Towards graphical rules for efficient estimation in causal graphical models

Andrea Rotnitzky

Universidad Di Tella and Harvard T.H. Chan School of Public Health

> Based on

Rotnitzky and Smucler, 2020, Journal of Machine Learning Research, 21 188: 1-86,
Smucler, Sapienza and Rotnitzky, 2021, Biometrika, 109, 1, 49-65.
Guo, Perkovic and Rotnitzky, 2022, https://arxiv.org/abs/2202.11994
BIRS, Kelowna, May 23, 2022

Causality in the 21st century

- $1 / 2$ a century ago different disciplines had their own opinions about causal inference.

Causality in the 21st century

- $1 / 2$ a century ago different disciplines had their own opinions about causal inference.
- Today there is nearly unanimous acceptance.

Causality in the 21st century

- $1 / 2$ a century ago different disciplines had their own opinions about causal inference.
- Today there is nearly unanimous acceptance.
- "Causal revolution" in great part due to the emergence and adoption of two formalisms:
- Counterfactual Models
- Graphical Models

Graphical Models

- In epidemiology and medical research: graphical models are responsible for the acceptance and adoption of modern causal analytic techniques because they facilitate encoding complex causal assumptions and reasoning in an intuitive way

Graphical Models

- In epidemiology and medical research: graphical models are responsible for the acceptance and adoption of modern causal analytic techniques because they facilitate encoding complex causal assumptions and reasoning in an intuitive way
- Simple graphical rules exist to explain the potential biases of one's preferred estimation procedure and the possible remedial approaches.

Graphical Models

- In epidemiology and medical research: graphical models are responsible for the acceptance and adoption of modern causal analytic techniques because they facilitate encoding complex causal assumptions and reasoning in an intuitive way
- Simple graphical rules exist to explain the potential biases of one's preferred estimation procedure and the possible remedial approaches.
- No graphical rules existed to explain efficiency (variance) in estimation

Graphical Models

- In epidemiology and medical research: graphical models are responsible for the acceptance and adoption of modern causal analytic techniques because they facilitate encoding complex causal assumptions and reasoning in an intuitive way
- Simple graphical rules exist to explain the potential biases of one's preferred estimation procedure and the possible remedial approaches.
- No graphical rules existed to explain efficiency (variance) in estimation
- In this talk: some work towards filling this gap

An adjustment set

Another adjustment set

Graph taken from Shrier and Platt, 2008.

Road map of the talk

- Gentle introduction to causal graphical models.
- Some results with Smucler and Sapienza on optimal adjustment sets
- Rules for comparing adjustment sets for point exposure studies
- Time dependent adjustment sets for time dependent exposures
- Some results with Guo and Perkovic on uninformative variables and graph reduction
- Final remarks

Causal Graphical Models in a nutshell

Causal Graphical Models in a nutshell

$$
\begin{aligned}
& V_{1}=f_{1}\left(\varepsilon_{1}\right) \\
& V_{2}=f_{2}\left(\varepsilon_{2}\right) \\
& V_{3}=f_{3}\left(\varepsilon_{3}\right) \\
& V_{4}=f_{4}\left(\varepsilon_{4}\right) \\
& V_{5}=f_{5}\left(V_{1}, \varepsilon_{5}\right) \\
& \vdots \\
& V_{11}=f_{11}\left(V_{5}, V_{7}, \varepsilon_{11}\right) \\
& V_{12}=f_{12}\left(V_{11}, V_{4}, \varepsilon_{12}\right) \\
& V_{13}=f_{13}\left(V_{8}, V_{10}, V_{12}, \varepsilon_{13}\right) \\
& \\
& \varepsilon_{1}, \ldots, \varepsilon_{13} \text { omitted } \\
& \text { non- common causes }
\end{aligned}
$$

Causal Graphical Models in a nutshell

No omitted common cause assumption formalized as: the $\varepsilon_{j}^{\prime} s$ are mutually independent (Pearl, 1995)

Causal Graphical Models in a nutshell

No omitted common cause assumption formalized as: the $\varepsilon_{j}^{\prime} s$ are mutually independent (Pearl, 1995)

Causal Graphical Models in a nutshell

- Graphical model with independent $\varepsilon_{j}^{\prime} s$ is tantamount to:

$$
p(\mathbf{v})=\prod_{j} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right)
$$

- The collection of laws for V that factor like this is called a Bayesian Network $\mathcal{B}(\mathcal{G})$.

Causal Graphical Models in a nutshell: counterfactual world static intervention

Causal Graphical Models in a nutshell: counterfactual world static intervention

Corollary: counterfactual law is identified and given by

$$
p_{\left(v_{11}=0\right)}(\mathbf{v})=\prod_{j \neq 11} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right) \times I_{\{0\}}\left(v_{11}\right)
$$

Causal Graphical Models in a nutshell: counterfactual world, deterministic dynamic intervention

$$
\begin{aligned}
& V_{1}=f_{1}\left(\varepsilon_{1}\right) \\
& V_{2}=f_{2}\left(\varepsilon_{2}\right) \\
& V_{3}=f_{3}\left(\varepsilon_{3}\right) \\
& V_{4}=f_{4}\left(\varepsilon_{4}\right) \\
& V_{5}=f_{5}\left(V_{1}, \varepsilon_{5}\right) \\
& \vdots \\
& V_{11}^{g}=g\left(V_{9}\right) \\
& V_{12}^{g}=f_{12}\left(V_{11}^{g}, V_{4}, \varepsilon_{12}\right) \\
& V_{13}^{g}=f_{13}\left(V_{8}, V_{10}, V_{12}^{g}, \varepsilon_{13}\right)
\end{aligned}
$$

Causal Graphical Models in a nutshell: counterfactual world, deterministic dynamic intervention

Corollary: counterfactual law is identified and given by

$$
p_{g}(\mathbf{v})=\prod_{j \neq 11} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right) \times I_{\left\{g\left(v_{9}\right)\right\}}\left(v_{11}\right)
$$

Causal Graphical Models in a nutshell: counterfactual world, random dynamic intervention


```
\(V_{1}=f_{1}\left(\varepsilon_{1}\right)\)
\(V_{2}=f_{2}\left(\varepsilon_{2}\right)\)
\(V_{3}=f_{3}\left(\varepsilon_{3}\right)\)
\(V_{4}=f_{4}\left(\varepsilon_{4}\right)\)
\(V_{5}=f_{5}\left(V_{1}, \varepsilon_{5}\right)\)
\(\vdots \quad \Omega\)
\(V_{11}^{\pi}=g\left(V_{9}, U_{11}\right)\)
\(V_{12}^{\pi}=f_{12}\left(V_{11}^{\pi}, V_{4}, \varepsilon_{12}\right)\)
\(V_{13}^{\pi}=f_{13}\left(V_{8}, V_{10}, V_{12}^{\pi}, \varepsilon_{13}\right)\)
```

$\varepsilon_{1}, \ldots, \varepsilon_{13}$ omitted
non- common causes

Causal Graphical Models in a nutshell: counterfactual world, random dynamic intervention

$$
\begin{aligned}
& V_{1}=f_{1}\left(\varepsilon_{1}\right) \\
& V_{2}=f_{2}\left(\varepsilon_{2}\right) \\
& V_{3}=f_{3}\left(\varepsilon_{3}\right) \\
& V_{4}=f_{4}\left(\varepsilon_{4}\right) \\
& V_{5}=f_{5}\left(V_{1}, \varepsilon_{5}\right) \\
& \vdots \\
& V_{11}^{\pi}=g\left(V_{9}, U_{11}\right) \\
& V_{12}^{\pi}=f_{12}\left(V_{11}^{\pi}, V_{4}, \varepsilon_{12}\right) \\
& V_{13}^{\pi}=f_{13}\left(V_{8}, V_{10}, V_{12}^{\pi}, \varepsilon_{13}\right)
\end{aligned}
$$

$\varepsilon_{1}, \ldots, \varepsilon_{13}$ omitted
non- common causes

Corollary: counterfactual law is identified and given by

$$
p_{\pi}(\mathbf{v})=\prod_{j \neq 11} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right) \times \pi\left(v_{11} \mid v_{9}\right)
$$

Causal graphical models

Causal graphical models

a. Factual world. The law p of $\mathbf{V}=\left(V_{1}, \ldots, V_{J}\right)$ belongs to Bayesian Network $\mathcal{B}(\mathcal{G})$, i.e. it factorizes as

$$
p(\mathbf{v})=\prod_{j=1}^{J} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right)
$$

where $p a_{\mathcal{G}}\left(V_{j}\right)$ are the parents of V_{j} in \mathcal{G}.

