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Causality in the 21st century
I 1/2 a century ago di¤erent disciplines had their own opinions about
causal inference.

I Today there is nearly unanimous acceptance.

I "Causal revolution" in great part due to the emergence and
adoption of two formalisms:

I Counterfactual Models

I Graphical Models
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Graphical Models
I In epidemiology and medical research: graphical models are
responsible for the acceptance and adoption of modern causal
analytic techniques because they facilitate encoding complex causal
assumptions and reasoning in an intuitive way

I Simple graphical rules exist to explain the potential biases of one�s
preferred estimation procedure and the possible remedial approaches.

I No graphical rules existed to explain e¢ ciency (variance) in
estimation

I In this talk: some work towards �lling this gap
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Road map of the talk
I Gentle introduction to causal graphical models.

I Some results with Smucler and Sapienza on optimal adjustment sets

I Rules for comparing adjustment sets for point exposure studies

I Time dependent adjustment sets for time dependent exposures

I Some results with Guo and Perkovic on uninformative variables and

graph reduction

I Final remarks
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Causal Graphical Models in a nutshell

I Graphical model with independent ε0j s is tantamount to:

p (v) = ∏
j
p
�
vj jpaG

�
vj
��

I The collection of laws for V that factor like this is called a Bayesian
Network B (G).
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Causal graphical models

a. Factual world. The law p of V = (V1, ...,VJ ) belongs to Bayesian
Network B (G) , i.e. it factorizes as

p (v) =
J

∏
j=1
p
�
vj jpaG

�
vj
��

where paG
�
Vj
�
are the parents of Vj in G.

b. Counterfactual world. For any A = (A1, ...,As ) � V, the distrib. of the
data when a regime that assigns at to At with prob. πt (at jZt ) is
implemented in the population (where Zt are non-descendants of At ), is

pπ (v) = ∏
Vj2VnA

p
�
vj jpaG

�
vj
��
�

s

∏
t=1

πt (at jzt )

So, pπ is identi�ed from p
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Bayesian Network
I Bayesian Network B (G) : collection of laws p for V that factorize
as

p (v) =
J

∏
j=1

p
�
vj jpaG

�
vj
��

where paG
�
Vj
�
are the parents of Vj in DAG G.

I d-separation: a sound and complete graphical rule for determining
whether a conditional independence holds under any p 2 B (G) .

I
A ??G B j C (A and B are d-separated by C in G)

I Theorem (Geiger, Verma & Pearl, 1990) :

A ??G B j C ,
A is cond. indep. of B given C under any p 2 B (G)
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d-separation
I A,B single vertices, C � V n fA,Bg
I a path from A to B is blocked by C if either
(1) at least one non-collider is in C

(2) 9 at least one collider, such that neither itself nor its descendants
is in C

I A and B are d-separated by C if all paths bw A and B are blocked

by C

I A set A is d-separated from another set B by C � V n fA,Bg if all
Aj 2 A and Bk 2 B are d-separated by C , in which case we write

A??G B j C
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Counterfactual law under a point exposure intervention
I Counterfactual law.

pπ (v) = ∏
j :Vj2VnA
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I Then for Y = VJ ,

Eπ [Y ] =
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I But under the Bayesian Network Eπ (Y ) is equal to many other
functionals
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Adjustment formula and adjustment sets
I Adjustment formula:

Eπ [Y ]| {z }
intervention mean

=
1

∑
a=0

Z
E [Y jA = a,L = l ]π (ajz) pL (l) d l| {z }

g-functional

= Ep

�
π (AjZ)
p (AjL) Y

�
where Z � L � V

I De�nition: A Z� adjustment set for a single trx A and outcome Y is any
L disjoint with A and Y such that

I Z � L and,
I Under the causal graphical model, for any regime π (AjZ) , Eπ [Y ] is
equal to the corresponding adjustment formula.

I If Z = ∅, then we say L is a static adjustment set .
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Characterization of Z-adjustment sets

I Generalized adj. criterion for static (i.e. Z = ∅) treatments
(Shpitzer. et. al., 2010, Perkovic et. al., 2015, 2018): L is static
adj. set i¤

I L is neither a mediator, nor descendant of Y or of a mediator
I L blocks all non-causal paths between A and Y .

