SFU

Challenges and Strategies in Analysis of Administrative Health Data

X. Joan Hu

Department of Statistics and Actuarial Science Simon Fraser University, Canada *joanh@stat.sfu.ca*

Joint work with Rosychuk and Xiong

Presentation at BIRS Workshop 22w5010, UBC - Okanagan May 24, 2022

(日) (個) (注) (注) (三)

SFU

ж

Outline

1. Introduction

2. Large Administrative Health Data Analysis

3. Final Remarks

イロト イポト イヨト イヨト

Readily Available

- Canadian Provincial Medical Insurance Databases (Canadian Health Care System: Universally Accessible, Government-Sponsored)
- Disease/Patient Registries: e.g. BC Cancer Registry
- Vital Statistics: e.g. BC Vital Statistics
- Various EHRs (electronic health records): e.g. Lab Test Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Recent Administrative Records of Covid-19 Infection

Readily Available

- Canadian Provincial Medical Insurance Databases (Canadian Health Care System: Universally Accessible, Government-Sponsored)
- Disease/Patient Registries: e.g. BC Cancer Registry
- Vital Statistics: e.g. BC Vital Statistics
- Various EHRs (electronic health records): e.g. Lab Test Results
- Recent Administrative Records of Covid-19 Infection

Lots of Information

Affordable to be looked at (analyzed) from different perspectives, and answer various questions

\Longrightarrow Many attempts to use such data to achieve particular aims

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Challenges?

Large! BigData issues
 e.g. large in size and/or many variables

Challenges?

- Large! BigData issues
 e.g. large in size and/or many variables
- Administrative
 - not collected/recorded to serve a particular research purpose: Required to plan carefully for data extraction and analysis formulation e.g. what time origin to use?
 - incomplete/imperfect data: Available data are not in the ideal format

e.g. information only available on a target population within a time window: *left- and/or right-censoring; truncation; measurement error/misclassification*

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Example 1. Cancer Survivorship Research Program, BC Cancer Agency (BCCA), Canada (Phase I: 2004 - 2018, PI: *Mary McBride*; Phase II: 2019 - present, PI: *Stuart Peacock*)

- Started from the Childhood, Adolescent, Young Adult Cancer (CAYACS) Survivorship Program: risk classification, assessment, and prediction
- A longitudinal cohort study to examine long-term effect resulted from cancer, using linked data from the BC Health Insurance (MSP) and the BC Cancer Registry: e.g. hospitalization records, physician claims, diagnoses of other diseases

Example 2. Health Service Provided by Emergency Department (ED), University of Alberta, Canada (2009 - present; PI: *Rhonda Rosychuk*)

- Started with records of mental health (MH) related ED presentations by Alberta residents younger than 18 year-old, from the Ambulatory Care Classification System (ACCS, Alberta Health and Wellness)
- Having been expanded to include data from the Dynamic Cohort of Complex, High System Users developed by the Canadian Institute for Health Information (CIHI)

Example 3. Clinical Management of Opioid Use Disorder (OUD), BC Centre for Excellence in HIV/AIDS, Canada (2018 - present; PI: *Bohdan Nosyk*)

- Using seven linked population-level administrative databases: BC Health Insurance, Discharge Abstract Database, PharmaNet, BC Corrections, Vital Statistics, National Ambulatory Care Reporting System (NACRS), and Perinatal Database
- Aiming to emulate target trials to strengthen the evidence base for clinical management

Example 1. Cancer Survivorship Research Program, BC Cancer Agency (BCCA), Canada (Phase I: 2004 - 2018, PI: Mary McBride; Phase II: 2019 - present, PI: Stuart Peacock)

Ying (MSc 2006); Ma (MSc 2009); Wang (MSc 2012, PhD 2015); Zhao (PhD 2009); Li (PhD 2019)

Example 2. Health Service Provided by Emergency Department (ED), University of Alberta, Canada (2009 - present; PI: Rhonda Rosychuk)

Wang (MSc 2014); Thiessen (MSc 2020); Cui (Postdoc 2020); Xiong (Postdoc 2021); Chen (PhD 202x)

Example 3. Clinical Management of Opioid Use Disorder (OUD), BC Centre for Excellence in HIV/AIDS, Canada (2018 - present; PI: Bohdan Nosyk)

Kurz (MSc 2020); Thomson (PhD 202x)

 \Longrightarrow The administrative health data have generated many interesting statistical problems.

