An overdetermined eigenvalue problem in S² and the Critical Catenoid conjecture

José M. Espinar Universidad de Granada

Joint work with D. Marín

In this talk

We relate solutions to the overdetermined eigenvalue problem

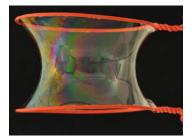
$\Delta u + 2u = 0$	in	$\Omega\subset \mathbb{S}^2,$
u = 0	along	$\partial \Omega,$
u > 0	in	Ω
abla u locally constant	along	$\partial \Omega.$

In this talk

We relate solutions to the overdetermined eigenvalue problem

$\Delta u + 2u = 0$	in	$\Omega\subset \mathbb{S}^2,$
u = 0	along	$\partial \Omega,$
u > 0	in	Ω
$ \nabla u $ locally constant	along	$\partial \Omega.$

and free boundary minimal surfaces in \mathbb{B}^3



Let (M,g) be a Riem. mfld., $\Omega \subset M$ bounded domain, $f \in Lip(\mathbb{R})$:

$$\begin{cases} \Delta u + f(u) = 0 & \text{in } \Omega, \\ u = 0 & \text{along } \partial\Omega. \end{cases}$$
(1)
$$\frac{\partial u}{\partial \nu} = c & \text{along } \partial\Omega, \quad c \in \mathbb{R}^+.$$
(2)

(1) + (2) is an overdetermined problem

Let (M,g) be a Riem. mfld., $\Omega \subset M$ bounded domain, $f \in Lip(\mathbb{R})$:

$$\begin{cases} \Delta u + f(u) = 0 & \text{in } \Omega, \\ u = 0 & \text{along } \partial\Omega. \end{cases}$$
(1)
$$\frac{\partial u}{\partial \nu} = c \quad \text{along } \partial\Omega, \quad c \in \mathbb{R}^+.$$
(2)

(1) + (2) is an **overdetermined problem** and solutions, if they do exist, often determine the shape of Ω .

Question: What can we say about the geometry of Ω ?

Question: What can we say about the geometry of Ω ?

J. Serrin considered the case: $(M, g) = (\mathbb{R}^n, \langle, \rangle), f = 1, \Omega \in \mathcal{C}^2$:

Theorem (Serrin, 1971)

If $u \in C^2(\Omega)$ is a solution to the equation $\Delta u + 1 = 0$ with zero Dirichlet data and $\frac{\partial u}{\partial n} = c > 0$ along $\partial \Omega$ then Ω is a metric ball and u a radial function. (u > 0 by the Maximum Principle)

Question: What can we say about the geometry of Ω ?

J. Serrin considered the case: $(M, g) = (\mathbb{R}^n, \langle, \rangle), f = 1, \Omega \in \mathcal{C}^2$:

Theorem (Serrin, 1971)

If $u \in C^2(\Omega)$ is a solution to the equation $\Delta u + 1 = 0$ with zero Dirichlet data and $\frac{\partial u}{\partial n} = c > 0$ along $\partial \Omega$ then Ω is a metric ball and u a radial function. (u > 0 by the Maximum Principle)

Two proofs:

- Method of moving planes (Serrin, 1971): Extends Alexandrov reflection method for embedded CMC hypersurfaces
- Method of P-functions (Weingberger, 1971): $P(u) = |\nabla u|^2 + \frac{2}{n}$ is subharmonic and (Ω, u) is the ball solution $\iff P \equiv c$

Related results with equation $\Delta u + f(u) = 0$

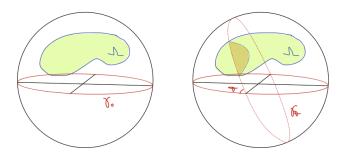
Moving planes method has been generalized:

- Works for positive solutions if *f* is a Lipchitz function: Pucci-Serrin.
- Bounded domains in Space forms Sⁿ₊ and ℍⁿ: Kumaresan-Prajapat.

Related results with equation $\Delta u + f(u) = 0$

Moving planes method has been generalized:

- Works for positive solutions if *f* is a Lipchitz function: Pucci-Serrin.
- Bounded domains in Space forms Sⁿ₊ and ℍⁿ: Kumaresan-Prajapat.



Related results with equation $\Delta u + f(u) = 0$

Geometric methods have been introduced recently:

- Works for positive solutions if *f* is a Lipchitz function: Pucci-Serrin.
- Bounded domains in Space forms Sⁿ₊ and ℍⁿ: Kumaresan-Prajapat.

Geometric methods have been introduced recently:

- Works for positive solutions if *f* is a Lipchitz function: Pucci-Serrin.
- Bounded domains in Space forms Sⁿ₊ and ℍⁿ: Kumaresan-Prajapat.
- Non-compact domains in Space Forms ℝⁿ and ℍⁿ, extending techniques from CMC hypersurfaces: Scibaldi-Ros-Ruíz, E.-Mao, E.-Farina-Mazet.
- Simply-connected domains in S², Index method: E.-Mazet

Geometric methods have been introduced recently:

- Works for positive solutions if *f* is a Lipchitz function: Pucci-Serrin.
- Bounded domains in Space forms Sⁿ₊ and ℍⁿ: Kumaresan-Prajapat.
- Non-compact domains in Space Forms ℝⁿ and ℍⁿ, extending techniques from CMC hypersurfaces: Scibaldi-Ros-Ruíz, E.-Mao, E.-Farina-Mazet.
- Simply-connected domains in S², Index method: E.-Mazet
- *P*-function method has been generalized:
 - Weak solutions of divergence-form equations: Garofalo-Lewis.
 - Serrin's result in product manifolds: Farina-Roncoroni.

