Penalized doubly robust regression-based estimation of adaptive treatment strategies

Erica E M Moodie

Biostatistics, McGill University erica.moodie@mcgill.ca

Joint with Zeyu (Chris) Bian, Sahir Bhatnagar, Susan Shortreed, & Sylvie Lambert Funding: NIMH, CIHR, & FRQS

🐯 McGill

ATSs	Regression-b

Road-map

- 1 Precision medicine in the statistical literature
- 2 dWOLS: a regression-based method of estimation
- 3 Penalization and confounder selection
- ④ A case study

ATSs •0000 egression-based estimation

Case study: A web-based stress-management interventio

Final thoughts

Evidence-based medicine: The statisticians' role

[T]he medical statistician recognizes, and is familiar with the pros and cons of, that difficult question – should a fixed dose be given to all patients in a trial or should it be allowed to vary with the apparent needs of each patient as judged by the clinician?

> Sir Austin Bradford Hill (1962)

|--|

Precision medicine

• **Precision:** Refers to the tailoring of medical treatment to the individual characteristics of each patient.

ATSs	Regression-based
00000	

Precision medicine

- **Precision:** Refers to the tailoring of medical treatment to the individual characteristics of each patient.
 - Does not mean selection or creation of drugs that are unique to a patient.
 - **Does** mean the ability to *classify individuals* into subpopulations that differ in their response to a specific treatments perhaps repeatedly over time.

ATSs	Regression-based
00000	

Precision medicine

- **Precision:** Refers to the tailoring of medical treatment to the individual characteristics of each patient.
 - **Does not** mean selection or creation of drugs that are unique to a patient.
 - **Does** mean the ability to *classify individuals* into subpopulations that differ in their response to a specific treatments perhaps repeatedly over time.

ATSs	Regression-based estimation
00000	

Case study: A web-based stress-management interventio

Final thoughts 000

Precision medicine

- The context:
 - several treatments or doses available;
 - patients may switch from one treatment to another;
 - often must account for clinician decisions about the treatment during patient monitoring.

ATSs	Regression-based estimation
00000	

Case study: A web-based stress-management interventio

Final thoughts 000

Precision medicine

- The context:
 - several treatments or doses available;
 - patients may switch from one treatment to another;
 - often must account for clinician decisions about the treatment during patient monitoring.
- Make use of information on patient characteristics such as
 - demographics, genetics, genomics;
 - physiologic or clinical measures;
 - medical history, etc.

in order to determinate *which treatment* the patient should take *and when*.

ATSs Regression-based estimat

Case study: A web-based stress-management intervention

Final thoughts

When would we want treatment to be adaptive?

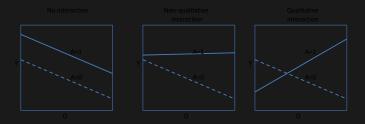
- Treatment tailoring is better because (when):
 - there is heterogeneity in patient response;
 - patient response may change over time;
 - response to treatment may inform future treatment choices;
 - patient compliance may be imperfect;
 - over-treating can lead to side-effects, treatment fatigue (poor compliance), and higher costs;
 - under-treating can lead to poorer patient outcomes.

ATSs Regression-based estimation

Case study: A web-based stress-management intervention

Final thoughts 000

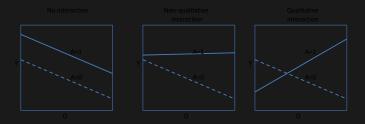
When would we want treatment to be adaptive?



 Variables used to make treatment more targeted are called prescriptive or tailoring variables. 0000

ATSs

When would we want treatment to be adaptive?



- Variables used to make treatment more targeted are called prescriptive or tailoring variables.
- Resulting treatment algorithms known as adaptive treatment strategy (ATSs), dynamic treatment regimes, adaptive interventions, or policies.

ATSs	Regressio
	00000

Analytic methods

- Considerable interest in estimation and inference for ATSs in statistics and CS over the last 20 years.
- More common strategies include
 - Q-learning (sequential regression);
 - g-estimation;
 - dynamic weighted ordinary least squares (dWOLS);
 - weighted value search estimators, including weighted classifiers such as OWL and RWL, and (A)IPW.

ATSs 00000	Regression-based estimation ○●○○○○○○○○○○○○○○	
Aim		

- Studies frequently collect many, many variables but not all are useful for tailoring treatment, or for reducing confounding bias.
- Simplifying ATS can improve statistical efficiency, yield more practical treatment rules.
- Wanted to introduce methods of variable selection to choose most important confounders and critical tailoring variables in an ATS analysis within the doubly robust and highly user-friendly method of dWOLS.