Example 1. Cancer Survivorship Research Program, BC Cancer Agency (BCCA), Canada (Phase I: 2004 - 2018, PI: Mary McBride; Phase II: 2019 - present, PI: Stuart Peacock)

Example 2. Health Service Provided by Emergency Department (ED), University of Alberta, Canada (2009 present; PI: Rhonda Rosychuk)

Example 3. Clinical Management of Opioid Use Disorder (OUD), BC Centre for Excellence in HIV/AIDS, Canada (2018 - present; PI: Bohdan Nosyk)

\implies To motivate and illustrate the following presentation

SFU

2. An Example for Analyses of Pediatric Mental Health Emergency Department (MHED) Visit Records

2.1 Formulation: Recurrent Events Data

2.2 Regression Analysis with Doubly-censored Data

- 2.3 Regression Analysis with Truncated Data
- 2.4 Analysis Outcomes

PMHC Program Based on Emergency Department Visits (2009 - present; PI: Rhonda Rosychuk)

Goal. To assess the need for pediatric mental health care and to improve the care system.

Data. Extracted from the Ambulatory Care Classification System (ACCS), a large, population-based database in Alberta, Canada, initiated in 1999 by the provincial health ministry.

Specific Aims.

- to evaluate frequency of children and youth's MHED visits
- to examine effects of risk factors/exposures, and identify important covariates and temporal changes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

PMHC Program Based on Emergency Department Visits (2009 - present; PI: Rhonda Rosychuk)

Goal. To assess the need for pediatric mental health care and to improve the care system.

Data. Extracted from the Ambulatory Care Classification System (ACCS), a large, population-based database in Alberta, Canada, initiated in 1999 by the provincial health ministry.

Specific Aims.

... ...

... ...

- to evaluate frequency of children and youth's MHED visits
- to examine effects of risk factors/exposures, and identify important covariates and temporal changes

 \implies Quick reaction: to conduct analysis of recurrent events

Available information to the PMHC Program?

The MHED data maintained at Rhonda Rosychuk's lab were extracted from *Alberta Health Care Insurance Plan*, including

all the records of MHED visits from Alberta residents aged younger than 18 year-old during (i) April 1 2002 - March 31 2011, and (ii) April 1 2010 - March 31 2017.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Available information to the PMHC Program?

The MHED data maintained at Rhonda Rosychuk's lab were extracted from *Alberta Health Care Insurance Plan*, including

- all the records of MHED visits from Alberta residents aged younger than 18 year-old during (i) April 1 2002 - March 31 2011, and (ii) April 1 2010 - March 31 2017.
- Each record includes
 - starting/ending date, time; age (in year) at service

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- triage level; discharge disposition
- sex; pSES; residence region
- birthdate if from April 1 2010 March 31 2017

Available information to the PMHC Program?

The MHED data maintained at Rhonda Rosychuk's lab were extracted from *Alberta Health Care Insurance Plan*, including

- all the records of MHED visits from Alberta residents aged younger than 18 year-old during (i) April 1 2002 - March 31 2011, and (ii) April 1 2010 - March 31 2017.
- Each record includes
 - starting/ending date, time; age (in year) at service
 - triage level; discharge disposition
 - sex; pSES; residence region
 - birthdate if from April 1 2010 March 31 2017

How to summarize/process the data to achieve the aims?

SFU

2.1 Formulation of Alberta Pediatric MHED Visits

Consider the individuals with MHED records as study units

Subject i:

▶ $N_i(t)$ – the cumulative count of the MHED visits upto time t

• $Z_i(t)$ – potential covariates at t

Consider the individuals with MHED records as study units

Subject i:

- ▶ $N_i(t)$ the cumulative count of the MHED visits upto time t
- Z_i(t) potential covariates at t

Questions before a meaningful statistical analysis ...

- What is an appropriate time?
- What is $Z_i(\cdot)$ to consider?
- What model to assume: it's appropriate; inference on it is meaningful and feasible to make with the current data?

◆□▶ ◆圖▶ ◆目▶ ◆目▶ 目: のへで

SFU

2.1A Formulation of Alberta Pediatric MHED Visits

To begin with, what information is available?

Focus on the individuals with MHED records, i = 1, ..., n

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

3

- Assume the individuals are independent
- Consider only external time-independent covariates

SEU

2.1A Formulation of Alberta Pediatric MHED Visits

To begin with, what information is available?

- Focus on the individuals with MHED records, i = 1, ..., n
- Assume the individuals are independent
- Consider only external time-independent covariates

For Subject *i*, consider *age* as the individual time:

- N_i(a), a > 0: the cumulative count of Subject i's MHED visits since birth at age a > 0
- Z_i: all the time-indpt covariates of interest

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ の ・

Further ...