Causal graphical models

a. Factual world. The law p of $\mathbf{V}=\left(V_{1}, \ldots, V_{J}\right)$ belongs to Bayesian Network $\mathcal{B}(\mathcal{G})$, i.e. it factorizes as

$$
p(\mathbf{v})=\prod_{j=1}^{J} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right)
$$

where $p a_{\mathcal{G}}\left(V_{j}\right)$ are the parents of V_{j} in \mathcal{G}.
b. Counterfactual world. For any $\mathbf{A}=\left(A_{1}, \ldots, A_{s}\right) \subset \mathbf{V}$, the distrib. of the data when a regime that assigns a_{t} to A_{t} with prob. $\pi_{t}\left(a_{t} \mid \mathbf{Z}_{t}\right)$ is implemented in the population (where \mathbf{Z}_{t} are non-descendants of A_{t}), is

$$
p_{\pi}(\mathbf{v})=\prod_{V_{j} \in \mathbf{V} \backslash \mathbf{A}} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right) \times \prod_{t=1}^{s} \pi_{t}\left(a_{t} \mid \mathbf{z}_{t}\right)
$$

So, p_{π} is identified from p

Bayesian Network

- Bayesian Network $\mathcal{B}(\mathcal{G})$: collection of laws p for V that factorize as

$$
p(v)=\prod_{j=1}^{J} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right)
$$

where $p a_{\mathcal{G}}\left(V_{j}\right)$ are the parents of V_{j} in DAG \mathcal{G}.

Bayesian Network

- Bayesian Network $\mathcal{B}(\mathcal{G})$: collection of laws p for V that factorize as

$$
p(v)=\prod_{j=1}^{J} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right)
$$

where $p a_{\mathcal{G}}\left(V_{j}\right)$ are the parents of V_{j} in DAG \mathcal{G}.

- d-separation: a sound and complete graphical rule for determining whether a conditional independence holds under any $p \in \mathcal{B}(\mathcal{G})$.

Bayesian Network

- Bayesian Network $\mathcal{B}(\mathcal{G})$: collection of laws p for V that factorize as

$$
p(v)=\prod_{j=1}^{J} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right)
$$

where $p a_{\mathcal{G}}\left(V_{j}\right)$ are the parents of V_{j} in DAG \mathcal{G}.

- d-separation: a sound and complete graphical rule for determining whether a conditional independence holds under any $p \in \mathcal{B}(\mathcal{G})$.

$$
A \Perp_{\mathcal{G}} B \mid C \quad(A \text { and } B \text { are d-separated by } C \text { in } \mathcal{G})
$$

Bayesian Network

- Bayesian Network $\mathcal{B}(\mathcal{G})$: collection of laws p for V that factorize as

$$
p(v)=\prod_{j=1}^{J} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right)
$$

where $p a_{\mathcal{G}}\left(V_{j}\right)$ are the parents of V_{j} in DAG \mathcal{G}.

- d-separation: a sound and complete graphical rule for determining whether a conditional independence holds under any $p \in \mathcal{B}(\mathcal{G})$.

$$
A \Perp_{\mathcal{G}} B \mid C \quad(A \text { and } B \text { are d-separated by } C \text { in } \mathcal{G})
$$

- Theorem (Geiger, Verma \& Pearl, 1990) :

$$
A \Perp_{\mathcal{G}} B \mid C \Leftrightarrow
$$

A is cond. indep. of B given C under any $p \in \mathcal{B}(\mathcal{G})$

d-separation

- A, B single vertices, $C \subset V \backslash\{A, B\}$
- a path from A to B is blocked by C if either
(1) at least one non-collider is in C

(2) \exists at least one collider, such that neither itself nor its descendants is in C

d-separation

- A, B single vertices, $C \subset V \backslash\{A, B\}$
- a path from A to B is blocked by C if either
(1) at least one non-collider is in C

(2) \exists at least one collider, such that neither itself nor its descendants is in C

- A and B are d-separated by C if all paths bw A and B are blocked by C

d-separation

- A, B single vertices, $C \subset V \backslash\{A, B\}$
- a path from A to B is blocked by C if either
(1) at least one non-collider is in C

(2) \exists at least one collider, such that neither itself nor its descendants is in C

- A and B are d-separated by C if all paths bw A and B are blocked by C
- A set A is d-separated from another set B by $C \subset V \backslash\{A, B\}$ if all $A_{j} \in A$ and $B_{k} \in B$ are d-separated by C, in which case we write

$$
A \Perp_{\mathcal{G}} B \mid C
$$

Counterfactual law under a point exposure intervention

- Counterfactual law.

$$
p_{\pi}(\mathbf{v})=\prod_{j: V_{j} \in \mathbf{V} \backslash A} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right) \times \pi(a \mid \mathbf{z})
$$

Counterfactual law under a point exposure intervention

- Counterfactual law.

$$
p_{\pi}(\mathbf{v})=\prod_{j: V_{j} \in \mathbf{V} \backslash A} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right) \times \pi(a \mid \mathbf{z})
$$

- Then for $Y=V_{J}$,

$$
E_{\pi}[Y]=\int y \prod_{j: V_{j} \in \mathbf{V} \backslash A} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right) \times \pi(a \mid \mathbf{z}) d v
$$

Counterfactual law under a point exposure intervention

- Counterfactual law.

$$
p_{\pi}(\mathbf{v})=\prod_{j: V_{j} \in \mathbf{V} \backslash A} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right) \times \pi(a \mid \mathbf{z})
$$

- Then for $Y=V_{J}$,

$$
E_{\pi}[Y]=\int y \prod_{j: V_{j} \in \mathbf{V} \backslash A} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right) \times \pi(a \mid \mathbf{z}) d v
$$

- But under the Bayesian Network $E_{\pi}(Y)$ is equal to many other functionals

Counterfactual law under a point exposure intervention

- Counterfactual law.

$$
p_{\pi}(\mathbf{v})=\prod_{j: V_{j} \in \mathbf{V} \backslash A} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right) \times \pi(a \mid \mathbf{z})
$$

- Then for $Y=V_{J}$,

$$
E_{\pi}[Y]=\int y \prod_{j: V_{j} \in \mathbf{V} \backslash A} p\left(v_{j} \mid p a_{\mathcal{G}}\left(v_{j}\right)\right) \times \pi(a \mid \mathbf{z}) d v
$$