I Result (Smucler and Rotnitzky, 2020):

Class of all Z� adj sets = fL : L is a static adj. set and Z � Lg
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An invalid Z-adjustment , Z= previous injury



A valid Z-adjustment set, Z= previous injury



Road map of the talk
I Gentle introduction to causal graphical models.

I Some results with Smucler and Sapienza on optimal
adjustment sets

I Rules for comparing adjustment sets for point exposure studies

I Time dependent adjustment sets for time dependent exposures

I Some results with Guo and Perkovic on uninformative variables and

graph reduction

I Final remarks



L-NPA estimators of a counterfactual mean
I Recall: a Z� adj. set L satis�es that for any regime π (AjZ) , the
counterfactual mean Eπ (Y ) is equal to

ψπ,L (P) � Ep
�

π (AjZ)
p (AjL) Y

�
= g-functional that adjusts for L

I L�NPA estimators of ψπ,L (P) are those which estimate the prop. score
and/or the outcome regression non-parametrically

I Key point: All regular asymptotically linear L-NPA estimators of
ψπ,L (P) have the same limiting mean zero normal distribution with
variance denoted, say, as σ2π,L (p)

I σ2π,L (p) is the variance of the unique in�uence function of the functional
ψπ,L (P) under a non-parametric model for P .

I Questions that we addressed:.

I Given two adjustment sets, are there graphical rules to determine which one yields an
estimator with smaller variance?

I Is there a universally optimal adjustment set and, if so, what graphical rules determine

it?
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Related literature
I Henckel, Perkovic and Maathuis (2019) provided graphical rules

I for comparing certain pairs of static adjustment sets
I for determining the globally optimal static adjustment set

I Also, Kuroki and Miyakawa, 2003 and Kuroki and Cai 2004.

I These works assume:
I causal graphical linear model, i.e. Vj = βTj paG

�
Vj
�
+ εj ,

�
εj : j

	
indep.

I treatment e¤ect estimated via OLS

I Works connected with e¢ ciency implications of inclusion of
overadjustment and precision variables in regression and in semip.
estimation of ATE:

I Linear regression: Cochran (1968)
I Non-linear regression: Mantel and Haenszel (1959), Breslow (1982), Gail
(1988), Robinson and Jewell (1991), Neuhaseuser and Becher (1997) and
De Stavola and Cox, (2008).

I Semiparametric estimation of a counterfactual mean and of ATE: Robins
and Rotnitzky (1992), Hahn (1998), White and Lu (2011).
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indep.

I treatment e¤ect estimated via OLS

I Works connected with e¢ ciency implications of inclusion of
overadjustment and precision variables in regression and in semip.
estimation of ATE:

I Linear regression: Cochran (1968)
I Non-linear regression: Mantel and Haenszel (1959), Breslow (1982), Gail
(1988), Robinson and Jewell (1991), Neuhaseuser and Becher (1997) and
De Stavola and Cox, (2008).

I Semiparametric estimation of a counterfactual mean and of ATE: Robins
and Rotnitzky (1992), Hahn (1998), White and Lu (2011).



Our work with Smucler and Sapienza on adjustment sets

I Proved that Henckel et. al. rules also apply when causal graphical model
is agnostic and trx e¤ect estimated via non-parametric L�covariate
adjustment .

