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Introduction

Motivating Example (Kim et al., 2019)

Korean Workplace Panel Surveys (sponsored by Korean Labor
Institute)

They are interested in fitting a regression from the sample:

Y “ β0 ` β1X1 ` β2X2 ` e

where

Y : log(Sale)/Person
X1: Size of company (= number of employees)
X2: Type of company

pX1,X2q are always observed

Y : subject to missingness
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Introduction

Motivating Example

In addition to pX1,X2,Y q, the survey company collected a paradata
variable Z regarding the respondents’ reaction

Z “

$

&

%

1 friendly response
2 moderate response
3 negative response

The response rate is significantly low for units with Z “ 3.

The response rates are 0.71, 0.67, and 0.45 for Z “ 1, Z “ 2, and
Z “ 3, respectively.
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Introduction

Motivating Example

The variable Z is a strong predictor for the response mechanism but
it is not a good predictor for Y .

In fact, the regression coefficient for Z in the regression model

Y “ Xβ ` Zγ ` e

is not significant (p-value = 0.70)

Question: Should we include Z into the nonresponse adjustment
weighting?
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Introduction

Introduction

pX ,Y q: a vector of random variables satisfying

E tUpθ0;X ,Y qu “ 0

for some function Up¨; x , yq with unknown parameter θ0 P Θ P Rp.

That is, the model with distribution function P should satisfy

E tUpθ;X ,Y qu ”

ż

Upθ; x , yqdPpx , yq “ 0 (1)

for all θ, where P is completely unspecified other than the restriction
in (1). Thus, it is a semiparametric model.

There are infinitely many P satisfying (1) for given θ. The model
space Lpθq “ tP;

ş

Upθ; x , yqdPpx , yq “ 0u depends on θ.
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Introduction

Dual problem

The Kullback-Leibler (KL) divergence of P with respect to Q is

DpP ∥ Qq “

ż

log

"

dPpx , yq

dQpx , yq

*

dPpx , yq.

We are interested in finding P˚ that minimizes DpP ∥ P̂q among
P P Lpθq, where P̂ is the empirical distribution in the sample.

Note that

DpP ∥ P̂q “

ż

Ppx , yq log

#

Ppx , yq

P̂px , yq

+

dµpx , yq. (2)

Thus, to avoid DpP ∥ P̂q “ 8, we set P˚px , yq “ 0 for any point
with P̂px , yq “ 0.

The problem is equivalent to finding the minimizer of
Dppq “

řN
i“1 pi logppi q subject to

řN
i“1 pi “ 1 and

řN
i“1 piUpθ; yi q “ 0.
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Introduction

ETEL estimation (Schennach, 2007)

Two-step estimation

1 ET step: Finding the minimizer of DpP ∥ P̂q among P P Lpθq to get

p˚
i pθq “

exptλ̂1
θUpθ; xi , yi qu

řN
i“1 exptλ̂1

θUpθ; xi , yi qu
, (3)

where λ̂θ satisfies
řN

i“1 p
˚
i pθqUpθ; xi , yi q “ 0.

2 EL step: To estimate the model parameter, we find the minimizer of
DpP̂ ∥ P˚q. That is, find the maximizer of

ℓppθq “
1

N

N
ÿ

i“1

logtp˚
i pθqu

where p˚
i pθq is defined in (3).
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Introduction

Graphical Illustration (for ET step)

P̂

P˚

P

KL divergence DpP ∥ P̂q among P P Lpθq is minimized at P˚pθq in (3).
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Introduction

Graphical Illustration (for EL step)

P̂

P˚pθ̂q
P˚pθq

The KL divergence DpP̂ ∥ P˚pθqq among θ P Θ is minimized at θ “ θ̂.
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Introduction

Remark

The first step is a modeling step: Use I-projection to obtain a dual
expression of the model. The dual model is an exponential tilting
form.

The second step is an estimation step: Use maximum likelihood
estimation of the parameters in the exponential tilting model.
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Problem Setup

Non-probability sample

Two-phase sampling structure:
1 Phase 1: A finite population of pxi , yi q follows a distribution P

satisfying the semiparametric model (1).
2 Phase 2: From the finite population, we obtain a sample S by an

unknown sampling mechanism and observe pxi , yi q in the sample.