- But under the Bayesian Network $E_{\pi}(Y)$ is equal to many other functionals

Adjustment formula and adjustment sets

- Adjustment formula:

$$
\begin{aligned}
\underbrace{E_{\pi}[Y]}_{\text {rvention mean }} & =\underbrace{\sum_{a=0}^{1} \int E[Y \mid A=a, \mathbf{L}=\mathbf{I}] \pi(a \mid \mathbf{z}) p_{\mathbf{L}}(\mathbf{I}) d \mathbf{l}}_{\text {g-functional }} \\
& =E_{p}\left[\frac{\pi(A \mid \mathbf{Z})}{p(A \mid \mathbf{L})} Y\right]
\end{aligned}
$$

where $\mathbf{Z} \subset \mathbf{L} \subset \mathbf{V}$

Adjustment formula and adjustment sets

- Adjustment formula:

$$
\begin{aligned}
\underbrace{E_{\pi}[Y]}_{\text {ervention mean }} & =\underbrace{\sum_{a=0}^{1} \int E[Y \mid A=a, \mathbf{L}=\mathbf{I}] \pi(a \mid \mathbf{z}) p_{\mathbf{L}}(\mathbf{I}) d \mathbf{l}}_{\mathrm{g} \text {-functional }} \\
& =E_{p}\left[\frac{\pi(A \mid \mathbf{Z})}{p(A \mid \mathbf{L})} Y\right]
\end{aligned}
$$

where $\mathbf{Z} \subset \mathbf{L} \subset \mathbf{V}$

- Definition: A \mathbf{Z} - adjustment set for a single trx A and outcome Y is any \mathbf{L} disjoint with A and Y such that
- $\mathbf{Z} \subset \mathbf{L}$ and,
- Under the causal graphical model, for any regime $\pi(A \mid \mathbf{Z}), E_{\pi}[Y]$ is equal to the corresponding adjustment formula.

Adjustment formula and adjustment sets

- Adjustment formula:

$$
\begin{aligned}
\underbrace{E_{\pi}[Y]}_{\text {ervention mean }} & =\underbrace{\sum_{a=0}^{1} \int E[Y \mid A=a, \mathbf{L}=\mathbf{I}] \pi(a \mid \mathbf{z}) p_{\mathbf{L}}(\mathbf{I}) d \mathbf{l}}_{\text {g-functional }} \\
& =E_{p}\left[\frac{\pi(A \mid \mathbf{Z})}{p(A \mid \mathbf{L})} Y\right]
\end{aligned}
$$

where $\mathbf{Z} \subset \mathbf{L} \subset \mathbf{V}$

- Definition: A \mathbf{Z} - adjustment set for a single trx A and outcome Y is any \mathbf{L} disjoint with A and Y such that
- $\mathbf{Z} \subset \mathbf{L}$ and,
- Under the causal graphical model, for any regime $\pi(A \mid \mathbf{Z}), E_{\pi}[Y]$ is equal to the corresponding adjustment formula.
- If $\mathbf{Z}=\varnothing$, then we say \mathbf{L} is a static adjustment set .

Characterization of Z-adjustment sets

- Generalized adj. criterion for static (i.e. $\mathbf{Z}=\varnothing$) treatments (Shpitzer. et. al., 2010, Perkovic et. al., 2015, 2018): L is static adj. set iff

Characterization of Z-adjustment sets

- Generalized adj. criterion for static (i.e. $\mathbf{Z}=\varnothing$) treatments (Shpitzer. et. al., 2010, Perkovic et. al., 2015, 2018): L is static adj. set iff
- \mathbf{L} is neither a mediator, nor descendant of Y or of a mediator

Characterization of Z-adjustment sets

- Generalized adj. criterion for static (i.e. $\mathbf{Z}=\varnothing$) treatments (Shpitzer. et. al., 2010, Perkovic et. al., 2015, 2018): L is static adj. set iff
- \mathbf{L} is neither a mediator, nor descendant of Y or of a mediator
- L blocks all non-causal paths between A and Y.

Characterization of Z-adjustment sets

- Generalized adj. criterion for static (i.e. $\mathbf{Z}=\varnothing$) treatments (Shpitzer. et. al., 2010, Perkovic et. al., 2015, 2018): L is static adj. set iff
- \mathbf{L} is neither a mediator, nor descendant of Y or of a mediator
- L blocks all non-causal paths between A and Y.
- Result (Smucler and Rotnitzky, 2020):

Class of all $\mathbf{Z}-\operatorname{adj}$ sets $=\{\mathbf{L}: \mathbf{L}$ is a static adj. set and $\mathbf{Z} \subset \mathbf{L}\}$

Static adjustment set

Another static adjustment set

Graph taken from Shrier and Platt, 2008.

An invalid Z-adjustment , $\mathrm{Z}=$ previous injury

A valid Z -adjustment set, $\mathrm{Z}=$ previous injury

Road map of the talk

- Gentle introduction to causal graphical models.
- Some results with Smucler and Sapienza on optimal adjustment sets
- Rules for comparing adjustment sets for point exposure studies
- Time dependent adjustment sets for time dependent exposures
- Some results with Guo and Perkovic on uninformative variables and graph reduction
- Final remarks

L-NPA estimators of a counterfactual mean

- Recall: a \mathbf{Z} - adj. set \mathbf{L} satisfies that for any regime $\pi(A \mid \mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$
\psi_{\pi, \mathbf{L}}(P) \equiv E_{p}\left[\frac{\pi(A \mid \mathbf{Z})}{p(A \mid \mathbf{L})} Y\right]=\text { g-functional that adjusts for } \mathbf{L}
$$

L-NPA estimators of a counterfactual mean

- Recall: a \mathbf{Z} - adj. set \mathbf{L} satisfies that for any regime $\pi(A \mid \mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$
\psi_{\pi, \mathbf{L}}(P) \equiv E_{p}\left[\frac{\pi(A \mid \mathbf{Z})}{p(A \mid \mathbf{L})} Y\right]=\text { g-functional that adjusts for } \mathbf{L}
$$

- L-NPA estimators of $\psi_{\pi, \mathbf{L}}(P)$ are those which estimate the prop. score and/or the outcome regression non-parametrically

L-NPA estimators of a counterfactual mean

- Recall: a \mathbf{Z} - adj. set \mathbf{L} satisfies that for any regime $\pi(A \mid \mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$
\psi_{\pi, \mathbf{L}}(P) \equiv E_{p}\left[\frac{\pi(A \mid \mathbf{Z})}{p(A \mid \mathbf{L})} Y\right]=\text { g-functional that adjusts for } \mathbf{L}
$$

- L-NPA estimators of $\psi_{\pi, \mathbf{L}}(P)$ are those which estimate the prop. score and/or the outcome regression non-parametrically
- Key point: All regular asymptotically linear L-NPA estimators of $\psi_{\pi, \mathrm{L}}(P)$ have the same limiting mean zero normal distribution with variance denoted, say, as $\sigma_{\pi, \mathbf{L}}^{2}(p)$

L-NPA estimators of a counterfactual mean

- Recall: a \mathbf{Z} - adj. set \mathbf{L} satisfies that for any regime $\pi(A \mid \mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$
\psi_{\pi, \mathbf{L}}(P) \equiv E_{p}\left[\frac{\pi(A \mid \mathbf{Z})}{p(A \mid \mathbf{L})} Y\right]=\text { g-functional that adjusts for } \mathbf{L}
$$

- L-NPA estimators of $\psi_{\pi, \mathbf{L}}(P)$ are those which estimate the prop. score and/or the outcome regression non-parametrically
- Key point: All regular asymptotically linear L-NPA estimators of $\psi_{\pi, \mathrm{L}}(P)$ have the same limiting mean zero normal distribution with variance denoted, say, as $\sigma_{\pi, \mathbf{L}}^{2}(p)$
- $\sigma_{\pi, \mathrm{L}}^{2}(p)$ is the variance of the unique influence function of the functional $\psi_{\pi, \mathrm{L}}(P)$ under a non-parametric model for P.

