

THE NONLINEAR POTENTIAL THEORY THROUGH THE LOOKING-GLASS

and the Penrose Inequality we found there
joint with M. Fogagnolo, L. Mazzieri, A. Pluda and M. Pozzetta

Recent Advances in Comparison Geometry杭州 (Hangzhou), February $26^{\text {th }}, 2024$

Luca Benatti
lbenatti.math@gmail.com

MGR in a nutshell

NPT and IMCF in comparison

Monotonicity formulas

The Riemannian Penrose inequalifies

1
 Followine the white rabbit MGR IN A NUTSHELL

- Einstein (field) equations: the model of a gravitational system evolving through the time is a Lorentzian manifold $\left(\mathfrak{M}^{3+1}, \mathfrak{g}\right)$, \mathfrak{g} with signature $(+++-)$, solving the system of equations

$$
\mathfrak{R i c}-\frac{1}{2} \mathfrak{R} \mathfrak{g}=8 \pi T
$$

- Einstein (field) equations: the model of a gravitational system evolving through the time is a Lorentzian manifold $\left(\mathfrak{M}^{3+1}, \mathfrak{g}\right)$, \mathfrak{g} with signature $(+++-)$, solving the system of equations

$$
\mathfrak{R i c}-\frac{1}{2} \mathfrak{R} \mathfrak{g}=8 \pi T
$$

(Einstein equations)

- Initial data set: by [Fourès-Bruhat '52 - ACTA], Einstein equations can be interpreted as a system of PDEs for a given initial value (M, g, K), where (M, g) is a Riemannian manifold endowed with a symmetric $(0,2)$-tensor K satisfying the following constraints

$$
\begin{aligned}
& \mu=8 \pi T(n, n)=\frac{1}{2}\left(\mathrm{R}+(\operatorname{tr} K)^{2}-|K|^{2}\right) \\
& J=8 \pi T(n, \cdot)=\operatorname{div}(K-\operatorname{tr} K g)
\end{aligned}
$$

(Energy density)

- Einstein (field) equations: the model of a gravitational system evolving through the time is a Lorentzian manifold $\left(\mathfrak{M}^{3+1}, \mathfrak{g}\right)$, \mathfrak{g} with signature $(+++-)$, solving the system of equations

$$
\mathfrak{R i c}-\frac{1}{2} \mathfrak{R} \mathfrak{g}=8 \pi T
$$

(Einstein equations)

- Initial data set: by [Fourès-Bruhat '52 - ACTA], Einstein equations can be interpreted as a system of PDEs for a given initial value (M, g, K), where (M, g) is a Riemannian manifold endowed with a symmetric $(0,2)$-tensor K satisfying the following constraints

$$
\begin{aligned}
\mu & =8 \pi T(n, n) \\
J=8 \pi T(n, \cdot) & =\frac{1}{2}\left(\mathrm{R}+(\operatorname{tr} K)^{2}-|K|^{2}\right) \\
J= & K-\operatorname{tr} K g)
\end{aligned}
$$

(Energy density)
(Momentum density)

- Dominant energy condition: generalise the requirement that the energy density is nonnegative $\mu \geq|J|$
- Einstein (field) equations: the model of a gravitational system evolving through the time is a Lorentzian manifold $\left(\mathfrak{M}^{3+1}, \mathfrak{g}\right)$, \mathfrak{g} with signature $(+++-)$, solving the system of equations

$$
\mathfrak{R i c}-\frac{1}{2} \mathfrak{R} \mathfrak{g}=8 \pi T
$$

(Einstein equations)

- Initial data set: by [Fourès-Bruhat '52 - ACTA], Einstein equations can be interpreted as a system of PDEs for a given initial value (M, g, K), where (M, g) is a Riemannian manifold endowed with a symmetric $(0,2)$-tensor K satisfying the following constraints

$$
\begin{aligned}
\mu & =8 \pi T(n, n)=\frac{1}{2}\left(\mathrm{R}+(\operatorname{tr} K)^{2}-|K|^{2}\right) \stackrel{K=0}{=} \frac{1}{2} \mathrm{R} \\
J=8 \pi T(n, \cdot)=\operatorname{div}(K-\operatorname{tr} K g)^{K=0}=0 & \text { (Momergy density) }
\end{aligned}
$$

- Dominant energy condition: generalise the requirement that the energy density is nonnegative $\mu \geq|J| \stackrel{K=0}{\rightsquigarrow} \mathrm{R} \geq 0$.
- Time-symmetric: $K=0 \rightsquigarrow$ apparent horizons are minimal surfaces.
- Isolated gravitational system: a system where gravitational influences at large distances can be neglected $\rightsquigarrow(M, g)$ is asymptotically flat
- Isolated gravitational system: a system where gravitational influences at large distances can be neglected $\rightsquigarrow(M, g)$ is asymptotically flat

Asympłotically flat manifold

(M, g) is \mathscr{C}_{τ}^{k}-asymptotically flat provided $M \backslash K \cong \mathbb{R}^{3} \backslash B_{R}$ and $|g-\delta|=O_{k}\left(|x|^{-\tau}\right)$.

- Isolated gravitational system: a system where gravitational influences at large distances can be neglected $\rightsquigarrow(M, g)$ is asymptotically flat

Asympłotically flat manifold

(M, g) is \mathscr{C}_{τ}^{k}-asymptotically flat provided $M \backslash K \cong \mathbb{R}^{3} \backslash B_{R}$ and $|g-\delta|=O_{k}\left(|x|^{-\tau}\right)$.

- Isolated gravitational system: a system where gravitational influences at large distances can be neglected $\rightsquigarrow(M, g)$ is asymptotically flat

Asymptotically flat manifold

(M, g) is \mathscr{C}_{τ}^{k}-asymptotically flat provided $M \backslash K \cong \mathbb{R}^{3} \backslash B_{R}$ and $|g-\delta|=O_{k}\left(|x|^{-\tau}\right)$.
\mathscr{C}_{1}^{1}-asymptotically flat
If (M, g) is \mathscr{C}_{1}^{1}-asymptotically flat

$$
\begin{aligned}
& \left|g_{i j}-\delta_{i j}\right| \leq \mathrm{C}|x|^{-1} \\
& \left|\partial g_{i j}\right| \leq \mathrm{C}|x|^{-2}
\end{aligned}
$$

Setting

(M, g) is an asymptotically flat 3-Riemannian manifold with $\mathrm{R} \geq 0$ and connected, outermost, minimal, boundary.

Setting

(M, g) is an asymptotically flat 3-Riemannian manifold with $\mathrm{R} \geq 0$ and connected, outermost, minimal, boundary.

Setting and MAIN eXAMPLE

Schwarzschild solution

Given $\mathfrak{m} \geq 0$, the Schwarzschild solution is $(\mathfrak{S}(\mathfrak{m}), \sigma)$, where $\mathfrak{S}(\mathfrak{m}) \cong \mathbb{R}^{3} \backslash B_{2 \mathfrak{m}}$ and

$$
\sigma:=\left(1+\frac{\mathfrak{m}}{2|x|}\right)^{4} \delta .
$$

Scalar flat $(\mathrm{R}=0)$, asymptotically flat with minimal outermost boundary. The quantity \mathfrak{m} is the mass of the black hole and satisfies

$$
\mathfrak{m}=\sqrt{\frac{|\partial M|}{16 \pi}} .
$$

How to define the total mass of your gravitational system?

HOW TO DEFINE THE TOTAL MASS OF YOUR GRAVITATIONAL SYSTEM?

$$
\int_{M} \frac{\mu}{8 \pi} \mathrm{dVol}_{g} \stackrel{K=0}{=} \frac{1}{16 \pi} \int_{M} \mathrm{RdVol}_{g}
$$

HOW TO DEFINE THE TOTAL MASS OF YOUR GRAVITATIONAL SYSTEM?

$$
\begin{aligned}
\int_{M} \frac{\mu}{8 \pi} \mathrm{dVol}_{g} & \stackrel{K=0}{=} \frac{1}{16 \pi} \int_{M} \mathrm{RdVol} \mathrm{~V}_{g} \stackrel{\substack{M \cong \mathbb{R}^{n} \\
|g=\delta| \ll 1}}{=} \lim _{R \rightarrow+\infty} \frac{1}{16 \pi} \int_{B_{R}} \nabla \mathrm{R}_{\left.\right|_{\delta}}(g-\delta) \mathrm{d} x \\
& =\lim _{R \rightarrow+\infty} \frac{1}{16 \pi} \int_{B_{R}} \partial_{k}\left(\partial_{j} g_{k j}-\partial_{k} g_{j j}\right) \mathrm{d} x
\end{aligned}
$$

HOW TO DEFINE THE TOTAL MASS OF YOUR GRAVITATIONAL SYSTEM?

$$
\begin{aligned}
\int_{M} \frac{\mu}{8 \pi} \mathrm{dVol}_{g} & \stackrel{K=0}{=} \frac{1}{16 \pi} \int_{M} \mathrm{RdVol} g \stackrel{\substack{M \cong \mathbb{R}^{n} \\
|g-\delta| \ll 1}}{=} \lim _{R \rightarrow+\infty} \frac{1}{16 \pi} \int_{B_{R}} \nabla \mathrm{R}_{\left.\right|_{\delta}}(g-\delta) \mathrm{d} x \\
& =\lim _{R \rightarrow+\infty} \frac{1}{16 \pi} \int_{B_{R}} \partial_{k}\left(\partial_{j} g_{k j}-\partial_{k} g_{j i j}\right) \mathrm{d} x \\
& =\lim _{R \rightarrow+\infty} \frac{1}{16 \pi} \int_{\partial B_{R}}\left(\partial_{j} g_{k j}-\partial_{k} g_{j j}\right) \frac{x^{k}}{|x|} \mathrm{d} \mathcal{H}^{2}=: \mathfrak{m}_{\text {ADM }} .
\end{aligned}
$$

- ADM mass: defined by [Arnowitt, Deser, Misner '61].

HOW TO DEFINE THE TOTAL MASS OF YOUR GRAVITATIONAL SYSTEM?

$$
\begin{aligned}
\int_{M} \frac{\mu}{8 \pi} \mathrm{dVol}_{g} & \stackrel{K=0}{=} \frac{1}{16 \pi} \int_{M} \mathrm{RdVol} g \stackrel{\substack{M \cong \mathbb{R}^{n} \\
|g-\delta| \ll 1}}{=} \lim _{R \rightarrow+\infty} \frac{1}{16 \pi} \int_{B_{R}} \nabla \mathrm{R}_{\left.\right|_{\delta}}(g-\delta) \mathrm{d} x \\
& =\lim _{R \rightarrow+\infty} \frac{1}{16 \pi} \int_{B_{R}} \partial_{k}\left(\partial_{j} g_{k j}-\partial_{k} g_{j i j}\right) \mathrm{d} x \\
& =\lim _{R \rightarrow+\infty} \frac{1}{16 \pi} \int_{\partial B_{R}}\left(\partial_{j} g_{k j}-\partial_{k} g_{j j}\right) \frac{x^{k}}{|x|} \mathrm{d} \mathcal{H}^{2}=: \mathfrak{m}_{\text {ADM }} .
\end{aligned}
$$

- ADM mass: defined by [Arnowitt, Deser, Misner '61]. [Bartnik '86], [Chruściel '86] $\rightsquigarrow ~ i s ~ a ~ g e o m e t r i c ~$ invariant provided (M, g) is \mathscr{C}_{τ}^{1}-asymptotically flat, $\tau>1 / 2$.

Theorem - [Schoen, Yau '79 . CMP]

Let (M, g) a \mathscr{C}_{τ}^{2}-asymptotically flat Riemannian manifold, $\tau>1 / 2$, with $\mathrm{R} \geq 0$, then $\mathfrak{m}_{\mathrm{ADM}} \geq 0$. Moreover, $\mathfrak{m}_{\mathrm{ADM}}=0$ if and only if $(M, g) \cong\left(\mathbb{R}^{3}, \delta\right)$.
In dimension $3 \leq n \leq 7$ [Schoen, Yau '79. Proc. Nat. Acad. Sci. USA], [Lohkamp '16], for spin manifolds [Witten '81 . CMP], [Bray, Kazaras, Khuri, Stern '22 • J. Geom. Anal] using harmonic functions with linear growth and [Agostiniani, Mazzieri, Oronzio '24 • CMP] using the harmonic Green function.

Theorem - [Schoen, Yau '79 . CMP]

Let (M, g) a \mathscr{C}_{τ}^{2}-asymptotically flat Riemannian manifold, $\tau>1 / 2$, with $\mathrm{R} \geq 0$, then $\mathfrak{m}_{\mathrm{ADM}} \geq 0$. Moreover, $\mathfrak{m}_{\mathrm{ADM}}=0$ if and only if $(M, g) \cong\left(\mathbb{R}^{3}, \delta\right)$.
In dimension $3 \leq n \leq 7$ [Schoen, Yau '79. Proc. Nat. Acad. Sci. USA], [Lohkamp '16], for spin manifolds [Witten '81 . CMP], [Bray, Kazaras, Khuri, Stern '22 • J. Geom. Anal] using harmonic functions with linear growth and [Agostiniani, Mazzieri, Oronzio '24 • CMP] using the harmonic Green function.

Positive mass Theorem

- $\ln (\mathfrak{S}(\mathfrak{m}), \sigma)$, it holds $\mathfrak{m}_{\text {ADM }}=\mathfrak{m}$.

Theorem - [Schoen, Yau '79 . CMP]

Let (M, g) a \mathscr{C}_{τ}^{2}-asymptotically flat Riemannian manifold, $\tau>1 / 2$, with $\mathrm{R} \geq 0$, then $\mathfrak{m}_{\mathrm{ADM}} \geq 0$. Moreover, $\mathfrak{m}_{\mathrm{ADM}}=0$ if and only if $(M, g) \cong\left(\mathbb{R}^{3}, \delta\right)$.
In dimension $3 \leq n \leq 7$ [Schoen, Yau '79. Proc. Nat. Acad. Sci. USA], [Lohkamp '16], for spin manifolds [Witten '81 . CMP], [Bray, Kazaras, Khuri, Stern '22 • J. Geom. Anal] using harmonic functions with linear growth and [Agostiniani, Mazzieri, Oronzio '24 • CMP] using the harmonic Green function.