I Derived graphical rules and e¢ cient algorithms for �nding:
I globally optimal adj. sets for personalized Z� dependent regimes
I optimal static and personalized adj. sets among observable adj. sets

I Extended rules for comparing adjustment sets to time dependent
treatments and confounding

I Proved that optimal time dependent adj. sets do not always exist

I Characterized graphs under which the semip. e¢ cient estimator of the
counterfactual mean is asym. equivalent to the optimally adjusted
estimator



Supplementing adjustment sets with precision variables.
I Lemma 1. Suppose B is a Z�adj. set and G, disjoint with B, satis�es

A ??G G j B

then, G[B is also a Z�adj. set and for all p 2 B (G) and all regimes
π (AjZ)

σ2π,G[B (p) � σ2π,B (p)

I In particular, for the static regime π that sets A to a,

σ2π,B (p)�σ2π,G[B (p) = E

��
1

P (A = ajB) � 1
�
var fE (Y jA = a,G,B)jA = a,Bg

�
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Deleting overadjustment variables
I Lemma 2. Suppose G
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Comparing two arbitrary adjustment sets
I Corollary: Suppose that G and B are two Z�adj. sets such that

A ??G (GnB) j B

and
Y ??G (BnG) j G,A

Then, for all p 2 B (G) and all regimes π (AjZ)

σ2π,G (p) � σ2π,B (p)

I Proof:

σ2π,B � σ2π,G = σ2π,B � σ2π,B[(GnB)| {z }
gain due to supplementation
with precision component GnB

+ σ2π,G[(BnG) � σ2π,G| {z }
gain due to deletion

of noisy component BnG
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Not all adjustment sets are comparable

I (O1,W2) is preferable to (O2,W1) if green association stronger than
brown, and blue association weaker than red

I (O2,W1) is preferable to (O1,W2) if brown association stronger than
green, and red association weaker than blue

I but... (O1,O2) is more e¢ cient than both



Optimal adjustment set
I Theorem: (Henckel, et. al. (2019)). The set

O = non-descendants of A that are parents of Y or

of vertices in the causal path bw A and Y

is a static adjustment set. Furthermore, for any other static adjustment
set L,

A ??G (OnL) j L

and
Y ??G (LnO) j O,A

I Corollary (Rotnitzky and Smucler, 2020): O is the globally optimal
static adjustment set.

I Lemma (Smucler, Sapienza and Rotnitzky, 2021): O[ Z is the
globally optimal Z - adjustment set



Optimal adjustment set
I Theorem: (Henckel, et. al. (2019)). The set

O = non-descendants of A that are parents of Y or

of vertices in the causal path bw A and Y

is a static adjustment set. Furthermore, for any other static adjustment
set L,

A ??G (OnL) j L

and
Y ??G (LnO) j O,A

I Corollary (Rotnitzky and Smucler, 2020): O is the globally optimal
static adjustment set.

I Lemma (Smucler, Sapienza and Rotnitzky, 2021): O[ Z is the
globally optimal Z - adjustment set



Optimal adjustment set
I Theorem: (Henckel, et. al. (2019)). The set

O = non-descendants of A that are parents of Y or

of vertices in the causal path bw A and Y

is a static adjustment set. Furthermore, for any other static adjustment
set L,

A ??G (OnL) j L

and
Y ??G (LnO) j O,A

I Corollary (Rotnitzky and Smucler, 2020): O is the globally optimal
static adjustment set.

I Lemma (Smucler, Sapienza and Rotnitzky, 2021): O[ Z is the
globally optimal Z - adjustment set



Globally optimal static adjustment set



Optimal personalized adjustment set



DAGs with hidden variables
I Suppose that some variables in the DAG are impossible to measure.

I Then, even if an observable adjustment set exists, a globally optimal adj.
set among the observable adjustment sets may not exist.

I Example:

I If U is unobserved, then L = fL1, L2g and L = ∅ are two valid static
adjustment sets which do not dominate each other

I L = fL1g is another adj. set but is dominated by L = ∅
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Optimal adjustment sets in DAGs with hidden variables
I AnG (A,Y ,Z) = set of nodes that are ancestors of at least one of A, Y or
a component of Z

I Result: (van der Zander, Liskiewicz and Textor, 2019): if an observable
Z�adj. set exists then

S = fL : L is observable Z� adj.set and L � AnG (A,Y ,Z)g

is not empty.

I Result (Smucler et al, 2021): If S 6= ∅ then an optimal Z�adj. set exists
in the class S .

I In Smucler et al, 2021, we derived a graphical algorithm, based on a
particular latent projected undirected moralized graph, that �nds the
optimal Z-adj. set in S .
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Road map of the talk
I Gentle introduction to causal graphical models.