L-NPA estimators of a counterfactual mean

- Recall: a \mathbf{Z} - adj. set \mathbf{L} satisfies that for any regime $\pi(A \mid \mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$
\psi_{\pi, \mathbf{L}}(P) \equiv E_{p}\left[\frac{\pi(A \mid \mathbf{Z})}{p(A \mid \mathbf{L})} Y\right]=\text { g-functional that adjusts for } \mathbf{L}
$$

- L-NPA estimators of $\psi_{\pi, \mathbf{L}}(P)$ are those which estimate the prop. score and/or the outcome regression non-parametrically
- Key point: All regular asymptotically linear L-NPA estimators of $\psi_{\pi, \mathrm{L}}(P)$ have the same limiting mean zero normal distribution with variance denoted, say, as $\sigma_{\pi, \mathbf{L}}^{2}(p)$
- $\sigma_{\pi, \mathrm{L}}^{2}(p)$ is the variance of the unique influence function of the functional $\psi_{\pi, \mathrm{L}}(P)$ under a non-parametric model for P.
- Questions that we addressed:.

L-NPA estimators of a counterfactual mean

- Recall: a \mathbf{Z} - adj. set \mathbf{L} satisfies that for any regime $\pi(A \mid \mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$
\psi_{\pi, \mathbf{L}}(P) \equiv E_{p}\left[\frac{\pi(A \mid \mathbf{Z})}{p(A \mid \mathbf{L})} Y\right]=\text { g-functional that adjusts for } \mathbf{L}
$$

- L-NPA estimators of $\psi_{\pi, \mathbf{L}}(P)$ are those which estimate the prop. score and/or the outcome regression non-parametrically
- Key point: All regular asymptotically linear L-NPA estimators of $\psi_{\pi, \mathrm{L}}(P)$ have the same limiting mean zero normal distribution with variance denoted, say, as $\sigma_{\pi, \mathbf{L}}^{2}(p)$
- $\sigma_{\pi, \mathrm{L}}^{2}(p)$ is the variance of the unique influence function of the functional $\psi_{\pi, \mathrm{L}}(P)$ under a non-parametric model for P.
- Questions that we addressed:.
- Given two adjustment sets, are there graphical rules to determine which one yields an estimator with smaller variance?

L-NPA estimators of a counterfactual mean

- Recall: a \mathbf{Z} - adj. set \mathbf{L} satisfies that for any regime $\pi(A \mid \mathbf{Z})$, the counterfactual mean $E_{\pi}(Y)$ is equal to

$$
\psi_{\pi, \mathbf{L}}(P) \equiv E_{p}\left[\frac{\pi(A \mid \mathbf{Z})}{p(A \mid \mathbf{L})} Y\right]=\text { g-functional that adjusts for } \mathbf{L}
$$

- L-NPA estimators of $\psi_{\pi, \mathbf{L}}(P)$ are those which estimate the prop. score and/or the outcome regression non-parametrically
- Key point: All regular asymptotically linear L-NPA estimators of $\psi_{\pi, \mathrm{L}}(P)$ have the same limiting mean zero normal distribution with variance denoted, say, as $\sigma_{\pi, \mathbf{L}}^{2}(p)$
- $\sigma_{\pi, \mathrm{L}}^{2}(p)$ is the variance of the unique influence function of the functional $\psi_{\pi, \mathrm{L}}(P)$ under a non-parametric model for P.
- Questions that we addressed:.
- Given two adjustment sets, are there graphical rules to determine which one yields an estimator with smaller variance?
- Is there a universally optimal adjustment set and, if so, what graphical rules determine it?

Related literature

- Henckel, Perkovic and Maathuis (2019) provided graphical rules
- for comparing certain pairs of static adjustment sets
- for determining the globally optimal static adjustment set
- Also, Kuroki and Miyakawa, 2003 and Kuroki and Cai 2004.
- These works assume:
- causal graphical linear model, i.e. $V_{j}=\beta_{j}^{T}$ pag $\left(V_{j}\right)+\varepsilon_{j},\left\{\varepsilon_{j}: j\right\}$ indep.
- treatment effect estimated via OLS

Related literature

- Henckel, Perkovic and Maathuis (2019) provided graphical rules
- for comparing certain pairs of static adjustment sets
- for determining the globally optimal static adjustment set
- Also, Kuroki and Miyakawa, 2003 and Kuroki and Cai 2004.
- These works assume:
- causal graphical linear model, i.e. $V_{j}=\beta_{j}^{T}$ pag $\left(V_{j}\right)+\varepsilon_{j},\left\{\varepsilon_{j}: j\right\}$ indep.
- treatment effect estimated via OLS
- Works connected with efficiency implications of inclusion of overadjustment and precision variables in regression and in semip. estimation of ATE:
- Linear regression: Cochran (1968)
- Non-linear regression: Mantel and Haenszel (1959), Breslow (1982), Gail (1988), Robinson and Jewell (1991), Neuhaseuser and Becher (1997) and De Stavola and Cox, (2008).
- Semiparametric estimation of a counterfactual mean and of ATE: Robins and Rotnitzky (1992), Hahn (1998), White and Lu (2011).

Related literature

- Henckel, Perkovic and Maathuis (2019) provided graphical rules
- for comparing certain pairs of static adjustment sets
- for determining the globally optimal static adjustment set
- Also, Kuroki and Miyakawa, 2003 and Kuroki and Cai 2004.
- These works assume:
- causal graphical linear model, i.e. $V_{j}=\beta_{j}^{T}$ pag $\left(V_{j}\right)+\varepsilon_{j},\left\{\varepsilon_{j}: j\right\}$ indep.
- treatment effect estimated via OLS
- Works connected with efficiency implications of inclusion of overadjustment and precision variables in regression and in semip. estimation of ATE:
- Linear regression: Cochran (1968)
- Non-linear regression: Mantel and Haenszel (1959), Breslow (1982), Gail (1988), Robinson and Jewell (1991), Neuhaseuser and Becher (1997) and De Stavola and Cox, (2008).
- Semiparametric estimation of a counterfactual mean and of ATE: Robins and Rotnitzky (1992), Hahn (1998), White and Lu (2011).

Our work with Smucler and Sapienza on adjustment sets

- Proved that Henckel et. al. rules also apply when causal graphical model is agnostic and trx effect estimated via non-parametric \mathbf{L}-covariate adjustment.
- Derived graphical rules and efficient algorithms for finding:
- globally optimal adj. sets for personalized Z- dependent regimes
- optimal static and personalized adj. sets among observable adj. sets
- Extended rules for comparing adjustment sets to time dependent treatments and confounding
- Proved that optimal time dependent adj. sets do not always exist
- Characterized graphs under which the semip. efficient estimator of the counterfactual mean is asym. equivalent to the optimally adjusted estimator

Supplementing adjustment sets with precision variables.

- Lemma 1. Suppose \mathbf{B} is a \mathbf{Z}-adj. set and \mathbf{G}, disjoint with \mathbf{B}, satisfies

$$
A \Perp_{\mathcal{G}} \mathbf{G} \mid \mathbf{B}
$$

then, $\mathbf{G} \cup \mathbf{B}$ is also a \mathbf{Z}-adj. set and for all $p \in \mathcal{B}(\mathcal{G})$ and all regimes $\pi(A \mid \mathbf{Z})$

$$
\sigma_{\pi, \mathbf{G} \cup \mathbf{B}}^{2}(p) \leq \sigma_{\pi, \mathbf{B}}^{2}(p)
$$

Supplementing adjustment sets with precision variables.