- $\ln (\mathfrak{S}(\mathfrak{m}), \sigma)$, it holds $\mathfrak{m}_{\text {ADM }}=\mathfrak{m}$.

Theorem - [Schoen, Yau '79 . CMP]

Let (M, g) a \mathscr{C}_{τ}^{2}-asymptotically flat Riemannian manifold, $\tau>1 / 2$, with $\mathrm{R} \geq 0$, then $\mathfrak{m}_{\mathrm{ADM}} \geq 0$. Moreover, $\mathfrak{m}_{\mathrm{ADM}}=0$ if and only if $(M, g) \cong\left(\mathbb{R}^{3}, \delta\right)$.
In dimension $3 \leq n \leq 7$ [Schoen, Yau '79. Proc. Nat. Acad. Sci. USA], [Lohkamp '16], for spin manifolds [Witten '81 . CMP], [Bray, Kazaras, Khuri, Stern '22 • J. Geom. Anal] using harmonic functions with linear growth and [Agostiniani, Mazzieri, Oronzio '24 • CMP] using the harmonic Green function.

- $\ln (\mathfrak{S}(\mathfrak{m}), \sigma)$, it holds $\mathfrak{m}_{\text {ADM }}=\mathfrak{m}$.

[^0]```
Theorem - [Huisken, Ilmanen '01 . JDG]
Let (M,g) be a C\mathscr{C}}
outermost, minimal boundary. Then
 \sqrt{}{\frac{|\partialM|}{16\pi}}\leq\mp@subsup{\mathfrak{m}}{\textrm{ADM}}{}.
Moreover, the equality holds if and only if (M,g)\cong(S(\mp@subsup{m}{\textrm{ADM}}{}),\sigma).
For multiple horizons [Bray '01 · JDG], in dimension 3 \leqn\leq7 [Bray, Lee '09 * DM]] and [Agostiniani,
Mantegazza, Mazzieri, Oronzio '22] using nonlinear potential theory.
```


## A "smooth" proof.

Take $\Sigma$ and evolve it using the IMCF, namely a family of diffeomorphisms $F_{t}(\Sigma)=\Sigma_{t} \subset M$ with

$$
\begin{equation*}
\frac{\partial}{\partial t} F_{t}=\frac{\nu}{H} \tag{IMCF}
\end{equation*}
$$

where $\nu$ is the unit outward pointing vector field and H is the mean curvature of $\Sigma_{t}$.

## A "smooth" proof.

Take $\Sigma$ and evolve it using the IMCF, namely a family of diffeomorphisms $F_{t}(\Sigma)=\Sigma_{t} \subset M$ with

$$
\begin{equation*}
\frac{\partial}{\partial t} F_{t}=\frac{\nu}{\mathrm{H}}, \tag{IMCF}
\end{equation*}
$$

where $\nu$ is the unit outward pointing vector field and H is the mean curvature of $\Sigma_{t}$.
Consider the Hawking mass

$$
\mathfrak{m}_{H}(\Sigma):=\sqrt{\frac{|\Sigma|}{16 \pi}}\left(1-\int_{\Sigma} \frac{H^{2}}{16 \pi} \mathrm{~d} \mathcal{H}^{2}\right) .
$$

## A "smooth" proof.

Take $\Sigma$ and evolve it using the IMCF, namely a family of diffeomorphisms $F_{t}(\Sigma)=\Sigma_{t} \subset M$ with

$$
\begin{equation*}
\frac{\partial}{\partial t} F_{t}=\frac{\nu}{\mathrm{H}} \tag{IMCF}
\end{equation*}
$$

where $\nu$ is the unit outward pointing vector field and H is the mean curvature of $\Sigma_{t}$.
Consider the Hawking mass

$$
\mathfrak{m}_{H}(\partial M)=\sqrt{\frac{|\partial M|}{16 \pi}} \quad \text { in } \quad \mathfrak{m}_{H}(\Sigma):=\sqrt{\frac{|\Sigma|}{16 \pi}}\left(1-\int_{-2} \frac{H^{2}}{16 \pi} \mathrm{~d} \mathcal{H}^{2}\right) . \quad \text { (Hawking mass) }
$$

## A "smooth" proof.

Take $\Sigma$ and evolve it using the IMCF, namely a family of diffeomorphisms $F_{t}(\Sigma)=\Sigma_{t} \subset M$ with

$$
\begin{equation*}
\frac{\partial}{\partial t} F_{t}=\frac{\nu}{H} \tag{IMCF}
\end{equation*}
$$

where $\nu$ is the unit outward pointing vector field and H is the mean curvature of $\Sigma_{t}$.
Consider the Hawking mass

$$
\mathfrak{m}_{H}(\partial M)=\sqrt{\frac{|\partial M|}{16 \pi}} \quad \text { <n } \quad \mathfrak{m}_{H}(\Sigma):=\sqrt{\frac{|\Sigma|}{16 \pi}}\left(1-\int_{\Sigma} \frac{H^{2}}{16 \pi} \mathrm{~d} \mathcal{H}^{2}\right) .
$$

The function $t \mapsto \mathfrak{m}_{H}\left(\Sigma_{t}\right)$ is monotone nondecreasing, indeed

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\Sigma_{t}\right)=\frac{1}{16 \pi} \sqrt{\frac{\left|\Sigma_{t}\right|}{16 \pi}}(\underbrace{8 \pi-\int_{\Sigma_{t}} \mathrm{R}^{\top} \mathrm{d} \mathcal{H}^{2}}_{\geq 0 \text { Gauss-Bonnet }}+\int_{\Sigma_{t}} \underbrace{\left\lvert\, \mathrm{h}^{2}+\mathrm{R}+2 \frac{\left|\nabla^{\top} \mathrm{H}\right|^{2}}{\mathrm{H}^{2}}\right.}_{Q_{1} \geq 0} \mathrm{~d} \mathcal{H}^{2})
$$

## A "smooth" proof.

Take $\Sigma$ and evolve it using the IMCF, namely a family of diffeomorphisms $F_{t}(\Sigma)=\Sigma_{t} \subset M$ with

$$
\begin{equation*}
\frac{\partial}{\partial t} F_{t}=\frac{\nu}{\mathrm{H}}, \tag{IMCF}
\end{equation*}
$$

where $\nu$ is the unit outward pointing vector field and H is the mean curvature of $\Sigma_{t}$.
Consider the Hawking mass

$$
\mathfrak{m}_{H}(\partial M)=\sqrt{\frac{|\partial M|}{16 \pi}} \quad \text { <n } \mathfrak{m}_{H}(\Sigma):=\sqrt{\frac{|\Sigma|}{16 \pi}}\left(1-\int_{\Sigma} \frac{H^{2}}{16 \pi} \mathrm{~d} \mathcal{H}^{2}\right) .
$$

The function $t \mapsto \mathfrak{m}_{H}\left(\Sigma_{t}\right)$ is monotone nondecreasing, indeed

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\Sigma_{t}\right)=\frac{1}{16 \pi} \sqrt{\frac{\left|\Sigma_{t}\right|}{16 \pi}}(\underbrace{8 \pi-\int_{\Sigma_{t}} \mathrm{R}^{\top} \mathrm{d} \mathcal{H}^{2}}_{\geq 0 \text { Gauss-Bonnet }}+\int_{\Sigma_{t}} \underbrace{\left\lvert\, \mathrm{h}^{2}+\mathrm{R}+2 \frac{\left|\nabla^{\top} \mathrm{H}\right|^{2}}{\mathrm{H}^{2}}\right.}_{Q_{1} \geq 0} \mathrm{~d} \mathcal{H}^{2})
$$

Moreover,

$$
\begin{aligned}
\mathfrak{m}_{H}(\Sigma) \leq & \prod_{t \rightarrow+\infty} \mathfrak{m}_{H}\left(\Sigma_{t}\right) \leq \mathfrak{m}_{\text {ADM }} . \\
& \text { asymptotic assumptions on } g
\end{aligned}
$$

Pick a function $w: M \rightarrow \mathbb{R}$ such that $\Omega=\{w \leq 0\}$.

(8)

Pick a function $w: M \rightarrow \mathbb{R}$ such that $\Omega=\{w \leq 0\}$. Define $\Omega_{t}=\{w \leq t\}$ and $\Sigma_{t}=\partial \Omega_{t}$.


Pick a function $w: M \rightarrow \mathbb{R}$ such that $\Omega=\{w \leq 0\}$. Define $\Omega_{t}=\{w \leq t\}$ and $\Sigma_{t}=\partial \Omega_{t}$.

- Less control on the regularity of $\Sigma_{t}$.
+ The flow survives through singularities.


Pick a function $w: M \rightarrow \mathbb{R}$ such that $\Omega=\{w \leq 0\}$. Define $\Omega_{t}=\{w \leq t\}$ and $\Sigma_{t}=\partial \Omega_{t}$.

- Less control on the regularity of $\Sigma_{t}$.
+ The flow survives through singularities.

We need to choose the function w WISELY


2
Tweedledum and Tweedledee NPT AND IMCF IN COMPARISON

 s-70 Tur

NONLINEAR POTENTIAL THEORY $(p \leq 2)$

$$
\left\{\begin{aligned}
\Delta_{p} w_{p} & =\left|\nabla w_{p}\right|^{p} & & \text { on } M \backslash \Omega \\
w_{p} & =0 & & \text { on } \partial \Omega \\
w_{p} & \rightarrow+\infty & & \text { as }|x| \rightarrow+\infty
\end{aligned}\right.
$$

where $\Delta_{p} f=\operatorname{div}\left(\left|\nabla w_{p}\right|^{p-2} \nabla w_{p}\right)$.

INVERSE MEAN CURVATURE FLOW

$$
\left\{\begin{aligned}
\Delta_{1} w_{1} & =\left|\nabla w_{1}\right| & & \text { on } M \backslash \Omega \\
w_{1} & =0 & & \text { on } \partial \Omega \\
w_{1} & \rightarrow+\infty & & \text { as }|x| \rightarrow+\infty
\end{aligned}\right.
$$

NONLINEAR POTENTIAL THEORY $(p \leq 2)$

$$
\left\{\begin{aligned}
\Delta_{p} w_{p} & =\left|\nabla w_{p}\right|^{p} & & \text { on } M \backslash \Omega \\
w_{p} & =0 & & \text { on } \partial \Omega \\
w_{p} & \rightarrow+\infty & & \text { as }|x| \rightarrow+\infty
\end{aligned}\right.
$$

where $\Delta_{p} f=\operatorname{div}\left(\left|\nabla w_{p}\right|^{p-2} \nabla w_{p}\right)$.

- $u_{p}=\mathrm{e}^{-\frac{w_{p}}{p-1}}$ is $p$-harmonic in the weak sense.

INVERSE MEAN CURVATURE FLOW

$$
\left\{\begin{aligned}
\Delta_{1} w_{1} & =\left|\nabla w_{1}\right| & & \text { on } M \backslash \Omega \\
w_{1} & =0 & & \text { on } \partial \Omega \\
w_{1} & \rightarrow+\infty & & \text { as }|x| \rightarrow+\infty
\end{aligned}\right.
$$

in this case $\mathrm{H}=\Delta_{1} w_{1}$.

- Solution in a nonstandard variational sense [Huisken, IImanen '01 • JDG].

NONLINEAR POTENTIAL THEORY $(p \leq 2)$

$$
\left\{\begin{aligned}
\Delta_{p} w_{p} & =\left|\nabla w_{p}\right|^{p} & & \text { on } M \backslash \Omega \\
w_{p} & =0 & & \text { on } \partial \Omega \\
w_{p} & \rightarrow+\infty & & \text { as }|x| \rightarrow+\infty
\end{aligned}\right.
$$

where $\Delta_{p} f=\operatorname{div}\left(\left|\nabla w_{p}\right|^{p-2} \nabla w_{p}\right)$.

- $u_{p}=\mathrm{e}^{-\frac{w_{p}}{p-1}}$ is $p$-harmonic in the weak sense.
- $\mathscr{C}^{1, \beta}$ everywhere and $\mathscr{C}^{\infty}$ away from the critical set. Moreover, $\left|\nabla w_{p}\right| \in W^{1,2}$.

INVERSE MEAN CURVATURE FLOW

$$
\left\{\begin{aligned}
\Delta_{1} w_{1} & =\left|\nabla w_{1}\right| & & \text { on } M \backslash \Omega \\
w_{1} & =0 & & \text { on } \partial \Omega \\
w_{1} & \rightarrow+\infty & & \text { as }|x| \rightarrow+\infty
\end{aligned}\right.
$$

in this case $\mathrm{H}=\Delta_{1} w_{1}$.

- Solution in a nonstandard variational sense [Huisken, IImanen '01 • JDG].
- Only Lipschitz.

NONLINEAR POTENTIAL THEORY $(p \leq 2)$

$$
\left\{\begin{aligned}
\Delta_{p} w_{p} & =\left|\nabla w_{p}\right|^{p} & & \text { on } M \backslash \Omega \\
w_{p} & =0 & & \text { on } \partial \Omega \\
w_{p} & \rightarrow+\infty & & \text { as }|x| \rightarrow+\infty
\end{aligned}\right.
$$

where $\Delta_{p} f=\operatorname{div}\left(\left|\nabla w_{p}\right|^{p-2} \nabla w_{p}\right)$.

- $u_{p}=\mathrm{e}^{-\frac{w_{p}}{p-1}}$ is $p$-harmonic in the weak sense.
- $\mathscr{C}^{1, \beta}$ everywhere and $\mathscr{C}^{\infty}$ away from the critical set. Moreover, $\left|\nabla w_{p}\right| \in W^{1,2}$.
- A generic level is almost everywhere regular.

INVERSE MEAN CURVATURE FLOW

$$
\left\{\begin{aligned}
\Delta_{1} w_{1} & =\left|\nabla w_{1}\right| & & \text { on } M \backslash \Omega \\
w_{1} & =0 & & \text { on } \partial \Omega \\
w_{1} & \rightarrow+\infty & & \text { as }|x| \rightarrow+\infty
\end{aligned}\right.
$$

in this case $\mathrm{H}=\Delta_{1} w_{1}$.

- Solution in a nonstandard variational sense [Huisken, IImanen '01 • JDG].
- Only Lipschitz.
- A generic level is $\mathscr{C}^{1,1}$ and strictly outward minimising.

NONLINEAR POTENTIAL THEORY $(p \leq 2)$

$$
\left\{\begin{aligned}
\Delta_{p} w_{p} & =\left|\nabla w_{p}\right|^{p} & & \text { on } M \backslash \Omega \\
w_{p} & =0 & & \text { on } \partial \Omega \\
w_{p} & \rightarrow+\infty & & \text { as }|x| \rightarrow+\infty
\end{aligned}\right.
$$

where $\Delta_{p} f=\operatorname{div}\left(\left|\nabla w_{p}\right|^{p-2} \nabla w_{p}\right)$.

- $u_{p}=\mathrm{e}^{-\frac{w_{p}}{p-1}}$ is $p$-harmonic in the weak sense.
- $\mathscr{C}^{1, \beta}$ everywhere and $\mathscr{C}^{\infty}$ away from the critical set. Moreover, $\left|\nabla w_{p}\right| \in W^{1,2}$.
- A generic level is almost everywhere regular.
- Defining the (normalised) $p$-capacity of a set as

$$
\begin{gathered}
c_{p}(K)=\inf \left\{C_{p} \int|\nabla u|^{p}: u \in \mathscr{C}_{c}^{\infty}, u \geq \chi_{K}\right\}, \\
c_{p}\left(\partial \Omega_{t}^{(p)}\right)=e^{t} c_{p}(\partial \Omega) .
\end{gathered}
$$

INVERSE MEAN CURVATURE FLOW

$$
\left\{\begin{aligned}
\Delta_{1} w_{1} & =\left|\nabla w_{1}\right| & & \text { on } M \backslash \Omega \\
w_{1} & =0 & & \text { on } \partial \Omega \\
w_{1} & \rightarrow+\infty & & \text { as }|x| \rightarrow+\infty
\end{aligned}\right.
$$

in this case $\mathrm{H}=\Delta_{1} w_{1}$.

- Solution in a nonstandard variational sense [Huisken, IImanen '01 • JDG].
- Only Lipschitz.
- A generic level is $\mathscr{C}^{1,1}$ and strictly outward minimising.
- Defining $\Omega^{*}$ the strictly outward minimising hull of $\Omega$,

$$
\left|\partial \Omega_{t}^{(1)}\right|=\mathrm{e}^{t}\left|\partial \Omega^{*}\right| .
$$

NONLINEAR POTENTIAL THEORY $(p \leq 2)$

$$
\left\{\begin{aligned}
\Delta_{p} w_{p} & =\left|\nabla w_{p}\right|^{p} & & \text { on } M \backslash \Omega \\
w_{p} & =0 & & \text { on } \partial \Omega \\
w_{p} & \rightarrow+\infty & & \text { as }|x| \rightarrow+\infty
\end{aligned}\right.
$$

where $\Delta_{p} f=\operatorname{div}\left(\left|\nabla w_{p}\right|^{p-2} \nabla w_{p}\right)$.

- $u_{p}=\mathrm{e}^{-\frac{w_{p}}{p-1}}$ is $p$-harmonic in the weak sense.
- $\mathscr{C}^{1, \beta}$ everywhere and $\mathscr{C}^{\infty}$ away from the critical set. Moreover, $\left|\nabla w_{p}\right| \in W^{1,2}$.
- A generic level is almost everywhere regular.
- Defining the (normalised) $p$-capacity of a set as

$$
\begin{gathered}
c_{p}(K)=\inf \left\{\mathrm{C}_{p} \int|\nabla u|^{p}: u \in \mathscr{C}_{c}^{\infty}, u \geq \chi_{K}\right\}, \\
c_{p}\left(\partial \Omega_{t}^{(p)}\right)=e^{t} c_{p}(\partial \Omega) .
\end{gathered}
$$

INVERSE MEAN CURVATURE FLOW

$$
\left\{\begin{aligned}
\Delta_{1} w_{1} & =\left|\nabla w_{1}\right| & & \text { on } M \backslash \Omega \\
w_{1} & =0 & & \text { on } \partial \Omega \\
w_{1} & \rightarrow+\infty & & \text { as }|x| \rightarrow+\infty
\end{aligned}\right.
$$

in this case $\mathrm{H}=\Delta_{1} w_{1}$.

- Solution in a nonstandard variational sense [Huisken, IImanen '01 • JDG].
- Only Lipschitz.
- A generic level is $\mathscr{C}^{1,1}$ and strictly outward minimising.
- Defining $\Omega^{*}$ the strictly outward minimising hull of $\Omega$,

$$
\left|\partial \Omega_{t}^{(1)}\right|=\mathrm{e}^{\mathrm{t}}\left|\partial \Omega^{*}\right| .
$$