Disclaimer:

Serrin's result is not true in general. There are non-rotationally symmetric domains that support a solution to an overdetermined problem:

Disclaimer:

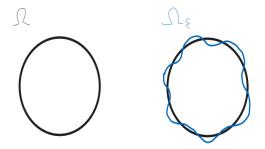
Serrin's result is not true in general. There are non-rotationally symmetric domains that support a solution to an overdetermined problem:

 For the first eigenvalue of the laplacian in a general compact manifold (Delay-Sicbaldi, 2013).

Disclaimer:

Serrin's result is not true in general. There are non-rotationally symmetric domains that support a solution to an overdetermined problem:

- For the first eigenvalue of the laplacian in a general compact manifold (Delay-Sicbaldi, 2013).
- Sign-changing solutions to equation $\Delta u + f(u) = 0$ (Ruiz, 2023).



In Serrin's case ($\Delta u + 1 = 0, \Omega \subset \mathbb{R}^n$)

$$\frac{\partial u}{\partial \nu} = c$$
 (equal!) along $\partial \Omega \implies \partial \Omega$ connected.

In Serrin's case ($\Delta u + 1 = 0, \Omega \subset \mathbb{R}^n$)

$$\frac{\partial u}{\partial \nu} = c$$
 (equal!) along $\partial \Omega \implies \partial \Omega$ connected.

But there are rotationally symmetric solutions to the Dirichlet problem defined in annular domains:

$$u(|x|) = \frac{1 - A \cdot |x|^2}{4} + B \cdot \Gamma(|x|), \quad |x| \in [r_1(A, B), r_2(A, B)].$$

In Serrin's case ($\Delta u + 1 = 0, \Omega \subset \mathbb{R}^n$)

$$\frac{\partial u}{\partial \nu} = c$$
 (equal!) along $\partial \Omega \implies \partial \Omega$ connected.

But there are rotationally symmetric solutions to the Dirichlet problem defined in annular domains:

$$u(|x|) = \frac{1 - A \cdot |x|^2}{4} + B \cdot \Gamma(|x|), \quad |x| \in [r_1(A, B), r_2(A, B)].$$

Question: Can we classify more general rotationally symmetric solutions? (different Neumann boundary condition!)

Let (Ω, u) be a solution to the Dirichlet problem. $|\pi_0(\partial \Omega)| \ge 2$

$$\frac{\partial u}{\partial \nu}$$
 is locally constant along $\partial \Omega$ (3)

Let (Ω, u) be a solution to the Dirichlet problem. $|\pi_0(\partial \Omega)| \ge 2$

$$rac{\partial u}{\partial
u}$$
 is locally constant along $\partial \Omega$

There are some results in exterior domains:

Theorem (Reichel, 1995), (Sirakov, 2001)

Let (Ω, u) a positive solution to

$$\begin{cases} \Delta u + f(u) = 0 & \text{in} \quad \Omega \subset \mathbb{R}^n, \\ u = a > 0 & \text{in} \quad \Gamma_i, \\ u = 0 & \text{along} \quad \Gamma_o, \end{cases}$$

where $\partial \Omega = \Gamma_i \cup \Gamma_o$, being Γ_i the inner component and Γ_o the outter component. Suppose that u satisfies (3) and that $\frac{\partial u}{\partial \nu} \leq 0$ along Γ_i . Then Ω is a rotationally symmetric annulus and u is radially symmetric.

(3)

Case of Agostiniani-Borghini-Mazzieri

Consider problem

$$\begin{cases} \Delta u + 1 = 0 & \text{in} \quad \Omega \subset \mathbb{R}^2, \\ u = 0 & \text{along} \quad \partial \Omega, \end{cases}$$
(4)

$$|\nabla u|$$
 is constant along some $\Gamma \in \pi_0(\partial \Omega)$. (5)

Case of Agostiniani-Borghini-Mazzieri

Consider problem

$$\begin{cases} \Delta u + 1 = 0 & \text{in} \quad \Omega \subset \mathbb{R}^2, \\ u = 0 & \text{along} \quad \partial \Omega, \end{cases}$$
(4)

 $|\nabla u|$ is constant along some $\Gamma \in \pi_0(\partial \Omega)$. (5)

Theorem (Agostiniani-Borghini-Mazzieri, 2021)

If (Ω, u) is a solution to (4),(5) and u has infinitely many maximum points, then Ω is a rotationally symmetric annulus and u depends on the distance to the center of the annulus.

