Semiparametric Adaptive Estimation in Survey Sampling BIRS Workshop @ UBC Okanagan

Kosuke Morikawa

Jae Kwang Kim

May 24th, 2022

- Graduate School of Engineering Science, Osaka University, Japan Earthquake Research Institute, The University of Tokyo, Japan
 - This talk is joint work with

Department of Statistics, Iowa State University, U.S.A.

Brief Summary

- In survey sampling, some data are sampled according to inclusion
- valid statistical analysis
- However, classical weighting methods are unstable especially when the weights are extremely large
- We propose an estimator that attains the semiparametric efficiency bound by using a model on the weighting mechanism

probabilities instead of using all the data from the target population

• The inclusion probability (or weight) plays an important role to conduct

illustration of inclusion probability 2

Introduction

Proposed Estimator

Simulation

Real Data Analysis

Contents

Introduction

Proposed Estimator

Simulation

Real Data Analysis

Contents

i=1

- $\stackrel{\text{i.i.d.}}{\sim} F$ • Variables: $(X_i, Y_i, Z_i, W_i, \delta_i)_{i=1}^N$
 - Y: response variable
 - X: (interesting) covariate
 - Z: other covariates
 - W: inverse of inclusion probability
 - δ : sampling indicator takes 1 if data are sampled
 - *n*: size of sampled dataset
- Target: $E(Y), E(Y \mid x; \theta), f(y \mid x; \theta)$

Setup

We consider this setting in this talk

1				
7		• 1	l	
wn or				

Non-informative sampling (MAR)

$W \perp Y \mid (X, Z)$

Informative sampling (NMAR)

$W \measuredangle Y \mid (X,Z)$

We consider **informative sampling** in this talk

Sampling Mechanism

Example: The Canadian Workplace and Employee Survey (Fuller, 2009)

- We want to know the relationship between Payroll (Y) and total Employment (X)
- Size of population (*N*): 2029 workplaces
- Sampled size (*n*): 142 workplaces
 - Stratified sampling (3 strata) + simple random sampling with nonresponse adjustment
- Model:

 $Y \mid X = x \sim N(a + bx, \sigma^2), \quad \theta = (a, b, \sigma^2)^{\top}$

(Semiparametric) Z-estimator θ : Unique solution to $E\left\{U(X, Y; \theta)\right\} = 0$ $U(\cdot)$ depends on θ as follows...

Mean of response variable:

Outcome model:

Z-estimator

$\theta = E(Y) \Rightarrow U(X, Y; \theta) = \theta - Y$

Regression parameter: $\mu(X;\theta) = E(Y \mid X) \Rightarrow U(X,Y;\theta) = A(X) \{Y - \mu(X;\theta)\}$ arbitrary function

> $f(Y \mid X; \theta) \Rightarrow U(X, Y; \theta) = \frac{\partial}{\partial \theta} \log f(Y \mid X; \theta)$ $S_{\theta}(X, Y)$

Score function

Horvitz-Thompson Estimator

Horvitz-Thompson (HT) estimator: the solution to

$\sum W_i U(X_i, Y_i; \theta) = 0,$ i=1

where $E\{U(X, Y; \theta)\} = 0$

- The most well known method in survey sampling
- No additional assumptions are required
- Theoretical validity: Unbiased estimating equation \Rightarrow moment method

Available when N is unknown

Proof for Unbiasedness

 $E\left|\sum_{i=1}^{n} W_{i}U(X_{i}, Y_{i}; \theta)\right| = E\left|\sum_{i=1}^{N} \delta_{i}W_{i}U(X_{i}, Y_{i}; \theta)\right|$

 $= N \times E \left[U(X, Y; \theta) \right]$

= 0

 $= E \left[\sum_{i=1}^{N} P(\delta_i = 1 \mid X_i, Y_i, W_i) W_i U(X_i, Y_i; \theta) \right]$ W_i

- Smoothing weight: $\tilde{W} := E(W \mid x, y, \delta = 1)$
- Beaumont (2008, Biometrika) shows that using Winstead of Wis more efficient in the context of regression analysis
 - $\tilde{W}(x, y)$ is to be estimated
 - Misspecification of the model causes bias
- Kim and Skinner (2013, Biometrika) proposed an optimal weight in the same setup.

