Towards graphical rules for efficient estimation in causal graphical models

Andrea Rotnitzky

Universidad Di Tella and Harvard T.H. Chan School of Public Health

Based on

Rotnitzky and Smucler, 2020, Journal of Machine Learning Research, 21 188: 1-86,

Smucler, Sapienza and Rotnitzky, 2021, Biometrika, 109, 1, 49-65.

Guo, Perkovic and Rotnitzky, 2022, https://arxiv.org/abs/2202.11994

BIRS, Kelowna, May 23, 2022

Causality in the 21st century

► 1/2 a century ago different disciplines had their own opinions about causal inference.

Causality in the 21st century

► 1/2 a century ago different disciplines had their own opinions about causal inference.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Today there is nearly unanimous acceptance.

Causality in the 21st century

► 1/2 a century ago different disciplines had their own opinions about causal inference.

- Today there is nearly unanimous acceptance.
- "Causal revolution" in great part due to the emergence and adoption of two formalisms:
 - Counterfactual Models
 - Graphical Models

In epidemiology and medical research: graphical models are responsible for the acceptance and adoption of modern causal analytic techniques because they facilitate encoding complex causal assumptions and reasoning in an intuitive way

- In epidemiology and medical research: graphical models are responsible for the acceptance and adoption of modern causal analytic techniques because they facilitate encoding complex causal assumptions and reasoning in an intuitive way
- Simple graphical rules exist to explain the potential biases of one's preferred estimation procedure and the possible remedial approaches.

- In epidemiology and medical research: graphical models are responsible for the acceptance and adoption of modern causal analytic techniques because they facilitate encoding complex causal assumptions and reasoning in an intuitive way
- Simple graphical rules exist to explain the potential biases of one's preferred estimation procedure and the possible remedial approaches.

 No graphical rules existed to explain efficiency (variance) in estimation

- In epidemiology and medical research: graphical models are responsible for the acceptance and adoption of modern causal analytic techniques because they facilitate encoding complex causal assumptions and reasoning in an intuitive way
- Simple graphical rules exist to explain the potential biases of one's preferred estimation procedure and the possible remedial approaches.

- No graphical rules existed to explain efficiency (variance) in estimation
- In this talk: some work towards filling this gap

An adjustment set

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

Another adjustment set

Graph taken from Shrier and Platt, 2008.

Road map of the talk

- ► Gentle introduction to causal graphical models.
- Some results with Smucler and Sapienza on optimal adjustment sets

- Rules for comparing adjustment sets for point exposure studies
- Time dependent adjustment sets for time dependent exposures

 Some results with Guo and Perkovic on uninformative variables and graph reduction

Final remarks

$$\begin{split} V_1 &= f_1(\varepsilon_1) \\ V_2 &= f_2(\varepsilon_2) \\ V_3 &= f_3(\varepsilon_3) \\ V_4 &= f_4(\varepsilon_4) \\ V_5 &= f_5(V_1, \varepsilon_5) \\ \vdots \\ V_{11} &= f_{11}(V_5, V_7, \varepsilon_{11}) \\ V_{12} &= f_{12}(V_{11}, V_4, \varepsilon_{12}) \\ V_{13} &= f_{13}(V_8, V_{10}, V_{12}, \varepsilon_{13}) \\ \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\begin{split} V_1 &= f_1(\varepsilon_1) \\ V_2 &= f_2(\varepsilon_2) \\ V_3 &= f_3(\varepsilon_3) \\ V_4 &= f_4(\varepsilon_4) \\ V_5 &= f_5(V_1, \varepsilon_5) \\ \vdots \\ V_{11} &= f_{11}(V_5, V_7, \varepsilon_{11}) \\ V_{12} &= f_{12}(V_{11}, V_4, \varepsilon_{12}) \\ V_{13} &= f_{13}(V_8, V_{10}, V_{12}, \varepsilon_{13}) \\ \end{array}$$

(日)、

э

No omitted common cause assumption formalized as: the $\varepsilon'_j s$ are mutually independent (Pearl, 1995)

$$\begin{split} V_1 &= f_1(\varepsilon_1) \\ V_2 &= f_2(\varepsilon_2) \\ V_3 &= f_3(\varepsilon_3) \\ V_4 &= f_4(\varepsilon_4) \\ V_5 &= f_5(V_1, \varepsilon_5) \\ \vdots \\ V_{11} &= f_{11}(V_5, V_7, \varepsilon_{11}) \\ V_{12} &= f_{12}(V_{11}, V_4, \varepsilon_{12}) \\ V_{13} &= f_{13}(V_8, V_{10}, V_{12}, \varepsilon_{13}) \\ \end{array}$$

(日)、

э

No omitted common cause assumption formalized as: the $\varepsilon'_j s$ are mutually independent (Pearl, 1995)

• Graphical model with independent $\varepsilon'_i s$ is tantamount to:

$$p\left(\mathbf{v}
ight)=\prod_{j}p\left(v_{j}|pa_{\mathcal{G}}\left(v_{j}
ight)
ight)$$

The collection of laws for V that factor like this is called a Bayesian Network B (G).

(日)、

э

Causal Graphical Models in a nutshell: counterfactual world static intervention

$$\begin{split} V_1 &= f_1(\varepsilon_1) \\ V_2 &= f_2(\varepsilon_2) \\ V_3 &= f_3(\varepsilon_3) \\ V_4 &= f_4(\varepsilon_4) \\ V_5 &= f_5(V_1, \varepsilon_5) \\ \vdots \\ V_{11}^{\upsilon_{11}=0} &= 0 \\ V_{12}^{\upsilon_{11}=0} &= f_{12} \left(V_{11}^{\upsilon_{11}=0}, V_4, \varepsilon_{12} \right) \\ V_{13}^{\upsilon_{11}=0} &= f_{13} \left(V_8, V_{10}, V_{12}^{\upsilon_{11}=0}, \varepsilon_{13} \right) \\ & \varepsilon_{1}, \dots, \varepsilon_{13} \text{ omitted} \\ \text{non- common causes} \end{split}$$

・ロト・西ト・ヨト・ヨー シタぐ

Causal Graphical Models in a nutshell: counterfactual world static intervention

Corollary: counterfactual law is identified and given by

 $\rho_{(v_{11}=0)}\left(\mathbf{v}\right) = \prod_{j\neq 11} \rho\left(v_j | pa_{\mathcal{G}}\left(v_j\right)\right) \times I_{\{0\}}\left(v_{11}\right)$

э

Causal Graphical Models in a nutshell: counterfactual world, deterministic dynamic intervention

$$\begin{split} V_{1} &= f_{1}\left(\varepsilon_{1}\right) \\ V_{2} &= f_{2}\left(\varepsilon_{2}\right) \\ V_{3} &= f_{3}\left(\varepsilon_{3}\right) \\ V_{4} &= f_{4}\left(\varepsilon_{4}\right) \\ V_{5} &= f_{5}\left(V_{1}, \varepsilon_{5}\right) \\ \vdots \\ V_{11}^{g} &= g\left(V_{9}\right) \\ V_{12}^{g} &= f_{12}\left(V_{11}^{g}, V_{4}, \varepsilon_{12}\right) \\ V_{13}^{g} &= f_{13}\left(V_{8}, V_{10}, V_{12}^{g}, \varepsilon_{13}\right) \end{split}$$

