Area-Depth Symmetric Catalan Polynomial

Joseph Pappe and Anne S.

joint work with:
Digjoy Paul
preprint: [arxiv 2109.06300]

November 3, 2021

Table of Contents

(1) Dyck Paths and Plane Trees
(2) Parking Functions and Labelled Trees
(3) Open Problems

Table of Contents

(1) Dyck Paths and Plane Trees

(2) Parking Functions and Labelled Trees

(3) Open Problems

q, t-Catalan polynomial

Definition

The q, t-Catalan polynomial is given by

$$
C_{n}(q, t)=\sum_{\pi \in D_{n}} q^{\operatorname{area}(\pi)} t^{\operatorname{dinv}(\pi)}
$$

q, t-Catalan polynomial

Definition

The q, t-Catalan polynomial is given by

$$
C_{n}(q, t)=\sum_{\pi \in D_{n}} q^{\operatorname{area}(\pi)} t^{\operatorname{dinv}(\pi)}
$$

Example:

- $C_{4}(q, t)=q^{6}+q^{5} t+q^{4} t^{2}+q^{4} t+q^{3} t+q^{3} t^{2}+q^{2} t^{2}+q^{3} t^{3}+q^{2} t^{3}+q t^{3}+$ $q t^{4}+q^{2} t^{4}+q t^{5}+t^{6}$

q, t-Catalan polynomial

Definition

The q, t-Catalan polynomial is given by

$$
C_{n}(q, t)=\sum_{\pi \in D_{n}} q^{\operatorname{area}(\pi)} t^{\operatorname{dinv}(\pi)}
$$

Example:

- $C_{4}(q, t)=q^{6}+q^{5} t+q^{4} t^{2}+q^{4} t+q^{3} t+q^{3} t^{2}+q^{2} t^{2}+q^{3} t^{3}+q^{2} t^{3}+q t^{3}+$ $q t^{4}+q^{2} t^{4}+q t^{5}+t^{6}$

Theorem (Garsia, Haglund 2002; Haiman 2002)
$C_{n}(q, t)$ is symmetric in q and t.

q, t-Catalan polynomial

Definition

The q, t-Catalan polynomial is given by

$$
C_{n}(q, t)=\sum_{\pi \in D_{n}} q^{\operatorname{area}(\pi)} t^{\operatorname{dinv}(\pi)}
$$

Example:

- $C_{4}(q, t)=q^{6}+q^{5} t+q^{4} t^{2}+q^{4} t+q^{3} t+q^{3} t^{2}+q^{2} t^{2}+q^{3} t^{3}+q^{2} t^{3}+q t^{3}+$ $q t^{4}+q^{2} t^{4}+q t^{5}+t^{6}$

Theorem (Garsia, Haglund 2002; Haiman 2002)
$C_{n}(q, t)$ is symmetric in q and t.
Open Problem: Find a combinatorial proof that shows $C_{n}(q, t)$ is symmetric.

New Symmetric Polynomials

Definition (P., Paul, S. 2021)

Let the area-depth polynomial $F_{n}(q, t)$ and dinv-ddinv polynomial $G_{n}(q, t)$ be defined as follows:

- $F_{n}(q, t)=\sum_{\pi \in D_{n}} q^{\text {area }(\pi)} t^{\operatorname{depth}(\pi)}$
- $G_{n}(q, t)=\sum_{\pi \in D_{n}} q^{\operatorname{dinv}(\pi)} t^{\operatorname{ddinv}(\pi)}$

New Symmetric Polynomials

Definition (P., Paul, S. 2021)

Let the area-depth polynomial $F_{n}(q, t)$ and dinv-ddinv polynomial $G_{n}(q, t)$ be defined as follows:

- $F_{n}(q, t)=\sum_{\pi \in D_{n}} q^{\text {area }(\pi)} t^{\operatorname{depth}(\pi)}$
- $G_{n}(q, t)=\sum_{\pi \in D_{n}} q^{\operatorname{dinv}(\pi)} t^{\operatorname{ddinv}(\pi)}$

Theorem (P., Paul, S. 2021)
$F_{n}(q, t)$ and $G_{n}(q, t)$ are symmetric in q and t.