Smoothing Weight

There are possibilities that we can construct more efficient estimator than HT!!

- Let $f_1(y \mid x) = f(y \mid x, \delta = 1)$ and π
- Transformation of $f_1 \rightarrow f$

$$f_1(y \mid x) = f(y \mid x, \delta = 1) = \frac{f(y, \delta = 1 \mid x)}{P(\delta = 1 \mid x)} = \frac{f(y \mid x)\pi(x, y)}{\int f(y \mid x)\pi(x, y)dy}$$

• Transformation of $f \rightarrow f_1$

$$f(y \mid x) = \frac{f_1(y \mid x)\pi^{-1}(x, y)}{\int f_1(y \mid x)\pi^{-1}(x, y)}$$

$$r(x, y) = P(\delta = 1 \mid x, y)$$

dy

Conditional Maximum Likelihood (CML) for Outcome model

- Assume that
 - $f(y \mid x; \theta)$ is of our interest
 - response probability $\pi(x, y) = P(\delta = 1 \mid x, y)$ is known
- Then, the conditional maximum likelihood (CML) estimator is the efficient: the solution to

$$\sum_{i=1}^{n} S_{1,\theta}(X_i, Y_i) := \sum_{i=1}^{n} \frac{\partial \log f_1(Y_i)}{\partial \theta}$$
$$= \sum_{i=1}^{n} \left[S_{\theta}(X_i, Y_i) - \sum_{i=1}^{n} S_{\theta}(X_i, Y_i) - \sum_{i=1}^{n} S_{\theta}(X_i, Y_i) - S_{\theta}(X_i, Y_i) - S_{\theta}(X_i, Y_i) - S_{\theta}(X_i, Y_i) \right]$$

$$f_1(y \mid x) = f(y \mid x, \delta = 1) = \frac{f(y \mid x)\pi(x)}{\int f(y \mid x)\pi(x)}$$

$\frac{|X_i|}{|X_i|} = 0$

$$\frac{\int S_{\theta}(x, y) \pi(x, y) f(y \mid x; \theta) dy}{\int \pi(x, y) f(y \mid x; \theta) dy}$$

 $-E_1\{S_{\theta}(x, Y) \mid x; \theta\}$

How to Handle When $\pi(x, y)$ **is Unknown??**

Sverchkov and Pfeffermann (1999, Sankya B) shows that

$$E_{1}(W \mid x, y) = \int wf_{1}(w \mid x, y) dx$$
$$= \frac{\int wP(\delta = 1 \mid w)}{\int P(\delta = 1 \mid w)}$$
$$= \frac{1}{P(\delta = 1 \mid x, y)}$$

- If π is misspecified, the estimator causes bias

 $\frac{1}{w}$ v, x, y) $f(w \mid x, y)dw$ $(x, y)f(w \mid x, y)dw$ $=: - \pi(x, y)$

• π can be estimated by the regression W on (X, Y) with sampled data

Conditional Maximum Likelihood (CML)

Our Goal

Introduction

Proposed Estimator

Simulation

Real Data Analysis

Contents

i=1

- $\stackrel{\text{i.i.d.}}{\sim} F$ • Variables: $(X_i, Y_i, Z_i, W_i, \delta_i)_{i=1}^N$
 - Y: response variable
 - X: (target) covariate
 - Z: other covariates
 - W: inverse of inclusion probability
 - δ : sampling indicator takes 1 if data are sampled
 - *n*: size of sampled dataset $\sum \delta_i = n$
- Target: $E(Y), E(Y \mid x; \theta), f(y \mid x; \theta)$

Setup

We consider this setting in this talk

-				
1				
/ — <i>n</i>				
wn or Nown				

Key Idea: Regard W as a Random Variable

- $W^{-1} = P(\delta = 1 | X, Y, Z, W)$ is a probability (propensity score)
- However, we treat W as a random variable and construct a semiparametric model

$$\begin{aligned} f(x, y, z, w \mid \delta = 1; \theta, \eta_1, \eta_2, \eta_3) \\ &= \frac{P(\delta = 1 \mid x, y, z, w) f(z, w \mid x, y; \eta_1) f(y \mid x; \theta, \eta_3) f(x; \eta_2)}{\int P(\delta = 1 \mid x, y, z, w) f(z, w \mid x, y; \eta_1) f(y \mid x; \theta, \eta_3) f(x; \eta_2) dx dy dz dw} \\ &= \frac{w^{-1} f(z, w \mid x, y; \eta_1) f(y \mid x; \theta, \eta_3) f(x; \eta_2)}{\int w^{-1} f(z, w \mid x, y; \eta_1) f(y \mid x; \theta, \eta_3) f(x; \eta_2) dx dy dz dw} \qquad \qquad \theta \bigvee_{X \longleftarrow Z} V \bigoplus_{X \longleftarrow Z} V \end{aligned}$$