```
Proposition - [Fogagnolo, Mazzieri '22 · JFA]
In this setting, c
```

| Proposition - [Fogagnolo, Mazzieri '22 • JFA]
In this setting, $c_{p}(\partial \Omega) \rightarrow\left|\partial \Omega^{*}\right| / 4 \pi$ as $p \rightarrow 1^{+}$. In particular, $c_{p}\left(\partial \Omega_{t}^{(p)}\right) \rightarrow\left|\partial \Omega_{t}^{(1)}\right| / 4 \pi$.

In this setting, $w_{p}$ are uniformly Lipschitz and $w_{p} \rightarrow w_{1}$ uniformly on compact subsets of $M$ as $p \rightarrow 1^{+}$.
After the works [Moser '07 • JEMS] in $\mathbb{R}^{n}$ and [Kotschwar, Ni '09 • Ann. Sci. Éc. Norm. Supér] in nonnegative sectional curvature.

## THE TEA PARTY

MONOTONICITY FORMULAS

 xondry $\cdots$
Orandix
[Agostiniani, Mantegazza, Mazzieri, Oronzio '22] introduced the p-Hawking mass

$$
\mathfrak{m}_{H}^{(p)}(\Sigma)=\frac{\mathfrak{c}_{p}(\Sigma)^{\frac{1}{3-p}}}{2}\left[1+\int_{\Sigma} \frac{\left|\nabla w_{p}\right|^{2}}{4(3-p)^{2} \pi} d \mathcal{H}^{2}-\int_{\Sigma} \frac{\left|\nabla w_{p}\right| H}{4(3-p) \pi} d \mathcal{H}^{2}\right]
$$

(p-Hawking mass)
and proved that $t \mapsto \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right)$ is monotone nondecreasing along regular values.
[Agostiniani, Mantegazza, Mazzieri, Oronzio '22] introduced the p-Hawking mass

$$
\mathfrak{m}_{H}^{(p)}(\Sigma)=\frac{\mathfrak{c}_{p}(\Sigma)^{\frac{1}{3-p}}}{2}\left[1+\int_{\Sigma} \frac{\left|\nabla w_{p}\right|^{2}}{4(3-p)^{2} \pi} d \mathcal{H}^{2}-\int_{\Sigma} \frac{\left|\nabla w_{p}\right| H}{4(3-p) \pi} d \mathcal{H}^{2}\right]
$$

and proved that $t \mapsto \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right)$ is monotone nondecreasing along regular values.

## Theorem - [B - , Pluda, Pozzetta '24]

Almost every level of $w_{p}$ is a curvature varifold and

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right) \geq \frac{\mathfrak{c}_{p}\left(\partial \Omega_{t}^{(p)}\right)^{\frac{1}{3-p}}}{(3-p) 16 \pi} \int_{\partial \Omega_{t}^{(p)}} \underbrace{|\stackrel{\circ}{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\left.\left|\nabla^{\top}\right| \nabla w_{p}\right|^{2}}{\left|\nabla w_{p}\right|^{2}}+2 \frac{5-p}{p-1}\left(\frac{\left|\nabla w_{p}\right|}{3-p}-\frac{\mathrm{H}}{2}\right)^{2}}_{Q_{p} \geq 0} \mathrm{~d} \mathcal{H}^{2} \\
& \text { Is for almost every } t \in[0,+\infty) .
\end{aligned}
$$

InVERSE MEAN CURVATURE FLOW [Huisken, Ilmanen '01 • JDG]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \geq \frac{1}{16 \pi} \sqrt{\frac{\left|\partial \Omega_{t}^{(1)}\right|}{16 \pi}} \int_{\partial \Omega_{t}^{(1)}}|\stackrel{\mathrm{h}}{ }|^{2}+\mathrm{R}+2 \frac{\left|\nabla^{\top} \mathrm{H}\right|^{2}}{\mathrm{H}^{2}} \mathrm{~d} \mathcal{H}^{2}
$$

Nonlinear potential theory [B - , Pluda, Pozzetta '24]

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right) \geq \frac{\mathfrak{c}_{p}\left(\partial \Omega_{t}^{(p)}\right)^{\frac{1}{3-p}}}{(3-p) 16 \pi} \int_{\partial \Omega_{t}^{(p)}} \right\rvert\, \grave{h}^{2}+\mathrm{R}+2 \frac{\left.\left|\nabla^{\top}\right| \nabla w_{p}\right|^{2}}{\left|\nabla w_{p}\right|^{2}}+2 \frac{5-p}{p-1}\left(\frac{\left|\nabla w_{p}\right|}{3-p}-\frac{\mathrm{H}}{2}\right)^{2} \mathrm{~d} \mathcal{H}^{2}
$$

InVERSE MEAN CURVATURE FLOW [Huisken, Ilmanen '01 • JDG]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \geq \frac{1}{16 \pi} \sqrt{\frac{\left|\partial \Omega_{t}^{(1)}\right|}{16 \pi}} \int_{\partial \Omega_{t}^{(1)}}|\stackrel{\mathrm{h}}{ }|^{2}+\mathrm{R}+2 \frac{\left|\nabla^{\top} \mathrm{H}\right|^{2}}{\mathrm{H}^{2}} \mathrm{~d} \mathcal{H}^{2}
$$

Nonlinear potential theory [B - , Pluda, Pozzetta '24]

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right) \geq \frac{c_{p}\left(\partial \Omega_{t}^{(p)}\right)^{\frac{1}{3-p}}}{(3-p)^{16 \pi}} \int_{\partial \Omega_{t}^{(p)}} \right\rvert\, \grave{h}^{2}+\mathrm{R}+2 \frac{\left.\left|\nabla^{\top}\right| \nabla w_{p}\right|^{2}}{\left|\nabla w_{p}\right|^{2}}+2 \frac{5-p}{p-1}\left(\frac{\left|\nabla w_{p}\right|}{3-p}-\frac{\mathrm{H}}{2}\right)^{2} \mathrm{~d} \mathcal{H}^{2}
$$

1. $4 \pi c_{p}\left(\partial \Omega_{t}^{(p)}\right) \rightarrow\left|\partial \Omega_{t}^{(1)}\right|$

InVERSE MEAN CURVATURE FLOW [Huisken, IImanen '01 • JDG]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \geq \frac{1}{16 \pi} \sqrt{\frac{\left|\partial \Omega_{t}^{(1)}\right|}{16 \pi}} \int_{\partial \Omega_{t}^{(1)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\left|\nabla^{\top} \mathrm{H}\right|^{2}}{\mathrm{H}^{2}} d \mathcal{H}^{2}
$$

Nonlinear potential theory [B - , Pluda, Pozzetta '24]
$\frac{\mathrm{d}}{\mathrm{d} t} \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right) \geq \frac{c_{p}\left(\partial \Omega_{t}^{(p)}\right)^{\frac{1}{3-p}}}{(3-p) 16 \pi} \int_{\partial \Omega_{t}^{(p)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\left.\left|\nabla^{\top}\right| \nabla w_{p}\right|^{2}}{\left|\nabla w_{p}\right|^{2}}+2 \frac{5-p}{p-1}\left(\frac{\left|\nabla w_{p}\right|}{3-p}-\frac{H}{2}\right)^{2} \mathrm{~d} \mathcal{H}^{2}$

1. $4 \pi c_{p}\left(\partial \Omega_{t}^{(p)}\right) \rightarrow\left|\partial \Omega_{t}^{(1)}\right|$

InVERSE MEAN CURVATURE FLOW [Huisken, Ilmanen '01 • JDG]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \geq \frac{1}{16 \pi \sqrt{\frac{\left|\partial \Omega_{t}^{(1)}\right|}{16 \pi}}} \int_{\partial \Omega_{t}^{(1)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\left|\nabla^{\top} \mathrm{H}\right|^{2}}{\mathrm{H}^{2}} \mathrm{~d} \mathcal{H}^{2}
$$

Nonlinear potential theory [B - , Pluda, Pozzetta '24]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right) \geq \frac{c_{p}\left(\partial \Omega_{t}^{(p)}\right)^{\frac{1}{3-p}}}{(3-p) 16 \pi} \int_{\partial \Omega_{t}^{(p)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\left.\left|\nabla^{\top}\right| \nabla w_{p}\right|^{2}}{\left|\nabla w_{p}\right|^{2}}+2 \frac{5-p}{p-1}\left(\frac{\left|\nabla w_{p}\right|}{3-p}-\frac{\mathrm{H}}{2}\right)^{2} d \mathcal{H}^{2}
$$

1. $4 \pi c_{p}\left(\partial \Omega_{t}^{(p)}\right) \rightarrow\left|\partial \Omega_{t}^{(1)}\right|$

InVERSE MEAN CURVATURE FLOW [Huisken, Ilmanen '01 • JDG]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \geq \frac{1}{16 \pi} \sqrt{\frac{\left|\partial \Omega_{t}^{(1)}\right|}{16 \pi}} \int_{\partial \Omega_{t}^{(1)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\left|\nabla^{\top} \mathrm{H}\right|^{2}}{\mathrm{H}^{2}} \mathrm{~d} \mathcal{H}^{2}
$$

MONOTONICITIES IN COMPARISON
Nonlinear potential theory [B - , Pluda, Pozzetta '24]
$\frac{\mathrm{d}}{\mathrm{d} t} \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right) \geq \frac{\mathfrak{c}_{p}\left(\partial \Omega_{t}^{(p)}\right)^{\frac{1}{3-p}}}{(3-p) 16 \pi} \int_{\partial \Omega_{t}^{(p)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\left.\left|\nabla^{\top}\right| \nabla w_{p}\right|^{2}}{\left|\nabla w_{p}\right|^{2}}+2 \frac{5-p}{p-1}\left(\frac{\left|\nabla w_{p}\right|}{3-p}-\frac{H}{2}\right)^{2} d \mathcal{H}^{2}$

1. $4 \pi c_{p}\left(\partial \Omega_{t}^{(p)}\right) \rightarrow\left|\partial \Omega_{t}^{(1)}\right|$

InVERSE MEAN CURVATURE FLOW [Huisken, Ilmanen '01 • JDG]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \geq \frac{1}{16 \pi} \sqrt{\frac{\left|\partial \Omega_{t}^{(1)}\right|}{16 \pi}} \int_{\partial \Omega_{t}^{(1)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\left|\nabla^{\top} \mathrm{H}\right|^{2}}{\mathrm{H}^{2}} \mathrm{~d} \mathcal{H}^{2}
$$

MONOTONICITIES IN COMPARISON
Nonlinear potential theory [B - , Pluda, Pozzetta '24]
$\frac{\mathrm{d}}{\mathrm{d} t} \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right) \geq \frac{\mathfrak{c}_{p}\left(\partial \Omega_{t}^{(p)}\right)^{\frac{1}{3-p}}}{(3-p) 16 \pi} \int_{\partial \Omega_{t}^{(p)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\left.\left|\nabla^{\top}\right| \nabla w_{p}\right|^{2}}{\left|\nabla w_{p}\right|^{2}}+2 \frac{5-p}{p-1}\left(\frac{\left|\nabla w_{p}\right|}{3-p}-\frac{\mathrm{H}}{2}\right)^{2} d \mathcal{H}^{2}$

1. $4 \pi c_{p}\left(\partial \Omega_{t}^{(p)}\right) \rightarrow\left|\partial \Omega_{t}^{(1)}\right|$

InVerse mean curvature flow [Huisken, Ilmanen '01 • JDG]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \geq \frac{1}{16 \pi} \sqrt{\frac{\left|\partial \Omega_{t}^{(1)}\right|}{16 \pi}} \int_{\partial \Omega_{t}^{(1)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\left|\nabla^{\top} \mathrm{H}\right|^{2}}{\mathrm{H}^{2}} d \mathcal{H}^{2}
$$

## MONOTONICITIES IN COMPARISON

Nonlinear potential theory [B - , Pluda, Pozzetta '24]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right) \geq \frac{c_{p}\left(\partial \Omega_{t}^{(p)}\right)^{\frac{1}{3-p}}}{(3-p) 16 \pi} \int_{\partial \Omega_{t}^{(p)}}\left|\mathrm{h}^{2}\right|^{2}+\mathrm{R}+2 \frac{\left.\left|\nabla^{\top}\right| \nabla w_{p}\right|^{2}}{\left|\nabla w_{p}\right|^{2}}+2 \frac{5-p}{p-1}\left(\frac{\left|\nabla w_{p}\right|}{3-p}-\frac{\mathrm{H}}{2}\right)^{2} \mathrm{~d} \mathcal{H}^{2}
$$

1. $4 \pi c_{p}\left(\partial \Omega_{t}^{(p)}\right) \rightarrow\left|\partial \Omega_{t}^{(1)}\right| \rightsquigarrow\left|\partial \Omega_{t}^{(p)}\right| \rightarrow\left|\partial \Omega_{t}^{(1)}\right|$
2. $\int_{\partial \Omega_{t}^{(p)}}\left(\mathrm{H}^{(p)}-\left|\nabla w_{p}\right|\right)^{2} \rightarrow 0$ : Willmore energy $\int_{\partial \Omega_{t}^{(p)}} H^{2}$ is equibounded

InVerse mean curvature flow [Huisken, Ilmanen '01 • JDG]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \geq \frac{1}{16 \pi} \sqrt{\frac{\left|\partial \Omega_{t}^{(1)}\right|}{16 \pi}} \int_{\partial \Omega_{t}^{(1)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\mid \nabla^{\top} \mathrm{H}^{2}}{\mathrm{H}^{2}} d \mathcal{H}^{2}
$$

## MONOTONICITIES IN COMPARISON

Nonlinear potential theory [B - , Pluda, Pozzetta '24]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right) \geq \frac{\mathfrak{c}_{p}\left(\partial \Omega_{t}^{(p)}\right)^{\frac{1}{3-p}}}{(3-p) 16 \pi} \int_{\partial \Omega_{t}^{(p)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\left.\left|\nabla^{\top}\right| \nabla w_{p}\right|^{2}}{\left|\nabla w_{p}\right|^{2}}+2 \frac{5-p}{p-1}\left(\frac{\left|\nabla w_{p}\right|}{3-p}-\frac{\mathrm{H}}{2}\right)^{2} d \mathcal{H}^{2}
$$

1. $4 \pi c_{p}\left(\partial \Omega_{t}^{(p)}\right) \rightarrow\left|\partial \Omega_{t}^{(1)}\right| \rightsquigarrow\left|\partial \Omega_{t}^{(p)}\right| \rightarrow\left|\partial \Omega_{t}^{(1)}\right|$
2. $\int_{\partial \Omega_{t}^{(p)}}\left(\mathrm{H}^{(p)}-\left|\nabla w_{p}\right|\right)^{2} \rightarrow 0$ : Willmore energy $\int_{\partial \Omega_{t}^{(p)}} H^{2}$ is equibounded
3. $\partial \Omega_{t}^{(p)} \rightarrow \partial \Omega_{t}$ for a.e. $t$ in the sense of varifold $\rightsquigarrow \overrightarrow{\mathrm{H}}^{(p)} \rightharpoonup \overrightarrow{\mathrm{H}}^{(1)}=\nabla w_{1}$

InVerse mean curvature flow [Huisken, Ilmanen '01 • JDG]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \geq \frac{1}{16 \pi} \sqrt{\frac{\left|\partial \Omega_{t}^{(1)}\right|}{16 \pi}} \int_{\partial \Omega_{t}^{(1)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\mid \nabla^{\top} \mathrm{H}^{2}}{\mathrm{H}^{2}} d \mathcal{H}^{2}
$$

MONOTONICITIES IN COMPARISON
Nonlinear potential theory [B - , Pluda, Pozzetta '24]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right) \geq \frac{\mathfrak{c}_{p}\left(\partial \Omega_{t}^{(p)}\right)^{\frac{1}{3-p}}}{(3-p) 16 \pi} \int_{\partial \Omega_{t}^{(p)}}\left|\mathrm{h}^{2}\right|^{2}+\mathrm{R}+2 \frac{\left.\left|\nabla^{\top}\right| \nabla w_{p}\right|^{2}}{\left|\nabla w_{p}\right|^{2}}+2 \frac{5-p}{p-1}\left(\frac{\left|\nabla w_{p}\right|}{3-p}-\frac{H}{2}\right)^{2} d \mathcal{H}^{2}
$$

1. $4 \pi c_{p}\left(\partial \Omega_{t}^{(p)}\right) \rightarrow\left|\partial \Omega_{t}^{(1)}\right| \rightsquigarrow\left|\partial \Omega_{t}^{(p)}\right| \rightarrow\left|\partial \Omega_{t}^{(1)}\right|$
2. $\int_{\partial \Omega_{t}^{(p)}}\left(\mathrm{H}^{(p)}-\left|\nabla w_{p}\right|\right)^{2} \rightarrow 0$ : Willmore energy $\int_{\partial \Omega_{t}^{(p)}} H^{2}$ is equibounded
3. $\partial \Omega_{t}^{(p)} \rightarrow \partial \Omega_{t}$ for a.e. $t$ in the sense of varifold $\rightsquigarrow \overrightarrow{\mathrm{H}}^{(p)} \rightharpoonup \overrightarrow{\mathrm{H}}^{(1)}=\nabla w_{1}$
4. $\vec{H}^{(p)}$ and $\nabla w_{p}$ are aligned $\rightsquigarrow \int_{\partial \Omega_{t}^{(p)}}\left\langle\vec{H}^{(p)}-\nabla w_{p} \mid X\right\rangle \rightarrow 0$, for $X$ vector field (in a large class).

InVerse mean curvature flow [Huisken, Ilmanen '01 • JDG]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \geq \frac{1}{16 \pi} \sqrt{\frac{\left|\partial \Omega_{t}^{(1)}\right|}{16 \pi}} \int_{\partial \Omega_{t}^{(1)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\mid \nabla^{\top} \mathrm{H}^{2}}{\mathrm{H}^{2}} d \mathcal{H}^{2}