- ▶ The data extraction window in the calendar time: $[W_L, W_R]$
- The information available on Subject *i* is over the window in age: (C_{Li}, C_{Ri})

• $C_{Li} = \max(0, W_L - B_i), C_{Ri} = \min(18, W_R - B_i)$, birthdate B_i

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

► Available is the calendar time of Subject *i*'s *j*th recorded ED visit (*T_{ij}*) but the age *A_{ij}* = *T_{ij}* − *B_i* is recorded in years.

Further ...

- ▶ The data extraction window in the calendar time: $[W_L, W_R]$
- The information available on Subject *i* is over the window in age: (C_{Li}, C_{Ri})

• $C_{Li} = \max(0, W_L - B_i), C_{Ri} = \min(18, W_R - B_i)$, birthdate B_i

► Available is the calendar time of Subject *i*'s *j*th recorded ED visit (*T_{ij}*) but the age *A_{ij}* = *T_{ij}* − *B_i* is recorded in years.

Further ...

- ▶ The data extraction window in the calendar time: $[W_L, W_R]$
- The information potentially available on Subject *i* is over the window in age: (C_{Li}, C_{Ri})

• $C_{Li} = \max(0, W_L - B_i), C_{Ri} = \min(18, W_R - B_i)$, birthdate B_i

► Available is the calendar time of Subject *i*'s *j*th recorded ED visit (*T_{ij}*) but the age *A_{ij}* = *T_{ij}* − *B_i* is recorded in years.

Provided all *B_i* **available**, the available data are *doubly-censored*:

$$\bigcup_{i\in\mathcal{O}_1}\left[\left\{dN_i(a):a\in(C_{Li},C_{Ri}]\right\};Z_i\right]$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Further ...

- ▶ The data extraction window in the calendar time: $[W_L, W_R]$
- The information potentially available on Subject *i* is over the window in age: (C_{Li}, C_{Ri})

• $C_{Li} = \max(0, W_L - B_i), C_{Ri} = \min(18, W_R - B_i)$, birthdate B_i

► Available is the calendar time of Subject *i*'s *j*th recorded ED visit (*T_{ij}*) but the age *A_{ij}* = *T_{ij}* − *B_i* is recorded in years.

Provided all *B_i* **available**, the available data are *doubly-censored*:

$$\bigcup_{i\in\mathcal{O}_1}\left[\left\{dN_i(a):a\in(C_{Li},C_{Ri}]\right\};Z_i\right]$$

If *B_i* **unavailable?** the available data are *doubly-censored with missing/coarsened censoring time*:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

•
$$C_{Li} = \max(0, W_L - ???), C_{Ri} = \min(18, W_R - ???)$$

2.1B Formulation of Alberta Pediatric MHED Visits Note that study subjects associated with the PMHC database form a sample (\mathcal{O}_1) from a *biased* sub-population (\mathcal{P}_1) of the general population (\mathcal{P}), a sample of which the Alberta residents under 18-year-old during 2002-2017 form (\mathcal{O}).

The available MHED visits are truncated data when P is targeted.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

How to make inference with the data?

2.1B Formulation of Alberta Pediatric MHED Visits Note that study subjects associated with the PMHC database form a sample (\mathcal{O}_1) from a *biased* sub-population (\mathcal{P}_1) of the general population (\mathcal{P}), a sample of which the Alberta residents under 18-year-old during 2002-2017 form (\mathcal{O}).

The available MHED visits are truncated data when P is targeted.

How to make inference with the data?

Instead of modeling the truncation, following Hu and Lawless (1996),

▶ to use the available information on $\mathcal{O}_0 = \mathcal{O} \setminus \mathcal{O}_1$: subjects in \mathcal{O}_0 did not experience any MHED during 2002-2017 $\left[\bigcup_{i \in \mathcal{O}} \left[\{ dN_i(a) : a \in (C_{Li}, C_{Ri}] \}; Z_i \right] \right] \bigcup \left[\bigcup_{i \in \mathcal{O}} \left\{ dN_i(a) = 0 : a \in (C_{Li}, C_{Ri}] \right\} \right]$ **2.1B Formulation of Alberta Pediatric MHED Visits** Note that study subjects associated with the PMHC database form a sample (\mathcal{O}_1) from a *biased* sub-population (\mathcal{P}_1) of the general population (\mathcal{P}), a sample of which the Alberta residents under 18-year-old during 2002-2017 form (\mathcal{O}).