New Symmetric Polynomials

Definition (P., Paul, S. 2021)

Let the area-depth polynomial $F_{n}(q, t)$ and dinv-ddinv polynomial $G_{n}(q, t)$ be defined as follows:

- $F_{n}(q, t)=\sum_{\pi \in D_{n}} q^{\operatorname{area}(\pi)} t^{\operatorname{depth}(\pi)}$
- $G_{n}(q, t)=\sum_{\pi \in D_{n}} q^{\operatorname{dinv}(\pi)} t^{\operatorname{ddinv}(\pi)}$

Theorem (P., Paul, S. 2021)

$F_{n}(q, t)$ and $G_{n}(q, t)$ are symmetric in q and t.
Example:

- $F_{4}(q, t)=$

$$
q^{6}+q^{5} t+q^{4} t^{2}+q^{4} t+q^{3} t+2 q^{3} t^{3}+2 q^{2} t^{2}+q t^{3}+q t^{4}+q^{2} t^{4}+q t^{5}+t^{6}
$$

- $G_{4}(q, t)=$

$$
q^{6}+q^{5} t^{2}+q^{4} t^{3}+q^{4} t^{2}+q^{2} t+2 q^{3} t+2 q t^{3}+q t^{2}+q^{2} t^{4}+q^{3} t^{4}+q^{2} t^{5}+t^{6}
$$

New Symmetric Polynomials

Definition (P., Paul, S. 2021)

Let the area-depth polynomial $F_{n}(q, t)$ and dinv-ddinv polynomial $G_{n}(q, t)$ be defined as follows:

- $F_{n}(q, t)=\sum_{\pi \in D_{n}} q^{\operatorname{area}(\pi)} t^{\text {depth }(\pi)}$
- $G_{n}(q, t)=\sum_{\pi \in D_{n}} q^{\operatorname{dinv}(\pi)} t^{\mathrm{ddinv}(\pi)}$

Theorem (P., Paul, S. 2021)
$F_{n}(q, t)$ and $G_{n}(q, t)$ are symmetric in q and t.

Theorem (P., Paul, S. 2021)
$C_{n}(q, t)=\sum_{\pi \in D_{n}} q^{\operatorname{depth}(\pi)} t^{\operatorname{ddinv}(\pi)}$

Statistics on Dyck Paths

Definition

Let $\left(a_{1}(\pi), a_{2}(\pi), \ldots, a_{n}(\pi)\right)$ be the area sequence of π where $a_{i}(\pi)$ is the number of full cells between π and the diagonal in the ith row.
Let $\operatorname{area}(\pi)=\sum_{i=1}^{n} a_{i}(\pi)$.

Statistics on Dyck Paths

Definition

Let $\left(a_{1}(\pi), a_{2}(\pi), \ldots, a_{n}(\pi)\right)$ be the area sequence of π where $a_{i}(\pi)$ is the number of full cells between π and the diagonal in the ith row.
Let $\operatorname{area}(\pi)=\sum_{i=1}^{n} a_{i}(\pi)$.

$$
\pi \in D_{8}
$$

Statistics on Dyck Paths

Definition

Let $\left(a_{1}(\pi), a_{2}(\pi), \ldots, a_{n}(\pi)\right)$ be the area sequence of π where $a_{i}(\pi)$ is the number of full cells between π and the diagonal in the ith row.
Let area $(\pi)=\sum_{i=1}^{n} a_{i}(\pi)$.

