frac{\sqrt{1-R^{2}}}{\sqrt{1-\bar{r}_{+}^{2}}}\left|\Gamma^{\mathcal{U}}\right| & \text { if } \bar{\tau}(\mathcal{U}) \geq \tau_{0}, \\ \text { - }\left|\gamma^{\mathcal{U}}\right| \leq \frac{\sqrt{1-R^{2}}}{\sqrt{1-\bar{r}_{-}^{2}}}\left|\Gamma^{\mathcal{U}}\right| & \text { if } \bar{\tau}(\mathcal{U})<\tau_{0},\end{array}$

Overdetermined problem

Now we can prove the main result:

Theorem (Espinar-M., 2023)

Let $\Omega \subset \mathbb{S}^{2}$ ring shaped domain with \mathcal{C}^{2}-boundary, $u \in \mathcal{C}^{2}(\Omega)$ solution to

$$
\left\{\begin{array}{rlrr}
\Delta u+2 u & =0, u>0 & \text { in } & \Omega \subset \mathbb{S}^{2}, \\
u & =0 & & \text { along }
\end{array} \quad \partial \Omega .\right.
$$

Suppose that $|\nabla u|$ is locally constant along $\partial \Omega$, and also that u has infinitely many maximum points. Then $(\Omega, u) \equiv\left(\Omega_{R}, u_{R}\right)$ for some $R \in[0,1)$ up to a rotation and a change of scale.

Sketch of the proof

(1) $\exists \gamma \in \operatorname{Max}(u)$ analytic curve such that $\Omega \backslash \gamma=\Omega_{1} \cup \Omega_{2}$ with $\Omega_{1} \cap \partial \Omega=\Gamma_{1}$ and $\Omega_{2} \cap \partial \Omega=\Gamma_{2}$.

Sketch of the proof

(1) $\exists \gamma \in \operatorname{Max}(u)$ analytic curve such that $\Omega \backslash \gamma=\Omega_{1} \cup \Omega_{2}$ with $\Omega_{1} \cap \partial \Omega=\Gamma_{1}$ and $\Omega_{2} \cap \partial \Omega=\Gamma_{2}$.
(2) Set $\mathcal{U} \in\left\{\Omega_{1}, \Omega_{2}\right\}, \Gamma=\partial \Omega \cap \operatorname{cl}(\mathcal{U}), R(\mathcal{U})=R$:

- $|\Gamma| \leq 2 \pi \sqrt{1-\bar{r}_{+}^{2}} \quad$ if $\bar{\tau}(\mathcal{U}) \geq \tau_{0}$,
- $|\Gamma| \leq 2 \pi \sqrt{1-\bar{r}_{-}^{2}} \quad$ if $\bar{\tau}(\mathcal{U})<\tau_{0}$.

Sketch of the proof

(1) $\exists \gamma \in \operatorname{Max}(u)$ analytic curve such that $\Omega \backslash \gamma=\Omega_{1} \cup \Omega_{2}$ with $\Omega_{1} \cap \partial \Omega=\Gamma_{1}$ and $\Omega_{2} \cap \partial \Omega=\Gamma_{2}$.
(2) Set $\mathcal{U} \in\left\{\Omega_{1}, \Omega_{2}\right\}, \Gamma=\partial \Omega \cap \operatorname{cl}(\mathcal{U}), R(\mathcal{U})=R$:

- $|\Gamma| \leq 2 \pi \sqrt{1-\bar{r}_{+}^{2}} \quad$ if $\bar{\tau}(\mathcal{U}) \geq \tau_{0}$,
- $|\Gamma| \leq 2 \pi \sqrt{1-\bar{r}_{-}^{2}} \quad$ if $\bar{\tau}(\mathcal{U})<\tau_{0}$.
(3) Length estimates:

$$
|\gamma| \leq \sqrt{1-R^{2}} \frac{|\Gamma|}{\sqrt{1-\bar{r}_{ \pm}^{2}}} \leq 2 \pi \sqrt{1-R^{2}}
$$

Sketch of the proof

(1. $\exists \gamma \in \operatorname{Max}(u)$ analytic curve such that $\Omega \backslash \gamma=\Omega_{1} \cup \Omega_{2}$ with $\Omega_{1} \cap \partial \Omega=\Gamma_{1}$ and $\Omega_{2} \cap \partial \Omega=\Gamma_{2}$.
(2) Set $\mathcal{U} \in\left\{\Omega_{1}, \Omega_{2}\right\}, \Gamma=\partial \Omega \cap \operatorname{cl}(\mathcal{U}), R(\mathcal{U})=R$:

- $|\Gamma| \leq 2 \pi \sqrt{1-\bar{r}_{+}^{2}} \quad$ if $\bar{\tau}(\mathcal{U}) \geq \tau_{0}$,
- $|\Gamma| \leq 2 \pi \sqrt{1-\bar{r}_{-}^{2}} \quad$ if $\bar{\tau}(\mathcal{U})<\tau_{0}$.
(3) Length estimates:

$$
|\gamma| \leq \sqrt{1-R^{2}} \frac{|\Gamma|}{\sqrt{1-\bar{r}_{ \pm}^{2}}} \leq 2 \pi \sqrt{1-R^{2}}
$$

(4) $|\gamma| \leq 2 \pi \Longrightarrow \gamma$ contained on an hemisphere \mathbb{S}_{+}^{2} or γ an equator.

Sketch of the proof

(1. $\exists \gamma \in \operatorname{Max}(u)$ analytic curve such that $\Omega \backslash \gamma=\Omega_{1} \cup \Omega_{2}$ with $\Omega_{1} \cap \partial \Omega=\Gamma_{1}$ and $\Omega_{2} \cap \partial \Omega=\Gamma_{2}$.
(2) Set $\mathcal{U} \in\left\{\Omega_{1}, \Omega_{2}\right\}, \Gamma=\partial \Omega \cap \operatorname{cl}(\mathcal{U}), R(\mathcal{U})=R$:

- $|\Gamma| \leq 2 \pi \sqrt{1-\bar{r}_{+}^{2}} \quad$ if $\bar{\tau}(\mathcal{U}) \geq \tau_{0}$,
- $|\Gamma| \leq 2 \pi \sqrt{1-\bar{r}_{-}^{2}} \quad$ if $\bar{\tau}(\mathcal{U})<\tau_{0}$.
(3) Length estimates:

$$
|\gamma| \leq \sqrt{1-R^{2}} \frac{|\Gamma|}{\sqrt{1-\bar{r}_{ \pm}^{2}}} \leq 2 \pi \sqrt{1-R^{2}}
$$

(4) $|\gamma| \leq 2 \pi \Longrightarrow \gamma$ contained on an hemisphere \mathbb{S}_{+}^{2} or γ an equator.

- First case: $\Omega_{1} \subset \mathbb{S}_{+}^{2}$ or $\Omega_{2} \subset \mathbb{S}_{+}^{2} \Longrightarrow$ moving planes.
- Second case: Cauchy-Kovalevskaya.

Minimal surfaces with free boundaries

Definition

Let $\Sigma \subset \mathbb{B}^{3}$ be an open immersed minimal surface with boundary. We will say that Σ has free boundaries if each boundary component of Σ meets orthogonally a sphere centered at the origin (from the inside), possibly of different radii.

Minimal surfaces with free boundaries

Definition

Let $\Sigma \subset \mathbb{B}^{3}$ be an open immersed minimal surface with boundary. We will say that Σ has free boundaries if each boundary component of Σ meets orthogonally a sphere centered at the origin (from the inside), possibly of different radii.

Model Catenoids

Consider catenoid $C_{\alpha, \omega}$ parametrized by

$$
\psi_{\alpha, \omega}(r, \theta)=\alpha\left(\frac{\cos \theta}{\sqrt{1-r^{2}}}, \frac{\sin \theta}{\sqrt{1-r^{2}}}, \operatorname{arctanh}(r)-\omega\right)
$$

$r \in(-1,1)$ and $\theta \in[0,2 \pi)$, with outward Gauss map

$$
N(r, \theta)=\left(\sqrt{1-r^{2}} \cos \theta, \sqrt{1-r^{2}} \sin \theta,-r\right) \in \mathbb{S}^{2} \backslash\{\mathbf{s}, \mathbf{n}\}
$$

Model Catenoids

Consider catenoid $C_{\alpha, \omega}$ parametrized by

$$
\psi_{\alpha, \omega}(r, \theta)=\alpha\left(\frac{\cos \theta}{\sqrt{1-r^{2}}}, \frac{\sin \theta}{\sqrt{1-r^{2}}}, \operatorname{arctanh}(r)-\omega\right)
$$

$r \in(-1,1)$ and $\theta \in[0,2 \pi)$, with outward Gauss map

$$
N(r, \theta)=\left(\sqrt{1-r^{2}} \cos \theta, \sqrt{1-r^{2}} \sin \theta,-r\right) \in \mathbb{S}^{2} \backslash\{\mathbf{s}, \mathbf{n}\}
$$