 $\varepsilon_1,\ldots,\varepsilon_{13}$ omitted non- common causes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Causal Graphical Models in a nutshell: counterfactual world, deterministic dynamic intervention

 $\varepsilon_1, \dots, \varepsilon_{13}$ omitted non- common causes

э

Corollary: counterfactual law is identified and given by

 $p_{g}(\mathbf{v}) = \prod_{j \neq 11} p\left(v_{j} | pa_{\mathcal{G}}(v_{j})\right) \times I_{\{g(v_{9})\}}(v_{11})$

Causal Graphical Models in a nutshell: counterfactual world, random dynamic intervention

$$\begin{split} V_1 &= f_1\left(\varepsilon_1\right) \\ V_2 &= f_2\left(\varepsilon_2\right) \\ V_3 &= f_3\left(\varepsilon_3\right) \\ V_4 &= f_4\left(\varepsilon_4\right) \\ V_5 &= f_5\left(V_1, \varepsilon_5\right) \\ \vdots & & & \\ V_{11}^{\pi} &= g\left(V_9, U_{11}\right) \\ V_{12}^{\pi} &= f_{12}\left(V_{11}^{\pi}, V_4, \varepsilon_{12}\right) \\ V_{13}^{\pi} &= f_{13}\left(V_8, V_{10}, V_{12}^{\pi}, \varepsilon_{13}\right) \end{split}$$

 $\varepsilon_1, \ldots, \varepsilon_{13}$ omitted non- common causes

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Causal Graphical Models in a nutshell: counterfactual world, random dynamic intervention

$$V_{1} = f_{1} (\varepsilon_{1})$$

$$V_{2} = f_{2} (\varepsilon_{2})$$

$$V_{3} = f_{3} (\varepsilon_{3})$$

$$V_{4} = f_{4} (\varepsilon_{4})$$

$$V_{5} = f_{5} (V_{1}, \varepsilon_{5})$$

$$\vdots$$

$$V_{11}^{T} = g (V_{9}, U_{11})$$

$$V_{12}^{T} = f_{12} (V_{11}^{T}, V_{4}, \varepsilon_{12})$$

$$V_{13}^{T} = f_{13} (V_{8}, V_{10}, V_{12}^{T}, \varepsilon_{13})$$

 $\varepsilon_1,\ldots,\varepsilon_{13}$ omitted non- common causes

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Corollary: counterfactual law is identified and given by

$$p_{\pi}\left(\mathbf{v}
ight)=\prod_{j
eq11}p\left(v_{j}|pa_{\mathcal{G}}\left(v_{j}
ight)
ight) imes\pi\left(v_{11}|v_{9}
ight)$$

Causal graphical models

<ロ>

Causal graphical models

a. Factual world. The law p of $\mathbf{V} = (V_1, ..., V_J)$ belongs to Bayesian Network $\mathcal{B}(\mathcal{G})$, i.e. it factorizes as

$$p\left(\mathbf{v}
ight)=\prod_{j=1}^{J}p\left(v_{j}|p \mathsf{a}_{\mathcal{G}}\left(v_{j}
ight)
ight)$$

where $pa_{\mathcal{G}}(V_j)$ are the parents of V_j in \mathcal{G} .

Causal graphical models

a. Factual world. The law p of $\mathbf{V} = (V_1, ..., V_J)$ belongs to Bayesian Network $\mathcal{B}(\mathcal{G})$, i.e. it factorizes as

$$p\left(\mathbf{v}
ight)=\prod_{j=1}^{J}p\left(v_{j}|p \mathsf{a}_{\mathcal{G}}\left(v_{j}
ight)
ight)$$

where $p_{a_{\mathcal{G}}}(V_j)$ are the parents of V_j in \mathcal{G} .

b. Counterfactual world. For any $\mathbf{A} = (A_1, ..., A_s) \subset \mathbf{V}$, the distrib. of the data when a regime that assigns a_t to A_t with prob. $\pi_t(a_t|\mathbf{Z}_t)$ is implemented in the population (where \mathbf{Z}_t are non-descendants of A_t), is

$$p_{\pi}\left(\mathbf{v}
ight) = \prod_{V_{i}\in\mathbf{V}\setminus\mathbf{A}} p\left(v_{j}|pa_{\mathcal{G}}\left(v_{j}
ight)
ight) imes \prod_{t=1}^{s} \pi_{t}\left(a_{t}|\mathbf{z}_{t}
ight)$$

So, p_{π} is **identified** from p

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

► Bayesian Network B (G) : collection of laws p for V that factorize as

$$p\left(\mathbf{v}
ight)=\prod_{j=1}^{J}p\left(\mathbf{v}_{j}|\mathsf{pa}_{\mathcal{G}}\left(\mathbf{v}_{j}
ight)
ight)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

where $pa_{\mathcal{G}}(V_j)$ are the parents of V_j in DAG \mathcal{G} .

► Bayesian Network B(G): collection of laws p for V that factorize as

$$p\left(\mathbf{v}
ight)=\prod_{j=1}^{J}p\left(\mathbf{v}_{j}|\mathsf{pa}_{\mathcal{G}}\left(\mathbf{v}_{j}
ight)
ight)$$

where $pa_{\mathcal{G}}(V_j)$ are the parents of V_j in DAG \mathcal{G} .

► d-separation: a sound and complete graphical rule for determining whether a conditional independence holds under any p ∈ B(G).

► Bayesian Network B(G): collection of laws p for V that factorize as

$$p\left(\mathbf{v}
ight) =\prod_{j=1}^{J}p\left(\mathbf{v}_{j}|\mathsf{pa}_{\mathcal{G}}\left(\mathbf{v}_{j}
ight)
ight)$$

where $p_{a_{\mathcal{G}}}(V_j)$ are the parents of V_j in DAG \mathcal{G} .

► d-separation: a sound and complete graphical rule for determining whether a conditional independence holds under any p ∈ B(G).

 $A \perp\!\!\!\perp_{\mathcal{G}} B \mid C \ (A \text{ and } B \text{ are d-separated by } C \text{ in } \mathcal{G})$

► Bayesian Network B(G) : collection of laws p for V that factorize as

$$p\left(\mathbf{v}
ight) =\prod_{j=1}^{J}p\left(\mathbf{v}_{j}|pa_{\mathcal{G}}\left(\mathbf{v}_{j}
ight)
ight)$$

where $p_{a_{\mathcal{G}}}(V_j)$ are the parents of V_j in DAG \mathcal{G} .

• **d-separation:** a sound and complete graphical rule for determining whether a conditional independence holds **under any** $p \in \mathcal{B}(\mathcal{G})$.