Case of Agostiniani-Borghini-Mazzieri

Consider problem

$$\begin{cases} \Delta u + 1 = 0 & \text{in} \quad \Omega \subset \mathbb{R}^2, \\ u = 0 & \text{along} \quad \partial \Omega, \end{cases}$$
(4)

 $|\nabla u|$ is constant along some $\Gamma \in \pi_0(\partial \Omega)$. (5)

Theorem (Agostiniani-Borghini-Mazzieri, 2021)

If (Ω, u) is a solution to (4),(5) and u has infinitely many maximum points, then Ω is a rotationally symmetric annulus and u depends on the distance to the center of the annulus.

Theorem (Agostiniani-Borghini-Mazzieri, 2021)

There exist non-rotationally symmetric solutions to problem (4), with $\frac{\partial u}{\partial n}$ locally constant along $\partial \Omega$.

We study the equation

$$\begin{cases} \Delta u + 2u = 0 & \text{in} \quad \Omega \subset \mathbb{S}^2, \\ u = 0 & \text{along} \quad \partial \Omega, \\ u > 0 & \text{in} \quad \Omega. \end{cases}$$
(6)

$$|\nabla u|$$
 is locally constant along $\partial \Omega$. (7)

We study the equation

$$\begin{cases} \Delta u + 2u = 0 & \text{in} \quad \Omega \subset \mathbb{S}^2, \\ u = 0 & \text{along} \quad \partial\Omega, \\ u > 0 & \text{in} \quad \Omega. \end{cases}$$
(6)
$$|\nabla u| \quad \text{is locally constant along} \quad \partial\Omega.$$
(7)

Objective: Classify rotationally symmetric solutions to (6) + (7). **Difficulty:** The moving plane method is not available. **Observation:** $P(u) = |\nabla u|^2 + u^2$ is a *P*-function, $\Delta P \ge 0$

Theorem (Espinar-M., 2023)

Let (Ω, u) a solution to $\Delta u + 2u = 0$, where $\Omega \subset \mathbb{S}^2$ is a ring-shaped domain with \mathcal{C}^2 -boundary. Suppose that

- $\bigcirc \ u = 0 \quad \text{along} \quad \partial \Omega$
- **2** $|\nabla u|$ is locally constant along $\partial \Omega$
- \bullet u has infinitely many maximum points.

Then Ω is a rotationally symmetric neighborhood of an equator and u exhibits rotational symmetry with respect to the axis perpendicular to the plane defining this equator.

Describe a 1-parameter family of rotationally symmetric model solutions.

- Describe a 1-parameter family of rotationally symmetric model solutions.
- **2** Given $\mathcal{U} \in \pi_0(\Omega \setminus \mathsf{Max}(u))$, construct a correspondence between (\mathcal{U}, u) and (\mathcal{U}_R, u_R) , with $\mathcal{U}_R \in \pi_0(\Omega_R \setminus \mathsf{Max}(u_R))$.

- Describe a 1-parameter family of rotationally symmetric model solutions.
- **2** Given $\mathcal{U} \in \pi_0(\Omega \setminus \mathsf{Max}(u))$, construct a correspondence between (\mathcal{U}, u) and (\mathcal{U}_R, u_R) , with $\mathcal{U}_R \in \pi_0(\Omega_R \setminus \mathsf{Max}(u_R))$.
- Ocmpare the geometry of the level sets of (\mathcal{U}, u) with those of (\mathcal{U}_R, u_R) :

- Describe a 1-parameter family of rotationally symmetric model solutions.
- **②** Given $\mathcal{U} \in \pi_0(\Omega \setminus \mathsf{Max}(u))$, construct a correspondence between (\mathcal{U}, u) and (\mathcal{U}_R, u_R) , with $\mathcal{U}_R \in \pi_0(\Omega_R \setminus \mathsf{Max}(u_R))$.
- Some compare the geometry of the level sets of (\mathcal{U}, u) with those of (\mathcal{U}_R, u_R) : norm of the gradient, curvature, length.

- Describe a 1-parameter family of rotationally symmetric model solutions.
- **②** Given $\mathcal{U} \in \pi_0(\Omega \setminus \mathsf{Max}(u))$, construct a correspondence between (\mathcal{U}, u) and (\mathcal{U}_R, u_R) , with $\mathcal{U}_R \in \pi_0(\Omega_R \setminus \mathsf{Max}(u_R))$.
- Some compare the geometry of the level sets of (\mathcal{U}, u) with those of (\mathcal{U}_R, u_R) : norm of the gradient, curvature, length.
- **4** \mathcal{U} or $\Omega \setminus \mathcal{U}$ contained on an hemisphere \implies moving planes.