ATSs	Regression-based estimation	Case study: A web-based stress-management intervention	Final thoughts
	000000000000000000000000000000000000000		

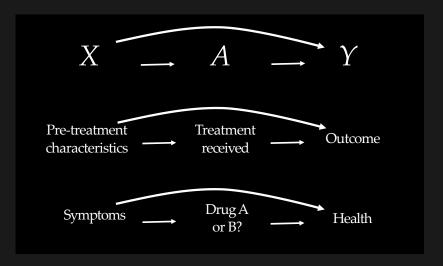
The Single-stage Setting

Regression-based estimation

Case study: A web-based stress-management intervention

Final thoughts

Notation



ATSs: how do we find treatment A^{opt} that maximizes Y?

Final thoughts

Identifying the best treatment regime

- If only one treatment decision: $\mathbb{E}[Y|X,A]$
- E.g., we might propose the following model

 E[Y|X, A; ψ, β] = β₀ + β₁Sx + A(ψ₀ + ψ₁Sx)

Final thoughts

Identifying the best treatment regime

- If only one treatment decision: $\mathbb{E}[Y|X, A]$
- E.g., we might propose the following model

 $\mathbb{E}[Y|X, A; \psi, \beta] = \beta_0 + \beta_1 \mathsf{Sx} + A(\psi_0 + \psi_1 \mathsf{Sx})$

Impact of patient history in the absence of treatment

$$\underbrace{\mathbb{E}[Y|X,A;\psi,\beta]}_{=} =$$

Expected outcome (to be maximized)

Final thoughts

Identifying the best treatment regime

- If only one treatment decision: $\mathbb{E}[Y|X,A]$
- E.g., we might propose the following model

 $\mathbb{E}[Y|X, A; \psi, \beta] = \beta_0 + \beta_1 \mathsf{Sx} + A(\psi_0 + \psi_1 \mathsf{Sx})$

Impact of patient history in the absence of treatment

$$\mathbb{E}[Y|X, A; \psi, \beta] =$$

Expected outcome (to be maximized)

 $\underbrace{\gamma(X,A;\psi)}_{\substack{\text{Impact of treatment}\\\text{on outcome}}}$

• In practice, we specify a model for the contrast, e.g.:

$$\gamma(\mathbf{x}, \mathbf{a}; \psi) = \mathbf{a}(\psi_0 + \psi_1 \mathbf{x}_1 + \psi_2 \mathbf{x}_2),$$

then if $a \in \{0, 1\}$, $a^{\text{opt}}(x) = \mathbb{I}[\psi_0 + \psi_1 x_1 + \psi_2 x_2 > 0].$

Final thoughts

Identifying the best treatment regime

- If only one treatment decision: $\mathbb{E}[Y|X,A]$
- E.g., we might propose the following model

 $\mathbb{E}[Y|X, A; \psi, \beta] = \beta_0 + \beta_1 \mathsf{Sx} + A(\psi_0 + \psi_1 \mathsf{Sx})$

Impact of patient history in the absence of treatment

$$\mathbb{E}[Y|X,A;\psi,\beta] =$$

Expected outcome (to be maximized)

 $\underbrace{\gamma(X,A;\psi)}_{\substack{\text{Impact of treatment}\\\text{on outcome}}}$

• In practice, we specify a model for the contrast, e.g.:

$$\gamma(\mathbf{x}, \mathbf{a}; \psi) = \mathbf{a}(\psi_0 + \psi_1 \mathbf{x}_1 + \psi_2 \mathbf{x}_2),$$

then if $a \in \{0,1\}$, $a^{\text{opt}}(x) = \mathbb{I}[\psi_0 + \psi_1 x_1 + \psi_2 x_2 > 0].$

- Contrasts specified in this way \rightarrow *linear* decision rules.
- All methods considered assume $\gamma(x, a; \psi)$ well-specified.

ase study: A web-based stress-management interventio

Final thoughts

Dynamic Weighted OLS (dWOLS)

$$\mathbb{E}[Y|X = x, A = a; \psi, \beta] = G(x; \beta) + \gamma(x, a; \psi)$$

- Three models to specify:
 - 1 Contrast model: $\gamma(x, a; \psi)$.
 - 2 Treatment-free model: $G(x; \beta)$.
 - 3 Treatment model: $\mathbb{E}[A|X = x; \alpha]$.
- Estimate ψ via WOLS with weights satisfying

$$\pi(x)w(1,x;\alpha) = (1-\pi(x))w(0,x;\alpha),$$

for $\pi(x) = \mathbb{E}[A|X = x; \alpha]$, e.g. $w = |A - \mathbb{E}[A|x; \hat{\alpha}]|$, inverse probability of treatment weighting, etc.