 $A \perp\!\!\!\perp_{\mathcal{G}} B \mid C \ (A \text{ and } B \text{ are d-separated by } C \text{ in } \mathcal{G})$

Theorem (Geiger, Verma & Pearl, 1990):

 $A \perp\!\!\!\perp_{\mathcal{G}} B \mid C \Leftrightarrow$ A is cond. indep. of B given C under any $p \in \mathcal{B}(\mathcal{G})$

d-separation

- A, B single vertices, $C \subset V \setminus \{A, B\}$
- ▶ a path from A to B is blocked by C if either

(1) at least one non-collider is in C

(2) \exists at least one collider, such that neither itself nor its descendants is in C

d-separation

- A, B single vertices, $C \subset V \setminus \{A, B\}$
- ▶ a path from A to B is blocked by C if either

(1) at least one non-collider is in C

(2) \exists at least one collider, such that neither itself nor its descendants is in C

► A and B are d-separated by C if all paths bw A and B are blocked by C

d-separation

- A, B single vertices, $C \subset V \setminus \{A, B\}$
- ▶ a path from A to B is blocked by C if either

(1) at least one non-collider is in C

(2) \exists at least one collider, such that neither itself nor its descendants is in C

► A and B are d-separated by C if all paths bw A and B are blocked by C

• A set A is d-separated from another set B by $C \subset V \setminus \{A, B\}$ if all $A_j \in A$ and $B_k \in B$ are d-separated by C, in which case we write

 $A \perp \!\!\!\perp_{\mathcal{G}} B \mid C$

Counterfactual law.

$$p_{\pi}\left(\mathbf{v}
ight)=\prod_{j:V_{j}\in\mathbf{V}ackslash\mathcal{A}}p\left(v_{j}|p\mathsf{a}_{\mathcal{G}}\left(v_{j}
ight)
ight) imes\pi\left(\mathsf{a}|\mathsf{z}
ight)$$

Counterfactual law.

$$p_{\pi}\left(\mathbf{v}
ight) = \prod_{j:V_{j}\in\mathbf{V}\setminus\mathcal{A}} p\left(v_{j}|pa_{\mathcal{G}}\left(v_{j}
ight)
ight) imes \pi\left(a|\mathbf{z}
ight)$$

• Then for $Y = V_J$,

$${E_\pi \left[Y
ight]} = \int y \prod\limits_{j: V_j \in {f V} ackslash A} {p\left({{v_j}}
ight|{f pa_{\mathcal G}}\left({{v_j}}
ight)}
ight) imes \pi \left({f a}
ight|{f z}}
ight) dv$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Counterfactual law.

$$p_{\pi}\left(\mathbf{v}
ight) = \prod_{j:V_{j}\in\mathbf{V}\setminus\mathcal{A}} p\left(v_{j}|pa_{\mathcal{G}}\left(v_{j}
ight)
ight) imes \pi\left(a|\mathbf{z}
ight)$$

► Then for
$$Y = V_J$$
,

$$E_{\pi}[Y] = \int y \prod_{j:V_j \in \mathbf{V} \setminus A} p(v_j | pa_{\mathcal{G}}(v_j)) \times \pi(a | \mathbf{z}) dv$$

▶ But under the Bayesian Network E_π(Y) is equal to many other functionals

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Counterfactual law.

$$p_{\pi}\left(\mathbf{v}
ight) = \prod_{j:V_{j}\in\mathbf{V}\setminus\mathcal{A}} p\left(v_{j}|pa_{\mathcal{G}}\left(v_{j}
ight)
ight) imes \pi\left(a|\mathbf{z}
ight)$$

► Then for
$$Y = V_J$$
,

$$E_{\pi}[Y] = \int y \prod_{j:V_j \in \mathbf{V} \setminus A} p(v_j | pa_{\mathcal{G}}(v_j)) \times \pi(a | \mathbf{z}) dv$$

▶ But under the Bayesian Network E_π(Y) is equal to many other functionals

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
Adjustment formula and adjustment sets

Adjustment formula:

$$\underbrace{E_{\pi}[Y]}_{\text{intervention mean}} = \underbrace{\sum_{a=0}^{1} \int E[Y|A = a, \mathbf{L} = \mathbf{I}] \pi(a|\mathbf{z}) p_{\mathbf{L}}(\mathbf{I}) d\mathbf{I}}_{\text{g-functional}}$$
$$= E_{p} \left[\frac{\pi(A|\mathbf{Z})}{p(A|\mathbf{L})} Y \right]$$

where $\textbf{Z} \subset \textbf{L} \subset \textbf{V}$

Adjustment formula and adjustment sets

Adjustment formula:

$$\underbrace{E_{\pi}[Y]}_{\text{intervention mean}} = \underbrace{\sum_{a=0}^{1} \int E[Y|A = a, \mathbf{L} = \mathbf{I}] \pi(a|\mathbf{z}) p_{\mathbf{L}}(\mathbf{I}) d\mathbf{I}}_{\text{g-functional}}$$
$$= E_{p} \left[\frac{\pi(A|\mathbf{Z})}{p(A|\mathbf{L})} Y \right]$$

where $\textbf{Z} \subset \textbf{L} \subset \textbf{V}$

- Definition: A Z- adjustment set for a single trx A and outcome Y is any L disjoint with A and Y such that
 - $\mathbf{Z} \subset \mathbf{L}$ and,
 - Under the causal graphical model, for any regime $\pi(A|\mathbf{Z})$, $E_{\pi}[Y]$ is equal to the corresponding adjustment formula.

Adjustment formula and adjustment sets

Adjustment formula:

$$\underbrace{E_{\pi}[Y]}_{\text{intervention mean}} = \underbrace{\sum_{a=0}^{1} \int E[Y|A = a, \mathbf{L} = \mathbf{I}] \pi(a|\mathbf{z}) p_{\mathbf{L}}(\mathbf{I}) d\mathbf{I}}_{\text{g-functional}}$$
$$= E_{p} \left[\frac{\pi(A|\mathbf{Z})}{p(A|\mathbf{L})} Y \right]$$

where $\textbf{Z} \subset \textbf{L} \subset \textbf{V}$

- Definition: A Z- adjustment set for a single trx A and outcome Y is any L disjoint with A and Y such that
 - $\mathbf{Z} \subset \mathbf{L}$ and,
 - Under the causal graphical model, for any regime $\pi(A|\mathbf{Z})$, $E_{\pi}[Y]$ is equal to the corresponding adjustment formula.
- ► If Z = Ø, then we say L is a static adjustment set.

Generalized adj. criterion for static (i.e. Z = Ø) treatments (Shpitzer. et. al., 2010, Perkovic et. al., 2015, 2018): L is static adj. set iff

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Generalized adj. criterion for static (i.e. Z = Ø) treatments (Shpitzer. et. al., 2010, Perkovic et. al., 2015, 2018): L is static adj. set iff
 - L is neither a mediator, nor descendant of Y or of a mediator

・ロト・日本・モート モー うへぐ

- Generalized adj. criterion for static (i.e. Z = Ø) treatments (Shpitzer. et. al., 2010, Perkovic et. al., 2015, 2018): L is static adj. set iff
 - L is neither a mediator, nor descendant of Y or of a mediator

L blocks all non-causal paths between A and Y.