Return to equation

$$(*) \begin{cases} \Delta u + 2u = 0, u > 0 & \text{in} \quad \Omega \subset \mathbb{S}^2, \\ u = 0 & \text{along} \quad \partial \Omega. \end{cases}$$

Consider cylindrical coordinates in \mathbb{S}^2 :

$$\mathbb{S}^{2} = \left\{ (\sqrt{1 - r^{2}} \cos \theta, \sqrt{1 - r^{2}} \sin \theta, r) \, : \, r \in [-1, 1], \, \theta \in [0, 2\pi) \right\}.$$

Return to equation

$$(*) \begin{cases} \Delta u + 2u = 0, u > 0 & \text{in} \quad \Omega \subset \mathbb{S}^2, \\ u = 0 & \text{along} \quad \partial \Omega. \end{cases}$$

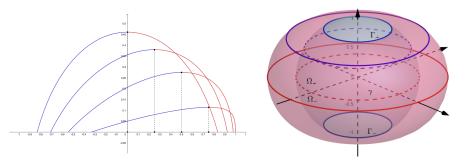
Consider cylindrical coordinates in \mathbb{S}^2 :

$$\mathbb{S}^2 = \left\{ (\sqrt{1 - r^2} \cos \theta, \sqrt{1 - r^2} \sin \theta, r) \, : \, r \in [-1, 1], \, \theta \in [0, 2\pi) \right\}.$$

Rotationally symmetric solutions to (*):

 $\Omega_R = \{r \in [r_-(R), r_+(R)]\}, \quad u_R(r) = \alpha(R) \left(1 - r \operatorname{arctanh}(r) + \omega(R)r\right),$

 $\omega(R)$ is such that $Max(u_R) = \{r = R\}$, $\alpha(R) = r_+(R)\sqrt{1 - r_+(R)^2} > 0$. R :=critical height.



Left: Graphs of some of the model functions. **Right**: Radial graph of the model solution of critical radius R = 0.

$$\partial \Omega_R = \{r = r_-(R)\} \cup \{r = r_+(R)\} = \Gamma_-(R) \cup \Gamma_+(R)$$

$$\Omega_R \setminus \mathsf{Max}(u_R) = \Omega_R \setminus \gamma_R = \Omega_-(R) \cup \Omega_+(R)$$

Let (Ω, u) be a solution to (*) and $\mathcal{U} \in \pi_0(\Omega \setminus Max(u))$. Define the Normalised Wall Shear Stress (NWSS) of the region as

$$\overline{\tau}(\mathcal{U}) := \max\left\{ \max_{\Gamma} (\left| \nabla u \right| / u_{\mathsf{max}}) : \ \Gamma \in \pi_0(\partial \Omega \cap \mathsf{cl}(\mathcal{U})) \right\}.$$

Let (Ω, u) be a solution to (*) and $\mathcal{U} \in \pi_0(\Omega \setminus Max(u))$. Define the *Normalised Wall Shear Stress* (NWSS) of the region as

$$\overline{\tau}(\mathcal{U}) := \max\left\{ \max_{\Gamma} (\left| \nabla u \right| / u_{\mathsf{max}}) : \ \Gamma \in \pi_0(\partial \Omega \cap \mathsf{cl}(\mathcal{U})) \right\}.$$

- It is a scale-invariant quantity.
- If $\overline{\tau}_{\pm}(R) := \overline{\tau}(\Omega_{\pm}(R)), \quad \forall R \in [0,1), \text{ then } \overline{\tau}_{+}(0) = \overline{\tau}_{-}(0) = \tau_0 > 1.$
- $\overline{\tau}_+: [0,1) \to [\tau_0,+\infty)$ and $\overline{\tau}_-: [0,1) \to (1,\tau_0]$ are monotone functions.

Theorem

Let (Ω, u) be a solution to the Dirichlet problem and let $\mathcal{U} \in \pi_0(\Omega \setminus \text{Max}(u))$. If $\overline{\tau}(\mathcal{U}) \leq 1$, then Ω is an open hemisphere and $u(r, \theta) = \alpha r$ for some $\alpha > 0$.

Theorem

Let (Ω, u) be a solution to the Dirichlet problem and let $\mathcal{U} \in \pi_0(\Omega \setminus \text{Max}(u))$. If $\overline{\tau}(\mathcal{U}) \leq 1$, then Ω is an open hemisphere and $u(r, \theta) = \alpha r$ for some $\alpha > 0$.

Idea of the proof:

If $cl(\mathcal{U}) = cl(\Omega)$ (Max(u) does not separate): Condition $\overline{\tau}(\mathcal{U}) \leq 1$ implies that $P(u) = |\nabla u|^2 + u^2$ attains its maximum inside $\Omega \implies$ rigidity.

O The function

$$E(t) = \frac{1}{u_{\max}^2 - t^2} \int_{\mathrm{cl}(\mathcal{U}) \cap \{u = t\}} |\nabla u|.$$

is non-increasing if $\overline{\tau}(\mathcal{U}) \leq 1$.

If $cl(\mathcal{U}) \neq cl(\Omega)$ (Max(u) does separate): $E(t) \rightarrow +\infty$ as $t \rightarrow u_{max}$ and $E(t) \leq E(0) < +\infty$; contradiction!