$$

MONOTONICITIES IN COMPARISON
Nonlinear potential theory [B - , Pluda, Pozzetta '24]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right) \geq \frac{\mathfrak{c}_{p}\left(\partial \Omega_{t}^{(p)}\right)^{\frac{1}{3-p}}}{(3-p) 16 \pi} \int_{\partial \Omega_{t}^{(p)}}\left|\mathrm{h}^{2}\right|^{2}+\mathrm{R}+2 \frac{\left.\left|\nabla^{\top}\right| \nabla w_{p}\right|^{2}}{\left|\nabla w_{p}\right|^{2}}+2 \frac{5-p}{p-1}\left(\frac{\left|\nabla w_{p}\right|}{3-p}-\frac{H}{2}\right)^{2} d \mathcal{H}^{2}
$$

1. $4 \pi c_{p}\left(\partial \Omega_{t}^{(p)}\right) \rightarrow\left|\partial \Omega_{t}^{(1)}\right| \rightsquigarrow\left|\partial \Omega_{t}^{(p)}\right| \rightarrow\left|\partial \Omega_{t}^{(1)}\right| \rightsquigarrow \int_{\partial \Omega_{t}^{(p)}}\left|\nu^{(1)}-\nu^{(p)}\right|^{2} \rightarrow 0, \nu^{(\cdot)}$ is the unit normal of $\partial \Omega^{(\cdot)}$
2. $\int_{\partial \Omega_{t}^{(p)}}\left(\mathrm{H}^{(p)}-\left|\nabla w_{p}\right|\right)^{2} \rightarrow 0$ : Willmore energy $\int_{\partial \Omega_{t}^{(p)}} H^{2}$ is equibounded
3. $\partial \Omega_{t}^{(p)} \rightarrow \partial \Omega_{t}$ for a.e. $t$ in the sense of varifold $\rightsquigarrow \overrightarrow{\mathrm{H}}^{(p)} \rightharpoonup \overrightarrow{\mathrm{H}}^{(1)}=\nabla w_{1}$
4. $\vec{H}^{(p)}$ and $\nabla w_{p}$ are aligned $\rightsquigarrow \int_{\partial \Omega_{t}^{(p)}}\left\langle\vec{H}^{(p)}-\nabla w_{p} \mid X\right\rangle \rightarrow 0$, for $X$ vector field (in a large class).

InVerse mean curvature flow [Huisken, Ilmanen '01 • JDG]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \geq \frac{1}{16 \pi} \sqrt{\frac{\left|\partial \Omega_{t}^{(1)}\right|}{16 \pi}} \int_{\partial \Omega_{t}^{(1)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\mid \nabla^{\top} \mathrm{H}^{2}}{\mathrm{H}^{2}} d \mathcal{H}^{2}
$$

MONOTONICITIES IN COMPARISON
Nonlinear potential theory [B - , Pluda, Pozzetta '24]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right) \geq \frac{\mathfrak{c}_{p}\left(\partial \Omega_{t}^{(p)}\right)^{\frac{1}{3-p}}}{(3-p) 16 \pi} \int_{\partial \Omega_{t}^{(p)}}\left|\mathrm{h}^{2}\right|^{2}+\mathrm{R}+2 \frac{\left.\left|\nabla^{\top}\right| \nabla w_{p}\right|^{2}}{\left|\nabla w_{p}\right|^{2}}+2 \frac{5-p}{p-1}\left(\frac{\left|\nabla w_{p}\right|}{3-p}-\frac{H}{2}\right)^{2} d \mathcal{H}^{2}
$$

1. $4 \pi c_{p}\left(\partial \Omega_{t}^{(p)}\right) \rightarrow\left|\partial \Omega_{t}^{(1)}\right| \rightsquigarrow\left|\partial \Omega_{t}^{(p)}\right| \rightarrow\left|\partial \Omega_{t}^{(1)}\right| \rightsquigarrow \int_{\partial \Omega_{t}^{(p)}}\left|\nu^{(1)}-\nu^{(p)}\right|^{2} \rightarrow 0, \nu^{(\cdot)}$ is the unit normal of $\partial \Omega^{(\cdot)}$
2. $\int_{\partial \Omega_{t}^{(p)}}\left(\mathrm{H}^{(p)}-\left|\nabla w_{p}\right|\right)^{2} \rightarrow 0$ : Willmore energy $\int_{\partial \Omega_{t}^{(p)}} H^{2}$ is equibounded
3. $\partial \Omega_{t}^{(p)} \rightarrow \partial \Omega_{t}$ for a.e. $t$ in the sense of varifold $\rightsquigarrow \overrightarrow{\mathrm{H}}^{(p)} \rightharpoonup \overrightarrow{\mathrm{H}}^{(1)}=\nabla w_{1}$
4. $\vec{H}^{(p)}$ and $\nabla w_{p}$ are aligned $\rightsquigarrow \int_{\partial \Omega_{t}^{(p)}}\left\langle\vec{H}^{(p)}-\nabla w_{p} \mid X\right\rangle \rightarrow 0$, for $X$ vector field (in a large class).
5. $\int_{\partial \Omega_{t}^{(p)}}\left|\nabla w_{p}\right|=\int_{\partial \Omega_{t}^{(p)}}\left\langle\nabla w_{p} \mid \nu^{(p)}\right\rangle \stackrel{1,4}{\sim} \int_{\partial \Omega_{t}^{(p)}}\left\langle\overrightarrow{\mathrm{H}}^{(p)} \mid \nu^{(1)}\right\rangle \stackrel{3}{\sim} \int_{\partial \Omega_{t}^{(1)}}\left\langle\overrightarrow{\mathrm{H}}^{(1)} \mid \nu^{(1)}\right\rangle=\int_{\partial \Omega_{t}^{(1)}}\left|\nabla w_{1}\right|$

InVerse mean curvature flow [Huisken, Ilmanen '01 • JDG]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \geq \frac{1}{16 \pi} \sqrt{\frac{\left|\partial \Omega_{t}^{(1)}\right|}{16 \pi}} \int_{\partial \Omega_{t}^{(1)}}|\dot{\mathrm{h}}|^{2}+\mathrm{R}+2 \frac{\left|\nabla^{\top} \mathrm{H}\right|^{2}}{\mathrm{H}^{2}} d \mathcal{H}^{2}
$$

MONOTONICITIES IN COMPARISON
Nonlinear potential theory [B - , Pluda, Pozzetta '24]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{m}_{H}^{(p)}\left(\partial \Omega_{t}^{(p)}\right) \geq \frac{\mathfrak{c}_{p}\left(\partial \Omega_{t}^{(p)}\right)^{\frac{1}{3-p}}}{(3-p) 16 \pi} \int_{\partial \Omega_{t}^{(p)}}\left|\mathrm{h}^{2}\right|^{2}+\mathrm{R}+2 \frac{\left.\left|\nabla^{\top}\right| \nabla w_{p}\right|^{2}}{\left|\nabla w_{p}\right|^{2}}+2 \frac{5-p}{p-1}\left(\frac{\left|\nabla w_{p}\right|}{3-p}-\frac{H}{2}\right)^{2} d \mathcal{H}^{2}
$$

1. $4 \pi c_{p}\left(\partial \Omega_{t}^{(p)}\right) \rightarrow\left|\partial \Omega_{t}^{(1)}\right| \rightsquigarrow\left|\partial \Omega_{t}^{(p)}\right| \rightarrow\left|\partial \Omega_{t}^{(1)}\right| \rightsquigarrow \int_{\partial \Omega_{t}^{(p)}}\left|\nu^{(1)}-\nu^{(p)}\right|^{2} \rightarrow 0, \nu^{(\cdot)}$ is the unit normal of $\partial \Omega^{(\cdot)}$
2. $\int_{\partial \Omega_{t}^{(p)}}\left(\mathrm{H}^{(p)}-\left|\nabla w_{p}\right|\right)^{2} \rightarrow 0$ : Willmore energy $\int_{\partial \Omega_{t}^{(p)}} H^{2}$ is equibounded
3. $\partial \Omega_{t}^{(p)} \rightarrow \partial \Omega_{t}$ for a.e. $t$ in the sense of varifold $\rightsquigarrow \overrightarrow{\mathrm{H}}^{(p)} \rightharpoonup \overrightarrow{\mathrm{H}}^{(1)}=\nabla w_{1}$
4. $\vec{H}^{(p)}$ and $\nabla w_{p}$ are aligned $\rightsquigarrow \int_{\partial \Omega_{t}^{(p)}}\left\langle\vec{H}^{(p)}-\nabla w_{p} \mid X\right\rangle \rightarrow 0$, for $X$ vector field (in a large class).
5. $\int_{\partial \Omega_{t}^{(p)}}\left|\nabla w_{p}\right|=\int_{\partial \Omega_{t}^{(p)}}\left\langle\nabla w_{p} \mid \nu^{(p)}\right\rangle \stackrel{1,4}{\sim} \int_{\partial \Omega_{t}^{(p)}}\left\langle\vec{H}^{(p)} \mid \nu^{(1)}\right\rangle \stackrel{3}{\sim} \int_{\partial \Omega_{t}^{(1)}}\left\langle\vec{H}^{(1)} \mid \nu^{(1)}\right\rangle=\int_{\partial \Omega_{t}^{(1)}}\left|\nabla w_{1}\right|$
6. By coarea: $\lim _{p \rightarrow 1^{+}} \int\left|\nabla w_{p}\right|^{2}=\int\left|\nabla w_{1}\right|^{2} \rightsquigarrow \nabla w_{p} \rightarrow \nabla w_{1}$ strongly in $L^{2}$
```
Theorem - [B - , Pluda, Pozzetfa '24]
In our setting, }\nabla\mp@subsup{w}{p}{}->\nabla\mp@subsup{w}{1}{}\mathrm{ in L Loc for every q < + %. Moreover, }\partial\mp@subsup{\Omega}{t}{(p)}\mathrm{ converges in the sense of varifold to
\partial\Omega}\mp@subsup{\Omega}{t}{(1)}\mathrm{ and
d
for almost every }t\in[0,+\infty)\mathrm{ .
```

We recover the monotonicity formula proved in [Huisken, IImanen '01 • JDG].

## 4 <br> Fichting the Jabberwocky Riemannian Penrose inequalities

别 0 ondora
[Huisken '06] introduced the concept of isoperimetric mass: given $\left\{\Omega_{k}\right\}$ an exhaustion of $M$

$$
\mathfrak{m}_{\text {iso }}:=\sup _{\left\{\Omega_{k}\right\}} \varlimsup_{k \rightarrow+\infty} \mathfrak{m}_{\text {iso }}\left(\Omega_{k}\right) \quad \mathfrak{m}_{\text {iso }}\left(\Omega_{k}\right):=\frac{2}{\left|\partial \Omega_{k}\right|} \underbrace{\left(\left|\Omega_{k}\right|-\frac{\left|\partial \Omega_{k}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right)}_{\mathbb{R}^{3} \text { isoperimetric deficit }} .
$$

[Huisken '06] introduced the concept of isoperimetric mass: given $\left\{\Omega_{k}\right\}$ an exhaustion of $M$

$$
\mathfrak{m}_{\text {iso }}:=\sup _{\left\{\Omega_{k}\right\}} \varlimsup_{k \rightarrow+\infty} \mathfrak{m}_{\text {iso }}\left(\Omega_{k}\right) \quad \text { where } \quad \mathfrak{m}_{\text {iso }}\left(\Omega_{k}\right):=\frac{2}{\left|\partial \Omega_{k}\right|} \underbrace{\left(\left|\Omega_{k}\right|-\frac{\left|\partial \Omega_{k}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right)}_{\mathbb{R}^{3} \text { isoperimetric deficit }} .
$$

[Jauregui '20] introduced the concept of isocapacitary mass ( $p=2$ only): given $\left\{\Omega_{k}\right\}$ an exhaustion of $M$

$$
\mathfrak{m}_{\text {iso }}^{(p)}:=\sup _{\left\{\Omega_{k}\right\}} \varlimsup_{k \rightarrow+\infty} \mathfrak{m}^{(p)}\left(\Omega_{k}\right) \quad \text { where } \quad \mathfrak{m}_{\text {iso }}^{(p)}\left(\Omega_{k}\right):=\frac{1}{2 p \pi c_{p}\left(\partial \Omega_{k}\right)} \underbrace{\left(\left|\Omega_{k}\right|-\frac{4 \pi}{3} c_{p}\left(\partial \Omega_{k}\right)^{\frac{3}{3-p}}\right)}_{\mathbb{R}^{3} \text { iscopacitary deficit }} .
$$

[Huisken '06] introduced the concept of isoperimetric mass: given $\left\{\Omega_{k}\right\}$ an exhaustion of $M$

$$
\mathfrak{m}_{\text {iso }}:=\sup _{\left\{\Omega_{k}\right\}} \varlimsup_{k \rightarrow+\infty} \mathfrak{m}_{\text {iso }}\left(\Omega_{k}\right) \quad \text { where } \quad \mathfrak{m}_{\text {iso }}\left(\Omega_{k}\right):=\frac{2}{\left|\partial \Omega_{k}\right|} \underbrace{\left(\left|\Omega_{k}\right|-\frac{\left|\partial \Omega_{k}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right)}_{\mathbb{R}^{3} \text { isoperimetric deficit }} .
$$

[Jauregui '20] introduced the concept of isocapacitary mass ( $p=2$ only): given $\left\{\Omega_{k}\right\}$ an exhaustion of $M$

$$
\mathfrak{m}_{\text {iso }}^{(p)}:=\sup _{\left\{\Omega_{k}\right\}} \varlimsup_{k \rightarrow+\infty} \mathfrak{m}^{(p)}\left(\Omega_{k}\right) \quad \text { where } \quad \mathfrak{m}_{\text {iso }}^{(p)}\left(\Omega_{k}\right):=\frac{1}{2 p \pi c_{p}\left(\partial \Omega_{k}\right)} \underbrace{\left(\left|\Omega_{k}\right|-\frac{4 \pi}{3} c_{p}\left(\partial \Omega_{k}\right)^{\frac{3}{3-p}}\right)}_{\mathbb{R}^{3} \text { iscopacitary deficit }} .
$$

- $\mathfrak{m}_{\text {iso }}$ and $\mathfrak{m}_{\text {iso }}^{(p)}$ are geometric invariants without any asymptotic assumption.
- $\ln (\mathfrak{S}(\mathfrak{m}), \sigma)$, it holds $\mathfrak{m}_{\text {iso }}=\mathfrak{m}_{\text {iso }}^{(p)}=\mathfrak{m}$.
[Huisken '06] introduced the concept of isoperimetric mass: given $\left\{\Omega_{k}\right\}$ an exhaustion of $M$

$$
\mathfrak{m}_{\text {iso }}:=\sup _{\left\{\Omega_{k}\right\}} \varlimsup_{k \rightarrow+\infty} \mathfrak{m}_{\text {iso }}\left(\Omega_{k}\right) \quad \text { where } \quad \mathfrak{m}_{\text {iso }}\left(\Omega_{k}\right):=\frac{2}{\left|\partial \Omega_{k}\right|} \underbrace{\left(\left|\Omega_{k}\right|-\frac{\left|\partial \Omega_{k}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right)}_{\mathbb{R}^{3} \text { isoperimetric deficit }} .
$$

[Jauregui '20] introduced the concept of isocapacitary mass ( $p=2$ only): given $\left\{\Omega_{k}\right\}$ an exhaustion of $M$

$$
\mathfrak{m}_{\text {iso }}^{(p)}:=\sup _{\left\{\Omega_{k}\right\}} \varlimsup_{k \rightarrow+\infty} \mathfrak{m}^{(p)}\left(\Omega_{k}\right) \quad \text { where } \quad \mathfrak{m}_{\text {iso }}^{(p)}\left(\Omega_{k}\right):=\frac{1}{2 p \pi c_{p}\left(\partial \Omega_{k}\right)} \underbrace{\left(\left|\Omega_{k}\right|-\frac{4 \pi}{3} c_{p}\left(\partial \Omega_{k}\right)^{\frac{3}{3-p}}\right)}_{\mathbb{R}^{3} \text { iscopacitary deficit }} .
$$

- $\mathfrak{m}_{\text {iso }}$ and $\mathfrak{m}_{\text {iso }}^{(p)}$ are geometric invariants without any asymptotic assumption.
- $\ln (\mathfrak{S}(\mathfrak{m}), \sigma)$, it holds $\mathfrak{m}_{\text {iso }}=\mathfrak{m}_{\text {iso }}^{(p)}=\mathfrak{m}$.

$$
\begin{aligned}
& \text { What about the equivalence with } \mathfrak{m}_{\text {ADM }} \text { ? } \\
& \text { RIEMANNIAN PenROSE INEQUALITY IS VALID FOR } \mathfrak{m}_{\text {iso }}^{(p)} \text { AND } \mathfrak{m}_{\text {iso }} ?
\end{aligned}
$$

Theorem - [Fan, Shi, Tam '09. Comm. Anal. Geom.] $\mathfrak{m}_{\text {iso }}\left(B_{R}\right) \rightarrow \mathfrak{m}_{\text {ADM }}$ as $R \rightarrow+\infty$, provided $\mathfrak{m}_{\text {ADM }}$ is defined. In particular, $\mathfrak{m}_{\mathrm{ADM}} \leq \mathfrak{m}_{\text {iso }}$.

Theorem - [Jauregui '20]
$\mathfrak{m}_{\text {iso }}^{(2)}\left(B_{R}\right) \rightarrow \mathfrak{m}_{\text {ADM }}$ as $R \rightarrow+\infty$, provided $\mathfrak{m}_{\text {ADM }}$ is defined. In particular, $\mathfrak{m}_{\mathrm{ADM}} \leq \mathfrak{m}_{\text {iso }}^{(2)}$. The equality holds for harmonically flat manifolds.
|Theorem - [Jauregui, Lee '19 . CRELLE]
If $\mathfrak{m}_{H}(\partial \Omega) \leq m$ for $\Omega$ in a given class, then $\mathfrak{m}_{\text {iso }} \leq m$.

Theorem - [Fan, Shi, Tam '09. Comm. Anal. Geom.] $\mathfrak{m}_{\text {iso }}\left(B_{R}\right) \rightarrow \mathfrak{m}_{\text {ADM }}$ as $R \rightarrow+\infty$, provided $\mathfrak{m}_{\text {ADM }}$ is defined. In particular, $\mathfrak{m}_{\text {ADM }} \leq \mathfrak{m}_{\text {iso }}$.