- ▶ Generalized adj. criterion for static (i.e. Z = Ø) treatments (Shpitzer. et. al., 2010, Perkovic et. al., 2015, 2018): L is static adj. set iff
 - L is neither a mediator, nor descendant of Y or of a mediator
 - L blocks all non-causal paths between A and Y.
- Result (Smucler and Rotnitzky, 2020):

Class of all Z – adj sets = $\{L : L \text{ is a static adj. set and } Z \subset L\}$

Static adjustment set

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

Another static adjustment set

Graph taken from Shrier and Platt, 2008.

An invalid Z-adjustment , Z= previous injury

A valid Z-adjustment set, Z= previous injury

Road map of the talk

- Gentle introduction to causal graphical models.
- Some results with Smucler and Sapienza on optimal adjustment sets

- ► Rules for comparing adjustment sets for point exposure studies
- Time dependent adjustment sets for time dependent exposures

 Some results with Guo and Perkovic on uninformative variables and graph reduction

Final remarks

▶ **Recall:** a **Z**- adj. set **L** satisfies that for any regime $\pi(A|\mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$\psi_{\pi,\mathbf{L}}\left(P\right) \ \equiv \ E_{p}\left[\frac{\pi\left(A|\mathbf{Z}\right)}{p\left(A|\mathbf{L}\right)}Y\right] = \text{g-functional that adjusts for }\mathbf{L}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ **Recall:** a **Z**- adj. set **L** satisfies that for any regime $\pi(A|\mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$\psi_{\pi,\mathsf{L}}\left(P\right) \ \equiv \ E_{p}\left[\frac{\pi\left(A|\mathsf{Z}\right)}{p\left(A|\mathsf{L}\right)}Y\right] = \text{g-functional that adjusts for }\mathsf{L}$$

・ロト・日本・モート モー うへぐ

► L-NPA estimators of $\psi_{\pi, L}(P)$ are those which estimate the prop. score and/or the outcome regression non-parametrically

▶ **Recall:** a **Z**- adj. set **L** satisfies that for any regime $\pi(A|\mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$\psi_{\pi,\mathbf{L}}(P) \equiv E_{\rho}\left[\frac{\pi\left(A|\mathbf{Z}\right)}{\rho\left(A|\mathbf{L}\right)}Y\right] = \text{g-functional that adjusts for }\mathbf{L}$$

- L-NPA estimators of ψ_{π,L} (P) are those which estimate the prop. score and/or the outcome regression non-parametrically
- ► Key point: All regular asymptotically linear L-NPA estimators of $\psi_{\pi, L}(P)$ have the same limiting mean zero normal distribution with variance denoted, say, as $\sigma_{\pi, L}^2(p)$

▶ **Recall:** a **Z**- adj. set **L** satisfies that for any regime $\pi(A|\mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$\psi_{\pi,\mathbf{L}}(P) \equiv E_{\rho}\left[\frac{\pi\left(A|\mathbf{Z}\right)}{\rho\left(A|\mathbf{L}\right)}Y\right] = \text{g-functional that adjusts for }\mathbf{L}$$

- L-NPA estimators of ψ_{π,L} (P) are those which estimate the prop. score and/or the outcome regression non-parametrically
- ► Key point: All regular asymptotically linear L-NPA estimators of $\psi_{\pi, L}(P)$ have the same limiting mean zero normal distribution with variance denoted, say, as $\sigma_{\pi, L}^2(p)$
- $\sigma_{\pi, \mathbf{L}}^2(\mathbf{p})$ is the variance of the *unique influence function* of the functional $\psi_{\pi, \mathbf{L}}(P)$ under a non-parametric model for *P*.

▶ **Recall:** a **Z**- adj. set **L** satisfies that for any regime $\pi(A|\mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$\psi_{\pi,\mathbf{L}}(P) \equiv E_{\rho}\left[\frac{\pi\left(A|\mathbf{Z}\right)}{\rho\left(A|\mathbf{L}\right)}Y\right] = \text{g-functional that adjusts for }\mathbf{L}$$

- ► L-NPA estimators of $\psi_{\pi, L}(P)$ are those which estimate the prop. score and/or the outcome regression non-parametrically
- ► Key point: All regular asymptotically linear L-NPA estimators of $\psi_{\pi, L}(P)$ have the same limiting mean zero normal distribution with variance denoted, say, as $\sigma_{\pi, L}^2(p)$
- $\sigma_{\pi,\mathbf{L}}^2(\mathbf{p})$ is the variance of the *unique influence function* of the functional $\psi_{\pi,\mathbf{L}}(P)$ under a non-parametric model for *P*.

Questions that we addressed:.

▶ **Recall:** a **Z**- adj. set **L** satisfies that for any regime $\pi(A|\mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$\psi_{\pi,\mathbf{L}}(P) \equiv E_{p}\left[\frac{\pi\left(A|\mathbf{Z}\right)}{p\left(A|\mathbf{L}\right)}Y\right] = \text{g-functional that adjusts for }\mathbf{L}$$

- L-NPA estimators of ψ_{π,L}(P) are those which estimate the prop. score and/or the outcome regression non-parametrically
- ► Key point: All regular asymptotically linear L-NPA estimators of $\psi_{\pi, L}(P)$ have the same limiting mean zero normal distribution with variance denoted, say, as $\sigma_{\pi, L}^2(p)$
- $\sigma_{\pi, \mathbf{L}}^2(\mathbf{p})$ is the variance of the *unique influence function* of the functional $\psi_{\pi, \mathbf{L}}(P)$ under a non-parametric model for *P*.
- Questions that we addressed:.
 - Given two adjustment sets, are there graphical rules to determine which one yields an estimator with smaller variance?

▶ **Recall:** a **Z**- adj. set **L** satisfies that for any regime $\pi(A|\mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$\psi_{\pi,\mathbf{L}}(P) \equiv E_{p}\left[\frac{\pi(A|\mathbf{Z})}{p(A|\mathbf{L})}Y\right] = g$$
-functional that adjusts for \mathbf{L}

- ► L-NPA estimators of $\psi_{\pi, L}(P)$ are those which estimate the prop. score and/or the outcome regression non-parametrically
- ► Key point: All regular asymptotically linear L-NPA estimators of $\psi_{\pi, L}(P)$ have the same limiting mean zero normal distribution with variance denoted, say, as $\sigma_{\pi, L}^2(p)$
- $\sigma_{\pi, \mathbf{L}}^2(\mathbf{p})$ is the variance of the *unique influence function* of the functional $\psi_{\pi, \mathbf{L}}(P)$ under a non-parametric model for *P*.

Questions that we addressed:.

- Given two adjustment sets, are there graphical rules to determine which one yields an estimator with smaller variance?
- Is there a universally optimal adjustment set and, if so, what graphical rules determine it?