Definition (Expected critical height)

Let (Ω, u) be a solution to the Dirichlet problem and $\mathcal{U} \in \pi_0(\Omega \setminus Max(\xi))$. Suppose Ω is not a topological disk. Then: • if $\overline{\tau}(\mathcal{U}) < \tau_0$, we set

$$\bar{R}(\mathcal{U}) = \bar{\tau}_{-}^{-1}\left(\bar{\tau}(\mathcal{U})\right), \qquad (8)$$

• if $\overline{\tau}(\mathcal{U}) \geq \tau_0$, we set

$$\bar{R}(\mathcal{U}) = \overline{\tau}_{+}^{-1}\left(\overline{\tau}(\mathcal{U})\right).$$
(9)

Definition (Expected critical height)

Let (Ω, u) be a solution to the Dirichlet problem and $\mathcal{U} \in \pi_0(\Omega \setminus Max(\xi))$. Suppose Ω is not a topological disk. Then: • if $\overline{\tau}(\mathcal{U}) < \tau_0$, we set

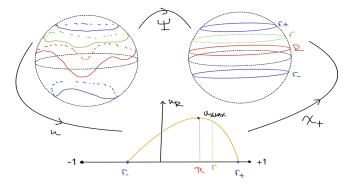
$$\bar{R}(\mathcal{U}) = \bar{\tau}_{-}^{-1}\left(\bar{\tau}(\mathcal{U})\right),\tag{8}$$

• if $\overline{\tau}(\mathcal{U}) \geq \tau_0$, we set

$$\bar{R}(\mathcal{U}) = \bar{\tau}_{+}^{-1}\left(\bar{\tau}(\mathcal{U})\right).$$
(9)

Remark

 $R(\mathcal{U}) \in [0,1)$ is well defined because of the previous result.



Remark

By definition: $\Psi(r, \theta) = r$ if $(\mathcal{U}, u) = (\Omega_{\pm}(R), u_R)$.

Let $R(\mathcal{U}) = R$, and suppose that $u_{\max} = (u_R)_{\max}$. Define the function $F : [0, u_{\max}] \times [r_-(R), r_+(R)] \to \mathbb{R}$ by

$$F(u,r) = u - \alpha(R)(1 - r\operatorname{arctanh}(r) + \omega(R)r).$$

 $\frac{\partial F}{\partial r} = 0$ if, and only if, $r = R \implies$ Implicit function theorem:

Let $R(\mathcal{U}) = R$, and suppose that $u_{\max} = (u_R)_{\max}$. Define the function $F : [0, u_{\max}] \times [r_-(R), r_+(R)] \to \mathbb{R}$ by

$$F(u,r) = u - \alpha(R)(1 - r\operatorname{arctanh}(r) + \omega(R)r).$$

 $\frac{\partial F}{\partial r} = 0$ if, and only if, $r = R \implies$ Implicit function theorem:

 $\chi_-:[0,u_{\max}] \rightarrow [r_-(R),R] \quad \text{and} \quad \chi_+:[0,u_{\max}] \rightarrow [R,r_+(R)]$

such that

 $F(u,\chi_{\pm}(u))=0 \quad \text{for all} \quad u\in[0,u_{\max}].$

Let $R(\mathcal{U}) = R$, and suppose that $u_{\max} = (u_R)_{\max}$. Define the function $F : [0, u_{\max}] \times [r_-(R), r_+(R)] \to \mathbb{R}$ by

$$F(u,r) = u - \alpha(R)(1 - r\operatorname{arctanh}(r) + \omega(R)r).$$

 $\frac{\partial F}{\partial r} = 0$ if, and only if, $r = R \implies$ Implicit function theorem:

 $\chi_-:[0,u_{\max}] \rightarrow [r_-(R),R] \quad \text{and} \quad \chi_+:[0,u_{\max}] \rightarrow [R,r_+(R)]$

such that

$$F(u, \chi_{\pm}(u)) = 0$$
 for all $u \in [0, u_{\max}]$.

Definition (Pseudo-radial functions)

• If $\overline{\tau}(\mathcal{U}) \geq \tau_0$, define $\Psi(p) = \chi_+(u(p))$ for all $p \in \mathcal{U}$.

• If $\overline{\tau}(\mathcal{U}) < \tau_0$, define $\Psi(p) = \chi_-(u(p))$ for all $p \in \mathcal{U}$.

Theorem

It holds

$$|\nabla u|^2(p) \le |\nabla u_R|^2 \circ \Psi(p)$$
 for all $p \in \mathcal{U}$.

Moreover, if the equality holds at one single point of \mathcal{U} , then $(\Omega, \xi) \equiv (\Omega_R, u_R)$ up to rotation and change of scale.

Theorem

It holds

$$|\nabla u|^2(p) \le |\nabla u_R|^2 \circ \Psi(p)$$
 for all $p \in \mathcal{U}$.

Moreover, if the equality holds at one single point of \mathcal{U} , then $(\Omega, \xi) \equiv (\Omega_R, u_R)$ up to rotation and change of scale.

Idea of the proof:

- Objective Define a function $\beta = \beta(\Psi) > 0$ such that $\beta \cdot (|\nabla u|^2 |\nabla u_R|^2 \circ \Psi)$ satisfies an elliptic inequality.
- **2** As $R = R(\mathcal{U})$ then $|\nabla u|^2 \le |\nabla u_R|^2 \circ \Psi$ along $\operatorname{cl}(\mathcal{U}) \cap \partial \Omega \implies |\nabla u|^2 \le |\nabla u_R|^2 \circ \Psi$ in \mathcal{U} by the maximum principle.
- Solution Equality at one single point $\implies |\nabla u|^2 = |\nabla u_R|^2 \circ \Psi$ in \mathcal{U} . Then the level sets have constant curvature.

