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q,t-Catalan polynomial

Definition
The q,t-Catalan polynomial is given by

Cn(q,t)= ∑
π∈Dn

qarea(π)tdinv(π)

Example:
C4(q,t)= q6+q5t+q4t2+q4t+q3t+q3t2+q2t2+q3t3+q2t3+qt3+
qt4+q2t4+qt5+ t6

Theorem (Garsia, Haglund 2002; Haiman 2002)
Cn(q,t) is symmetric in q and t.

Open Problem: Find a combinatorial proof that shows Cn(q,t) is
symmetric.
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New Symmetric Polynomials

Definition (P., Paul, S. 2021)
Let the area-depth polynomial Fn(q,t) and dinv-ddinv polynomial Gn(q,t)
be defined as follows:

Fn(q,t)=∑
π∈Dn

qarea(π)tdepth(π)

Gn(q,t)=∑
π∈Dn

qdinv(π)tddinv(π)

Theorem (P., Paul, S. 2021)
Fn(q,t) and Gn(q,t) are symmetric in q and t.
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New Symmetric Polynomials

Definition (P., Paul, S. 2021)
Let the area-depth polynomial Fn(q,t) and dinv-ddinv polynomial Gn(q,t)
be defined as follows:

Fn(q,t)=∑
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qarea(π)tdepth(π)

Gn(q,t)=∑
π∈Dn

qdinv(π)tddinv(π)

Theorem (P., Paul, S. 2021)
Fn(q,t) and Gn(q,t) are symmetric in q and t.

Theorem (P., Paul, S. 2021)

Cn(q,t)=∑
π∈Dn

qdepth(π)tddinv(π)
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Statistics on Dyck Paths

Definition
Let (a1(π),a2(π), . . . ,an(π)) be the area sequence of π where ai (π) is the
number of full cells between π and the diagonal in the ith row.
Let area(π)=∑n

i=1ai (π).

π ∈D8

(a1(π), . . . ,an(π))= (0,1,2,1,1,2,0,1)
area(π)= 8
Remark: Dyck paths are uniquely
characterized by their area sequences.
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Statistics on Dyck Paths

Definition
A diagonal inversion of π is a pair (i , j) such that

i < j

ai (π)= aj(π) or ai (π)= aj(π)+1
Let dinv(π) be the number of diagonal inversions of π.

π ∈D8

(a1(π), . . . ,an(π))= (0,1,2,1,1,2,0,1)
Diagonal inversions of π:
(1,7),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8),(3,6),
(2,7),(4,7),(5,7),(3,4),(3,5),(3,8),(6,8)
dinv(π)= 15

Dyck Paths and Plane Trees Parking Functions and Labelled Trees Open Problems



Statistics on Dyck Paths

Definition
A diagonal inversion of π is a pair (i , j) such that

i < j

ai (π)= aj(π) or ai (π)= aj(π)+1
Let dinv(π) be the number of diagonal inversions of π.

π ∈D8

(a1(π), . . . ,an(π))= (0,1,2,1,1,2,0,1)

Diagonal inversions of π:
(1,7),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8),(3,6),
(2,7),(4,7),(5,7),(3,4),(3,5),(3,8),(6,8)
dinv(π)= 15

Dyck Paths and Plane Trees Parking Functions and Labelled Trees Open Problems



Statistics on Dyck Paths

Definition
A diagonal inversion of π is a pair (i , j) such that

i < j

ai (π)= aj(π) or ai (π)= aj(π)+1
Let dinv(π) be the number of diagonal inversions of π.

π ∈D8

(a1(π), . . . ,an(π))= (0,1,2,1,1,2,0,1)
Diagonal inversions of π:
(1,7),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8),(3,6),
(2,7),(4,7),(5,7),(3,4),(3,5),(3,8),(6,8)

dinv(π)= 15

Dyck Paths and Plane Trees Parking Functions and Labelled Trees Open Problems



Statistics on Dyck Paths

Definition
A diagonal inversion of π is a pair (i , j) such that

i < j

ai (π)= aj(π) or ai (π)= aj(π)+1
Let dinv(π) be the number of diagonal inversions of π.

π ∈D8

(a1(π), . . . ,an(π))= (0,1,2,1,1,2,0,1)
Diagonal inversions of π:
(1,7),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8),(3,6),
(2,7),(4,7),(5,7),(3,4),(3,5),(3,8),(6,8)
dinv(π)= 15

Dyck Paths and Plane Trees Parking Functions and Labelled Trees Open Problems



New Statistics on Dyck Paths
Definition (P., Paul, S., 2021)
The depth labelling of π is a labelling of the cells directly right of the North
steps in π by:

labelling all relevant cells in the first column with a 0

labelling all relevant cells in the ith column with `+1 where ` is the
label of the cell obtained by travelling Southwest from the
bottommost relevant cell in column i

0
0
0

1
2
2

1
1
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New Statistics on Dyck Paths

0
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1
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1
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2

0

0

(d1(π),d2(π), . . . ,dn(π))= (

0,1,1,0,1,2,2,0

)

depth(π)= 0+1+1+0+1+2+2+0= 7
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New Statistics on Dyck Paths

Definition (P., Paul, S. 2021)
A depth diagonal inversion of π is a pair (i , j) such that

i < j

di (π)= dj(π) or di = dj +1
Let ddinv(π) be the number of depth diagonal inversions of π.