Assume that xi are observed throughout the finite population with
index set t1, ¨ ¨ ¨ ,Nu.

It is essentially a missing data setup where the sampling mechanism
corresponds to the response mechanism.
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Problem Setup

Density ratio (DR) function

Pk : probability distribution of pX ,Y q conditional on δ “ k for
k “ 0, 1, where δi “ 1 if i P S and δi “ 0 otherwise.

Pk ! µ, with density fk “ dPk{dµ.

The ratio of two density functions

f0px , yq

f1px , yq
:“ rpx , yq

is called the density ratio function.

Using the density ratio (DR) function, the probability of an event B
at P0 can be expressed as an integration evaluated at P1:

P0tpX ,Y q P Bu “

ż

Itpx , yq P Burpx , yqdP1px , yq.
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Problem Setup

Alternative expression for the model assumption

Recall that the model space that we are interested in is

Lpθq “ tP;EtUpθ;X ,Y qu “ 0u.

Using the DR function rpx , yq, we can express

EtUpθ;X ,Y qu

“ p

ż

Upθ; x , yqdP1px , yq ` p1 ´ pq

ż

Upθ; x , yqdP0px , yq

“ p

ż

Upθ; x , yqdP1px , yq ` p1 ´ pq

ż

Upθ; x , yqrpx , yqdP1px , yq

“

ż

tp ` p1 ´ pqrpx , yquUpθ; x , yqdP1px , yq

where p “ Ppδ “ 1q is the proportion of sample in the finite
population.

Kim Propensity Score Estimation 15 / 45



Problem Setup

Alternative expression for the model assumption

Thus, when rpx , yq is known, the model space L has an one-to-one
correspondence with

L1pθq “

"

P1 :

ż

t1 ` pN0{N1qrpx , yquUpθ; x , yqdP1px , yq “ 0

*

,

where Nk “
řN

i“1 Ipδi “ kq for k “ 0, 1.

We can apply the I-projection on L1pθq to obtain p˚pθq. That is, use

P̂1px , yq “
1

N1

N
ÿ

i“1

δi Itpx , yq “ pxi , yi qu

to find the minimizer of DpP1 ∥ P̂1q among P1 P Lpθq.
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Problem Setup

Graphical Illustration (Only P̂1 is observed)

P̂1

P˚
1 pθq

L1pθq

The KL divergence DpP1 ∥ P̂1q among P1 P L1pθq is minimized at P˚
1 .
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Problem Setup

Thus, the problem reduces to finding the maximizer of

ℓppq “
ÿ

iPS

pi logppi q

subject to
ř

iPS pi “ 1 and

ÿ

iPS

pi t1 ` pN0{N1qrpxi , yi quUpθ; xi , yi q “ 0. (4)

If the dimension of θ is equal to the rank of the estimating function
Upθ; x , yq, then it is just-identified and equation (4) does not contain
any extra information. In this case, condition (4) can be safely
ignored in the optimization for p.

Using p̂i “ 1{N1 in (4) leads to a weighted estimating equation with
weight

ωpx , yq “ 1 `
N0

N1
¨ rpx , yq.
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Problem Setup

Propensity score (PS) weight function

Propensity score weight function is computed from the DR function:

ωpx , yq “ 1 `
N0

N1
¨ rpx , yq “

1

Ppδ “ 1 | x , yq
.

Propensity score weight function is used to estimate parameters from
the sample with selection bias:

ÛPSpθq ”
ÿ

iPS

ωpxi , yi qUpθ; xi , yi q “ 0.

Two problems
1 In practice, rpx , yq is unknown.
2 Even if rpx , yq is known, it does not necessarily lead to efficient

estimation for θ.
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Proposal: Weight smoothing

Simplifying assumption

To avoid any issues on model identifiability, we consider MAR
(missing at random) assumption of Rubin (1976):

Y K δ | X .