Proposition

Let $p \in \partial\Omega$ such that $|\nabla \xi|^2(p) = \max_{\partial\Omega \cap cl(\mathcal{U})} |\nabla \xi|^2$, $\bar{r}_{\pm} := r_{\pm}(R)$, and $\kappa(p)$ curvature with respect to the inner orientation. Then

•
$$\kappa(p) \leq -\frac{\overline{r}_+}{\sqrt{1-\overline{r}_+^2}}$$
 if $\overline{\tau}(\mathcal{U}) \geq \tau_0$
• $\kappa(p) \leq \frac{\overline{r}_-}{\sqrt{1-\overline{r}_-^2}}$ if $\overline{\tau}(\mathcal{U}) < \tau_0$.

Proposition

Let $p \in \partial\Omega$ such that $|\nabla \xi|^2(p) = \max_{\partial\Omega \cap cl(\mathcal{U})} |\nabla \xi|^2$, $\bar{r}_{\pm} := r_{\pm}(R)$, and $\kappa(p)$ curvature with respect to the inner orientation. Then

•
$$\kappa(p) \leq -\frac{\bar{r}_+}{\sqrt{1-\bar{r}_+^2}}$$
 if $\bar{\tau}(\mathcal{U}) \geq \tau_0$
• $\kappa(p) \leq \frac{\bar{r}_-}{\sqrt{1-\bar{r}_-^2}}$ if $\bar{\tau}(\mathcal{U}) < \tau_0$.

Theorem

Suppose that $cl(\mathcal{U}) \cap Max(u) = \gamma^{\mathcal{U}}$ and $cl(\mathcal{U}) \cap \partial\Omega = \Gamma^{\mathcal{U}}$ are sets of analytic closed curves. Then

$$\begin{array}{l} \bullet \ \left| \gamma^{\mathcal{U}} \right| \leq \frac{\sqrt{1-R^2}}{\sqrt{1-\bar{r}_+^2}} \left| \Gamma^{\mathcal{U}} \right| \quad \text{if } \overline{\tau}(\mathcal{U}) \geq \tau_0, \\ \bullet \ \left| \gamma^{\mathcal{U}} \right| \leq \frac{\sqrt{1-R^2}}{\sqrt{1-\bar{r}_-^2}} \left| \Gamma^{\mathcal{U}} \right| \quad \text{if } \overline{\tau}(\mathcal{U}) < \tau_0, \end{array}$$

Now we can prove the main result:

Theorem (Espinar-M., 2023)

Let $\Omega \subset \mathbb{S}^2$ ring shaped domain with \mathcal{C}^2 -boundary, $u \in \mathcal{C}^2(\Omega)$ solution to

$$\begin{split} \Delta u + 2u &= 0, \, u > 0 \qquad \text{in} \qquad \Omega \subset \mathbb{S}^2, \\ u &= 0 \qquad \quad \text{along} \qquad \partial \Omega. \end{split}$$

Suppose that $|\nabla u|$ is locally constant along $\partial \Omega$, and also that u has infinitely many maximum points. Then $(\Omega, u) \equiv (\Omega_R, u_R)$ for some $R \in [0, 1)$ up to a rotation and a change of scale.

- **(**) $\exists \gamma \in Max(u)$ analytic curve such that $\Omega \setminus \gamma = \Omega_1 \cup \Omega_2$ with $\Omega_1 \cap \partial \Omega = \Gamma_1$ and $\Omega_2 \cap \partial \Omega = \Gamma_2$.

- $\exists \gamma \in \mathsf{Max}(u)$ analytic curve such that $\Omega \setminus \gamma = \Omega_1 \cup \Omega_2$ with $\Omega_1 \cap \partial \Omega = \Gamma_1$ and $\Omega_2 \cap \partial \Omega = \Gamma_2$.
- **2** Set $\mathcal{U} \in {\Omega_1, \Omega_2}$, $\Gamma = \partial \Omega \cap \mathsf{cl}(\mathcal{U})$, $R(\mathcal{U}) = R$:

•
$$|\Gamma| \le 2\pi \sqrt{1 - \bar{r}_+^2}$$
 if $\bar{\tau}(\mathcal{U}) \ge \tau_0$,
• $|\Gamma| \le 2\pi \sqrt{1 - \bar{r}_-^2}$ if $\bar{\tau}(\mathcal{U}) < \tau_0$.

• $\exists \gamma \in \mathsf{Max}(u)$ analytic curve such that $\Omega \setminus \gamma = \Omega_1 \cup \Omega_2$ with $\Omega_1 \cap \partial \Omega = \Gamma_1$ and $\Omega_2 \cap \partial \Omega = \Gamma_2$.