0
0
0

1
2
2

1
1

(d1(π), . . . ,dn(π))= (0,1,1,0,1,2,2,0)
Depth diagonal inversions of π:
(1,4),(1,8),(4,8),(2,3),(2,5),(3,5),(6,7),
(2,4),(3,4),(2,8),(3,8),(5,8)
ddinv(π)= 12
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(2,4),(3,4),(2,8),(3,8),(5,8)
ddinv(π)= 12
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Plane Trees

Definition
The principal subtrees of a rooted tree T are the rooted trees obtained by
removing the root of T and considering the children of the root of T to be
the new roots of their respective tree.

Definition
A plane tree is a rooted tree, which either consists only of the root vertex r
or it consists recursively of the root r and its linearly ordered principal
subtrees (T1, . . . ,Tk) which themselves are plane trees.

6=
Tn - set of all plane trees with n
vertices
|Tn+1| = 1

n+1
(2n
n

)
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Area of Stanley Trees

(a1(π), . . . ,an(π))=
(0,1,2,1,1,2,0,1)

σ−→

0 0

1
1

1 1

2 2
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Depth of Stanley Trees

0
0
0

1
2
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1
1

(d1(π), . . . ,dn(π))=
(0,1,1,0,1,2,2,0)

σ−→
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0
1

2 1
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Depth of Stanley Trees

0
0
0

1
2
2

1
1

(d1(π), . . . ,dn(π))=
(0,1,1,0,1,2,2,0)

σ−→
0 1

0
1

2 1

0 2
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Haglund-Loehr Bijection

v1

v2

v3

v4

v5

v6

v7

v8

η−→

r

v1 v2 v3

v7 v8 v4

v5 v6

r

v1 v2 v3

v7 v8 v4

v5 v6
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Depth of Haglund-Loehr Trees
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Dual Plane Trees

Definition (P., Paul, S. 2021)

The dual tree T dual of a plane tree is given by the following algorithm:

u

r

1 2

3 4 5 6

7 8

−→

r

1 2

3 4 5 6

7 8

T

u

1 3 7

2 6 4

5 8T dual
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Properties of Dual Plane Trees

Proposition (P., Paul, S. 2021)

Let T be a plane tree. Then (T dual)dual =T .

Proposition (P., Paul, S. 2021)

Let π ∈Dn. Then σ(π)dual = η(π) and η(π)dual =σ(π).

Proposition (P., Paul, S. 2021)
The dual operator interchanges the "area" and "depth" sequences on plane
trees.
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Involution on Dyck Paths
Definition
Let ω=σ−1 ◦η : Dn →Dn. Equivalently ω=σ−1(σ(π)dual) or η−1(η(π)dual).

Proposition (P., Paul, S. 2021)
ω is an involution that interchanges the area and depth sequences.

area= (0,1,2,1,1,2,0,1)
depth= (0,1,1,0,1,2,2,0)

ω←→
area= (0,1,1,0,1,2,2,0)
depth= (0,1,2,1,1,2,0,1)
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Applications of ω

Lemma (P., Paul, S. 2021)
ω interchanges the initial rise (IR) of a Dyck path with the number of its
returns (RET).

IR= 2, RET= 3

ω←→
IR= 3, RET= 2

Theorem (Ardila 2003)

The Tutte polynomial TCatn(q,t)=∑
π∈Dn

qIR(π)tRET(π) of the Catalan
Matroid is symmetric in q and t.
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Parking Functions

Definition
A parking function on n cars is Dyck path π ∈Dn and a labelling of the
cells to the right of every North step with the numbers 1 through n exactly
once such that they decrease down columns.

3
4
5

2
1

6

Parking Function p in P6

Pn - set of all parking functions
on n cars
|Pn| = (n+1)(n−1)
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Connection to Graphs

Cn+1 - the set of all labelled connected graphs on vertices {0,1, . . . ,n}

Theorem (Kreweras 1980; Gessel, Wang 1979) (P., Paul, S. 2021)∑
p∈Pn

2area(p) = |Cn+1|

Idea of proof:
Look at parking functions as labelled trees under some bijection
Associate edges to this tree based off the area statistic
Show that all connected graphs can be obtained from this
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Look at parking functions as labelled trees under some bijection
Associate edges to this tree based off the area statistic
Show that all connected graphs can be obtained from this
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Open Problems

Find a combinatorial proof that Cn(q,t) is symmetric in q and t.
Ï Can we find two maps from Dyck paths to plane trees such that their
composition interchanges area and dinv?

Is there a relation between Cn(q,t) and Fn(q,t)?
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Relation between Cn and Fn

As Fn(q,1)=Cn(q,1), we have Fn(q,t)−Cn(q,t)= (1−q)(1− t)Mn(q,t) .

Conjecture
The coefficients of Mn(q,t) are all positive.

Evaluating Mn(1,1) yields the sequence:

0,0,0,1,14,124,888,5615,32714, . . .

Conjecture

Mn(1,1)= 4n−2
4∑

j=0
(−1)j

(
4
j

)(
n+ (j −1)/2

n

)
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Open Problems

Find a combinatorial proof that Cn(q,t) is symmetric in q and t.
Ï Can you find two maps from Dyck paths to plane trees such that their
composition interchanges area and dinv?

Is there a relation between Cn(q,t) and Fn(q,t)?
Is there a subspace of C[Xn,Yn] such that Fn(q,t) or Gn(q,t) is its
Hilbert series?
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Thanks for listening!
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