I Some results with Smucler and Sapienza on optimal adjustment sets

I Rules for comparing adjustment sets for point exposure studies

I Time dependent adjustment sets for time dependent exposures

I Some results with Guo and Perkovic on uninformative variables and graph

reduction

I Final remarks



Time dependent treatments
Suppose A1 and A2 are two treatments, A1 2ndG (A2) . Under a causal
graphical model represented by DAG G, the mean of Ya0 ,a1 when the static
regime that sets A0 to a0 and A1 to a1 is

E (Ya0 ,a1 ) = E

�
Ia0 (A0)

p (a0 jpaG (A0))
Ia1 (A1)

p (a1 jpaG (A1))
Y

�
= E fE [E [Y ja0, a1, paG (A0) , paG (A1)] ja0, paG (A0)]g

De�nition: L = (L0, L1) � V is a static time dependent adjustment set
relative to trxs (A0,A1) and outcome Y in G i¤ for all P 2 B (G) ,

E (Ya0 ,a1 ) = E fE [E [Y ja0, a1, L0, L1 ] ja0, L0 ]g

The right hand side is the so-called the g-functional with respect to (L0, L1) .



Time dependent treatments
Lemma (Robins, 1986) (L0, L1) is a time-dependent adjustment set if :
(i) Lj non-descendant of Aj , j = 0, 1, and
(ii) Sequential randomization:

Ya0 ,a1 q A1 j (A0, L0, L1) and Ya0 ,a1 q A0 jL0

Example:

I X0 is a time 0 adjustment set (= L0)
I X1,U and (X1,U) are time 1 adjustment sets (= L1)



Time dependent treatments
Lemma: Suppose that (B0,B1) and (G0,G1) are time dependent adjustment
sets. If
(1)

A0 qG [G0nB0 ] jB0
A1 qG [(G0,G1) n (B0,B1)] j (B0,B1,A0)

(2)

G1 qG [B0nG0 ] j (G0,A0)
Y qG [(B0,B1) n (G0,G1)] j (G0,G1,A0,A1)

then, for all P 2 B (G)
σ2G0 ,G1 � σ2B0 ,B1

where for any adj. set (L0, L1) , σ2L is the variance of the NP inf. fcn of the
g-functional adjusted for (L0, L1) .



Time dependent treatments

The following adjustment sets dominate all other adjustment sets but they
don�t dominate each other

Time 0 adj. set (= L0) Time 1 adj. set (= L1) Better when
∅ Q red assoc. strong, blue assoc weak
H Q red assoc. weak, blue assoc strong

In Rotnitzky and Smucler we exhibited two laws P1 and P2 in B (G) for binary data
such that:
(i) under P1, (H ,Q ) is 8% more e¢ cient than (∅,Q ) , and
(ii) under P2, (∅,Q ) is 47% more e¢ cient than (H ,Q )



Semip. e¢ cient estimation vs optimal non-parametric
adjusted estimation

I The interventional mean E (Y a) is

E [E (Y jA = a,V ,W )] =
Z
E (Y jA = a,V = v ,W = w ) p (v ) p (w )| {z }

=p(v ,w )

dvdw

I Optimal non-parametric adjusted estimator ignores restrictions on the
marginal law of covariates, i.e. that V and W are marginally independent.

I Semiparametric e¢ cient (SE) exploits these restrictions and can be much
much more e¢ cient than optimally adjusted NP estimator.
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There is also information in the mediators structure

E (Y a) = E (Y jA = a)

=
Z Z

yp (y jm) p (mja)| {z }
=p(y ,mja)

dmdy

I Markov chain structure carries information about E (Y jA = a) .



However ... in some graphs the optimally adjusted
estimator is e¢ cient

I With discrete data the MLE of pa (y ) under G is

bpa,MLE (y ) = ∑
m,o

Pn (y jm, a)Pn (mja, o)Pn (o)

I Surprisingly, bpa,MLE (y ) is asym. equivalent to the MLE of pa (y ) under
G� is epa,MLE (y ) = ∑

o
Pn (y jo, a)Pn (o)



Road map of the talk
I Gentle introduction to causal graphical models.