- $\left(a_{1}(\pi), \ldots, a_{n}(\pi)\right)=(0,1,2,1,1,2,0,1)$

Statistics on Dyck Paths

Definition

Let $\left(a_{1}(\pi), a_{2}(\pi), \ldots, a_{n}(\pi)\right)$ be the area sequence of π where $a_{i}(\pi)$ is the number of full cells between π and the diagonal in the ith row.
Let area $(\pi)=\sum_{i=1}^{n} a_{i}(\pi)$.

$$
\pi \in D_{8}
$$

- $\left(a_{1}(\pi), \ldots, a_{n}(\pi)\right)=(0,1,2,1,1,2,0,1)$
- $\operatorname{area}(\pi)=8$

Statistics on Dyck Paths

Definition

Let $\left(a_{1}(\pi), a_{2}(\pi), \ldots, a_{n}(\pi)\right)$ be the area sequence of π where $a_{i}(\pi)$ is the number of full cells between π and the diagonal in the ith row. Let area $(\pi)=\sum_{i=1}^{n} a_{i}(\pi)$.

- $\left(a_{1}(\pi), \ldots, a_{n}(\pi)\right)=(0,1,2,1,1,2,0,1)$
- $\operatorname{area}(\pi)=8$
- Remark: Dyck paths are uniquely characterized by their area sequences.

$$
\pi \in D_{8}
$$

Statistics on Dyck Paths

Definition

A diagonal inversion of π is a pair (i, j) such that

- $i<j$
- $a_{i}(\pi)=a_{j}(\pi)$ or $a_{i}(\pi)=a_{j}(\pi)+1$

Let $\operatorname{dinv}(\pi)$ be the number of diagonal inversions of π.

Statistics on Dyck Paths

Definition

A diagonal inversion of π is a pair (i, j) such that

- $i<j$
- $a_{i}(\pi)=a_{j}(\pi)$ or $a_{i}(\pi)=a_{j}(\pi)+1$

Let $\operatorname{dinv}(\pi)$ be the number of diagonal inversions of π.

- $\left(a_{1}(\pi), \ldots, a_{n}(\pi)\right)=(0,1,2,1,1,2,0,1)$
$\pi \in D_{8}$

Statistics on Dyck Paths

Definition

A diagonal inversion of π is a pair (i, j) such that

- $i<j$
- $a_{i}(\pi)=a_{j}(\pi)$ or $a_{i}(\pi)=a_{j}(\pi)+1$

Let $\operatorname{dinv}(\pi)$ be the number of diagonal inversions of π.

$\pi \in D_{8}$

- $\left(a_{1}(\pi), \ldots, a_{n}(\pi)\right)=(0,1,2,1,1,2,0,1)$
- Diagonal inversions of π : $(1,7),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8),(3,6)$, $(2,7),(4,7),(5,7),(3,4),(3,5),(3,8),(6,8)$

Statistics on Dyck Paths

Definition

A diagonal inversion of π is a pair (i, j) such that

- $i<j$
- $a_{i}(\pi)=a_{j}(\pi)$ or $a_{i}(\pi)=a_{j}(\pi)+1$

Let $\operatorname{dinv}(\pi)$ be the number of diagonal inversions of π.

$\pi \in D_{8}$

- $\left(a_{1}(\pi), \ldots, a_{n}(\pi)\right)=(0,1,2,1,1,2,0,1)$
- Diagonal inversions of π : $(1,7),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8),(3,6)$, $(2,7),(4,7),(5,7),(3,4),(3,5),(3,8),(6,8)$
- $\operatorname{dinv}(\pi)=15$

New Statistics on Dyck Paths

Definition (P., Paul, S., 2021)

The depth labelling of π is a labelling of the cells directly right of the North steps in π by:

- labelling all relevant cells in the first column with a 0

New Statistics on Dyck Paths

Definition (P., Paul, S., 2021)

The depth labelling of π is a labelling of the cells directly right of the North steps in π by:

- labelling all relevant cells in the first column with a 0

New Statistics on Dyck Paths

Definition (P., Paul, S., 2021)

The depth labelling of π is a labelling of the cells directly right of the North steps in π by:

- labelling all relevant cells in the first column with a 0
- labelling all relevant cells in the i th column with $\ell+1$ where ℓ is the label of the cell obtained by travelling Southwest from the bottommost relevant cell in column i

New Statistics on Dyck Paths

Definition (P., Paul, S., 2021)

The depth labelling of π is a labelling of the cells directly right of the North steps in π by:

- labelling all relevant cells in the first column with a 0
- labelling all relevant cells in the i th column with $\ell+1$ where ℓ is the label of the cell obtained by travelling Southwest from the bottommost relevant cell in column i

New Statistics on Dyck Paths

Definition (P., Paul, S., 2021)

The depth labelling of π is a labelling of the cells directly right of the North steps in π by:

- labelling all relevant cells in the first column with a 0
- labelling all relevant cells in the i th column with $\ell+1$ where ℓ is the label of the cell obtained by travelling Southwest from the bottommost relevant cell in column i

New Statistics on Dyck Paths

Definition (P., Paul, S., 2021)

The depth labelling of π is a labelling of the cells directly right of the North steps in π by:

- labelling all relevant cells in the first column with a 0
- labelling all relevant cells in the i th column with $\ell+1$ where ℓ is the label of the cell obtained by travelling Southwest from the bottommost relevant cell in column i

New Statistics on Dyck Paths

Definition (P., Paul, S., 2021)

The depth labelling of π is a labelling of the cells directly right of the North steps in π by:

- labelling all relevant cells in the first column with a 0
- labelling all relevant cells in the i th column with $\ell+1$ where ℓ is the label of the cell obtained by travelling Southwest from the bottommost relevant cell in column i

New Statistics on Dyck Paths

Definition (P., Paul, S., 2021)

The depth labelling of π is a labelling of the cells directly right of the North steps in π by:

- labelling all relevant cells in the first column with a 0
- labelling all relevant cells in the i th column with $\ell+1$ where ℓ is the label of the cell obtained by travelling Southwest from the bottommost relevant cell in column i

New Statistics on Dyck Paths

Definition (P., Paul, S., 2021)

The depth labelling of π is a labelling of the cells directly right of the North steps in π by:

- labelling all relevant cells in the first column with a 0
- labelling all relevant cells in the i th column with $\ell+1$ where ℓ is the label of the cell obtained by travelling Southwest from the bottommost relevant cell in column i

New Statistics on Dyck Paths

Definition (P., Paul, S., 2021)

The depth labelling of π is a labelling of the cells directly right of the North steps in π by:

- labelling all relevant cells in the first column with a 0
- labelling all relevant cells in the i th column with $\ell+1$ where ℓ is the label of the cell obtained by travelling Southwest from the bottommost relevant cell in column i

New Statistics on Deck Paths

						1	
						1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=($

New Statistics on Deck Paths

						1	
						1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0$

New Statistics on Deck Paths

						1	
						1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0$

New Statistics on Dyck Paths

						1	
						1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1$

New Statistics on Dyck Paths

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1$

New Statistics on Dyck Paths

		2			
		2			
	1				
0					
0					
0					

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1$

New Statistics on Dyck Paths

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1$

New Statistics on Dyck Paths

						1	
						1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1,0$

New Statistics on Dyck Paths

						1	
						1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1,0$

New Statistics on Dyck Paths

						1	
						1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1,0,1$

New Statistics on Dyck Paths

						1	
						1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1,0,1$

New Statistics on Dyck Paths

						1	
						1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1,0,1,2)$

New Statistics on Dyck Paths

						1	
					$/$	1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1,0,1,2)$

New Statistics on Dyck Paths

						1	
						1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1,0,1,2,2)$

New Statistics on Dyck Paths

					1
			1	1	
		2			
		1			
0					
0					
0					

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1,0,1,2,2)$

New Statistics on Dyck Paths

						1	
						1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1,0,1,2,2,0)$

New Statistics on Dyck Paths

				1
				1
		2		
		2		
	1			
0				
0				
0				

- $\left(d_{1}(\pi), d_{2}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1,0,1,2,2,0)$
- $\operatorname{depth}(\pi)=0+1+1+0+1+2+2+0=7$

New Statistics on Dyck Paths

Definition (P., Paul, S. 2021)

A depth diagonal inversion of π is a pair (i, j) such that

- $i<j$
- $d_{i}(\pi)=d_{j}(\pi)$ or $d_{i}=d_{j}+1$

Let $\operatorname{ddinv}(\pi)$ be the number of depth diagonal inversions of π.