Related literature

- Henckel, Perkovic and Maathuis (2019) provided graphical rules
 - for comparing certain pairs of static adjustment sets
 - ▶ for determining the globally optimal static adjustment set
- Also, Kuroki and Miyakawa, 2003 and Kuroki and Cai 2004.
- These works assume:
 - causal graphical linear model, i.e. $V_j = \beta_j^T pa_G(V_j) + \varepsilon_j, \{\varepsilon_j : j\}$ indep.

treatment effect estimated via OLS

Related literature

- Henckel, Perkovic and Maathuis (2019) provided graphical rules
 - for comparing certain pairs of static adjustment sets
 - ▶ for determining the globally optimal static adjustment set
- Also, Kuroki and Miyakawa, 2003 and Kuroki and Cai 2004.
- These works assume:
 - ► causal graphical linear model, i.e. $V_j = \beta_i^T p_{a_G}(V_j) + \varepsilon_j, \{\varepsilon_j : j\}$ indep.
 - treatment effect estimated via OLS
- Works connected with efficiency implications of inclusion of overadjustment and precision variables in regression and in semip. estimation of ATE:
 - Linear regression: Cochran (1968)
 - Non-linear regression: Mantel and Haenszel (1959), Breslow (1982), Gail (1988), Robinson and Jewell (1991), Neuhaseuser and Becher (1997) and De Stavola and Cox, (2008).
 - Semiparametric estimation of a counterfactual mean and of ATE: Robins and Rotnitzky (1992), Hahn (1998), White and Lu (2011).

Related literature

- Henckel, Perkovic and Maathuis (2019) provided graphical rules
 - for comparing certain pairs of static adjustment sets
 - ▶ for determining the globally optimal static adjustment set
- Also, Kuroki and Miyakawa, 2003 and Kuroki and Cai 2004.
- These works assume:
 - ► causal graphical linear model, i.e. $V_j = \beta_i^T p_{a_G}(V_j) + \varepsilon_j, \{\varepsilon_j : j\}$ indep.
 - treatment effect estimated via OLS
- Works connected with efficiency implications of inclusion of overadjustment and precision variables in regression and in semip. estimation of ATE:
 - Linear regression: Cochran (1968)
 - Non-linear regression: Mantel and Haenszel (1959), Breslow (1982), Gail (1988), Robinson and Jewell (1991), Neuhaseuser and Becher (1997) and De Stavola and Cox, (2008).
 - Semiparametric estimation of a counterfactual mean and of ATE: Robins and Rotnitzky (1992), Hahn (1998), White and Lu (2011).

Our work with Smucler and Sapienza on adjustment sets

- Proved that Henckel et. al. rules also apply when causal graphical model is agnostic and trx effect estimated via non-parametric L-covariate adjustment.
- Derived graphical rules and efficient algorithms for finding:
 - ▶ globally optimal adj. sets for personalized Z- dependent regimes
 - optimal static and personalized adj. sets among observable adj. sets
- Extended rules for comparing adjustment sets to time dependent treatments and confounding
- Proved that optimal time dependent adj. sets do not always exist
- Characterized graphs under which the semip. efficient estimator of the counterfactual mean is asym. equivalent to the optimally adjusted estimator

Supplementing adjustment sets with precision variables.

▶ Lemma 1. Suppose B is a Z-adj. set and G, disjoint with B, satisfies

 $A \perp \!\!\!\perp_{\mathcal{G}} \mathbf{G} \mid \mathbf{B}$

then, $\mathbf{G} \cup \mathbf{B}$ is also a \mathbf{Z} -adj. set and for all $p \in \mathcal{B}(\mathcal{G})$ and all regimes $\pi(A|\mathbf{Z})$

 $\sigma_{\pi,\mathbf{G}\cup\mathbf{B}}^{2}\left(\boldsymbol{p}\right)\leq\sigma_{\pi,\mathbf{B}}^{2}\left(\boldsymbol{p}\right)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Supplementing adjustment sets with precision variables.

▶ Lemma 1. Suppose B is a Z-adj. set and G, disjoint with B, satisfies

 $A \perp\!\!\perp_{\mathcal{G}} \mathbf{G} \mid \mathbf{B}$

then, $\mathbf{G} \cup \mathbf{B}$ is also a \mathbf{Z} -adj. set and for all $p \in \mathcal{B}(\mathcal{G})$ and all regimes $\pi(A|\mathbf{Z})$ $\sigma_{\pi \mathbf{G} \cup \mathbf{B}}^{2}(p) \leq \sigma_{\pi \mathbf{B}}^{2}(p)$

$$\sigma_{\pi,\mathbf{B}}^{2}\left(p\right) - \sigma_{\pi,\mathbf{G}\cup\mathbf{B}}^{2}\left(p\right) = E\left[\left\{\frac{1}{P\left(A=a|\mathbf{B}\right)} - 1\right\} var\left\{E\left(Y|A=a,\mathbf{G},\mathbf{B}\right)|A=a,\mathbf{B}\right\}\right]$$

Deleting overadjustment variables

Lemma 2. Suppose $\mathbf{G} \cup \mathbf{B}$ is a \mathbf{Z} -adj. set and \mathbf{B} satisfies

 $Y \perp \!\!\!\perp_{\mathcal{G}} \mathbf{B} \mid \mathbf{G}, A$

If $Z \subset G$, then G is *also a* Z-*adj. set* and for all $p \in \mathcal{B}(\mathcal{G})$ and all regimes $\pi(A|Z)$

$$\sigma_{\pi,\mathbf{G}}^{2}\left(\boldsymbol{p}\right) \leq \sigma_{\pi,\mathbf{G}\cup\mathbf{B}}^{2}\left(\boldsymbol{p}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Deleting overadjustment variables

Lemma 2. Suppose $\mathbf{G} \cup \mathbf{B}$ is a \mathbf{Z} -adj. set and \mathbf{B} satisfies

 $Y \perp \!\!\!\perp_{\mathcal{G}} \mathbf{B} \mid \mathbf{G}, A$

If $\mathbf{Z} \subset \mathbf{G}$, then \mathbf{G} is *also a* \mathbf{Z} -*adj. set* and for all $p \in \mathcal{B}(\mathcal{G})$ and all regimes $\pi(A|\mathbf{Z})$

$$\sigma_{\pi,\mathbf{G}}^{2}\left(\boldsymbol{p}\right) \leq \sigma_{\pi,\mathbf{G}\cup\mathbf{B}}^{2}\left(\boldsymbol{p}\right)$$

• In particular, for the static regime π that sets A to a,

$$\sigma_{\pi,\mathbf{G}\cup\mathbf{B}}^{2} - \sigma_{\pi,\mathbf{G}}^{2} = E\left[var\left(Y|A=a,\mathbf{G}\right)\left\{\frac{1}{P\left(A=a|\mathbf{B},\mathbf{G}\right)} - \frac{1}{P\left(A=a|\mathbf{G}\right)}\right\}\right]$$

Comparing two arbitrary adjustment sets

► Corollary: Suppose that G and B are two Z-adj. sets such that

 $A \perp\!\!\perp_{\mathcal{G}} (\mathbf{G} \backslash \mathbf{B}) \mid \mathbf{B}$

and

$$Y \perp \!\!\!\perp_{\mathcal{G}} (\mathbf{B} \backslash \mathbf{G}) \mid \mathbf{G}, A$$