I Some results with Smucler and Sapienza on optimal adjustment sets

I Rules for comparing adjustment sets for point exposure studies

I Time dependent adjustment sets for time dependent exposures

I Some results with Guo and Perkovic on uninformative variables and

graph reduction

I Final remarks



Graph reduction for semiparametric e¢ cient estimation
(joint work with Richard Guo and Ema Perkovic)

pa (y ) = ∑
i ,w1 ,w2 ,w3 ,w4 ,o

p (y jo , a) p (i jw4) p (o jw4) p (w4 jw2,w3) p (w3) p (w2 jw1) p (w1)
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Graph reduction for semiparametric e¢ cient estimation
(joint work with Richard Guo and Ema Perkovic)

I Surprisingly, MLE under G� is asymptotically equivalent to MLE under G 0

epa,MLE (y ) = ∑
w2 ,w3 ,o

Pn (y jo, a)Pn (o jw2,w3)Pn (w3)Pn (w2)



Graph reduction for semiparametric e¢ cient estimation of
a counterfactual mean

I Given a graph G we derived an algorithm that outputs another graph
G�over a subset of the variables in G such that

I the g�formula in G� is an identifying formula in G,

I the semiparametric variance bound for estimation of E (Y a) in
model B (G) and in model B (G�) agree

I G� is the smallest such possible graph in the sense that all variables
in G� are informative. More precisely, the e¢ cient in�uence function
for E (Y a) is a function of every variable in G� for at least one P in
B (G�)



Final remarks
I Estimation via adjustment vs semip. e¢ cient estimation:

I Usual variance/bias trade-o¤: adjustment relies on less model
assumptions

I Equally or perhaps even more importantly: e¢ cient estimation
requires estimation of each cond. density p

�
Vj jpaG

�
Vj
��
. Even

debiased, in�uence-function based, i.e. one-step estimation or
TMLE, will hardly control the estimation bias of these densities.

bE (Y a)
MLE

= ∑
w2 ,w3 ,o

En (Y jo , a)Pn (o jw2,w3)Pn (w3)Pn (w2)

bE (Y a)adj = ∑
o

En (Y jo , a)Pn (o)



Final remarks
I Study design: assign cost to each graph variable and �nd the adjustment
set leading to smallest estimation variance:

I subject to a cost constraint ! a universal solution does not exist

I among adjustment sets of minimum cost ! for point exposure we
provide the universal solution in Smucler and Rotnitzky, 2022, and

graphical rules for �nding it



Open problems
I Inference about the functional returned by the ID algorithm when no
observable adj. set exists

I Some special cases have been studied, e.g. the generalized front door
formula, (Fulcher, et. al. 2019). General theory for an arbitrary
functional not yet available.

I Optimal adj. sets and e¢ cient estimation for other parameters e.g., trx
e¤ect on the treated, and natural direct and indirect e¤ects



THANKS!



Cuts and moralized graphs.
I Separation and cuts in undirected graphs: In an undirected graph H, A
is separated from B by C, denoted as

A?H BjC

i¤ all paths between A and B have a vertex in C. In such case C is called
a cut between A and B.

I Moralized graph of a DAG G is an undirected graph Gm with same
vertices as G, constructed by keeping the edges of G but removing their
direction and additionally "marrying" the unshielded colliders.

I Neighborhood of Y : set of vertices adjacent to Y , denoted with ∂H (Y )
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Construction of the latent projected moralized graph

1. H0  (GA [AnG (A,Y ,Z)])m (Textor and Liskiewicz, 2011 and van der
Zander et al, 2019)

1.1 compute ancestral subgraph G [AnG (A,Y ,Z)]
1.2 delete edges pointing out of A
1.3 moralize the resulting subgraph

2. H1 constructed from H0 by
2.1 Latent project out the hidden nodes and the nodes in forb(A,Y ,G)
2.2 Add to latent projected graph edges bw Z and A and bw Z and Y