- η_1, η_2, η_3 : infinite dimensional nuisance parameters
- NOTE: If our interest is estimating outcome model $f(y \mid x; \theta)$, then $f(y \mid x; \theta) = f(y \mid x; \theta, \eta_3)$
- **Goal**: Estimate θ that is not affected by η_1, η_2, η_3

Lemma: Rotnitzky and Robins (1997, Stat. Med.)

Lemma 1. When N is known

The efficient score S_{eff} is given by

$$S_{\text{eff}} = \delta W D_{\text{eff}}^* + (1 - \delta W) \frac{E\{(W - 1)L\}}{E(W - 1)}$$

where $D_{eff}^* \in \Lambda^{F,\perp}$ is the unique solution to

$$\Pi\left(WD_{\text{eff}}^{*} - (W-1)\frac{E\{(W-1)D_{\text{eff}}^{*}\}}{E(W-1)}\right)$$

Then, the semiparametric efficiency bound for θ is $\{E(S_{\text{off}}^{\otimes 2})\}^{-1}$

- 1. Z-estimator: Solution to $E\{U(X, Y; \theta)\} = 0$ $\theta = E(Y) \implies U(X, Y; \theta) = \theta - Y$
- 2. Regression parameter: $\mu(X;\theta) = E(Y \mid X)$

3. Outcome model: $f(Y \mid X; \theta)$

Target Parameter

Semiparametic Efficiency Bound for θ with partially observed X

Theorem 1. When N is known

The efficient score for θ is

$$S_{\text{eff}} = \delta W D_{\text{eff}}^* + (1 - U_{\text{eff}})^*$$

where D^*_{eff} and c^*_{eff} are different according to the target parameters.

The semiparametric efficiency bound for θ is $\{E(S_{eff}^{\otimes 2})\}^{-1}$

- $\delta W c_{\rm eff}^*$, nted term

(i) $E\{U(X, Y; \theta)\} = 0$:

 $D_{\text{eff}}^* = U(\theta), \quad c_{\text{eff}}^* = \frac{E\{(W-1)U(\theta)\}}{E(W-1)}.$

(ii) $\mu(x; \theta) = E(Y \mid x)$

 $D_{\text{eff}}^* = A_{\text{eff}}^*(X) \{ \underline{Y - \mu(X; \theta)} \},$

where $A_{\text{eff}}^*(x) = \frac{1}{E(W\varepsilon^2 \mid x)} \left| E(W\varepsilon \mid x) c_{\text{eff}}^* \right|$

 $S_{\text{eff}} = \delta W D_{\text{eff}}^* + (1 - \delta W) c_{\text{eff}}^*$

$$\bar{\pi} = \bar{\pi}(x, y) = \frac{1}{E(W \mid x)}$$

$$c_{\text{eff}}^* = \frac{E\left[\frac{E(W\varepsilon \mid X)}{E(W\varepsilon^2 \mid X)} \frac{\partial}{\partial \theta} \mu(X;\theta)\right]}{E\left[E(W-1) - \frac{\{E(W\varepsilon \mid X)\}^2}{E(W\varepsilon^2 \mid X)}\right]},$$

$$_{\text{eff}}^{*} + \frac{\partial}{\partial \theta} \mu(x;\theta)$$

(iii) Outcome model $f(y \mid x; \theta)$:

$S_{\text{eff}} = \delta W D_{\text{eff}}^* + (1 - \delta W) c_{\text{eff}}^*$

$$\bar{\pi} = \bar{\pi}(x, y) = \frac{1}{E(W \mid x)}$$
$$-\frac{\bar{\pi}}{E(\bar{\pi} \mid x)} c_{\text{eff}}^{*}, \quad S_{\theta} = S_{\theta}(x, y) = \frac{\log f(y \mid x)}{\partial \theta}$$

$$\bar{\pi}(x, y)$$

and its conditional expectation
 $E(\bar{\pi} \mid x)$ and $E(\bar{\pi}S_{\theta} \mid x)$
are unknown functions