Then, for all $p \in \mathcal{B}(\mathcal{G})$ and all regimes $\pi(A|\mathbf{Z})$

 $\sigma_{\pi,\mathbf{G}}^{2}\left(\boldsymbol{p}\right)\leq\sigma_{\pi,\mathbf{B}}^{2}\left(\boldsymbol{p}\right)$

Comparing two arbitrary adjustment sets

► Corollary: Suppose that G and B are two Z-adj. sets such that

 $A \perp\!\!\!\perp_{\mathcal{G}} (\mathbf{G} \backslash \mathbf{B}) \mid \mathbf{B}$

and

$$\begin{array}{l} Y \ \perp \mathcal{G} \ (\mathbf{B} \backslash \mathbf{G}) \ | \ \mathbf{G}, \mathbf{A} \end{array}$$

Then, for all $p \in \mathcal{B}(\mathcal{G})$ and all regimes $\pi(\mathbf{A} | \mathbf{Z})$
 $\sigma_{\pi \mathbf{G}}^2(p) \leq \sigma_{\pi \mathbf{B}}^2(p)$

Proof:

$$\sigma_{\pi,\mathbf{B}}^{2} - \sigma_{\pi,\mathbf{G}}^{2} = \underbrace{\sigma_{\pi,\mathbf{B}}^{2} - \sigma_{\pi,\mathbf{B}\cup(\mathbf{G}\setminus\mathbf{B})}^{2}}_{\text{gain due to supplementation with precision component } \mathbf{G}\setminus\mathbf{B}}_{\text{gain due to deletion of noisy component } \mathbf{B}\setminus\mathbf{G}} + \underbrace{\sigma_{\pi,\mathbf{G}\cup(\mathbf{B}\setminus\mathbf{G})}^{2} - \sigma_{\pi,\mathbf{G}}^{2}}_{\text{gain due to deletion of noisy component } \mathbf{B}\setminus\mathbf{G}}$$

Not all adjustment sets are comparable

- (O_1, W_2) is preferable to (O_2, W_1) if green association stronger than brown, and blue association weaker than red
- (O_2, W_1) is preferable to (O_1, W_2) if brown association stronger than green, and red association weaker than blue

• but... (O_1, O_2) is more efficient than both

Optimal adjustment set

▶ Theorem: (Henckel, et. al. (2019)). The set

0 = non-descendants of A that are parents of Y or of vertices in the causal path bw A and Y

is a static adjustment set. Furthermore, for any other static adjustment set $\boldsymbol{\mathsf{L}},$

 $A \perp\!\!\perp_{\mathcal{G}} (\mathbf{O} \backslash \mathbf{L}) \mid \mathbf{L}$

and

 $Y \perp\!\!\!\perp_{\mathcal{G}} (\mathbf{L} \backslash \mathbf{0}) \mid \mathbf{0}, A$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimal adjustment set

▶ Theorem: (Henckel, et. al. (2019)). The set

0 = non-descendants of A that are parents of Y or of vertices in the causal path bw A and Y

is a static adjustment set. Furthermore, for any other static adjustment set $\boldsymbol{\mathsf{L}},$

 $A \perp\!\!\!\perp_{\mathcal{G}} (\mathbf{O} \backslash \mathbf{L}) \mid \mathbf{L}$

and

$$Y \perp \!\!\!\perp_{\mathcal{G}} (\mathbf{L} \backslash \mathbf{0}) \mid \mathbf{0}, A$$

 Corollary (Rotnitzky and Smucler, 2020): O is the globally optimal static adjustment set.

Optimal adjustment set

Theorem: (Henckel, et. al. (2019)). The set

0 = non-descendants of A that are parents of Y or of vertices in the causal path bw A and Y

is a static adjustment set. Furthermore, for any other static adjustment set $\boldsymbol{\mathsf{L}},$

 $A \perp\!\!\!\perp_{\mathcal{G}} (\mathbf{O} \backslash \mathbf{L}) \mid \mathbf{L}$

and

$$Y \perp \!\!\!\perp_{\mathcal{G}} (\mathbf{L} \setminus \mathbf{0}) \mid \mathbf{0}, A$$

 Corollary (Rotnitzky and Smucler, 2020): O is the globally optimal static adjustment set.

► Lemma (Smucler, Sapienza and Rotnitzky, 2021): O ∪ Z is the globally optimal Z - adjustment set

Globally optimal static adjustment set

Optimal personalized adjustment set

DAGs with hidden variables

Suppose that some variables in the DAG are impossible to measure.

(ロ)、(型)、(E)、(E)、 E) の(の)
- Suppose that some variables in the DAG are impossible to measure.
- Then, even if an observable adjustment set exists, a globally optimal adj. set among the **observable** adjustment sets may not exist.

- Suppose that some variables in the DAG are impossible to measure.
- Then, even if an observable adjustment set exists, a globally optimal adj. set among the observable adjustment sets may not exist.

• Example:

- Suppose that some variables in the DAG are impossible to measure.
- Then, even if an observable adjustment set exists, a globally optimal adj. set among the observable adjustment sets may not exist.
- Example:

▶ If U is unobserved, then $\mathbf{L} = \{L_1, L_2\}$ and $\mathbf{L} = \emptyset$ are two valid static adjustment sets which do not dominate each other

- Suppose that some variables in the DAG are impossible to measure.
- Then, even if an observable adjustment set exists, a globally optimal adj. set among the observable adjustment sets may not exist.
- Example:

▶ If U is unobserved, then $\mathbf{L} = \{L_1, L_2\}$ and $\mathbf{L} = \emptyset$ are two valid static adjustment sets which do not dominate each other

• $L = \{L_1\}$ is another adj. set but is dominated by $L = \emptyset$

Optimal adjustment sets in DAGs with hidden variables

- An_G (A, Y, Z) = set of nodes that are ancestors of at least one of A, Y or a component of Z
- Result: (van der Zander, Liskiewicz and Textor, 2019): if an observable
 Z-adj. set exists then

 $S = \{ L : L \text{ is observable } Z - adj.set and L \subset An_{\mathcal{G}}(A, Y, Z) \}$

is not empty.

Optimal adjustment sets in DAGs with hidden variables

- An_G (A, Y, Z) = set of nodes that are ancestors of at least one of A, Y or a component of Z
- Result: (van der Zander, Liskiewicz and Textor, 2019): if an observable
 Z-adj. set exists then

 $S = \{ L : L \text{ is observable } Z - adj.set and L \subset An_{\mathcal{G}}(A, Y, Z) \}$

is not empty.

► Result (Smucler et al, 2021): If S ≠ Ø then an optimal Z-adj. set exists in the class S.

Optimal adjustment sets in DAGs with hidden variables

- An_G (A, Y, Z) = set of nodes that are ancestors of at least one of A, Y or a component of Z
- Result: (van der Zander, Liskiewicz and Textor, 2019): if an observable
 Z-adj. set exists then

 $S = \{ L : L \text{ is observable } Z - adj.set and L \subset An_{\mathcal{G}}(A, Y, Z) \}$

is not empty.