```
Theorem - [Jauregui '20]
\(\mathfrak{m}_{\text {iso }}^{(2)}\left(B_{R}\right) \rightarrow \mathfrak{m}_{\text {ADM }}\) as \(R \rightarrow+\infty\), provided \(\mathfrak{m}_{\text {ADM }}\) is defined. In particular, \(\mathfrak{m}_{\mathrm{ADM}} \leq \mathfrak{m}_{\text {iso }}^{(2)}\). The equality holds for harmonically flat manifolds.
```

```
Theorem - [Jauregui, Lee '19 . CRELLE]
If }\mp@subsup{\mathfrak{m}}{H}{}(\partial\Omega)\leqm\mathrm{ for }\Omega\mathrm{ in a given class, then }\mp@subsup{\mathfrak{m}}{\mathrm{ iso }}{}\leqm\mathrm{ .
```

Combining them with [Huisken, Ilmanen '01 • JDG] we get
Equivalence of masses - RPI
If $(M, g)$ is $\mathscr{C}_{1}^{1}$-asymptotically flat and Ric $\geq-\mathrm{C} /|x|^{2}$

$$
\sqrt{\frac{|\partial M|}{16 \pi}} \leq \mathfrak{m}_{\text {ADM }}=\mathfrak{m}_{\text {iso }} \leq \mathfrak{m}_{\text {iso }}^{(p)}
$$

Theorem - [Fan, Shi, Tam '09 . Comm. Anal. Geom.] $\mathfrak{m}_{\text {iso }}\left(B_{R}\right) \rightarrow \mathfrak{m}_{\text {ADM }}$ as $R \rightarrow+\infty$, provided $\mathfrak{m}_{\text {ADM }}$ is defined. In

SUMMING UP particular, $\mathfrak{m}_{\mathrm{ADM}} \leq \mathfrak{m}_{\text {iso }}$.