2 Set $\mathcal{U} \in {\Omega_1, \Omega_2}$, $\Gamma = \partial \Omega \cap \mathsf{cl}(\mathcal{U})$, $R(\mathcal{U}) = R$:

•
$$|\Gamma| \le 2\pi \sqrt{1 - \bar{r}_+^2}$$
 if $\overline{\tau}(\mathcal{U}) \ge \tau_0$,
• $|\Gamma| \le 2\pi \sqrt{1 - \bar{r}_-^2}$ if $\overline{\tau}(\mathcal{U}) < \tau_0$.

Length estimates:

$$|\gamma| \le \sqrt{1-R^2} \frac{|\Gamma|}{\sqrt{1-\bar{r}_{\pm}^2}} \le 2\pi\sqrt{1-R^2}.$$

• $\exists \gamma \in Max(u)$ analytic curve such that $\Omega \setminus \gamma = \Omega_1 \cup \Omega_2$ with $\Omega_1 \cap \partial \Omega = \Gamma_1$ and $\Omega_2 \cap \partial \Omega = \Gamma_2$.

2 Set $\mathcal{U} \in \{\Omega_1, \Omega_2\}$, $\Gamma = \partial \Omega \cap \mathsf{cl}(\mathcal{U})$, $R(\mathcal{U}) = R$:

•
$$|\Gamma| \le 2\pi \sqrt{1 - \bar{r}_+^2}$$
 if $\overline{\tau}(\mathcal{U}) \ge \tau_0$,
• $|\Gamma| \le 2\pi \sqrt{1 - \bar{r}_-^2}$ if $\overline{\tau}(\mathcal{U}) < \tau_0$.

Length estimates:

$$|\gamma| \le \sqrt{1 - R^2} \frac{|\Gamma|}{\sqrt{1 - \bar{r}_{\pm}^2}} \le 2\pi \sqrt{1 - R^2}.$$

(4) $|\gamma| \leq 2\pi \implies \gamma$ contained on an hemisphere \mathbb{S}^2_+ or γ an equator.

• $\exists \gamma \in \mathsf{Max}(u)$ analytic curve such that $\Omega \setminus \gamma = \Omega_1 \cup \Omega_2$ with $\Omega_1 \cap \partial \Omega = \Gamma_1$ and $\Omega_2 \cap \partial \Omega = \Gamma_2$.

2 Set $\mathcal{U} \in {\Omega_1, \Omega_2}$, $\Gamma = \partial \Omega \cap \mathsf{cl}(\mathcal{U})$, $R(\mathcal{U}) = R$:

•
$$|\Gamma| \le 2\pi \sqrt{1 - \bar{r}_+^2}$$
 if $\overline{\tau}(\mathcal{U}) \ge \tau_0$,
• $|\Gamma| \le 2\pi \sqrt{1 - \bar{r}_-^2}$ if $\overline{\tau}(\mathcal{U}) < \tau_0$.

Length estimates:

$$|\gamma| \le \sqrt{1 - R^2} \frac{|\Gamma|}{\sqrt{1 - \bar{r}_{\pm}^2}} \le 2\pi \sqrt{1 - R^2}.$$

(4) $|\gamma| \leq 2\pi \implies \gamma$ contained on an hemisphere \mathbb{S}^2_+ or γ an equator.

- First case: $\Omega_1 \subset \mathbb{S}^2_+$ or $\Omega_2 \subset \mathbb{S}^2_+ \implies$ moving planes.
- Second case: Cauchy-Kovalevskaya.

Minimal surfaces with free boundaries

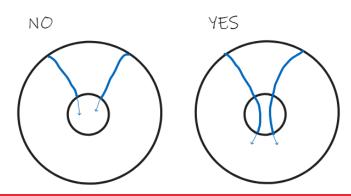
Definition

Let $\Sigma \subset \mathbb{B}^3$ be an open immersed minimal surface with boundary. We will say that Σ has free boundaries if each boundary component of Σ meets orthogonally a sphere centered at the origin (*from the inside*), possibly of different radii.

Minimal surfaces with free boundaries

Definition

Let $\Sigma \subset \mathbb{B}^3$ be an open immersed minimal surface with boundary. We will say that Σ has free boundaries if each boundary component of Σ meets orthogonally a sphere centered at the origin (*from the inside*), possibly of different radii.



Model Catenoids

Consider catenoid $C_{\alpha,\omega}$ parametrized by

$$\psi_{\alpha,\omega}(r,\theta) = \alpha \left(\frac{\cos\theta}{\sqrt{1-r^2}}, \frac{\sin\theta}{\sqrt{1-r^2}}, \operatorname{arctanh}(r) - \omega\right),$$

 $r\in(-1,1)$ and $\theta\in[0,2\pi),$ with outward Gauss map

$$N(r,\theta) = \left(\sqrt{1-r^2}\,\cos\theta, \sqrt{1-r^2}\,\sin\theta, -r\right) \in \mathbb{S}^2 \setminus \{\mathbf{s}, \mathbf{n}\}.$$

Model Catenoids

Consider catenoid $C_{\alpha,\omega}$ parametrized by

$$\psi_{\alpha,\omega}(r,\theta) = \alpha \left(\frac{\cos\theta}{\sqrt{1-r^2}}, \frac{\sin\theta}{\sqrt{1-r^2}}, \operatorname{arctanh}(r) - \omega\right),$$