Under MAR,

rpx , yq “
f0px , yq

f1px , yq
“

f0pxq

f1pxq
¨
f0py | xq

f1py | xq
“

f0pxq

f1pxq
“ rpxq

and

ωpxq “ 1 `
N0

N1
¨ rpxq.
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Proposal: Weight smoothing

Weight smoothing: Idea

Instead of using

ÛPSpθq ”

N
ÿ

i“1

δiωpxi qUpθ; xi , yi q “ 0,

we may use

ÛSPSpθq ”

N
ÿ

i“1

δiω
˚pxi qUpθ; xi , yi q “ 0,

where
ω˚pxq “ E1 tωpxq | Upθ; x , yqu (5)

and E1 p¨q “ E p¨ | δ “ 1q.

We can show that

EtÛPSpθqu “ EtÛSPSpθqu and VtÛPSpθqu ě VtÛSPSpθqu.
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Proposal: Weight smoothing

How to compute (5) in practice?

First, we can show that

E1 tωpxq | Upθ; x , yqu “ E1

␣

ωpxq | Ūpθ; xq
(

where Ūpθ; xq “ EtUpθ;X ,Y q | xu.

Next, find the linear space H such that

Ūpθ; xq P spantb1pxq, ¨ ¨ ¨ , bLpxqu :“ H (6)

holds.

Thus, the smoothed propensity score weight in (5) reduces to

ω˚pxq “ E1 tωpxq | Hu . (7)
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Proposal: Weight smoothing

How to compute the smoothed weight function in (7)?

We wish to minimize

Dpf0 ∥ f1q “

ż

log pf0{f1q f0dµ, (8)

w.r.t. f0 such that
ş

f0dµ “ 1, and some moment constraints

The linear space that we are projecting on is

N1

N

ż

bpxqf1pxqdµ `
N0

N

ż

bpxqf0pxqdµ “ EtbpX qu, (9)

where bpxq is the basis functions in H.

The I-projection solution is

f ˚
0 pxq “ f1pxq ˆ

exptϕ1
1bpxqu

E1 rexptϕ1
1bpxqus

, (10)

where ϕ1 is the Lagrange multiplier satisfying (9).
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Proposal: Weight smoothing

Expression (10) leads to a parametric density ratio model:

logtr˚pxqu “ ϕ0 ` ϕ1b1pxq ` ¨ ¨ ¨ ` ϕLbLpxq. (11)

Model (11) can be called the log-linear density ratio model.

Model parameters are estimated by solving the calibration equation:

N
ÿ

i“1

δi

„

1 `
N0

N1
¨ exptϕ̂0 ` ϕ̂1

1bpxi qu

ȷ

loooooooooooooooooomoooooooooooooooooon

“ω̂˚
i

r1,bpxi qs “

N
ÿ

i“1

r1,bpxi qs . (12)

We may use ω̂˚
i in (12) to compute the (smoothed) PS estimator for

θ.
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Proposal: Weight smoothing

Example: θ “ EpY q

The smoothed PS estimator of θ is

pθSPS “
1

N

N
ÿ

i“1

δi ω̂
˚
i yi ,

where ω̂˚
i is defined in (12).

Writing θ̂N “ N´1
řN

i“1 yi , we obtain

pθSPS ´ pθN “
1

N

N
ÿ

i“1

pδi ω̂
˚
i ´ 1q yi “

1

N

N
ÿ

i“1

pδi ω̂
˚
i ´ 1q tmpxi q ` eiu

If mpxq P H “ spantbpxqu, then, by (12),

pθSPS ´ pθN “
1

N

N
ÿ

i“1

pδi ω̂
˚
i ´ 1q ei ,

which has zero expectation under MAR.
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Proposal: Weight smoothing

Remark

The smoothed PS estimator of θ can be written as

pθSPS “
1

N

N
ÿ

i“1

δi pω
˚
i yi “

1

N

N
ÿ

i“1

rmi pβq ` δi pω
˚
i tyi ´ mi pβqus (13)

where mi pβq “ β0 `
řL

j“1 βjbjpxi q for any β0, β1, ¨ ¨ ¨ , βL.