```
Theorem-[Jauregui '20]
\(\mathfrak{m}_{\text {iso }}^{(2)}\left(B_{R}\right) \rightarrow \mathfrak{m}_{\text {ADM }}\) as \(R \rightarrow+\infty\), provided \(\mathfrak{m}_{\text {ADM }}\) is defined. In particular, \(\mathfrak{m}_{\mathrm{ADM}} \leq \mathfrak{m}_{\text {iso }}^{(2)}\). The equality holds for harmonically flat manifolds.
```


## Theorem - [Jauregui, Lee '19 CRELLE]

If $\mathfrak{m}_{H}(\partial \Omega) \leq m$ for $\Omega$ in a given class, then $\mathfrak{m}_{\text {iso }} \leq m$.

$$
\mathfrak{m}_{\mathrm{ADM}} \leq \mathfrak{m}_{\text {iso }}
$$

always
further

$$
\mathfrak{m}_{\mathrm{ADM}}=\mathfrak{m}_{\text {iso }}
$$

$$
\mathfrak{m}_{\mathrm{ADM}}=\mathfrak{m}_{\mathrm{iso}}^{(2)}
$$

Combining them with [Huisken, IImanen '01 • JDG] we get
Equivalence of masses - RPI
If $(M, g)$ is $\mathscr{C}_{1}^{1}$-asymptotically flat and Ric $\geq-\mathrm{C} /|x|^{2}$

$$
\sqrt{\frac{|\partial M|}{16 \pi}} \leq \mathfrak{m}_{\text {ADM }}=\mathfrak{m}_{\text {iso }} \leq \mathfrak{m}_{\text {iso }}^{(p)}
$$

Theorem - [Fan, Shi, Tam '09 . Comm. Anal. Geom.]
$\mathfrak{m}_{\text {iso }}\left(B_{R}\right) \rightarrow \mathfrak{m}_{\text {ADM }}$ as $R \rightarrow+\infty$, provided $\mathfrak{m}_{\text {ADM }}$ is defined. In particular, $\mathfrak{m}_{\mathrm{ADM}} \leq \mathfrak{m}_{\text {iso }}$.

SUMMING UP
Equivalence of masses

> Theorem - [Jauregui '20]
> $\mathfrak{m}_{i \text { iso }}^{(2)}\left(B_{R}\right) \rightarrow \mathfrak{m}_{\mathrm{ADM}}$ as $R \rightarrow+\infty$, provided $\mathfrak{m}_{\text {ADM }}$ is defined. In particular, $\mathfrak{m}_{\mathrm{ADM}} \leq \mathfrak{m}_{\text {iso }}^{(2)}$. The equality holds for harmonically flat manifolds.

## Theorem - [Jauregui, Lee '19 . CRELLE]

If $\mathfrak{m}_{H}(\partial \Omega) \leq m$ for $\Omega$ in a given class, then $\mathfrak{m}_{\text {iso }} \leq m$.

Combining them with [Huisken, Ilmanen '01 • JDG] we get
Equivalence of masses - RPI
If $(M, g)$ is $\mathscr{C}_{1}^{1}$-asymptotically flat and Ric $\geq-\mathrm{C} /|x|^{2}$

$$
\sqrt{\frac{|\partial M|}{16 \pi}} \leq \mathfrak{m}_{\text {ADM }}=\mathfrak{m}_{\text {iso }} \leq \mathfrak{m}_{\text {iso }}^{(p)} .
$$

always

$$
\begin{aligned}
& \mathfrak{m}_{\mathrm{ADM}} \leq \mathfrak{m}_{\mathrm{iso}} \\
& \mathfrak{m}_{\mathrm{ADM}} \leq \mathfrak{m}_{\mathrm{iso}}^{(p)} \\
& \mathfrak{m}_{\mathrm{ADM}}=\mathfrak{m}_{\mathrm{iso}} \\
& \mathfrak{m}_{\mathrm{ADM}}=\mathfrak{m}_{\mathrm{iso}}^{(2)}
\end{aligned}
$$

further
assumpions

Penrose inequality
For all concepts under the ussumptions of
[Huisken, IImanen '01 • JDG].

Theorem - [Fan, Shi, Tam '09 . Comm. Anal. Geom.]
$\mathfrak{m}_{\text {iso }}\left(B_{R}\right) \rightarrow \mathfrak{m}_{\text {ADM }}$ as $R \rightarrow+\infty$, provided $\mathfrak{m}_{\text {ADM }}$ is defined. In particular, $\mathfrak{m}_{\mathrm{ADM}} \leq \mathfrak{m}_{\text {iso }}$.

SUMMING UP

> Theorem - [Jauregui '20]
> $\mathfrak{m}_{i \text { iso }}^{(2)}\left(B_{R}\right) \rightarrow \mathfrak{m}_{\mathrm{ADM}}$ as $R \rightarrow+\infty$, provided $\mathfrak{m}_{\mathrm{ADM}}$ is defined. In particular, $\mathfrak{m}_{\mathrm{ADM}} \leq \mathfrak{m}_{\mathrm{iso}}^{(2)}$. The equality holds for harmonically flat manifolds.

## Theorem - [Jauregui, Lee '19 CRELLE]

If $\mathfrak{m}_{H}(\partial \Omega) \leq m$ for $\Omega$ in a given class, then $\mathfrak{m}_{\text {iso }} \leq m$.

Combining them with [Huisken, IImanen '01 • JDG] we get
Equivalence of masses - RPI
If $(M, g)$ is $\mathscr{C}_{1}^{1}$-asymptotically flat and Ric $\geq-\mathrm{C} /|x|^{2}$

$$
\sqrt{\frac{|\partial M|}{16 \pi}} \leq \mathfrak{m}_{\text {ADM }}=\mathfrak{m}_{\text {iso }} \leq \mathfrak{m}_{\text {iso }}^{(p)} .
$$

Theorem - [B - , Fogagnolo, Mazzieri '22], [B - , Fogagnolo, Mazzieri '23 • SIGMA]
Let $(M, g)$ be a $\mathscr{C}_{\tau}^{1}$-asymptotically flat 3-Riemannian manifold, $\tau>1 / 2$, with $\mathrm{R} \geq 0$ and connected, outermost, minimal boundary. Then,

$$
\begin{equation*}
\sqrt{\frac{|\partial M|}{16 \pi}} \leq \mathfrak{m}_{\text {ADM }}=\mathfrak{m}_{\text {iso }}=\mathfrak{m}_{\text {iso }}^{(p)} . \tag{RPI}
\end{equation*}
$$

Theorem - [B - , Fogagnolo, Mazzieri '22], [B - , Fogagnolo, Mazzieri '23 • SIGMA]
Let $(M, g)$ be a $\mathscr{C}_{\tau}^{1}$-asymptotically flat 3 -Riemannian manifold, $\tau>1 / 2$, with $\mathrm{R} \geq 0$ and connected, outermost, minimal boundary. Then,

$$
\begin{equation*}
\sqrt{\frac{|\partial M|}{16 \pi}} \leq \mathfrak{m}_{\text {ADM }}=\mathfrak{m}_{\text {iso }}=\mathfrak{m}_{\text {iso }}^{(p)} . \tag{RPI}
\end{equation*}
$$

Some remarks

- We already know $\mathfrak{m}_{\text {ADM }} \leq \mathfrak{m}_{\text {iso }}^{(p)}$.

Theorem - [B - , Fogagnolo, Mazzieri '22], [B - , Fogagnolo, Mazzieri' '23 • SIGMA]
Let $(M, g)$ be a $\mathscr{C}_{\tau}^{1}$-asymptotically flat 3 -Riemannian manifold, $\tau>1 / 2$, with $\mathrm{R} \geq 0$ and connected, outermost, minimal boundary. Then,

$$
\begin{equation*}
\sqrt{\frac{|\partial M|}{16 \pi}} \leq \mathfrak{m}_{\text {ADM }}=\mathfrak{m}_{\text {iso }}=\mathfrak{m}_{\text {iso }}^{(p)} . \tag{RPI}
\end{equation*}
$$

Some remarks

- We already know $\mathfrak{m}_{\text {ADM }} \leq \mathfrak{m}_{\text {iso }}^{(p)}$.
- It is easy to prove that $\mathfrak{m}_{\text {iso }}^{(p)} \leq \mathfrak{m}_{\text {iso }}$ : sharp isoperimetric inequality $\rightsquigarrow$ sharp isocapacitary inequality via symmetrization [Jauregui '12] (taking the ball of $\mathbb{R}^{3}$ of the same volume of $\Omega_{t}^{(p)}$ ). The definition of $\mathfrak{m}_{\text {iso }} \rightsquigarrow$ sharp asymptotic isoperimetric inequality, thus

$$
|\Omega|^{\frac{3-p}{3}} \leq\left(\frac{4 \pi}{3}\right)^{\frac{3-p}{3}} c_{p}(\partial \Omega)+\frac{p(3-p)}{2}\left(\frac{4 \pi}{3}\right)^{\frac{3-p}{3}} c_{p}(\partial \Omega)^{\frac{2-p}{3-p}}\left(\mathfrak{m}_{\text {iso }}+o(1)\right)
$$

as $|\Omega| \rightarrow+\infty$.

## Theorem - [B - , Fogagnolo, Mazzieri '22], [B - , Fogagnolo, Mazzieri '23 • SIGMA]

Let $(M, g)$ be a $\mathscr{C}_{\tau}^{1}$-asymptotically flat 3 -Riemannian manifold, $\tau>1 / 2$, with $\mathrm{R} \geq 0$ and connected, outermost, minimal boundary. Then,

$$
\begin{equation*}
\sqrt{\frac{|\partial M|}{16 \pi}} \leq \mathfrak{m}_{\mathrm{ADM}}=\mathfrak{m}_{\mathrm{iso}}=\mathfrak{m}_{\text {iso }}^{(p)} . \tag{RPI}
\end{equation*}
$$

Some remarks

- We already know $\mathfrak{m}_{\text {ADM }} \leq \mathfrak{m}_{\text {iso }}^{(p)}$.
- It is easy to prove that $\mathfrak{m}_{\text {iso }}^{(p)} \leq \mathfrak{m}_{\text {iso }}$ : sharp isoperimetric inequality $\rightsquigarrow$ sharp isocapacitary inequality via symmetrization [Jauregui '12] (taking the ball of $\mathbb{R}^{3}$ of the same volume of $\Omega_{t}^{(p)}$ ). The definition of $\mathfrak{m}_{\text {iso }} \rightsquigarrow$ sharp asymptotic isoperimetric inequality, thus

$$
|\Omega|^{\frac{3-p}{3}} \leq\left(\frac{4 \pi}{3}\right)^{\frac{3-p}{3}} c_{p}(\partial \Omega)+\frac{p(3-p)}{2}\left(\frac{4 \pi}{3}\right)^{\frac{3-p}{3}} c_{p}(\partial \Omega)^{\frac{2-p}{3-p}}\left(\mathfrak{m}_{\text {iso }}+o(1)\right)
$$

as $|\Omega| \rightarrow+\infty$.

- If we show $\mathfrak{m}_{\text {iso }} \leq \mathfrak{m}_{\text {ADM }} \rightsquigarrow \mathfrak{m}_{\text {iso }}^{(p)} \leq \mathfrak{m}_{\text {iso }} \leq \mathfrak{m}_{\text {ADM }} \leq \mathfrak{m}_{\text {iso }}^{(p)} \rightsquigarrow$ they are equal.


## Theorem - [B - , Fogagnolo, Mazzieri '22], [B - , Fogagnolo, Mazzieri '23 • SIGMA]

Let $(M, g)$ be a $\mathscr{C}_{\tau}^{1}$-asymptotically flat 3-Riemannian manifold, $\tau>1 / 2$, with $\mathrm{R} \geq 0$ and connected, outermost, minimal boundary. Then,

$$
\begin{equation*}
\sqrt{\frac{|\partial M|}{16 \pi}} \leq \mathfrak{m}_{\text {ADM }}=\mathfrak{m}_{\text {iso }}=\mathfrak{m}_{\text {iso }}^{(p)} \tag{RPI}
\end{equation*}
$$

Some remarks

- We already know $\mathfrak{m}_{\text {ADM }} \leq \mathfrak{m}_{\text {iso }}^{(p)}$.
- It is easy to prove that $\mathfrak{m}_{\text {iso }}^{(p)} \leq \mathfrak{m}_{\text {iso }}$ : sharp isoperimetric inequality $\rightsquigarrow$ sharp isocapacitary inequality via symmetrization [Jauregui '12] (taking the ball of $\mathbb{R}^{3}$ of the same volume of $\Omega_{t}^{(p)}$ ). The definition of $\mathfrak{m}_{\text {iso }} \rightsquigarrow$ sharp asymptotic isoperimetric inequality, thus

$$
|\Omega|^{\frac{3-p}{3}} \leq\left(\frac{4 \pi}{3}\right)^{\frac{3-p}{3}} c_{p}(\partial \Omega)+\frac{p(3-p)}{2}\left(\frac{4 \pi}{3}\right)^{\frac{3-p}{3}} c_{p}(\partial \Omega)^{\frac{2-p}{3-p}}\left(\mathfrak{m}_{\text {iso }}+o(1)\right)
$$

as $|\Omega| \rightarrow+\infty$.

- If we show $\mathfrak{m}_{\text {iso }} \leq \mathfrak{m}_{\text {ADM }} \rightsquigarrow \mathfrak{m}_{\text {iso }}^{(p)} \leq \mathfrak{m}_{\text {iso }} \leq \mathfrak{m}_{\text {ADM }} \leq \mathfrak{m}_{\text {iso }}^{(p)} \rightsquigarrow$ they are equal.
- We want to apply [Jauregui, Lee '19 . CRELLE]: proving $\mathfrak{m}_{H}(\partial \Omega) \leq \mathfrak{m}_{\text {ADM }}$ is enough to conclude.

IMCF proof
Take $\Omega \subseteq M$ and evolve with $\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$

$$
t \mapsto \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right)
$$

is monotone nondecreasing. By asymptotic assumptions on $g$

$$
\mathfrak{m}_{H}(\partial \Omega) \leq \varlimsup_{t \rightarrow+\infty} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \leq \mathfrak{m}_{\mathrm{ADM}}
$$

[Huisken, Ilmanen '01 • JDG]

$$
\sqrt{\frac{|\Sigma|}{16 \pi}}\left(1-\int_{\Sigma} \frac{\mathrm{H}^{2}}{16 \pi} \mathrm{~d} \mathcal{H}^{2}\right)
$$

IMCF proof
Take $\Omega \subseteq M$ and evolve with $\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$

$$
t \mapsto \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right)
$$

is monotone nondecreasing. By asymptotic assumptions on $g$

$$
\mathfrak{m}_{H}(\partial \Omega) \leq \varlimsup_{t \rightarrow+\infty} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \leq \mathfrak{m}_{\mathrm{ADM}}
$$

[Huisken, Ilmanen '01 • JDG]

$$
\sqrt{\frac{|\Sigma|}{16 \pi}}\left(1-\int_{\Sigma} \frac{\mathrm{H}^{2}}{16 \pi} \mathrm{~d} \mathcal{H}^{2}\right)
$$

IMCF proof
Take $\Omega \subseteq M$ and evolve with $\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$

$$
t \mapsto \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right)
$$

is monotone nondecreasing. By asymptotic assumptions on $g$

$$
\mathfrak{m}_{H}(\partial \Omega) \leq \varlimsup_{t \rightarrow+\infty} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \leq \mathfrak{m}_{\mathrm{ADM}}
$$

[Huisken, Ilmanen '01 • JDG]

$$
\sqrt{\frac{|\Sigma|}{16 \pi}}\left(1-\int_{\Sigma} \frac{\mathrm{H}^{2}}{16 \pi} \mathrm{~d} \mathcal{H}^{2}\right)
$$

IMCF proof
Take $\Omega \subseteq M$ and evolve with $\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$

$$
t \mapsto \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right)
$$

is monotone nondecreasing. By asymptotic assumptions on $g$

$$
\mathfrak{m}_{H}(\partial \Omega) \leq \varlimsup_{t \rightarrow+\infty} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \leq \mathfrak{m}_{\mathrm{ADM}}
$$

[Huisken, Ilmanen '01 • JDG]

$$
\sqrt{\frac{|\Sigma|}{16 \pi}}\left(1-\int_{\Sigma} \frac{\mathrm{H}^{2}}{16 \pi} \mathrm{~d} \mathcal{H}^{2}\right)
$$

Take $\Omega$, evolve with $\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$,