dWOLS: editorial comments

- Appealing:
 - doubly robust;
 - (quite) easy to explain to clinical collaborators;
 - has been generalized to accommodate multiple treatments, and to continuous doses (GdWOLS);
 - extended to handle censored outcomes using accelerated failure time models (dwSurv);
 - many useful tools including residual diagnostics, model-validation based on double-robustness;
 - DTRreg implements many useful cases: binary or normally-distributed treatments for continuous outcomes, binary treatments for time-to-event outcomes.

dWOLS: editorial comments

- Appealing:
 - doubly robust;
 - (quite) easy to explain to clinical collaborators;
 - has been generalized to accommodate multiple treatments, and to continuous doses (GdWOLS);
 - extended to handle censored outcomes using accelerated failure time models (dwSurv);
 - many useful tools including residual diagnostics, model-validation based on double-robustness;
 - DTRreg implements many useful cases: binary or normally-distributed treatments for continuous outcomes, binary treatments for time-to-event outcomes.
- Challenge/limitation:
 - · limited results for discrete outcomes;
 - to date, no data-driven variable selection methods.

ATSs	Regression-based estimation	Case study: A web-based stress-management intervention	Final thoughts
	000000000000000000000000000000000000000		

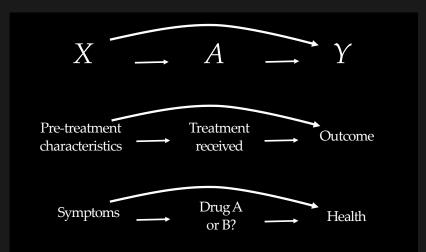
The Multi-stage Setting

Case study: A web-based stress-management intervention

Final thoughts

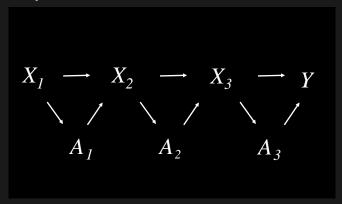
Identifying the best treatment regime: multi-stage

Recall data set up in the ITR setting:



Identifying the best treatment regime: multi-stage

The multi-stage case is more complex: Want a sequence $(a_1^{\text{opt}}, a_2^{\text{opt}}, a_3^{\text{opt}})$ that maximizes Y, but the choice of A_j affects future decisions.

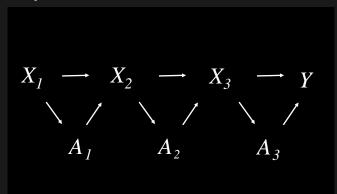


Case study: A web-based stress-management intervention

Final thoughts

Identifying the best treatment regime: multi-stage

The multi-stage case is more complex: Want a sequence $(a_1^{\text{opt}}, a_2^{\text{opt}}, a_3^{\text{opt}})$ that maximizes Y, but the choice of A_j affects future decisions.



Recursive implementation reduces estimation to a series of one-stage problems.

Regression-based estimation

Case study: A web-based stress-management intervention

Final thoughts

Identifying the best treatment regime: multi-stage

Letting $H_3 = (X_1, A_1, X_2, A_2, X_3)$ reduces finding A_3^{opt} to a single-stage problem.

Regression-based estimation

Case study: A web-based stress-management intervention

Final thoughts

Identifying the best treatment regime: multi-stage

Writing $H_2 = (X_1, A_b, X_2)$ reduces finding A_2^{opt} to a single-stage problem, where \tilde{Y}_2 is taken to be the "best" possible stage 2 outcome for someone with H_2 . $\begin{array}{ccc} H_2 & \longrightarrow & \widetilde{y_2} \\ & \searrow & \swarrow \\ & A_2 \end{array}$

Identifying the best treatment regime: multi-stage

- The \tilde{Y} term is key to the backwards induction, sequential regression approach.
- It is called a pseudo-outcome.
- \tilde{Y} in dWOLS equals the observed outcome for individuals who were treated optimally; otherwise, the observed outcome is <u>"adjusted up</u>" as predicted by the contrast function.

ATSs	Regression-based estimation
	000000000000000000000000000000000000000

Case study: A web-based stress-management interventio

Final thoughts 000

Assumptions

- Like many causal methods, dWOLS relies on some identifiability and estimation assumptions:
 - SUTVA
 - no unmeasured confounding, measurement error, or selective information
 - positivity
 - correct model specification (blip + one of treatment-free or propensity score)
 - hierarchy: any tailoring variable in the blip must appear in the treatment-free model.
- Of these, the last is key when considering any form of variable selection.