New Statistics on Dyck Paths

Definition (P., Paul, S. 2021)

A depth diagonal inversion of π is a pair (i, j) such that

- $i<j$
- $d_{i}(\pi)=d_{j}(\pi)$ or $d_{i}=d_{j}+1$

Let $\operatorname{ddinv}(\pi)$ be the number of depth diagonal inversions of π.

						1
					1	
			2			
			2			
		1				
0						
0						
0						

- $\left(d_{1}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1,0,1,2,2,0)$

New Statistics on Dyck Paths

Definition (P., Paul, S. 2021)

A depth diagonal inversion of π is a pair (i, j) such that

- $i<j$
- $d_{i}(\pi)=d_{j}(\pi)$ or $d_{i}=d_{j}+1$

Let $\operatorname{ddinv}(\pi)$ be the number of depth diagonal inversions of π.

						1	
						1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1,0,1,2,2,0)$
- Depth diagonal inversions of π : $(1,4),(1,8),(4,8),(2,3),(2,5),(3,5),(6,7)$, $(2,4),(3,4),(2,8),(3,8),(5,8)$

New Statistics on Dyck Paths

Definition (P., Paul, S. 2021)

A depth diagonal inversion of π is a pair (i, j) such that

- $i<j$
- $d_{i}(\pi)=d_{j}(\pi)$ or $d_{i}=d_{j}+1$

Let $\operatorname{ddinv}(\pi)$ be the number of depth diagonal inversions of π.

						1	
						1	
			2				
			2				
		1					
0							
0							
0							

- $\left(d_{1}(\pi), \ldots, d_{n}(\pi)\right)=(0,1,1,0,1,2,2,0)$
- Depth diagonal inversions of π : $(1,4),(1,8),(4,8),(2,3),(2,5),(3,5),(6,7)$, $(2,4),(3,4),(2,8),(3,8),(5,8)$
- $\operatorname{ddinv}(\pi)=12$

Plane Trees

Definition

The principal subtrees of a rooted tree T are the rooted trees obtained by removing the root of T and considering the children of the root of T to be the new roots of their respective tree.

Plane Trees

Definition

The principal subtrees of a rooted tree T are the rooted trees obtained by removing the root of T and considering the children of the root of T to be the new roots of their respective tree.

Definition

A plane tree is a rooted tree, which either consists only of the root vertex r or it consists recursively of the root r and its linearly ordered principal subtrees $\left(T_{1}, \ldots, T_{k}\right)$ which themselves are plane trees.

Plane Trees

Definition

The principal subtrees of a rooted tree T are the rooted trees obtained by removing the root of T and considering the children of the root of T to be the new roots of their respective tree.

Definition

A plane tree is a rooted tree, which either consists only of the root vertex r or it consists recursively of the root r and its linearly ordered principal subtrees $\left(T_{1}, \ldots, T_{k}\right)$ which themselves are plane trees.

Plane Trees

Definition

The principal subtrees of a rooted tree T are the rooted trees obtained by removing the root of T and considering the children of the root of T to be the new roots of their respective tree.

Definition

A plane tree is a rooted tree, which either consists only of the root vertex r or it consists recursively of the root r and its linearly ordered principal subtrees $\left(T_{1}, \ldots, T_{k}\right)$ which themselves are plane trees.

- \mathscr{T}_{n} - set of all plane trees with n vertices

Plane Trees

Definition

The principal subtrees of a rooted tree T are the rooted trees obtained by removing the root of T and considering the children of the root of T to be the new roots of their respective tree.

Definition

A plane tree is a rooted tree, which either consists only of the root vertex r or it consists recursively of the root r and its linearly ordered principal subtrees $\left(T_{1}, \ldots, T_{k}\right)$ which themselves are plane trees.