- Lemma 1. Suppose \mathbf{B} is a \mathbf{Z}-adj. set and \mathbf{G}, disjoint with \mathbf{B}, satisfies

$$
A \Perp_{\mathcal{G}} \mathbf{G} \mid \mathbf{B}
$$

then, $\mathbf{G} \cup \mathbf{B}$ is also a \mathbf{Z}-adj. set and for all $p \in \mathcal{B}(\mathcal{G})$ and all regimes $\pi(A \mid \mathbf{Z})$

$$
\sigma_{\pi, \mathbf{G} \cup \mathbf{B}}^{2}(p) \leq \sigma_{\pi, \mathbf{B}}^{2}(p)
$$

- In particular, for the static regime π that sets A to a,

$$
\sigma_{\pi, \mathbf{B}}^{2}(p)-\sigma_{\pi, \mathbf{G} \cup \mathbf{B}}^{2}(p)=E\left[\left\{\frac{1}{P(A=a \mid \mathbf{B})}-1\right\} \operatorname{var}\{E(Y \mid A=a, \mathbf{G}, \mathbf{B}) \mid A=a, \mathbf{B}\}\right]
$$

Deleting overadjustment variables

- Lemma 2. Suppose $\mathbf{G} \cup \mathbf{B}$ is a \mathbf{Z}-adj. set and \mathbf{B} satisfies

$$
Y \Perp_{\mathcal{G}} \mathbf{B} \mid \mathbf{G}, A
$$

If $\mathbf{Z} \subset \mathbf{G}$, then \mathbf{G} is also a \mathbf{Z}-adj. set and for all $p \in \mathcal{B}(\mathcal{G})$ and all regimes $\pi(A \mid \mathbf{Z})$

$$
\sigma_{\pi, \mathbf{G}}^{2}(p) \leq \sigma_{\pi, \mathbf{G} \cup \mathbf{B}}^{2}(p)
$$

Deleting overadjustment variables

- Lemma 2. Suppose $\mathbf{G} \cup \mathbf{B}$ is a \mathbf{Z}-adj. set and \mathbf{B} satisfies

$$
Y \Perp_{\mathcal{G}} \mathbf{B} \mid \mathbf{G}, A
$$

If $\mathbf{Z} \subset \mathbf{G}$, then \mathbf{G} is also a \mathbf{Z}-adj. set and for all $p \in \mathcal{B}(\mathcal{G})$ and all regimes $\pi(A \mid \mathbf{Z})$

$$
\sigma_{\pi, \mathbf{G}}^{2}(p) \leq \sigma_{\pi, \mathbf{G} \cup \mathbf{B}}^{2}(p)
$$

- In particular, for the static regime π that sets A to a,

$$
\sigma_{\pi, \mathbf{G} \cup \mathbf{B}}^{2}-\sigma_{\pi, \mathbf{G}}^{2}=E\left[\operatorname{var}(Y \mid A=a, \mathbf{G})\left\{\frac{1}{P(A=a \mid \mathbf{B}, \mathbf{G})}-\frac{1}{P(A=a \mid \mathbf{G})}\right\}\right]
$$

Comparing two arbitrary adjustment sets

- Corollary: Suppose that \mathbf{G} and \mathbf{B} are two \mathbf{Z}-adj. sets such that

$$
A \Perp_{\mathcal{G}} \quad(\mathbf{G} \backslash \mathbf{B}) \mid \mathbf{B}
$$

and

$$
Y \Perp_{\mathcal{G}}(\mathbf{B} \backslash \mathbf{G}) \mid \mathbf{G}, A
$$

Then, for all $p \in \mathcal{B}(\mathcal{G})$ and all regimes $\pi(A \mid \mathbf{Z})$

$$
\sigma_{\pi, \mathbf{G}}^{2}(p) \leq \sigma_{\pi, \mathbf{B}}^{2}(p)
$$

Comparing two arbitrary adjustment sets

- Corollary: Suppose that \mathbf{G} and \mathbf{B} are two \mathbf{Z}-adj. sets such that

$$
A \Perp_{\mathcal{G}} \quad(\mathbf{G} \backslash \mathbf{B}) \mid \mathbf{B}
$$

and

$$
Y \Perp_{\mathcal{G}}(\mathbf{B} \backslash \mathbf{G}) \mid \mathbf{G}, A
$$

Then, for all $p \in \mathcal{B}(\mathcal{G})$ and all regimes $\pi(A \mid \mathbf{Z})$

$$
\sigma_{\pi, \mathbf{G}}^{2}(p) \leq \sigma_{\pi, \mathbf{B}}^{2}(p)
$$

- Proof:

$$
\sigma_{\pi, \mathbf{B}}^{2}-\sigma_{\pi, \mathbf{G}}^{2}=\underbrace{\sigma_{\pi, \mathbf{B}}^{2}-\sigma_{\pi, \mathbf{B} \cup(\mathbf{G} \backslash \mathbf{B})}^{2}}_{\begin{array}{c}
\text { gain due to supplementation } \\
\text { with precision component } \mathbf{G} \backslash \mathbf{B}
\end{array}}+\underbrace{\sigma_{\pi, \mathbf{G} \cup(\mathbf{B} \backslash \mathbf{G})}^{2}-\sigma_{\pi, \mathbf{G}}^{2}}_{\begin{array}{c}
\text { gain due to deletion } \\
\text { of noisy component } \mathbf{B} \backslash \mathbf{G}
\end{array}}
$$

Not all adjustment sets are comparable

- $\left(O_{1}, W_{2}\right)$ is preferable to $\left(O_{2}, W_{1}\right)$ if green association stronger than brown, and blue association weaker than red
- $\left(O_{2}, W_{1}\right)$ is preferable to $\left(O_{1}, W_{2}\right)$ if brown association stronger than green, and red association weaker than blue
- but... $\left(O_{1}, O_{2}\right)$ is more efficient than both

Optimal adjustment set

- Theorem: (Henckel, et. al. (2019)). The set

$$
\begin{aligned}
\mathbf{O}= & \text { non-descendants of } A \text { that are parents of } Y \text { or } \\
& \text { of vertices in the causal path bw } A \text { and } Y
\end{aligned}
$$

is a static adjustment set. Furthermore, for any other static adjustment set \mathbf{L},

$$
A \Perp_{\mathcal{G}}(\mathbf{O} \backslash \mathbf{L}) \mid \mathbf{L}
$$

and

$$
Y \Perp_{\mathcal{G}}(\mathbf{L} \backslash \mathbf{O}) \mid \mathbf{O}, A
$$

Optimal adjustment set

- Theorem: (Henckel, et. al. (2019)). The set

$$
\begin{aligned}
\mathbf{O}= & \text { non-descendants of } A \text { that are parents of } Y \text { or } \\
& \text { of vertices in the causal path bw } A \text { and } Y
\end{aligned}
$$

is a static adjustment set. Furthermore, for any other static adjustment set \mathbf{L},

$$
A \Perp_{\mathcal{G}}(\mathbf{O} \backslash \mathbf{L}) \mid \mathbf{L}
$$

and

$$
Y \Perp_{\mathcal{G}}(\mathbf{L} \backslash \mathbf{O}) \mid \mathbf{O}, A
$$

- Corollary (Rotnitzky and Smucler, 2020): O is the globally optimal static adjustment set.