► Result (Smucler et al, 2021): If S ≠ Ø then an optimal Z-adj. set exists in the class S.

In Smucler et al, 2021, we derived a graphical algorithm, based on a particular latent projected undirected moralized graph, that finds the optimal Z-adj. set in S.

Road map of the talk

- Gentle introduction to causal graphical models.
- Some results with Smucler and Sapienza on optimal adjustment sets

- Rules for comparing adjustment sets for point exposure studies
- ► Time dependent adjustment sets for time dependent exposures

 Some results with Guo and Perkovic on uninformative variables and graph reduction

Final remarks

Suppose A_1 and A_2 are two treatments, $A_1 \in \operatorname{nd}_{\mathcal{G}}(A_2)$. Under a causal graphical model represented by DAG G, the mean of Y_{a_0,a_1} when the static regime that sets A_0 to a_0 and A_1 to a_1 is

$$E(Y_{a_0,a_1}) = E\left\{\frac{I_{a_0}(A_0)}{p(a_0|pa_{\mathcal{G}}(A_0))} \frac{I_{a_1}(A_1)}{p(a_1|pa_{\mathcal{G}}(A_1))}Y\right\}$$

= $E\left\{E\left[E\left[Y|a_0, a_1, pa_{\mathcal{G}}(A_0), pa_{\mathcal{G}}(A_1)\right]|a_0, pa_{\mathcal{G}}(A_0)\right]\right\}$

Definition: $\mathbf{L} = (\mathbf{L}_0, \mathbf{L}_1) \subset \mathbf{V}$ is a static time dependent adjustment set relative to trxs (A_0, A_1) and outcome Y in G iff for all $P \in \mathcal{B}(\mathcal{G})$,

$$E(Y_{a_0,a_1}) = E\{E[E[Y|a_0, a_1, L_0, L_1]|a_0, L_0]\}$$

The right hand side is the so-called the g-functional with respect to (L_0, L_1) .

(日) (日) (日) (日) (日) (日) (日) (日)

Lemma (Robins, 1986) (L_0, L_1) is a time-dependent adjustment set if : (i) L_j non-descendant of A_j , j = 0, 1, and (ii) Sequential randomization:

$$Y_{a_0,a_1} \amalg A_1 | (A_0, \mathsf{L}_0, \mathsf{L}_1) \text{ and } Y_{a_0,a_1} \amalg A_0 | \mathsf{L}_0|$$

Example:

- X_0 is a time 0 adjustment set $(= \mathbf{L}_0)$
- ► X_1 , U and (X_1, U) are time 1 adjustment sets $(= \mathbf{L}_1)$

Lemma: Suppose that (B_0,B_1) and (G_0,G_1) are time dependent adjustment sets. If (1)

```
\begin{array}{l} \mathcal{A}_0 \amalg_{\mathcal{G}} \left[ \mathbf{G}_0 \backslash \mathbf{B}_0 \right] \ \left| \mathbf{B}_0 \right. \\ \mathcal{A}_1 \amalg_{\mathcal{G}} \left[ \left( \mathbf{G}_0, \mathbf{G}_1 \right) \setminus \left( \mathbf{B}_0, \mathbf{B}_1 \right) \right] \ \left| \left( \mathbf{B}_0, \mathbf{B}_1, \mathcal{A}_0 \right) \right. \end{array}
```

(2)

 $\begin{aligned} & \mathbf{G}_1 \amalg_{\mathcal{G}} \left[\mathbf{B}_0 \backslash \mathbf{G}_0 \right] \ \big| \left(\mathbf{G}_0, \mathcal{A}_0 \right) \\ & Y \amalg_{\mathcal{G}} \left[\left(\mathbf{B}_0, \mathbf{B}_1 \right) \backslash \left(\mathbf{G}_0, \mathbf{G}_1 \right) \right] \ \big| \left(\mathbf{G}_0, \mathbf{G}_1, \mathcal{A}_0, \mathcal{A}_1 \right) \end{aligned}$

then, for all $P\in\mathcal{B}\left(\mathcal{G}
ight)$

$$\sigma_{\mathbf{G}_0,\mathbf{G}_1}^2 \le \sigma_{\mathbf{B}_0,\mathbf{B}_1}^2$$

where for any adj. set (L_0, L_1) , σ_L^2 is the variance of the NP inf. fcn of the g-functional adjusted for (L_0, L_1) .

The following adjustment sets dominate all other adjustment sets but they don't dominate each other

 $\begin{array}{cccc} \text{Time 0 adj. set} & (= \mathsf{L}_0) & \text{Time 1 adj. set} & (= \mathsf{L}_1) & \text{Better when} \\ & & Q & & \text{red assoc. strong, blue assoc weak} \\ & H & & Q & & \text{red assoc. weak, blue assoc strong} \end{array}$

In Rotnitzky and Smucler we exhibited two laws P_1 and P_2 in $\mathcal{B}(\mathcal{G})$ for binary data such that:

- (i) under P_1 , (H, Q) is 8% more efficient than (\emptyset, Q) , and
- (ii) under P_2 , (\emptyset, Q) is 47% more efficient than (H, Q)

Semip. efficient estimation vs optimal non-parametric adjusted estimation

• The interventional mean $E(Y^a)$ is

$$E\left[E\left(Y|A=\mathsf{a},V,W\right)\right] = \int E\left(Y|A=\mathsf{a},V=\mathsf{v},W=\mathsf{w}\right)\underbrace{p\left(\mathsf{v}\right)p\left(\mathsf{w}\right)}_{=p\left(\mathsf{v},w\right)}d\mathsf{v}d\mathsf{w}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Semip. efficient estimation vs optimal non-parametric adjusted estimation

• The interventional mean $E(Y^a)$ is

$$E[E(Y|A = a, V, W)] = \int E(Y|A = a, V = v, W = w) \underbrace{p(v) p(w)}_{=p(v,w)} dvdw$$

 Optimal non-parametric adjusted estimator ignores restrictions on the marginal law of covariates, i.e. that V and W are marginally independent.

Semip. efficient estimation vs optimal non-parametric adjusted estimation

• The interventional mean $E(Y^a)$ is

$$E[E(Y|A = a, V, W)] = \int E(Y|A = a, V = v, W = w) \underbrace{p(v)p(w)}_{=p(v,w)} dvdw$$

- Optimal non-parametric adjusted estimator ignores restrictions on the marginal law of covariates, i.e. that V and W are marginally independent.
- Semiparametric efficient (SE) exploits these restrictions and can be much much more efficient than optimally adjusted NP estimator.

There is also information in the mediators structure

$$E(Y^{a}) = E(Y|A = a)$$

=
$$\int \int y \underbrace{p(y|m) p(m|a)}_{=p(y,m|a)} dm dy$$

• Markov chain structure carries information about E(Y|A = a).