- \mathscr{T}_{n} - set of all plane trees with n vertices
- $\left|\mathscr{T}_{n+1}\right|=\frac{1}{n+1}\binom{2 n}{n}$

Stanley Bijection

Stanley Bijection

Stanley Bijection

Stanley Bijection

$\xrightarrow{\sigma}$

Stanley Bijection

Area of Stanley Trees

$\left(a_{1}(\pi), \ldots, a_{n}(\pi)\right)=$
(0,1,2, 1, 1, 2, 0, 1)

Area of Stanley Trees

$\left(a_{1}(\pi), \ldots, a_{n}(\pi)\right)=$
(0,1,2,1,1,2,0,1)

Depth of Stanley Trees

$$
\begin{gathered}
\left(d_{1}(\pi), \ldots, d_{n}(\pi)\right)= \\
(0,1,1,0,1,2,2,0)
\end{gathered}
$$

Depth of Stanley Trees

$\left(d_{1}(\pi), \ldots, d_{n}(\pi)\right)=$
(0,1,1,0,1,2,2,0)

Haglund-Loehr Bijection

Haglund-Loehr Bijection

Haglund-Loehr Bijection

Haglund-Loehr Bijection

Haglund-Loehr Bijection

Haglund-Loehr Bijection

Haglund-Loehr Bijection

Haglund-Loehr Bijection

Haglund-Loehr Bijection

Haglund-Loehr Bijection

Haglund-Loehr Bijection

Haglund-Loehr Bijection

						V_{8}	
						V_{7}	
			V_{6}				
			V_{5}				
		V_{4}					
V_{3}							
V_{2}							
V_{1}							

Haglund-Loehr Bijection

						V_{8}	
						v_{7}	
			V_{6}				
			V_{5}				
		V_{4}					
V_{3}							
V_{2}							
V_{1}							

Haglund-Loehr Bijection

Area of Haglund-Loehr Trees

$\left(a_{1}(\pi), \ldots, a_{n}(\pi)\right)=$ (0,1,2,1,1,2,0,1)

Area of Haglund-Loehr Trees

$\left(a_{1}(\pi), \ldots, a_{n}(\pi)\right)=$ (0,1,2,1,1,2,0,1)

Depth of Haglund-Loehr Trees

Depth of Haglund-Loehr Trees

Dual Plane Trees

Definition (P., Paul, S. 2021)
The dual tree $T^{\text {dual }}$ of a plane tree is given by the following algorithm:

Dual Plane Trees

Definition (P., Paul, S. 2021)

The dual tree $T^{\text {dual }}$ of a plane tree is given by the following algorithm:

Dual Plane Trees

Definition (P., Paul, S. 2021)

The dual tree $T^{\text {dual }}$ of a plane tree is given by the following algorithm:

Dual Plane Trees

Definition (P., Paul, S. 2021)

The dual tree $T^{\text {dual }}$ of a plane tree is given by the following algorithm:

Dual Plane Trees

Definition (P., Paul, S. 2021)

The dual tree $T^{\text {dual }}$ of a plane tree is given by the following algorithm:

Dual Plane Trees

Definition (P., Paul, S. 2021)

The dual tree $T^{\text {dual }}$ of a plane tree is given by the following algorithm:

Dual Plane Trees

Definition (P., Paul, S. 2021)

The dual tree $T^{\text {dual }}$ of a plane tree is given by the following algorithm:

Dual Plane Trees

Definition (P., Paul, S. 2021)

The dual tree $T^{\text {dual }}$ of a plane tree is given by the following algorithm:

Dual Plane Trees

Definition (P., Paul, S. 2021)

The dual tree $T^{\text {dual }}$ of a plane tree is given by the following algorithm:

Dual Plane Trees

Definition (P., Paul, S. 2021)

The dual tree $T^{\text {dual }}$ of a plane tree is given by the following algorithm:

Dual Plane Trees

Definition (P., Paul, S. 2021)

The dual tree $T^{\text {dual }}$ of a plane tree is given by the following algorithm:

Dual Plane Trees

Definition (P., Paul, S. 2021)

The dual tree $T^{\text {dual }}$ of a plane tree is given by the following algorithm:

Properties of Dual Plane Trees

Proposition (P., Paul, S. 2021)
Let T be a plane tree. Then $\left(T^{\text {dual }}\right)^{\text {dual }}=T$.