The support function $u(r, \theta)=\langle\psi(r, \theta), N((r, \theta)\rangle$ is given by

$$
u(r, \theta)=\alpha(1-r \operatorname{arctanh}(r)+\omega r)
$$

Then u solves $\Delta^{\mathbb{S}^{2}} u+2 u=0$ in $\mathbb{S}^{2} \backslash\{\mathbf{s}, \mathbf{n}\}$.

$$
C_{R}:=\left\{\psi_{\alpha(R), \omega(R)}(r, \theta): r \in\left(r_{-}(R), r_{+}(R)\right), \theta \in[0,2 \pi)\right\}
$$

Up to reflection with respct to $\{z=0\}, \forall R \in[0,1)$:

$C_{R} \quad$ Model catenoid $\longleftrightarrow\left(\Omega_{R}, u_{R}\right) \quad$ Model solution

Up to reflection with respct to $\{z=0\}, \forall R \in[0,1)$:

C_{R} Model catenoid $\longleftrightarrow\left(\Omega_{R}, u_{R}\right) \quad$ Model solution

(a) $R=1 / 2$
(b) $R=0$ (Critical Catenoid)

Souam's Correspondence

Proposition (Souam, 2004)

Let Σ be a minimal surface with free boundaries, $\partial \Sigma=\bigcup_{i=1}^{k} \zeta_{i}$, and injective Gauss map $N: \Sigma \rightarrow \mathbb{S}^{2}$. Set $v(p):=\langle p, N(p)\rangle$. Then

$$
u(z):=\left(v \circ N^{-1}\right)(z)=\left\langle N^{-1}(z), z\right\rangle, \quad \forall z \in N(\Sigma)=\Omega
$$

satisfies OEP

$$
\left\{\begin{array}{ccc}
\Delta^{\mathbb{S}^{2}} u+2 u=0 & \text { in } & \Omega, \\
u=0 & \text { along } & \partial \Omega, \\
\left|\nabla^{\mathbb{S}^{2}} u\right|^{2}=b_{i}^{2} & \text { along } & \Gamma_{i} \in \pi_{0}(\partial \Omega), i \in\{1, \ldots, k\},
\end{array}\right.
$$

where $\partial \Omega=\bigcup_{i=1}^{k} \Gamma_{i}, N\left(\zeta_{i}\right)=\Gamma_{i}$, and $\left|b_{i}\right|$ is the radius of the sphere in which $\zeta_{i} \in \pi_{0}(\partial \Sigma)$ is contained.

Statement of the results

Theorem (E.-Marín., 2023)

Let $\Sigma \subset \mathbb{B}^{3}$ be an embedded minimal annulus with free boundaries, $\partial \Sigma=\zeta_{1} \cup \zeta_{2}$, such that $\zeta_{1} \subset \mathbb{S}^{2}$ and $\zeta_{2} \subset \mathbb{S}^{2}(\tilde{r})$ for some $0<\tilde{r} \leq 1$ (always true up to a dilation!). Suppose that its support function has infinitely many critical points. Then, there exists $R \in[0,1)$ such that $\Sigma \equiv C_{R}$, up to a rotation around the origin.

Statement of the results

Theorem (E.-Marín., 2023)

Let $\Sigma \subset \mathbb{B}^{3}$ be an embedded minimal annulus with free boundaries,
$\partial \Sigma=\zeta_{1} \cup \zeta_{2}$, such that $\zeta_{1} \subset \mathbb{S}^{2}$ and $\zeta_{2} \subset \mathbb{S}^{2}(\tilde{r})$ for some
$0<\tilde{r} \leq 1$ (always true up to a dilation!). Suppose that its support function has infinitely many critical points. Then, there exists $R \in[0,1)$ such that $\Sigma \equiv C_{R}$, up to a rotation around the origin.

Corollary (E-Marín, 2023)

Let $\Sigma \subset \mathbb{B}^{3}$ be an embedded free boundary minimal annulus, and suppose its support function has infinitely many critical points. Then Σ is the critical catenoid.

Proof of the Theorem

We must prove:
Theorem (E.-Marín, 2023)
Let $\Sigma \subset \mathbb{B}^{3}$ be an embedded minimal annulus with free boundaries, then it has an injective Gauss map and its support function has a constant sign in Σ.

Proof of the Theorem

We must prove:
Theorem (E.-Marín, 2023)
Let $\Sigma \subset \mathbb{B}^{3}$ be an embedded minimal annulus with free boundaries, then it has an injective Gauss map and its support function has a constant sign in Σ.

Proposition

In the previous case, if u is its support function and $|\operatorname{Crit}(u)|=+\infty$, then $\tilde{\gamma}=\operatorname{Max}(u)=\operatorname{Crit}(u)$ is a closed simple curve.

THANKS FOR THE ATTENTION!