Case study: A web-based stress-management intervention

Final thoughts

Selecting tailoring variables: pdWOLS

Regression-based estimation

• Much like LASSO, we want to use an ℓ_1 penalty with the following objective function

$$Q(\theta) = \mathcal{L}(Y; \beta, \psi) + \lambda(1 - \alpha) \|\beta\|_1 + \lambda \alpha \|\psi\|_1,$$

for tuning parameters $\lambda > 0$ and $\alpha \in (0, 1)$, and squared error loss function

$$\mathcal{L}(Y;\beta,\psi) = rac{1}{2n} \left\| \sqrt{W} \left(Y - \psi_0 A - \sum_{j=1}^p X_j \beta_j - \sum_{j=1}^p \psi_j (A \circ X_j) \right) \right\|_2^2.$$

• But this doesn't assure strong heredity.

Case study: A web-based stress-management intervention

Final thoughts

Selecting tailoring variables: pdWOLS

Regression-based estimation

• Instead, we reparameterize the squared error loss function:

$$\mathcal{L}(Y;\theta) = \frac{1}{2n} \left\| \sqrt{W} \left(Y - \psi_0 A - \sum_{j=1}^p X_j \beta_j - \sum_{j=1}^p \underbrace{\psi_0 \tau_j \beta_j}_{\psi_j} (A \circ X_j) \right) \right\|_2^2$$

and use objective function

$$Q(\theta) = \mathcal{L}(Y;\theta) + \lambda(1-\alpha) \|\beta\|_1 + \lambda \alpha \|\boldsymbol{\tau}\|_1$$

for θ the collection of all parameters.

• Can be performed sequentially in a multi-stage ATS setting.

se study: A web-based stress-management intervention

Final thoughts

Selecting tailoring variables: pdWOLS

Regression-based estimation

• Tuning parameter selection via a value information criterion (Shi et al., 2021): $VIC = n\hat{V}(\psi) - \kappa_n ||\psi||_0$ where

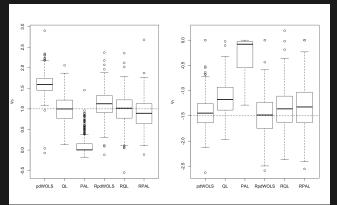
$$\widehat{V}(\psi) = \frac{1}{n} \sum_{i=1}^{n} Y_i \frac{A_i \widehat{a}^{opt}(x_i; \psi) + (1 - A_i)(1 - \widehat{a}^{opt}(x_i; \psi))}{A_i \widehat{\pi}(x_i) + (1 - A_i)(1 - \widehat{\pi}(x_i))}$$

and κ_n is a positive sequence.

- We choose $\kappa_n = n^{1/3} \log(p)^{2/3} \log \log(n)$ as this can achieve model selection consistency.
- Note that this will only accurately estimate the value function if the propensity score is correctly estimated.

Selecting tailoring variables

- Performance in simulation is excellent, even in difficult settings (p = 400, n = 200).
 - Excellent accuracy in selective, treatment recommendation.
 - Refitting after selection recommended to reduce bias.



Selecting a confounder set

- In a causal analysis, the propensity score (PS) serves as a means of breaking confounding.
- The goal of PS model building is thus to create *balance*, not to predict treatment allocation.
- In particular, instruments should not be included in a PS.
- Shortreed & Ertefaie (2017) proposed a method that considers both the treatment-covariate and the outcome-covariates relationships: outcome adaptive lasso.
 - Idea: Use initial estimate of coefficients in the outcome model as an adaptive lasso weight in the PS.
- Simulations show that combining OAL with pdWOLS improves accuracy of value function estimation, and slightly improves accuracy of tailoring variable selection.

Ss Regression-based estima

Case study: A web-based stress-management intervention $_{\odot OO}$

Final thoughts

Case study: Web-based stress reduction

- CVD, like many chronic diseases, have the potential to create significant stress and anxiety in patients.
- Lambert et al. conducted a pilot SMART to assess the feasibility and potential effect size of a stepped care approach using a web-based stress-management intervention.
- We focus on the first stage:
 - 50 patients with CVD were randomized into two arms (stratified by recruitment source and stress level.
 - Arms: website only group (A = 0), and website plus weekly telephone coaching group (A = 1).
- Outcome: Depression Anxiety Stress Scales
 - Goal is to minimize