► The available MHED visits are *truncated data* when *P* is targeted.

How to make inference with the data?

Instead of modeling the truncation, following Hu and Lawless (1996),

- ▶ to use the available information on $\mathcal{O}_0 = \mathcal{O} \setminus \mathcal{O}_1$: subjects in \mathcal{O}_0 did not experience any MHED during 2002-2017 $\Big[\bigcup_{i \in \mathcal{O}_1} \big[\{ dN_i(a) : a \in (C_{Li}, C_{Ri}] \}; Z_i \big] \Big] \bigcup \Big[\bigcup_{i \in \mathcal{O}_0} \{ dN_i(a) = 0 : a \in (C_{Li}, C_{Ri}] \} \Big]$
 - ► to integrate with the available demograhic information (on Z) of O.

2.1C Formulation: A Two-sample Problem

To explore temporal changes in frequency of children and youth's MHED visits and the associated effects of risk factors/exposures, \implies

Focus on comparisons of MHED visits 2002-2010 (early decade)) vs MHED visits 2010-2017 (late decade) via

- (i) the *doubly-censored* recurrent events data in §2.2, targeting on P₁;
- ► (ii) the *truncated* recurrent events data integrated with population based demographic information in §2.3, targeting on *P*;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

2.1C Formulation: A Two-sample Problem

To explore temporal changes in frequency of children and youth's MHED visits and the associated effects of risk factors/exposures, \implies

Focus on comparisons of MHED visits 2002-2010 (early decade)) vs MHED visits 2010-2017 (late decade) via

- (i) the *doubly-censored* recurrent events data in §2.2, targeting on P₁;
- ► (ii) the *truncated* recurrent events data integrated with population based demographic information in §2.3, targeting on *P*;

For Subject $i \in \mathcal{P}^*$ (the target population), assume a marginal model (cf: Hu and Rosychuk, 2016):

$$E[dN_i(a)|Z_i, X_i] = exp\{\alpha(a)X_i + \beta'(a)Z_i + \gamma'(a)Z_iX_i\}d\Lambda_0(a),$$

For Subject $i \in \mathcal{P}^*$ (the target population),

$$E[dN_i(a)|Z_i, X_i] = \exp\{\alpha(a)X_i + \beta'(a)Z_i + \gamma'(a)Z_iX_i\}d\Lambda_0(a), (1)$$

 X_i is the indicator of Subject *i* from late decade.

Remarks:

Model (1) is equivalent to

$$E[dN_i(a)|Z_i, X_i] = \begin{cases} \exp\{\beta'_E(a)Z_i\}d\Lambda_{0E}(a), & i \text{ with early decade} \\ \exp\{\beta'_L(a)Z_i\}d\Lambda_{0L}(a), & i \text{ with late decade} \end{cases}$$
$$\beta_E(a) = \beta(a), \ \Lambda_{0E}(a) = \Lambda_0(a), \ \beta_L(a) = \beta(a) + \gamma(a), \text{ and} \\ d\Lambda_{0L}(a) = \exp(\alpha(a))d\Lambda_0(a). \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

For Subject $i \in \mathcal{P}^*$ (the target population),

$$E[dN_i(a)|Z_i, X_i] = \exp\{\alpha(a)X_i + \beta'(a)Z_i + \gamma'(a)Z_iX_i\}d\Lambda_0(a), (1)$$

 X_i is the indicator of Subject *i* from late decade.

Remarks:

Model (1) is equivalent to

$$E[dN_i(a)|Z_i, X_i] = \begin{cases} \exp\{\beta'_E(a)Z_i\}d\Lambda_{0E}(a), & i \text{ with early decade} \\ \exp\{\beta'_L(a)Z_i\}d\Lambda_{0L}(a), & i \text{ with late decade} \end{cases}$$
$$\beta_E(a) = \beta(a), \ \Lambda_{0E}(a) = \Lambda_0(a), \ \beta_L(a) = \beta(a) + \gamma(a), \text{ and} \\ d\Lambda_{0L}(a) = \exp(\alpha(a))d\Lambda_0(a). \end{cases}$$

We may choose to consider different specifications of Model (1): e.g. Model CCC is α(a) ≡ α, β(a) ≡ β, γ(a) ≡ γ ⇒ the proportional mean/rate (Andersen and Gill) model.