Properties of Dual Plane Trees

Proposition (P., Paul, S. 2021)

Let T be a plane tree. Then $\left(T^{\text {dual }}\right)^{\text {dual }}=T$.

Proposition (P., Paul, S. 2021)

Let $\pi \in D_{n}$. Then $\sigma(\pi)^{\text {dual }}=\eta(\pi)$ and $\eta(\pi)^{\text {dual }}=\sigma(\pi)$.

Properties of Dual Plane Trees

Proposition (P., Paul, S. 2021)

Let T be a plane tree. Then $\left(T^{\text {dual }}\right)^{\text {dual }}=T$.

Proposition (P., Paul, S. 2021)

Let $\pi \in D_{n}$. Then $\sigma(\pi)^{\text {dual }}=\eta(\pi)$ and $\eta(\pi)^{\text {dual }}=\sigma(\pi)$.

Proposition (P., Paul, S. 2021)

The dual operator interchanges the "area" and "depth" sequences on plane trees.

Involution on Dyck Paths

Definition
Let $\omega=\sigma^{-1} \circ \eta: D_{n} \rightarrow D_{n}$. Equivalently $\omega=\sigma^{-1}\left(\sigma(\pi)^{\text {dual }}\right)$ or $\eta^{-1}\left(\eta(\pi)^{\text {dual }}\right)$.

Involution on Dyck Paths

Definition
Let $\omega=\sigma^{-1} \circ \eta: D_{n} \rightarrow D_{n}$. Equivalently $\omega=\sigma^{-1}\left(\sigma(\pi)^{\text {dual }}\right)$ or $\eta^{-1}\left(\eta(\pi)^{\text {dual }}\right)$.

Proposition (P., Paul, S. 2021)

ω is an involution that interchanges the area and depth sequences.

Involution on Dyck Paths

Definition

Let $\omega=\sigma^{-1} \circ \eta: D_{n} \rightarrow D_{n}$. Equivalently $\omega=\sigma^{-1}\left(\sigma(\pi)^{\text {dual }}\right)$ or $\eta^{-1}\left(\eta(\pi)^{\text {dual }}\right)$.

Proposition (P., Paul, S. 2021)

ω is an involution that interchanges the area and depth sequences.

$$
\text { area }=(0,1,2,1,1,2,0,1)
$$

$$
\text { depth }=(0,1,1,0,1,2,2,0)
$$

Applications of ω

Applications of ω

Lemma (P., Paul, S. 2021)
ω interchanges the initial rise (IR) of a Dyck path with the number of its returns (RET).

Applications of ω

Lemma (P., Paul, S. 2021)

ω interchanges the initial rise (IR) of a Dyck path with the number of its returns (RET).

$\mathrm{IR}=3, \mathrm{RET}=2$

Applications of ω

Lemma (P., Paul, S. 2021)

ω interchanges the initial rise (IR) of a Dyck path with the number of its returns (RET).

$\mathrm{IR}=2, \mathrm{RET}=3$

$\mathrm{IR}=3, \mathrm{RET}=2$

Theorem (Ardila 2003)
The Tutte polynomial $T_{\mathrm{Cat}_{n}}(q, t)=\sum_{\pi \in D_{n}} q^{\operatorname{IR}(\pi)} t^{\mathrm{RET}(\pi)}$ of the Catalan Matroid is symmetric in q and t.

Table of Contents

(1) Dyck Paths and Plane Trees

(2) Parking Functions and Labelled Trees

(3) Open Problems

Parking Functions

Definition

A parking function on n cars is Dyck path $\pi \in D_{n}$ and a labelling of the cells to the right of every North step with the numbers 1 through n exactly once such that they decrease down columns.

Parking Functions

Definition

A parking function on n cars is Dyck path $\pi \in D_{n}$ and a labelling of the cells to the right of every North step with the numbers 1 through n exactly once such that they decrease down columns.

- P_{n} - set of all parking functions on n cars

Parking Function p in P_{6}

Parking Functions

Definition

A parking function on n cars is Dyck path $\pi \in D_{n}$ and a labelling of the cells to the right of every North step with the numbers 1 through n exactly once such that they decrease down columns.