Now, since pω˚
i “ 1 ` pN0{N1q ¨ exptpλ0 ` pλ

T

1 bpxi qu, the smoothed PS
estimator in (13) is algebraically equivalent to

pθSPS “
1

N

N
ÿ

i“1

tδiyi ` p1 ´ δi qmi pβqu

`
1

N
¨
N0

N1

N
ÿ

i“1

δi exptpλ0 ` pλ
T

1 bpxi qu tyi ´ mi pβqu

for all β.
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Proposal: Weight smoothing

Thus, the equality also holds for a particular β̂ that satisfies

N
ÿ

i“1

δi exptpλ0 ` pλ
T

1 bpxi qu

!

yi ´ mi pβ̂q

)

“ 0,

which leads to

1

N

N
ÿ

i“1

δi pω
˚
i yi “

1

N

N
ÿ

i“1

!

δiyi ` p1 ´ δi qmi pβ̂q

)

. (14)

Note that (14) takes the form of the regression imputation estimator
under the regression model

EpY | xq “ β0 `

L
ÿ

j“1

βjbjpxq.

The final calibration weight pω˚
i does not directly use the regression

model for imputation, but it implements regression imputation
indirectly.
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Proposal: Weight smoothing

Theorem 1 (for θ “ E pY q)

Let

pθSPS “
1

N

N
ÿ

i“1

δi ω̂
˚
i yi ,

be the smoothed PS estimator of θ “ EpY q, where ω̂˚
i is defined in (12).

Under assumption EpY | xq P H “ spantbpxqu and other regularity
conditions, we have

?
N
´

pθSPS ´ θ
¯

L
ÝÑ Np0,Vdq,

as N Ñ 8, where

Vd “ V tEpY | Xqu ` E
“

δtω˚pXqu2VpY | Xq
‰

, (15)

and ω˚pxq “ E1tωpxq | Hu.
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Proposal: Weight smoothing

Remark 1

1 Because of
E1tωpxq | Hu “ tP pδ “ 1 | Hqu´1,

the asymptotic variance in (15) reduces to

Vd “ V tEpY | Xqu ` E rω˚pXqVpY | Xqs ,

which is the lower bound of the asymptotic variance of the
?
n-consistent estimator of θ (Robins et al., 1994).

2 If we can find H0 Ă H such that EpY | xq P H0. In this case, we can
make Vd in (15) smaller and obtain a more efficient PS estimator
using the basis functions in H0 only. Therefore, increasing the
dimension of H may lose efficiency: penalization technique can be
used.
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Proposal: Weight smoothing

Remark 2

The proposed PS weighting method can be described as a calibration
weighting problem: Minimize

Q1pωq “
ÿ

iPS

pωi ´ 1q log pωi ´ 1q

subject to
ÿ

iPS

ωi r1,bpxi qs “

N
ÿ

i“1

r1,bpxi qs ,

On the other hand, Hainmueller (2012) used

Q2pωq “
ÿ

iPS

ωi log pωi q

subject to the same calibration constraint. This method is called the
entropy balancing method.
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Proposal: Weight smoothing

Back to the motivating example

The outcome model is

Y “ Xβ ` Zγ ` e

and γ “ 0.

Response model
πpX ,Z q “ Ppδ “ 1 | X ,Z q

The conditional expectation of Y given pX ,Z q does not depend on
Z , the smoothed PS weight should be a function of X only.

Thus, it is better not to use Z in constructing the PS weights.
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Application

Application: Multivariate Missingness

The proposed method can be extended to multivarite missing data.

The missingness pattern can be non-monotone.

Table: Missing Pattern Example

y1 y2 y3
S1 ✓ ✓ ✓
S2 ✓ ✓
S3 ✓ ✓
S4 ✓
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Application

Model

Parameter of interest is defined through

EtUpθ; yqu “ 0.

We wish to construct an estimating function using all available
information:

Ūpθq “
ÿ

iPS1

Upθ; yi q `
ÿ

iPS2

EtUpθ; yi q | y1i , y3iu

`
ÿ

iPS3

EtUpθ; yi q | y1i , y2iu `
ÿ

iPS4

EtUpθ; yi q | y1iu

:“
4
ÿ

t“1

ÿ

iPSt

EtUpθ; yi q | yi ,obsptqu

where yi ,obsptq is the observed part of yi for i P St .
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Application

Instead of using a model for each conditional distribution, we can use
the density ratio model such that

N´1
1

ÿ

iPS1

r˚
t pyi ,obsptqqUpθ; yi q “ N´1

t

ÿ

iPSt

EtUpθ; yi q | yi ,obsptqu (16)

for t “ 2, 3, 4.