2.2 Analysis of Doubly-censored Recurrent Events

Data with $\mathcal{P}^* = \mathcal{P}_1$

Provided available birthdates and independent subjects, consider the estimating functions under Model (1): for $a \in [\tau_L, \tau_R]$,

$$U(\phi(a); a | \mathbf{B}) = \int_{0}^{18} K_h(u-a) \sum_{i \in \mathcal{O}_1} Y_i(u|B_i) \{ V_i^*(u,a) - \bar{V}^*(\phi(a); u, a) \} dN_i(u)$$

$$\begin{split} \phi(a) &= \left(\theta(a)^{'}, \dot{\theta}(a)^{'}\right)^{'} \text{ with } \theta(\cdot) = \left(\alpha(\cdot), \beta(\cdot)^{'}, \gamma(\cdot)^{'}\right)^{'}; \text{ a kernel function } \mathcal{K}(\cdot);\\ V_{i}^{*}(u, a) &= \left(V_{i}^{'}, (u-a)V_{i}^{'}\right)^{'} \text{ with } V_{i} = \left(X_{i}, Z_{i}^{'}, X_{i}Z_{i}^{'}\right)^{'};\\ \bar{V}^{*}(\phi(a); u, a) &= S^{(1)}(\phi(a); u, a)/S^{(0)}(\phi(a); u, a) \text{ with }\\ S^{(q)}(\phi(a); u, a) &= \sum_{i \in \mathcal{O}_{1}} Y_{i}(u) \left[V_{i}^{*}(u, a)\right]^{q} \exp\{\phi(a)V_{i}^{*}(u, a)\} \end{split}$$

Remarks:

- following Hu and Rosychuk (2016) to accommodate the situations without birthdates by assuming birthdates uniformly distributed over a year.
- checking for the required independence assumption for the two groups.

2.3 Analysis of Truncated Recurrent Events Data with $\mathcal{P}^*=\mathcal{P}$

By the available Alberta census information during 2022-2017, consider the estimating functions under Model (1): for $a \in [\tau_L, \tau_R]$,

$$U(\phi(a); \mathbf{a} | \mathbf{B}) = \int_0^{18} K_h(u-a) \sum_{i \in \mathcal{O}} Y_i(u|B_i) \left\{ V_i^*(u,a) - \tilde{\bar{V}}^*(\phi(a); u, a) \right\} dN_i(u),$$

where
$$\bar{V}^{*}(\phi(a); u, a)$$
 is an approximation to
 $\bar{V}^{*}(\phi(a); u, a) = \frac{\sum_{m \in \mathcal{O}} Y_{m}(u|B_{m})V_{m}^{*}(u, a) \exp\{\phi'(a)V_{m}^{*}(u, a)\}}{\sum_{m \in \mathcal{O}} Y_{m}(u|B_{m}) \exp\{\phi'(a)V_{m}^{*}(u, a)\}}.$

 $\phi(a) = (\theta(a)', \dot{\theta}(a)')' \text{ with } \theta(\cdot) = (\alpha(\cdot), \beta(\cdot)', \gamma(\cdot)')', \text{ and } V_{i}^{*}(u, a) = (V_{i}', (u - a)V_{i}')' \text{ with } V_{i} = (X_{i}, Z_{i}', X_{i}Z_{i}')'.$

Remarks:

- the approximation by the aggregated population information?
- asymptotic properties of the estimator?

2.4 Analysis Outcomes

Estimates for Time-independent Coefficients

TABLE: Parameter estimates and estimated standard errors of time-independent covariate effects with Model CCC^a with PMHC data

	Covariates	wrt \mathcal{P}_1	wrt ${\cal P}$
α	Period	.282(.020)	.605(.020)
β	Sex (vs. female)	049(.016)	414(.016)
	Edmonton (vs. other regions)	.050(.021)	225(.019)
	Calgary (vs. other regions)	.003 (.019)	387(.019)
γ	PeriodSex	058(.023)	124(.023)
	PeriodEdmonton	.003(.029)	080(.029)
	PeriodCalgary	.015(.026)	.196(.026)

Model CCC^a: $E[dN_i(a)|Z_i, X_i] = \exp(\alpha X_i + \beta' Z_i + \gamma' Z_i X_i) d\Lambda_0(a).$

SFU

э

2.4 Analysis Outcomes

Estimates for Time-independent Coefficients (cont'd)

TABLE: Parameter estimates and standard errors for time-independent covariate effects with Model VCC^b with data from the two time periods

	Covariates	wrt \mathcal{P}_1	wrt ${\cal P}$
α^*	Period	-	-
β	Sex (vs. female)	049(.016)	410(.015)
	Edmonton (vs. other regions)	.051(.021)	218(.019)
	Calgary (vs. other regions)	.004(.019)	385(.018)
γ	PeriodSex	055(.020)	130(.020)
	PeriodEdmonton	.001(.029)	089(.025)
	PeriodCalgary	.015(.026)	.198(.022)

Model VCC^b: $E[dN_i(a)|Z_i, X_i] = \exp(\alpha(a)X_i + \beta'Z_i + \gamma'Z_iX_i)d\Lambda_0(a).$

・ロト ・ 雪 ト ・ ヨ ト

*: time-varying model components.