However ... in some graphs the optimally adjusted estimator is efficient

• With discrete data the MLE of $p_a(y)$ under \mathcal{G} is

$$\widehat{p}_{a,MLE}\left(y\right) = \sum_{m,o} \mathbb{P}_{n}\left(y|m,a\right) \mathbb{P}_{n}\left(m|a,o\right) \mathbb{P}_{n}\left(o\right)$$

▶ Surprisingly, $\hat{p}_{a,MLE}\left(y\right)$ is asym. equivalent to the MLE of $p_{a}\left(y\right)$ under \mathcal{G}^{*} is

$$\widetilde{p}_{a,MLE}(y) = \sum_{o} \mathbb{P}_{n}(y|o,a) \mathbb{P}_{n}(o)$$

Road map of the talk

- Gentle introduction to causal graphical models.
- Some results with Smucler and Sapienza on optimal adjustment sets

- Rules for comparing adjustment sets for point exposure studies
- Time dependent adjustment sets for time dependent exposures

Some results with Guo and Perkovic on uninformative variables and graph reduction

Final remarks

 $p_{a}(y) = \sum_{i,w_{1},w_{2},w_{3},w_{4},o} p(y|o,a) p(i|w_{4}) p(o|w_{4}) p(w_{4}|w_{2},w_{3}) p(w_{3}) p(w_{2}|w_{1}) p(w_{1})$

g-formula in \mathcal{G}'

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

With discrete data, MLE under G' is

 $\widehat{\rho}_{a,MLE}(y) = \sum_{w_2,w_3,w_4,o} \mathbb{P}_n(y|o,a) \mathbb{P}_n(o|w_4) \mathbb{P}_n(w_4|w_2,w_3) \mathbb{P}_n(w_3) \mathbb{P}_n(w_2)$

▶ Surprisingly, MLE under G^{*} is asymptotically equivalent to MLE under G'

$$\widetilde{p}_{a,MLE}(y) = \sum_{w_2,w_3,o} \mathbb{P}_n(y|o,a) \mathbb{P}_n(o|w_2,w_3) \mathbb{P}_n(w_3) \mathbb{P}_n(w_2)$$

Graph reduction for semiparametric efficient estimation of a counterfactual mean

- Given a graph \mathcal{G} we derived an algorithm that outputs another graph \mathcal{G}^* over a subset of the variables in \mathcal{G} such that
 - the g-formula in \mathcal{G}^* is an identifying formula in \mathcal{G} ,
 - the semiparametric variance bound for estimation of $E(Y^a)$ in model $\mathcal{B}(\mathcal{G})$ and in model $\mathcal{B}(\mathcal{G}^*)$ agree
 - \mathcal{G}^* is the smallest such possible graph in the sense that all variables in \mathcal{G}^* are informative. More precisely, the efficient influence function for $E(Y^a)$ is a function of every variable in \mathcal{G}^* for at least one P in $\mathcal{B}(\mathcal{G}^*)$

Final remarks

- Estimation via adjustment vs semip. efficient estimation:
 - Usual variance/bias trade-off: adjustment relies on less model assumptions
 - Equally or perhaps even more importantly: efficient estimation requires estimation of each cond. density p (V_j|pa_G (V_j)). Even debiased, influence-function based, i.e. one-step estimation or TMLE, will hardly control the estimation bias of these densities.

Final remarks

- Study design: assign cost to each graph variable and find the adjustment set leading to smallest estimation variance:
 - \blacktriangleright subject to a cost constraint \rightarrow a universal solution does not exist

▶ among adjustment sets of minimum cost → for point exposure we provide the universal solution in Smucler and Rotnitzky, 2022, and graphical rules for finding it

Open problems

- Inference about the functional returned by the ID algorithm when no observable adj. set exists
 - Some special cases have been studied, e.g. the generalized front door formula, (Fulcher, et. al. 2019). General theory for an arbitrary functional not yet available.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Optimal adj. sets and efficient estimation for other parameters e.g., trx effect on the treated, and natural direct and indirect effects

THANKS!

Separation and cuts in undirected graphs: In an undirected graph *H*, A is separated from B by C, denoted as

$\mathbf{A}\!\!\perp_{\mathcal{H}} \mathbf{B}|\mathbf{C}$

iff all paths between A and B have a vertex in C. In such case C is called a cut between A and B.

Separation and cuts in undirected graphs: In an undirected graph H, A is separated from B by C, denoted as

$\mathbf{A}\!\!\perp_{\mathcal{H}} \mathbf{B}|\mathbf{C}$

iff all paths between ${\bm A}$ and ${\bm B}$ have a vertex in ${\bm C}.$ In such case ${\bm C}$ is called a cut between ${\bm A}$ and ${\bm B}.$

▶ Moralized graph of a DAG G is an undirected graph G^m with same vertices as G, constructed by keeping the edges of G but removing their direction and additionally "marrying" the unshielded colliders.

Separation and cuts in undirected graphs: In an undirected graph H, A is separated from B by C, denoted as

$\mathbf{A}\!\!\perp_{\mathcal{H}} \mathbf{B}|\mathbf{C}$

iff all paths between ${\bf A}$ and ${\bf B}$ have a vertex in ${\bf C}.$ In such case ${\bf C}$ is called a cut between ${\bf A}$ and ${\bf B}.$

- Moralized graph of a DAG G is an undirected graph G^m with same vertices as G, constructed by keeping the edges of G but removing their direction and additionally "marrying" the unshielded colliders.
- ▶ Neighborhood of *Y* : set of vertices adjacent to *Y*, denoted with $\partial_{\mathcal{H}}(Y)$

Separation and cuts in undirected graphs: In an undirected graph H, A is separated from B by C, denoted as

$\mathbf{A}\!\!\perp_{\mathcal{H}} \mathbf{B}|\mathbf{C}$

iff all paths between ${\bf A}$ and ${\bf B}$ have a vertex in ${\bf C}.$ In such case ${\bf C}$ is called a cut between ${\bf A}$ and ${\bf B}.$

- Moralized graph of a DAG G is an undirected graph G^m with same vertices as G, constructed by keeping the edges of G but removing their direction and additionally "marrying" the unshielded colliders.
- ▶ Neighborhood of *Y* : set of vertices adjacent to *Y*, denoted with $\partial_{\mathcal{H}}(Y)$

Construction of the latent projected moralized graph

 H⁰ ← (G_A[An_G (A, Y, Z)])^m (Textor and Liskiewicz, 2011 and van der Zander et al, 2019)

- 1.1 compute ancestral subgraph $\mathcal{G}\left[\mathsf{An}_{\mathcal{G}}\left(\mathsf{A},\mathsf{Y},\mathsf{Z}\right)
 ight]$
- 1.2 delete edges pointing out of A
- $1.3\,$ moralize the resulting subgraph
- 2. \mathcal{H}^1 constructed from \mathcal{H}^0 by
 - 2.1 Latent project out the hidden nodes and the nodes in forb(A, Y, \mathcal{G})

2.2 Add to latent projected graph edges by \mathbf{Z} and A and by \mathbf{Z} and Y