To construct the density ratio function satisfying (16), we first find

Ht “ spantb
ptq

1 pyobsptqq, ¨ ¨ ¨ , b
ptq

Lptq
pyobsptqqu such that

EtUpθ; yi q | yi ,obsptqu P Ht .

Thus, using the I-projection idea, we may assume

logtr˚
t pyobsptq;ϕ

ptqqu “ ϕ
ptq

0 `

Lptq
ÿ

j“1

ϕ
ptq

j b
ptq

j pyobsptqq. (17)
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Application

Estimation Method

The model parameters can be estimated by calibration equation
derived from (16) and model assumption (17):

N´1
1

ÿ

iPS1

r˚
t pyi ,obsptq;ϕ

ptqqp1,b
ptq

i q “ N´1
t

ÿ

iPSt

p1,b
ptq

i q

with respect to ϕptq for t “ 2, 3, 4, where b
ptq

i is a vector of

b
ptq

j pyi ,obsptqq for j “ 1, ¨ ¨ ¨ , Lptq.

Once the model parameters are estimated, we can use

ω̂˚
i “

4
ÿ

t“1

Nt

N1
r˚pyi ,obsptq; ϕ̂

ptqq

as the final weights for PS estimation.
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Simulation Study

Simulation 1: MAR

A 2 ˆ 2 factorial structure with two factors: outcome regression
(OR); response mechanism (RM). We generate δ and
x “ px1, x2, x3, x4qT first based on the RM first. We have

1 RM1 (Logistic regression model):

xik „ Np2, 1q, for k “ 1, . . . , 4,

δi „ Berppi q,

logitppi q “ 1 ´ xi1 ` 0.5xi2 ` 0.5xi3 ´ 0.25xi4.

2 RM2(Gaussian mixture model):

δi „ Bernp0.6q

xik „ Np2, 1q, for k “ 1, . . . , 3,

xi4 „

#

Np3, 1q, if δi “ 1

Np1, 1q, otherwise.
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Simulation Study

Simulation 1

Generate y from
1 OR1: yi “ 1 ` xi1 ` xi2 ` xi3 ` xi4 ` ei .
2 OR2: yi “ 1 ` 0.5xi1xi2 ` 0.5x2i3x

2
i4 ` ei .

where ei „ Np0, 1q.

The parameter of interest is θ “ EpY q.

Sample size n “ 5, 000 (with 5,000 simulation sample).
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Simulation Study

Simulation 1

Methods considered for computing the PS weights

1 The proposed information projection (IP) method using calibration
variable p1, x1, x2, x3, x4q.

2 Entropy balancing propensity score (EBPS) method of Hainmueller
(2012) using calibration variable p1, x1, x2, x3, x4q.

3 Covariate balancing propensity score method (CBPS) of Imai and
Ratkovic (2014) using calibration variable p1, x1, x2, x3, x4q.

4 Maximum likelihood estimator (MLE) with Bernoulli distribution with
parameter logitppi q “ xTi ϕ.
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Simulation Study

Figure: Boxplots with four estimators for four models under simulation study one:
(a) for OR1RM1, (b) OR1RM2, (c) for OR2RM1 and (d) for OR2RM2.
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Conclusion

Take-Home message

Density ratio estimation is a key component for propensity score
weighting:

ω˚pxq “ 1 ` c ¨ r˚pxq

where c “ N0{N1.

Proposal
1 Identify the linear function space H such that E pU | xq P H.
2 The I-projection justifies a parametric log-linear DR model

logtr˚pxqu P H

3 Model parameter can be used by calibration equation which means

r˚pxq P HK,

where HK is the orthogonal complement space of H.

Increasing the dimension of H may lose efficiency: penalization
technique can be used.
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Conclusion
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