2.4 Analysis Outcomes: $\alpha(\cdot)$ Estimates with Models CCC, VVV

Coefficient estimates for Period

(a) the MHED cohort ($\mathcal{P}^* = \mathcal{P}_1$); (b) the Alberta residents ($\mathcal{P}^* = \mathcal{P}$)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● のへの

2.4 Analysis Outcomes: Estimates of $\beta_E(\cdot)$ and $\beta_L(\cdot)$ (*Sex*) with Models CCC, VVV – (a) MHED cohort ($\mathcal{P}^* = \mathcal{P}_1$); (b) Alberta residents ($\mathcal{P}^* = \mathcal{P}$)

▲口▶ ▲□▶ ▲□▶ ▲□▶ 三回 のなで

SEU

ж

3. Final Remarks: What have we done for the PMHC program?

This project has conducted

- ► useful summary of the MHED data (from O₁), and then O.
- statistical inference on P₁, and then P if O₁/O forms a random sample.
- What if O₁ or O is not a random sample of the target population?

・ロト ・ 雪 ト ・ ヨ ト

SEU

3. Final Remarks: What have we done for the PMHC program?

This project has conducted

- useful summary of the MHED data (from O₁), and then O.
- statistical inference on P₁, and then P if O₁/O forms a random sample.
- What if O₁ or O is not a random sample of the target population?

With $\mathcal{D} = \{X_1, \ldots, X_n\}$,

- to calculate the sample mean $\bar{X} = \sum_{i=1}^{n} X_i / n$ to summarize \mathcal{D} .
- If D is a random sample of the target population P with mean μ, one may use X̄ to estimate μ and form μ's (approximate) confidence interval.

What if not?

3. Final Remarks: What have we done for the PMHC program?

This project has conducted

- useful summary of the MHED data (from O₁), and then O.
- statistical inference on P₁, and then P if O₁/O forms a random sample.
- What if O₁ or O is not a random sample of the target population?

With $\mathcal{D} = \{X_1, \ldots, X_n\}$,

- to calculate the sample mean $\bar{X} = \sum_{i=1}^{n} X_i / n$ to summarize \mathcal{D} .
- If D is a random sample of the target population P with mean μ, one may use X̄ to estimate μ and form μ's (approximate) confidence interval.
- What if not? e.g. inverse probability weighted estimator

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - つう

... ...

3. Final Remarks: Whatelse to do for the PMHC program?

Many interesting issues to further explore:

- What if $B_i \not\sim$ the uniform distn?
- Use alternative models to the proportional type regression models? e.g. to consider intensity-based modeling
- How to explore and account for spatio-temopral correlation underlying the MHED visits?
- Consider different study units, such as health regions/sub-regions, and calendar time, to explore the visits spatio-temporally?

3. Final Remarks: Large Administrative Health Data

Readily Available

Lots of Information

Affordable to be looked at/analyzed from different perspectives, to answer many interesting questions

Challenges = Interesting/Not Boring

- Large! BigData issues
- Administrative! not collected/recorded to serve a particular research purpose

To Use Administrative Data

- Careful design/plan is required for extraction.
- When analyzing administrative data,
 - account for their special features appropriately, and
 - consider to use available additional information ⇒ efficient, robust, easy-to-implement procedures

SEU

э

Acknowledgements

The key part of the presentation is based on a recent joint work with *R. Rosychuk* (Univ of Alberta) and *Y. Xiong* (Fred Hutchinson Cancer Research Center), sponsored by NSERC and CIHR: Xiong, Hu, and Rosychuk (2022).

A comment from *Jerry Lawless* on a previous version of the presentation has led to a big modification of the work.

・ロト ・ 雪 ト ・ ヨ ト

Thank-you for the attention!

X. Joan Hu: Administrative Health Data

・ロト ・御 と ・ ヨ と ・ ヨ と

æ.