Optimal adjustment set

- Theorem: (Henckel, et. al. (2019)). The set

$$
\begin{aligned}
\mathbf{O}= & \text { non-descendants of } A \text { that are parents of } Y \text { or } \\
& \text { of vertices in the causal path bw } A \text { and } Y
\end{aligned}
$$

is a static adjustment set. Furthermore, for any other static adjustment set L,

$$
A \Perp_{\mathcal{G}}(\mathbf{O} \backslash \mathbf{L}) \mid \mathbf{L}
$$

and

$$
Y \Perp_{\mathcal{G}}(\mathbf{L} \backslash \mathbf{O}) \mid \mathbf{O}, A
$$

- Corollary (Rotnitzky and Smucler, 2020): O is the globally optimal static adjustment set.
- Lemma (Smucler, Sapienza and Rotnitzky, 2021): $\mathbf{O} \cup \mathbf{Z}$ is the globally optimal Z - adjustment set

Globally optimal static adjustment set

Optimal personalized adjustment set

DAGs with hidden variables

- Suppose that some variables in the DAG are impossible to measure.

DAGs with hidden variables

- Suppose that some variables in the DAG are impossible to measure.
- Then, even if an observable adjustment set exists, a globally optimal adj. set among the observable adjustment sets may not exist.

DAGs with hidden variables

- Suppose that some variables in the DAG are impossible to measure.
- Then, even if an observable adjustment set exists, a globally optimal adj. set among the observable adjustment sets may not exist.
- Example:

DAGs with hidden variables

- Suppose that some variables in the DAG are impossible to measure.
- Then, even if an observable adjustment set exists, a globally optimal adj. set among the observable adjustment sets may not exist.
- Example:

- If U is unobserved, then $\mathbf{L}=\left\{L_{1}, L_{2}\right\}$ and $\mathbf{L}=\varnothing$ are two valid static adjustment sets which do not dominate each other

DAGs with hidden variables

- Suppose that some variables in the DAG are impossible to measure.
- Then, even if an observable adjustment set exists, a globally optimal adj. set among the observable adjustment sets may not exist.
- Example:

- If U is unobserved, then $\mathbf{L}=\left\{L_{1}, L_{2}\right\}$ and $\mathbf{L}=\varnothing$ are two valid static adjustment sets which do not dominate each other
- $\mathbf{L}=\left\{L_{1}\right\}$ is another adj. set but is dominated by $\mathbf{L}=\varnothing$

Optimal adjustment sets in DAGs with hidden variables

- $\mathrm{An}_{\mathcal{G}}(A, Y, \mathbf{Z})=$ set of nodes that are ancestors of at least one of A, Y or a component of \mathbf{Z}
- Result: (van der Zander, Liskiewicz and Textor, 2019): if an observable \mathbf{Z}-adj. set exists then

$$
\mathcal{S}=\left\{\mathbf{L}: \mathbf{L} \text { is observable } \mathbf{Z}-\text { adj.set and } \mathbf{L} \subset \operatorname{An}_{\mathcal{G}}(A, Y, \mathbf{Z})\right\}
$$

is not empty.

Optimal adjustment sets in DAGs with hidden variables

- $\mathrm{An}_{\mathcal{G}}(A, Y, \mathbf{Z})=$ set of nodes that are ancestors of at least one of A, Y or a component of \mathbf{Z}
- Result: (van der Zander, Liskiewicz and Textor, 2019): if an observable Z-adj. set exists then

$$
\mathcal{S}=\left\{\mathbf{L}: \mathbf{L} \text { is observable } \mathbf{Z}-\text { adj.set and } \mathbf{L} \subset \operatorname{An}_{\mathcal{G}}(A, Y, \mathbf{Z})\right\}
$$

is not empty.

- Result (Smucler et al, 2021): If $\mathcal{S} \neq \varnothing$ then an optimal \mathbf{Z}-adj. set exists in the class \mathcal{S}.

Optimal adjustment sets in DAGs with hidden variables

- $\mathrm{An}_{\mathcal{G}}(A, Y, \mathbf{Z})=$ set of nodes that are ancestors of at least one of A, Y or a component of \mathbf{Z}
- Result: (van der Zander, Liskiewicz and Textor, 2019): if an observable \mathbf{Z}-adj. set exists then

$$
\mathcal{S}=\left\{\mathbf{L}: \mathbf{L} \text { is observable } \mathbf{Z}-\text { adj.set and } \mathbf{L} \subset \operatorname{An}_{\mathcal{G}}(A, Y, \mathbf{Z})\right\}
$$

is not empty.

- Result (Smucler et al, 2021): If $\mathcal{S} \neq \varnothing$ then an optimal \mathbf{Z}-adj. set exists in the class \mathcal{S}.
- In Smucler et al, 2021, we derived a graphical algorithm, based on a particular latent projected undirected moralized graph, that finds the optimal Z-adj. set in \mathcal{S}.

Road map of the talk

- Gentle introduction to causal graphical models.
- Some results with Smucler and Sapienza on optimal adjustment sets
- Rules for comparing adjustment sets for point exposure studies
- Time dependent adjustment sets for time dependent exposures
- Some results with Guo and Perkovic on uninformative variables and graph
reduction
- Final remarks

Time dependent treatments

Suppose A_{1} and A_{2} are two treatments, $A_{1} \in \operatorname{nd}_{\mathcal{G}}\left(A_{2}\right)$. Under a causal graphical model represented by DAG G, the mean of $Y_{a_{0}, a_{1}}$ when the static regime that sets A_{0} to a_{0} and A_{1} to a_{1} is

$$
\begin{aligned}
E\left(Y_{a_{0}, a_{1}}\right) & =E\left\{\frac{I_{a_{0}}\left(A_{0}\right)}{p\left(a_{0} \mid p a_{\mathcal{G}}\left(A_{0}\right)\right)} \frac{I_{a_{1}}\left(A_{1}\right)}{p\left(a_{1} \mid p a_{\mathcal{G}}\left(A_{1}\right)\right)} Y\right\} \\
& =E\left\{E\left[E\left[Y \mid a_{0}, a_{1}, p a_{\mathcal{G}}\left(A_{0}\right), p a_{\mathcal{G}}\left(A_{1}\right)\right] \mid a_{0}, p a_{\mathcal{G}}\left(A_{0}\right)\right]\right\}
\end{aligned}
$$

Definition: $\mathbf{L}=\left(\mathbf{L}_{0}, \mathbf{L}_{1}\right) \subset \mathbf{V}$ is a static time dependent adjustment set relative to trxs $\left(A_{0}, A_{1}\right)$ and outcome Y in G iff for all $P \in \mathcal{B}(\mathcal{G})$,

$$
E\left(Y_{a_{0}, a_{1}}\right)=E\left\{E\left[E\left[Y \mid a_{0}, a_{1}, \mathbf{L}_{0}, \mathbf{L}_{1}\right] \mid a_{0}, \mathbf{L}_{0}\right]\right\}
$$

The right hand side is the so-called the g-functional with respect to $\left(\mathbf{L}_{0}, \mathbf{L}_{1}\right)$.