- P_{n} - set of all parking functions on n cars
- $\left|P_{n}\right|=(n+1)^{(n-1)}$

Parking Function p in P_{6}

Connection to Graphs

\mathscr{C}_{n+1} - the set of all labelled connected graphs on vertices $\{0,1, \ldots, n\}$

Connection to Graphs

\mathscr{C}_{n+1} - the set of all labelled connected graphs on vertices $\{0,1, \ldots, n\}$

Connection to Graphs

\mathscr{C}_{n+1} - the set of all labelled connected graphs on vertices $\{0,1, \ldots, n\}$
Theorem (Kreweras 1980; Gessel, Wang 1979) (P., Paul, S. 2021)

$$
\sum_{p \in P_{n}} 2^{\operatorname{area}(p)}=\left|\mathscr{C}_{n+1}\right|
$$

Connection to Graphs

\mathscr{C}_{n+1} - the set of all labelled connected graphs on vertices $\{0,1, \ldots, n\}$
Theorem (Kreweras 1980; Gessel, Wang 1979) (P., Paul, S. 2021)

$$
\sum_{p \in P_{n}} 2^{\text {area }(p)}=\left|\mathscr{C}_{n+1}\right|
$$

Idea of proof:

- Look at parking functions as labelled trees under some bijection
- Associate edges to this tree based off the area statistic
- Show that all connected graphs can be obtained from this

Table of Contents

(1) Dyck Paths and Plane Trees

(2) Parking Functions and Labelled Trees

(3) Open Problems

Open Problems

- Find a combinatorial proof that $C_{n}(q, t)$ is symmetric in q and t.
- Can we find two maps from Dyck paths to plane trees such that their composition interchanges area and dinv?
- Is there a relation between $C_{n}(q, t)$ and $F_{n}(q, t)$?

Relation between C_{n} and F_{n}

As $F_{n}(q, 1)=C_{n}(q, 1)$, we have $F_{n}(q, t)-C_{n}(q, t)=(1-q)(1-t) M_{n}(q, t)$.

Relation between C_{n} and F_{n}

As $F_{n}(q, 1)=C_{n}(q, 1)$, we have $F_{n}(q, t)-C_{n}(q, t)=(1-q)(1-t) M_{n}(q, t)$.

Conjecture

The coefficients of $M_{n}(q, t)$ are all positive.

Relation between C_{n} and F_{n}

As $F_{n}(q, 1)=C_{n}(q, 1)$, we have $F_{n}(q, t)-C_{n}(q, t)=(1-q)(1-t) M_{n}(q, t)$.

Conjecture

The coefficients of $M_{n}(q, t)$ are all positive.
Evaluating $M_{n}(1,1)$ yields the sequence:

$$
0,0,0,1,14,124,888,5615,32714, \ldots
$$

Relation between C_{n} and F_{n}

As $F_{n}(q, 1)=C_{n}(q, 1)$, we have $F_{n}(q, t)-C_{n}(q, t)=(1-q)(1-t) M_{n}(q, t)$.

Conjecture

The coefficients of $M_{n}(q, t)$ are all positive.
Evaluating $M_{n}(1,1)$ yields the sequence:

$$
0,0,0,1,14,124,888,5615,32714, \ldots
$$

Conjecture

$$
M_{n}(1,1)=4^{n-2} \sum_{j=0}^{4}(-1)^{j}\binom{4}{j}\binom{n+(j-1) / 2}{n}
$$

Open Problems

- Find a combinatorial proof that $C_{n}(q, t)$ is symmetric in q and t.
- Can you find two maps from Dyck paths to plane trees such that their composition interchanges area and dinv?
- Is there a relation between $C_{n}(q, t)$ and $F_{n}(q, t)$?
- Is there a subspace of $\mathbb{C}\left[X_{n}, Y_{n}\right]$ such that $F_{n}(q, t)$ or $G_{n}(q, t)$ is its Hilbert series?

Thanks for listening!