$$
\mathfrak{m}_{H}(\partial \Omega) \leq \varlimsup_{t \rightarrow+\infty} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right)
$$

Linear potential proof
Take $\Omega \subseteq M$ and evolve with $\Omega_{t}^{(2)}=\left\{w_{2} \leq t\right\}$

$$
t \mapsto \mathfrak{m}_{H}^{(2)}\left(\partial \Omega_{t}^{(2)}\right)
$$

is monotone nondecreasing. By refined integral asymptotic behaviour of $w_{2}$

$$
\mathfrak{m}_{H}^{(2)}(\partial \Omega) \leq \varlimsup_{t \rightarrow+\infty} \mathfrak{m}_{H}^{(2)}\left(\partial \Omega_{t}^{(2)}\right) \leq \mathfrak{m}_{\mathrm{ADM}} .
$$

- [Agostiniani, Mazzieri, Oronzio '24 • CMP]

$$
\frac{c_{2}(\Sigma)}{2}\left(1+\int_{\Sigma} \frac{\left(2\left|\nabla w_{2}\right|-H\right)^{2}}{16 \pi}-\frac{H^{2}}{16 \pi} d \mathcal{H}^{2}\right)
$$

IMCF proof
Take $\Omega \subseteq M$ and evolve with $\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$

$$
t \mapsto \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right)
$$

is monotone nondecreasing. By asymptotic assumptions on $g$

$$
\mathfrak{m}_{H}(\partial \Omega) \leq \varlimsup_{t \rightarrow+\infty} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \leq \mathfrak{m}_{\mathrm{ADM}} .
$$

[Huisken, Ilmanen '01 • JDG]

$$
\sqrt{\frac{|\Sigma|}{16 \pi}}\left(1-\int_{\Sigma} \frac{\mathrm{H}^{2}}{16 \pi} \mathrm{~d} \mathcal{H}^{2}\right)
$$

Linear potential proof
Take $\Omega \subseteq M$ and evolve with $\Omega_{t}^{(2)}=\left\{w_{2} \leq t\right\}$

$$
t \mapsto \mathfrak{m}_{H}^{(2)}\left(\partial \Omega_{t}^{(2)}\right)
$$

is monotone nondecreasing. By refined integral asymptotic behaviour of $w_{2}$

$$
\mathfrak{m}_{H}^{(2)}(\partial \Omega) \leq \varlimsup_{t \rightarrow+\infty} \mathfrak{m}_{H}^{(2)}\left(\partial \Omega_{t}^{(2)}\right) \leq \mathfrak{m}_{\mathrm{ADM}} .
$$

[ [Agostiniani, Mazzieri, Oronzio '24 • CMP]

$$
\frac{c_{2}(\Sigma)}{2}\left(1+\int_{\Sigma} \frac{\left(2\left|\nabla w_{2}\right|-H\right)^{2}}{16 \pi}-\frac{H^{2}}{16 \pi} \mathrm{~d} \mathcal{H}^{2}\right)
$$

Take $\Omega$, evolve with $\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$, at any time $t$ control the Hawking mass with the 2-Hawking mass:

$$
\mathfrak{m}_{H}(\partial \Omega) \leq \varlimsup_{t \rightarrow+\infty} \mathfrak{m}_{H}\left(\partial \Omega_{t}^{(1)}\right) \leq \varlimsup_{t \rightarrow+\infty} \frac{\sqrt{\left|\partial \Omega_{t}^{(1)}\right|}}{\sqrt{4 \pi} c_{2}\left(\partial \Omega_{t}^{(1)}\right)} \mathfrak{m}_{H}^{(2)}\left(\partial \Omega_{t}^{(2)}\right) \leq \varlimsup_{t \rightarrow+\infty} \frac{\sqrt{\left|\partial \Omega_{t}^{(1)}\right|}}{\sqrt{4 \pi} c_{2}\left(\partial \Omega_{t}^{(1)}\right)} \mathfrak{m}_{\mathrm{ADM}} \leq \mathfrak{m}_{\mathrm{ADM}}
$$

(18)

Previous results


To sum UP

18


18


## Theorem - [B - , Fogagnolo, Mazzieri '22]

Let $(M, g)$ be a 3-Riemannian manifold $\mathscr{C}^{0}$-asymptotically flat with $\mathrm{R} \geq 0$ and connected, outermost, minimal boundary. Then,
$\sqrt{\frac{|\partial M|}{16 \pi}} \leq \mathfrak{m}_{\text {iso }}$.
(isoperimetric RPI)
Moreover, the equality holds if and only if $(M, g) \cong\left(\mathfrak{S}\left(\mathfrak{m}_{\text {iso }}\right), \sigma\right)$.

Evolving $\partial M$ using IMCF $\Omega_{t}=\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$ we have

$$
\mathfrak{m}_{\text {iso }} \geq \underline{\lim }_{t \rightarrow+\infty} \mathfrak{m}_{\text {iso }}\left(\Omega_{t}\right) \geq \varliminf_{t \rightarrow+\infty}^{\lim } \frac{2}{\left|\partial \Omega_{t}\right|}\left(\left|\Omega_{t}\right|-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right)
$$

IDEA OF THE PROOF

Evolving $\partial M$ using IMCF $\Omega_{t}=\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$ we have

$$
\begin{aligned}
& \mathfrak{m}_{\text {iso }} \geq \underset{t \rightarrow+\infty}{\underline{\lim } \mathfrak{m}_{\text {iso }}\left(\Omega_{t}\right) \geq \underset{t \rightarrow+\infty}{\underline{\lim }} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\left|\Omega_{t}\right|-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right)} \begin{array}{l}
\text { de l'Hôpital } \\
\quad \geq \underset{t \rightarrow+\infty}{\underline{l_{m}}} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\int_{\partial \Omega_{t}} \frac{1}{\mathrm{H}} \mathrm{~d} \mathcal{H}^{2}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
\end{array} .
\end{aligned}
$$

IDEA OF THE PROOF

Evolving $\partial M$ using IMCF $\Omega_{t}=\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$ we have

$$
\begin{aligned}
& \mathfrak{m}_{\text {iso }} \geq \underset{t \rightarrow+\infty}{\lim _{t \rightarrow+\infty}} \mathfrak{m}_{\text {iso }}\left(\Omega_{t}\right) \geq \underline{\lim }_{t \rightarrow+\infty} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\left|\Omega_{t}\right|-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right) \\
& \text { de l'Hôpital }
\end{aligned}
$$

$$
\geq \lim _{t \rightarrow+\infty} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\int_{\partial \Omega_{t}} \frac{1}{H} d \mathcal{H}^{2}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
$$

IDEA OF THE PROOF

Evolving $\partial M$ using IMCF $\Omega_{t}=\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$ we have

$$
\begin{aligned}
& \mathfrak{m}_{\text {iso }} \geq \underset{t \rightarrow+\infty}{\lim _{t \rightarrow+\infty}} \mathfrak{m}_{\text {iso }}\left(\Omega_{t}\right) \geq{\underset{t}{\lim }} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\left|\Omega_{t}\right|-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right) \\
& \text { de l'Hôpital }
\end{aligned}
$$

$$
\geq \lim _{t \rightarrow+\infty} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\int_{\partial \Omega_{t}} \frac{1}{H} d \mathcal{H}^{2}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
$$

$$
\left.\begin{array}{l}
\text { Hölder } \\
\left.\geq \lim _{t \rightarrow+\infty} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{\left(\int_{\partial \Omega_{t}} H^{2} \mathrm{~d} \mathcal{H}^{2}\right)^{\frac{1}{2}}}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)\right) ~
\end{array}\right)
$$

IDEA OF THE PROOF

Evolving $\partial M$ using IMCF $\Omega_{t}=\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$ we have

$$
\begin{aligned}
& \mathfrak{m}_{\text {iso }} \geq \underset{t \rightarrow+\infty}{\underline{\lim } \mathfrak{m}_{\text {iso }}\left(\Omega_{t}\right) \geq \underset{t \rightarrow+\infty}{\underline{\lim }} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\left|\Omega_{t}\right|-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right)} \begin{array}{l}
\text { de l'Hôpital } \\
\quad \geq \underset{t \rightarrow+\infty}{\underline{l_{t}}} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\int_{\partial \Omega_{t}} \frac{1}{H} d \mathcal{H}^{2}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
\end{array} .
\end{aligned}
$$

$\stackrel{\text { Hölder }}{\geq \lim _{t \rightarrow+\infty}} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{\left(\int_{\partial \Omega_{t}} H^{2} \mathrm{~d} \mathcal{H}^{2}\right)^{\frac{1}{2}}}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)$
$=\lim _{t \rightarrow+\infty} 2\left(\frac{\left|\partial \Omega_{t}\right|}{\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}}\right)^{\frac{1}{2}}\left(1-\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}\right)$

## IDEA OF THE PROOF

Evolving $\partial M$ using IMCF $\Omega_{t}=\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$ we have

$$
\begin{aligned}
& \mathfrak{m}_{\text {iso }} \geq \underset{t \rightarrow+\infty}{\underline{\lim } \mathfrak{m}_{\text {iso }}\left(\Omega_{t}\right) \geq \underset{t \rightarrow+\infty}{\underline{\lim }} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\left|\Omega_{t}\right|-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right)} \begin{array}{l}
\text { de l'Hôpital } \\
\quad \geq \underset{t \rightarrow+\infty}{\underline{l_{t}}} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\int_{\partial \Omega_{t}} \frac{1}{H} d \mathcal{H}^{2}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hölder } \\
& \left.\geq \lim _{t \rightarrow+\infty} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{\left(\int_{\partial \Omega_{t}} H^{2} \mathrm{~d} \mathcal{H}^{2}\right)^{\frac{1}{2}}}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)\right)
\end{aligned}
$$

$$
=\lim _{t \rightarrow+\infty} 2\left(\frac{\left|\partial \Omega_{t}\right|}{\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}}\right)^{\frac{1}{2}}\left(1-\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}\right) \frac{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}
$$

Evolving $\partial M$ using IMCF $\Omega_{t}=\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$ we have

$$
\begin{aligned}
& \mathfrak{m}_{\text {iso }} \geq \underset{t \rightarrow+\infty}{\underline{\lim } \mathfrak{m}_{\text {iso }}\left(\Omega_{t}\right) \geq \underset{t \rightarrow+\infty}{\underline{\lim }} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\left|\Omega_{t}\right|-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right)} \begin{array}{l}
\text { de l'Hôpital } \\
\quad \geq \underset{t \rightarrow+\infty}{\underline{l_{t}}} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\int_{\partial \Omega_{t}} \frac{1}{H} d \mathcal{H}^{2}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hölder } \\
& \geq \lim _{t \rightarrow+\infty} \\
& \frac{2}{\left|\partial \Omega_{t}\right|}\left(\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{\left(\int_{\partial \Omega_{t}} H^{2} \mathrm{~d} \mathcal{H}^{2}\right)^{\frac{1}{2}}}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
\end{aligned}
$$

$$
=\lim _{t \rightarrow+\infty} 2\left(\frac{\left|\partial \Omega_{t}\right|}{\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}}\right)^{\frac{1}{2}}\left(1-\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}\right) \frac{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}
$$

$$
=\lim _{t \rightarrow+\infty} 2\left(\frac{\left|\partial \Omega_{t}\right|}{16 \pi}\right)^{\frac{1}{2}} \frac{1-\frac{1}{16 \pi} \int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}}{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}
$$

Evolving $\partial M$ using IMCF $\Omega_{t}=\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$ we have

$$
\begin{aligned}
& \mathfrak{m}_{\text {iso }} \geq \underset{t \rightarrow+\infty}{\underline{\lim } \mathfrak{m}_{\text {iso }}\left(\Omega_{t}\right) \geq \underset{t \rightarrow+\infty}{\underline{\lim }} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\left|\Omega_{t}\right|-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right)} \begin{array}{l}
\text { de l'Hôpital } \\
\quad \geq \underset{t \rightarrow+\infty}{\underline{l_{t}}} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\int_{\partial \Omega_{t}} \frac{1}{\mathrm{H}} \mathrm{~d} \mathcal{H}^{2}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hölder } \\
& \geq \lim _{t \rightarrow+\infty} \\
& \frac{2}{\left|\partial \Omega_{t}\right|}\left(\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{\left(\int_{\partial \Omega_{t}} H^{2} \mathrm{~d} \mathcal{H}^{2}\right)^{\frac{1}{2}}}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
\end{aligned}
$$

$$