Time dependent treatments

Lemma (Robins, 1986) $\left(\mathbf{L}_{0}, \mathbf{L}_{1}\right)$ is a time-dependent adjustment set if:
(i) \mathbf{L}_{j} non-descendant of $A_{j}, j=0,1$, and
(ii) Sequential randomization:

$$
Y_{a_{0}, a_{1}} \amalg A_{1} \mid\left(A_{0}, \mathbf{L}_{0}, \mathbf{L}_{1}\right) \text { and } Y_{a_{0}, a_{1}} \amalg A_{0} \mid \mathbf{L}_{0}
$$

Example:

- X_{0} is a time 0 adjustment set $\left(=\mathbf{L}_{0}\right)$
- X_{1}, U and $\left(X_{1}, U\right)$ are time 1 adjustment sets $\left(=\mathbf{L}_{1}\right)$

Time dependent treatments

Lemma: Suppose that $\left(\mathbf{B}_{0}, \mathbf{B}_{1}\right)$ and $\left(\mathbf{G}_{0}, \mathbf{G}_{1}\right)$ are time dependent adjustment sets. If
(1)

$$
\begin{aligned}
& A_{0} \amalg_{\mathcal{G}}\left[\mathbf{G}_{0} \backslash \mathbf{B}_{0}\right] \mid \mathbf{B}_{0} \\
& A_{1} \amalg_{\mathcal{G}}\left[\left(\mathbf{G}_{0}, \mathbf{G}_{1}\right) \backslash\left(\mathbf{B}_{0}, \mathbf{B}_{1}\right)\right] \mid\left(\mathbf{B}_{0}, \mathbf{B}_{1}, A_{0}\right)
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \mathbf{G}_{1} \amalg_{\mathcal{G}}\left[\mathbf{B}_{0} \backslash \mathbf{G}_{0}\right] \mid\left(\mathbf{G}_{0}, A_{0}\right) \\
& Y \amalg_{\mathcal{G}}\left[\left(\mathbf{B}_{0}, \mathbf{B}_{1}\right) \backslash\left(\mathbf{G}_{0}, \mathbf{G}_{1}\right)\right] \mid\left(\mathbf{G}_{0}, \mathbf{G}_{1}, A_{0}, A_{1}\right)
\end{aligned}
$$

then, for all $P \in \mathcal{B}(\mathcal{G})$

$$
\sigma_{\mathbf{G}_{0}, \mathbf{G}_{1}}^{2} \leq \sigma_{\mathbf{B}_{0}, \mathbf{B}_{1}}^{2}
$$

where for any adj. set $\left(\mathbf{L}_{0}, \mathbf{L}_{1}\right), \sigma_{\mathbf{L}}^{2}$ is the variance of the NP inf. fcn of the g-functional adjusted for $\left(\mathbf{L}_{0}, \mathbf{L}_{1}\right)$.

Time dependent treatments

The following adjustment sets dominate all other adjustment sets but they don't dominate each other

Time 0 adj. set $\left(=\mathbf{L}_{0}\right)$ \varnothing
H

Time $1 \mathbf{~ a d j}$. set $\left(=\mathbf{L}_{1}\right)$
Q
Q

Better when

red assoc. strong, blue assoc weak red assoc. weak, blue assoc strong

In Rotnitzky and Smucler we exhibited two laws P_{1} and P_{2} in $\mathcal{B}(\mathcal{G})$ for binary data such that:
(i) under $P_{1},(H, Q)$ is 8% more efficient than (\varnothing, Q), and
(ii) under $P_{2},(\varnothing, Q)$ is 47% more efficient than (H, Q)

Semip. efficient estimation vs optimal non-parametric adjusted estimation

- The interventional mean $E\left(Y^{a}\right)$ is

$$
E[E(Y \mid A=a, V, W)]=\int E(Y \mid A=a, V=v, W=w) \underbrace{p(v) p(w)}_{=p(v, w)} d v d w
$$

Semip. efficient estimation vs optimal non-parametric adjusted estimation

- The interventional mean $E\left(Y^{a}\right)$ is

$$
E[E(Y \mid A=a, V, W)]=\int E(Y \mid A=a, V=v, W=w) \underbrace{p(v) p(w)}_{=p(v, w)} d v d w
$$

- Optimal non-parametric adjusted estimator ignores restrictions on the marginal law of covariates, i.e. that V and W are marginally independent.

Semip. efficient estimation vs optimal non-parametric adjusted estimation

- The interventional mean $E\left(Y^{a}\right)$ is

$$
E[E(Y \mid A=a, V, W)]=\int E(Y \mid A=a, V=v, W=w) \underbrace{p(v) p(w)}_{=p(v, w)} d v d w
$$

- Optimal non-parametric adjusted estimator ignores restrictions on the marginal law of covariates, i.e. that V and W are marginally independent.
- Semiparametric efficient (SE) exploits these restrictions and can be much much more efficient than optimally adjusted NP estimator.

There is also information in the mediators structure

$$
\begin{aligned}
E\left(Y^{a}\right) & =E(Y \mid A=a) \\
& =\iint y \underbrace{p(y \mid m) p(m \mid a)}_{=p(y, m \mid a)} d m d y
\end{aligned}
$$

- Markov chain structure carries information about $E(Y \mid A=a)$.

However ... in some graphs the optimally adjusted estimator is efficient

- With discrete data the MLE of $p_{a}(y)$ under \mathcal{G} is

$$
\widehat{p}_{a, M L E}(y)=\sum_{m, o} \mathbb{P}_{n}(y \mid m, a) \mathbb{P}_{n}(m \mid a, o) \mathbb{P}_{n}(o)
$$

- Surprisingly, $\widehat{p}_{a, M L E}(y)$ is asym. equivalent to the MLE of $p_{a}(y)$ under \mathcal{G}^{*} is

$$
\widetilde{p}_{a, M L E}(y)=\sum_{o} \mathbb{P}_{n}(y \mid o, a) \mathbb{P}_{n}(o)
$$

Road map of the talk

- Gentle introduction to causal graphical models.
- Some results with Smucler and Sapienza on optimal adjustment sets
- Rules for comparing adjustment sets for point exposure studies
- Time dependent adjustment sets for time dependent exposures
- Some results with Guo and Perkovic on uninformative variables and
graph reduction
- Final remarks

Graph reduction for semiparametric efficient estimation (joint work with Richard Guo and Ema Perkovic)

(a) \mathcal{G}

$$
p_{\mathrm{a}}(y)=\sum_{i, w_{1}, w_{2}, w_{3}, w_{4}, 0} p(y \mid o, a) p\left(i \mid w_{4}\right) p\left(o \mid w_{4}\right) p\left(w_{4} \mid w_{2}, w_{3}\right) p\left(w_{3}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{1}\right)
$$

Graph reduction for semiparametric efficient estimation (joint work with Richard Guo and Ema Perkovic)

(a) \mathcal{G}

(b) \mathcal{G}^{\prime}

$$
p_{a}(y)=\underbrace{\sum_{w_{2}, w_{3}, w_{4}, o} p(y \mid o, a) p\left(o \mid w_{4}\right) p\left(w_{4} \mid w_{2}, w_{3}\right) p\left(w_{3}\right) p\left(w_{2}\right)}_{\text {g-formula in } \mathcal{G}^{\prime}}
$$

Graph reduction for semiparametric efficient estimation (joint work with Richard Guo and Ema Perkovic)

(a) \mathcal{G}

(b) \mathcal{G}^{\prime}

$$
p_{a}(y)=\underbrace{\sum_{w_{2}, w_{3}, w_{4}, 0} p(y \mid o, a) p\left(o \mid w_{4}\right) p\left(w_{4} \mid w_{2}, w_{3}\right) p\left(w_{3}\right) p\left(w_{2}\right)}_{\text {g-formula in } \mathcal{G}^{\prime}}
$$