 $r\in(-1,1)$ and $\theta\in[0,2\pi),$ with outward Gauss map

$$N(r,\theta) = \left(\sqrt{1-r^2}\,\cos\theta, \sqrt{1-r^2}\,\sin\theta, -r\right) \in \mathbb{S}^2 \setminus \{\mathbf{s}, \mathbf{n}\}.$$

The support function $u(r,\theta)=\langle\psi(r,\theta),N((r,\theta)\rangle$ is given by

$$u(r, \theta) = \alpha(1 - r\operatorname{arctanh}(r) + \omega r).$$

Then u solves $\Delta^{\mathbb{S}^2} u + 2u = 0$ in $\mathbb{S}^2 \setminus \{\mathbf{s}, \mathbf{n}\}$.

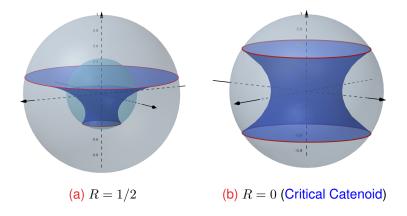
$$C_R := \left\{ \psi_{\alpha(R), \omega(R)}(r, \theta) : \ r \in (r_-(R), r_+(R)), \ \theta \in [0, 2\pi) \right\}$$

Up to reflection with respct to $\{z = 0\}, \forall R \in [0, 1)$:

$$C_R$$
 Model catenoid $\longleftrightarrow (\Omega_R, u_R)$ Model solution

Up to reflection with respet to $\{z = 0\}, \forall R \in [0, 1)$:

$$C_R$$
 Model catenoid $\longleftrightarrow (\Omega_R, u_R)$ Model solution



Proposition (Souam, 2004)

Let Σ be a minimal surface with free boundaries, $\partial \Sigma = \bigcup_{i=1}^{k} \zeta_i$, and injective Gauss map $N : \Sigma \to \mathbb{S}^2$. Set $v(p) := \langle p, N(p) \rangle$. Then

$$u(z) := (v \circ N^{-1})(z) = \left\langle N^{-1}(z), z \right\rangle, \quad \forall z \in N(\Sigma) = \Omega$$

satisfies OEP

$$\begin{cases} \Delta^{\mathbb{S}^2} u + 2u = 0 & \text{ in } & \Omega, \\ u = 0 & \text{ along } & \partial\Omega, \\ |\nabla^{\mathbb{S}^2} u|^2 = b_i^2 & \text{ along } & \Gamma_i \in \pi_0(\partial\Omega), \, i \in \{1, \dots, k\}, \end{cases}$$

where $\partial \Omega = \bigcup_{i=1}^{k} \Gamma_i$, $N(\zeta_i) = \Gamma_i$, and $|b_i|$ is the radius of the sphere in which $\zeta_i \in \pi_0(\partial \Sigma)$ is contained.

Theorem (E.-Marín., 2023)

Let $\Sigma \subset \mathbb{B}^3$ be an embedded minimal annulus with free boundaries, $\partial \Sigma = \zeta_1 \cup \zeta_2$, such that $\zeta_1 \subset \mathbb{S}^2$ and $\zeta_2 \subset \mathbb{S}^2(\tilde{r})$ for some $0 < \tilde{r} \leq 1$ (always true up to a dilation!). Suppose that its support function has infinitely many critical points. Then, there exists $R \in [0, 1)$ such that $\Sigma \equiv C_R$, up to a rotation around the origin.

Theorem (E.-Marín., 2023)

Let $\Sigma \subset \mathbb{B}^3$ be an embedded minimal annulus with free boundaries, $\partial \Sigma = \zeta_1 \cup \zeta_2$, such that $\zeta_1 \subset \mathbb{S}^2$ and $\zeta_2 \subset \mathbb{S}^2(\tilde{r})$ for some $0 < \tilde{r} \leq 1$ (always true up to a dilation!). Suppose that its support function has infinitely many critical points. Then, there exists $R \in [0, 1)$ such that $\Sigma \equiv C_R$, up to a rotation around the origin.

Corollary (E-Marín, 2023)

Let $\Sigma \subset \mathbb{B}^3$ be an embedded free boundary minimal annulus, and suppose its support function has infinitely many critical points. Then Σ is the critical catenoid.

We must prove:

Theorem (E.-Marín, 2023)

Let $\Sigma \subset \mathbb{B}^3$ be an embedded minimal annulus with free boundaries, then it has an injective Gauss map and its support function has a constant sign in Σ .

We must prove:

Theorem (E.-Marín, 2023)

Let $\Sigma \subset \mathbb{B}^3$ be an embedded minimal annulus with free boundaries, then it has an injective Gauss map and its support function has a constant sign in Σ .

Proposition

In the previous case, if u is its support function and $|\operatorname{Crit}(u)| = +\infty$, then $\tilde{\gamma} = \operatorname{Max}(u) = \operatorname{Crit}(u)$ is a closed simple curve.

THANKS FOR THE ATTENTION!