AT	
00	

Case study: A web-based stress-management intervention ${\circ}{\bullet}{\circ}$

Final thoughts

Study sample

Characteristics of the adaptive web-based stress management study population

mean (SD) or <i>n</i> (%)	Website-only	Website+coach	SMD
n	25	25	
Age	61.0 (13.4)	61.3 (10.7)	0.03
DASS at baseline	19.2 (6.7)	18.9 (7.7)	0.03
Physical Component Score	42.9 (12.2)	45.4 (11.6)	0.20
Mental Component Score	40.4 (8.6)	40.9 (10.9)	0.04
Sex = Male	13 (52.0)	9 (36.0)	0.33
Marital = Married / Common law	14 (56.0)	15 (60.0)	0.08
Education = University degree	13 (52.0)	16 (64.0)	0.25
Employment = Full time	4 (16.0)	9 (36.0)	0.47
Chronic cardiac condition	18 (72.0)	16 (64.0)	0.17
Chronic hypertension	12 (48.0)	10 (40.0)	0.16
Chronic stomach condition	10 (40.0)	12 (48.0)	0.16
Chronic vision condition	11 (44.0)	7 (28.0)	0.34
Chronic back pain	10 (40.0)	14 (56.0)	0.32
Chronic cholesterol condition	9 (36.0)	11 (44.0)	0.16
Chronic obesity	7 (28.0)	13 (52.0)	0.50
Chronic osteoarthritis	9 (36.0)	8 (32.0)	0.09

AT	
00	

Case study: A web-based stress-management intervention ${\circ}{\bullet}{\circ}$

Final thoughts

Study sample

Characteristics of the adaptive web-based stress management study population

mean (SD) or <i>n</i> (%)	Website-only	$Website{+}coach$	SMD
n	25	25	
Age	61.0 (13.4)	61.3 (10.7)	0.03
DASS at baseline	19.2 (6.7)	18.9 (7.7)	0.03
Physical Component Score	42.9 (12.2)	45.4 (11.6)	0.20
Mental Component Score	40.4 (8.6)	40.9 (10.9)	0.04
Sex = Male	13 (52.0)	9 (36.0)	0.33
Marital = Married / Common law	14 (56.0)	15 (60.0)	0.08
Education = University degree	13 (52.0)	16 (64.0)	0.25
Employment = Full time	4 (16.0)	9 (36.0)	0.47
Chronic cardiac condition	18 (72.0)	16 (64.0)	0.17
Chronic hypertension	12 (48.0)	10 (40.0)	0.16
Chronic stomach condition	10 (40.0)	12 (48.0)	0.16
Chronic vision condition	11 (44.0)	7 (28.0)	0.34
Chronic back pain	10 (40.0)	14 (56.0)	0.32
Chronic cholesterol condition	9 (36.0)	11 (44.0)	0.16
Chronic obesity	7 (28.0)	13 (52.0)	0.50
Chronic osteoarthritis	9 (36.0)	8 (32.0)	0.09

Case st	udy: A	web-based	stress-management	intervention
000				

Final thoughts

Results

• Of the 16 potential tailoring variables, the following 7 were selected:

DASS at baseline, age, mental component score, physical component score, vision conditions, sex, & employment status

• Optimal rule:

 $\hat{a}^{opt} = I\{16.7 + 0.4 \text{age} - 0.6 \text{DASS} - 0.1 \text{PCS} - 0.5 \text{MCS} - 4.7 I(\text{vision}=\text{yes}) - 5.2 I(\text{male}) - 7.1 I(\text{employed}) > 0\}.$

- Estimated DASS (95% CI) under this rule: 14.8(11.8, 17.9).
- If covariate imbalance was ignored, a slightly more complex optimal rule is obtained with 8 tailoring variables, which yields a slightly lower (better) predicted DASS at 13.8.

ATSs	Regression-based	

Observations

- ATSs have enormous potential to improve clinical practice in an evidence-based way.
- Lots of data (big *n*) needed to learn about ATS.
- Observational data can be particularly attractive:
 - Less expense than an RCT;
 - More information (large sample size);
 - Generalizable or 'characterizable' population;
 - But many, many variables we don't need.
- Trials ensure randomization, but balance may still be imperfect and again... often more measurements than 'useful.'

ATSs	Regression-based	

Case study: A web-based stress-management interventio

Final thoughts 0●0

Concluding remarks

- Many methodological limitations remain.
- Estimation approaches that accommodate 'fixes' for the many challenges help.
- Further investigation of the VIC also critical: a 'singly robust' criterion for a doubly robust approach?
- An important avenue to pursue will is the extension of these methods to the discrete outcome setting.

ATSs	

Regression-based estimation

Case study: A web-based stress-management interventio

Final thoughts 00●

Thanks