- With discrete data, MLE under \mathcal{G}^{\prime} is

$$
\widehat{p}_{a, M L E}(y)=\sum_{w_{2}, w_{3}, w_{4}, o} \mathbb{P}_{n}(y \mid o, a) \mathbb{P}_{n}\left(o \mid w_{4}\right) \mathbb{P}_{n}\left(w_{4} \mid w_{2}, w_{3}\right) \mathbb{P}_{n}\left(w_{3}\right) \mathbb{P}_{n}\left(w_{2}\right)
$$

Graph reduction for semiparametric efficient estimation (joint work with Richard Guo and Ema Perkovic)

(a) \mathcal{G}

(b) \mathcal{G}^{\prime}

(c) \mathcal{G}^{*}

- Surprisingly, MLE under \mathcal{G}^{*} is asymptotically equivalent to MLE under \mathcal{G}^{\prime}

$$
\widetilde{p}_{a, M L E}(y)=\sum_{w_{2}, w_{3}, o} \mathbb{P}_{n}(y \mid o, a) \mathbb{P}_{n}\left(o \mid w_{2}, w_{3}\right) \mathbb{P}_{n}\left(w_{3}\right) \mathbb{P}_{n}\left(w_{2}\right)
$$

Graph reduction for semiparametric efficient estimation of a counterfactual mean

- Given a graph \mathcal{G} we derived an algorithm that outputs another graph \mathcal{G}^{*} over a subset of the variables in \mathcal{G} such that
- the g-formula in \mathcal{G}^{*} is an identifying formula in \mathcal{G},
- the semiparametric variance bound for estimation of $E\left(Y^{a}\right)$ in model $\mathcal{B}(\mathcal{G})$ and in model $\mathcal{B}\left(\mathcal{G}^{*}\right)$ agree
- \mathcal{G}^{*} is the smallest such possible graph in the sense that all variables in \mathcal{G}^{*} are informative. More precisely, the efficient influence function for $E\left(Y^{a}\right)$ is a function of every variable in \mathcal{G}^{*} for at least one P in $\mathcal{B}\left(\mathcal{G}^{*}\right)$

Final remarks

- Estimation via adjustment vs semip. efficient estimation:
- Usual variance/bias trade-off: adjustment relies on less model assumptions
- Equally or perhaps even more importantly: efficient estimation requires estimation of each cond. density $p\left(V_{j} \mid p a_{\mathcal{G}}\left(V_{j}\right)\right)$. Even debiased, influence-function based, i.e. one-step estimation or TMLE, will hardly control the estimation bias of these densities.

$$
\begin{aligned}
\widehat{E}\left(Y^{a}\right)_{M L E}= & \sum_{w_{2}, w_{3}, 0} \mathbb{E}_{n}(Y \mid o, a) \mathbb{P}_{n}\left(o \mid w_{2}, w_{3}\right) \mathbb{P}_{n}\left(w_{3}\right) \mathbb{P}_{n}\left(w_{2}\right) \\
& \widehat{E}\left(Y^{a}\right)_{a d j}=\sum_{o} \mathbb{E}_{n}(Y \mid o, a) \mathbb{P}_{n}(o)
\end{aligned}
$$

Final remarks

- Study design: assign cost to each graph variable and find the adjustment set leading to smallest estimation variance:
- subject to a cost constraint \rightarrow a universal solution does not exist

- among adjustment sets of minimum cost \rightarrow for point exposure we provide the universal solution in Smucler and Rotnitzky, 2022, and graphical rules for finding it

Open problems

- Inference about the functional returned by the ID algorithm when no observable adj. set exists
- Some special cases have been studied, e.g. the generalized front door formula, (Fulcher, et. al. 2019). General theory for an arbitrary functional not yet available.
- Optimal adj. sets and efficient estimation for other parameters e.g., trx effect on the treated, and natural direct and indirect effects

THANKS!

Cuts and moralized graphs.

- Separation and cuts in undirected graphs: In an undirected graph \mathcal{H}, \mathbf{A} is separated from \mathbf{B} by \mathbf{C}, denoted as

$$
\mathbf{A} \perp_{\mathcal{H}} \mathbf{B} \mid \mathbf{C}
$$

iff all paths between \mathbf{A} and \mathbf{B} have a vertex in \mathbf{C}. In such case \mathbf{C} is called a cut between \mathbf{A} and \mathbf{B}.

Cuts and moralized graphs.

- Separation and cuts in undirected graphs: In an undirected graph \mathcal{H}, \mathbf{A} is separated from \mathbf{B} by \mathbf{C}, denoted as

$$
\mathbf{A} \perp_{\mathcal{H}} \mathbf{B} \mid \mathbf{C}
$$

iff all paths between \mathbf{A} and \mathbf{B} have a vertex in \mathbf{C}. In such case \mathbf{C} is called a cut between \mathbf{A} and \mathbf{B}.

- Moralized graph of a DAG \mathcal{G} is an undirected graph \mathcal{G}^{m} with same vertices as \mathcal{G}, constructed by keeping the edges of \mathcal{G} but removing their direction and additionally "marrying" the unshielded colliders.

Cuts and moralized graphs.

- Separation and cuts in undirected graphs: In an undirected graph \mathcal{H}, \mathbf{A} is separated from \mathbf{B} by \mathbf{C}, denoted as

$$
\mathbf{A} \perp_{\mathcal{H}} \mathbf{B} \mid \mathbf{C}
$$

iff all paths between \mathbf{A} and \mathbf{B} have a vertex in \mathbf{C}. In such case \mathbf{C} is called a cut between \mathbf{A} and \mathbf{B}.

- Moralized graph of a DAG \mathcal{G} is an undirected graph \mathcal{G}^{m} with same vertices as \mathcal{G}, constructed by keeping the edges of \mathcal{G} but removing their direction and additionally "marrying" the unshielded colliders.
- Neighborhood of Y : set of vertices adjacent to Y, denoted with $\partial_{\mathcal{H}}(Y)$

Cuts and moralized graphs.

- Separation and cuts in undirected graphs: In an undirected graph \mathcal{H}, \mathbf{A} is separated from \mathbf{B} by \mathbf{C}, denoted as

$$
\mathbf{A} \perp_{\mathcal{H}} \mathbf{B} \mid \mathbf{C}
$$

iff all paths between \mathbf{A} and \mathbf{B} have a vertex in \mathbf{C}. In such case \mathbf{C} is called a cut between \mathbf{A} and \mathbf{B}.

- Moralized graph of a DAG \mathcal{G} is an undirected graph \mathcal{G}^{m} with same vertices as \mathcal{G}, constructed by keeping the edges of \mathcal{G} but removing their direction and additionally "marrying" the unshielded colliders.
- Neighborhood of Y : set of vertices adjacent to Y, denoted with $\partial_{\mathcal{H}}(Y)$

Construction of the latent projected moralized graph

(a) \mathcal{G}

(b) \mathcal{H}^{0}

(c) \mathcal{H}^{1}

1. $\mathcal{H}^{0} \leftarrow\left(\mathcal{G}_{\underline{A}}\left[\mathrm{An}_{\mathcal{G}}(A, Y, \mathbf{Z})\right]\right)^{m} \quad$ (Textor and Liskiewicz, 2011 and van der Zander et al, 2019)
1.1 compute ancestral subgraph $\mathcal{G}\left[\operatorname{An}_{\mathcal{G}}(A, Y, \mathbf{Z})\right]$
1.2 delete edges pointing out of A
1.3 moralize the resulting subgraph
2. \mathcal{H}^{1} constructed from \mathcal{H}^{0} by
2.1 Latent project out the hidden nodes and the nodes in $\operatorname{forb}(A, Y, \mathcal{G})$
2.2 Add to latent projected graph edges bw \mathbf{Z} and A and bw \mathbf{Z} and Y