=\lim _{t \rightarrow+\infty} 2\left(\frac{\left|\partial \Omega_{t}\right|}{\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}}\right)^{\frac{1}{2}}\left(1-\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}\right) \frac{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}
$$

$$
=\lim _{t \rightarrow+\infty} 2\left(\frac{\left|\partial \Omega_{t}\right|}{16 \pi}\right)^{\frac{1}{2}} \frac{1-\frac{1}{16 \pi} \int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}}{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}
$$

Evolving $\partial M$ using IMCF $\Omega_{t}=\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$ we have

$$
\begin{aligned}
& \mathfrak{m}_{\text {iso }} \geq \underset{t \rightarrow+\infty}{\underline{\lim } \mathfrak{m}_{\text {iso }}\left(\Omega_{t}\right) \geq \underset{t \rightarrow+\infty}{\underline{\lim }} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\left|\Omega_{t}\right|-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right)} \begin{array}{l}
\text { de l'Hôpital } \\
\quad \geq \underset{t \rightarrow+\infty}{\underline{l_{t}}} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\int_{\partial \Omega_{t}} \frac{1}{H} d \mathcal{H}^{2}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hölder } \\
& \geq \lim _{t \rightarrow+\infty} \\
& \frac{2}{\left|\partial \Omega_{t}\right|}\left(\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{\left(\int_{\partial \Omega_{t}} H^{2} \mathrm{~d} \mathcal{H}^{2}\right)^{\frac{1}{2}}}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
\end{aligned}
$$

$$
=\lim _{t \rightarrow+\infty} 2\left(\frac{\left|\partial \Omega_{t}\right|}{\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}}\right)^{\frac{1}{2}}\left(1-\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}\right) \frac{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}
$$

$$
=\lim _{t \rightarrow+\infty} 2\left(\frac{\left|\partial \Omega_{t}\right|}{16 \pi}\right)^{\frac{1}{2}} \frac{1-\frac{1}{16 \pi} \int_{\partial \Omega_{t}} H^{2} \mathrm{~d} \mathcal{H}^{2}}{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} \mathrm{H}^{2} \mathrm{~d} \mathcal{H}^{2}\right)^{\frac{1}{2}}}
$$

Evolving $\partial M$ using IMCF $\Omega_{t}=\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$ we have

$$
\begin{aligned}
& \mathfrak{m}_{\text {iso }} \geq \underset{t \rightarrow+\infty}{\underline{\lim } \mathfrak{m}_{\text {iso }}\left(\Omega_{t}\right) \geq \underset{t \rightarrow+\infty}{\underline{\lim }} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\left|\Omega_{t}\right|-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right)} \begin{array}{l}
\text { de l'Hôpital } \\
\quad \geq \underset{t \rightarrow+\infty}{\underline{l_{t}}} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\int_{\partial \Omega_{t}} \frac{1}{\mathrm{H}} \mathrm{~d} \mathcal{H}^{2}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hölder } \\
& \geq \lim _{t \rightarrow+\infty} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{\left(\int_{\partial \Omega_{t}} H^{2} \mathrm{~d} \mathcal{H}^{2}\right)^{\frac{1}{2}}}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
\end{aligned}
$$

$$
=\lim _{t \rightarrow+\infty} 2\left(\frac{\left|\partial \Omega_{t}\right|}{\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}}\right)^{\frac{1}{2}}\left(1-\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}\right) \frac{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}
$$

$$
=\lim _{t \rightarrow+\infty} 2\left(\frac{\left|\partial \Omega_{t}\right|}{16 \pi}\right)^{\frac{1}{2}} \frac{1-\frac{1}{16 \pi} \int_{\partial \Omega_{t}} H^{2} \mathrm{~d} \mathcal{H}^{2}}{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} \mathrm{~d} \mathcal{H}^{2}\right)^{\frac{1}{2}}}
$$

$$
=\lim _{t \rightarrow+\infty} \mathfrak{m}_{H}\left(\partial \Omega_{t}\right)
$$

Proof.
Evolving $\partial M$ using IMCF $\Omega_{t}=\Omega_{t}^{(1)}=\left\{w_{1} \leq t\right\}$ we have

$$
\begin{aligned}
& \mathfrak{m}_{\text {iso }} \geq \underset{t \rightarrow+\infty}{\underline{\lim } \mathfrak{m}_{\text {iso }}\left(\Omega_{t}\right) \geq \underset{t \rightarrow+\infty}{\underline{\lim }} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\left|\Omega_{t}\right|-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{6 \sqrt{\pi}}\right)} \begin{array}{l}
\text { de l'Hôpital } \\
\quad \geq \underset{t \rightarrow+\infty}{\underline{l_{t}}} \frac{2}{\left|\partial \Omega_{t}\right|}\left(\int_{\partial \Omega_{t}} \frac{1}{H} d \mathcal{H}^{2}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hölder } \\
& \geq \lim _{t \rightarrow+\infty} \\
& \frac{2}{\left|\partial \Omega_{t}\right|}\left(\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{\left(\int_{\partial \Omega_{t}} H^{2} \mathrm{~d} \mathcal{H}^{2}\right)^{\frac{1}{2}}}-\frac{\left|\partial \Omega_{t}\right|^{\frac{3}{2}}}{4 \sqrt{\pi}}\right)
\end{aligned}
$$

$$
=\lim _{t \rightarrow+\infty} 2\left(\frac{\left|\partial \Omega_{t}\right|}{\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}}\right)^{\frac{1}{2}}\left(1-\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}\right) \frac{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} d \mathcal{H}^{2}\right)^{\frac{1}{2}}}
$$

$$
=\lim _{t \rightarrow+\infty} 2\left(\frac{\left|\partial \Omega_{t}\right|}{16 \pi}\right)^{\frac{1}{2}} \frac{1-\frac{1}{16 \pi} \int_{\partial \Omega_{t}} H^{2} \mathrm{~d} \mathcal{H}^{2}}{1+\frac{1}{4 \sqrt{\pi}}\left(\int_{\partial \Omega_{t}} H^{2} \mathrm{~d} \mathcal{H}^{2}\right)^{\frac{1}{2}}}
$$

$$
=\underset{t \rightarrow+\infty}{\lim _{t \rightarrow+\infty}} \begin{gathered}
\text { Monotonicity } \\
\mathfrak{m}_{H}\left(\partial \Omega_{t}\right) \geq \mathfrak{m}_{H}(\partial M)=\sqrt{\frac{|\partial M|}{16 \pi}} .
\end{gathered}
$$

Theorem - [B - , Fogagnolo, Mazzieri '23 • SIGMA]
Let $(M, g)$ be a 3-Riemannian manifold $\mathscr{C}^{0}$-asymptotically flat with $\mathrm{R} \geq 0$ (+ an extra assumption) and connected, outermost, minimal boundary. Then,

$$
\mathfrak{c}_{p}(\partial M)^{\frac{1}{3-p}} \leq \frac{5-p}{2} \mathfrak{m}_{\mathrm{iso}}^{(p)}
$$

## Theorem - [B - , Fogagnolo, Mazzieri '23 • SIGMA]

Let $(M, g)$ be a 3 -Riemannian manifold $\mathscr{C}^{0}$-asymptotically flat with $\mathrm{R} \geq 0$ (+ an extra assumption) and connected, outermost, minimal boundary. Then,

$$
\mathfrak{c}_{p}(\partial M)^{\frac{1}{3-p}} \leq \frac{5-p}{2} \mathfrak{m}_{\mathrm{iso}}^{(p)} \quad \quad \text { (isocapcitary RPI) }
$$

- The proof is almost the same. We need two "de l'Hôpital steps" and the second one requires a further technical assumption on the asymptotic behaviour of $w_{p}$. We are note able to remove it at this point.


## Theorem - [B - , Fogagnolo, Mazzieri '23 • SIGMA]

Let $(M, g)$ be a 3 -Riemannian manifold $\mathscr{C}^{0}$-asymptotically flat with $\mathrm{R} \geq 0$ (+ an extra assumption) and connected, outermost, minimal boundary. Then,

$$
\mathfrak{c}_{p}(\partial M)^{\frac{1}{3-p}} \leq \frac{5-p}{2} \mathfrak{m}_{\mathrm{iso}}^{(p)} \quad \quad \text { (isocapcitary RPI) }
$$

- The proof is almost the same. We need two "de l'Hôpital steps" and the second one requires a further technical assumption on the asymptotic behaviour of $w_{p}$. We are note able to remove it at this point.
- The isocapacitary Riemannian Penrose inequality is not sharp, it becomes sharp as $p \rightarrow 1^{+}$where it recovers the isoperimetric one.


## Theorem - [B - , Fogagnolo, Mazzieri '23 • SIGMA]

Let $(M, g)$ be a 3 -Riemannian manifold $\mathscr{C}^{0}$-asymptotically flat with $\mathrm{R} \geq 0$ (+ an extra assumption) and connected, outermost, minimal boundary. Then,

$$
c_{p}(\partial M)^{\frac{1}{3-p}} \leq \frac{5-p}{2} \mathfrak{m}_{\text {iso }}^{(p)}
$$

- The proof is almost the same. We need two "de l'Hôpital steps" and the second one requires a further technical assumption on the asymptotic behaviour of $w_{p}$. We are note able to remove it at this point.
- The isocapacitary Riemannian Penrose inequality is not sharp, it becomes sharp as $p \rightarrow 1^{+}$where it recovers the isoperimetric one.
- With IMCF: [Bray, Miao '08] $(p=2)$ and [Xiao '16] $(p<2)$ proved a sharp version for the ADM mass and (with the same technique) in [B - , Fogagnolo, Mazzieri '22] for $\mathfrak{m}_{\text {iso }}$ (when ADM is not defined).


## Theorem - [B - , Fogagnolo, Mazzieri '23 • SIGMA]

Let $(M, g)$ be a 3 -Riemannian manifold $\mathscr{C}^{0}$-asymptotically flat with $\mathrm{R} \geq 0$ (+ an extra assumption) and connected, outermost, minimal boundary. Then,

$$
c_{p}(\partial M)^{\frac{1}{3-p}} \leq \frac{5-p}{2} \mathfrak{m}_{\text {iso }}^{(p)}
$$

- The proof is almost the same. We need two "de l'Hôpital steps" and the second one requires a further technical assumption on the asymptotic behaviour of $w_{p}$. We are note able to remove it at this point.
- The isocapacitary Riemannian Penrose inequality is not sharp, it becomes sharp as $p \rightarrow 1^{+}$where it recovers the isoperimetric one.
- With IMCF: [Bray, Miao '08] $(p=2)$ and [Xiao '16] $(p<2)$ proved a sharp version for the ADM mass and (with the same technique) in [B - , Fogagnolo, Mazzieri '22] for $\mathfrak{m}_{\text {iso }}$ (when ADM is not defined).
- With NPT: [Xia, Yin, Zhou '24 • Adv. Math.] and [Mazurowski, Yao '24] proved a sharp version for the ADM mass $\rightsquigarrow$ wait for Chao Xia's talk.
- The equivalence of masses $\mathfrak{m}_{\text {iso }}^{(p)}=\mathfrak{m}_{\text {iso }}=\mathfrak{m}_{\text {ADM }}$ is proved whenever $\mathfrak{m}_{\text {ADM }}$ is defined. There are cases where $\mathfrak{m}_{A D M}$ is not defined, but we still have $\mathfrak{m}_{\text {iso }}$ and $\mathfrak{m}_{i \text { iso }}^{(p)}$. At this point, we are only able to prove that $\mathfrak{m}_{\text {iso }}^{(p)} \rightarrow \mathfrak{m}_{\text {iso }}$ as $p \rightarrow 1^{+}$.
- The equivalence of masses $\mathfrak{m}_{\text {iso }}^{(p)}=\mathfrak{m}_{\text {iso }}=\mathfrak{m}_{\text {ADM }}$ is proved whenever $\mathfrak{m}_{\text {ADM }}$ is defined. There are cases where $\mathfrak{m}_{\text {ADM }}$ is not defined, but we still have $\mathfrak{m}_{\text {iso }}$ and $\mathfrak{m}_{i \text { iso }}^{(p)}$. At this point, we are only able to prove that $\mathfrak{m}_{\text {iso }}^{(p)} \rightarrow \mathfrak{m}_{\text {iso }}$ as $p \rightarrow 1^{+}$.
- All proofs based on IMCF can deal with disconnected boundaries (in the sense that IMCF is able to jump over horizons). The proofs based on NPT are not able to do that at this point.
- The equivalence of masses $\mathfrak{m}_{\text {iso }}^{(p)}=\mathfrak{m}_{\text {iso }}=\mathfrak{m}_{\text {ADM }}$ is proved whenever $\mathfrak{m}_{\text {ADM }}$ is defined. There are cases where $\mathfrak{m}_{A D M}$ is not defined, but we still have $\mathfrak{m}_{\text {iso }}$ and $\mathfrak{m}_{i \text { iso }}^{(p)}$. At this point, we are only able to prove that $\mathfrak{m}_{\text {iso }}^{(p)} \rightarrow \mathfrak{m}_{\text {iso }}$ as $p \rightarrow 1^{+}$.
- All proofs based on IMCF can deal with disconnected boundaries (in the sense that IMCF is able to jump over horizons). The proofs based on NPT are not able to do that at this point.
- These are results towards understanding the geometry of initial data sets endowed with $\mathscr{C}^{0}$ metrics $\rightsquigarrow$ wait for Gioacchino Antonelli's talk.


## Thank you for your attention!


[^0]:    Riemannian Pnerose inequality