Remark. Z is Unnecessary

- Information of Z does NOT affect efficiency of θ at all
 - In missing data analysis, all the covariates that affect δ are required to be observed
 - However, in this case, observing W is enough to explain δ
- We do NOT need to sample Z even if it has an effect on W

Usual NMAR

Informative sampling

Example. Adaptive Estimator for E(Y)

• Estimating Equation:

$$\begin{split} \hat{E}_{\text{eff}}(\theta) &= \sum_{i=1}^{N} \left\{ \delta_{i} W_{i}(\theta - Y_{i}) + (1 - \delta_{i} W_{i}) \frac{E\{(W - 1)(\theta - Y)\}}{E(W - 1)} \right\} = 0 \\ \hat{\theta} &= \frac{1}{N} \sum_{i=1}^{N} \left\{ \delta_{i} W_{i} Y_{i} + (1 - \delta_{i} W_{i}) \frac{E\{(W - 1)Y\}}{E(W - 1)} \right\} \\ \uparrow \quad \text{Unknown value} \\ \frac{E\{(W - 1)Y\}}{E(W - 1)} &= \frac{E_{1}\{W(W - 1)Y\}}{E_{1}(W(W - 1))} \approx \frac{\sum_{\delta_{j}=1} W_{j}(W_{j} - 1)Y_{j}}{\sum_{\delta_{j}=1} W_{j}(W_{j} - 1)} \\ \end{bmatrix}$$

 $S_{\text{eff}} = \delta W D_{\text{eff}}^* + (1 - \delta W) c_{\text{eff}}^*, \quad U(\theta) = \theta - Y$

Working Models

- Consider an adaptive estimator for (c) $f(y \mid x; \theta)$
- - 1. $\bar{\pi}(x, y) = \{E(W \mid x, y)\}^{-1}$ We give a reasonable model later.

2.
$$E(\bar{\pi} \mid x) = \int \bar{\pi}(x, y) f(y \mid x; \theta) dy$$
 and

this function can be computed by

$$\hat{E}_{\mathrm{HT}}(\bar{\pi} \mid x) = \int \bar{\pi}(x, y) f(y \mid x; \hat{\theta}_{\mathrm{HT}}) \mathrm{d}y$$

The optimal estimating equation involves estimation of unknown functions:

 $E(\bar{\pi}S_{\theta} \mid x)$

Because θ is estimable with the Horvitz-Thompson estimator (say, $\hat{\theta}_{\rm HT}$),

- $X \sim \text{Beta}(\alpha, \beta) \Leftrightarrow 1 X \sim \text{Beta}(\alpha, \beta)$
- Assume that $W^{-1} | (x, y) \sim \text{Beta}(m(x, y)\phi, \{1 m(x, y)\}\phi)$
 - W^{-1} take values on (0, 1)

• Thus,
$$O := W - 1 = \frac{1 - W^{-1}}{W^{-1}} \sim$$

Parametric Model on W -1/2-

$$(\beta, \alpha) \Leftrightarrow \frac{1 - X}{X} \sim \text{Beta}'(\beta, \alpha)$$

Beta'($\{1 - m(x, y)\}\phi, m(x, y)\phi$)

- Distribution on $O \mid (x, y, \delta = 1)$
 - $f_1(o \mid x, y) \propto f(o \mid x, y)P(\delta = 1 \mid x, y, o) = f(o \mid x, y)\frac{1}{1 + o}$

$$= o^{\{1 - m(x, y)\}\phi - 1}(1 + o)^{-\phi} \cdot$$

- $\Rightarrow O \mid (x, y, \delta = 1) \sim \text{Beta'}(\{1 m(x, y, \delta = 1)\})$
- By using a property of the beta prime distribution,

$$E_1(W \mid x, y) = 1 + E_1(O \mid x, y) = -\frac{1}{m}$$

 $E(W \mid x, y) = 1 + E(O \mid x, y) = \frac{1}{m(x, y)\phi - 1}$

Parametric Model on *W* **–2/2–**

(W = O + 1)

$$(y) \{ \phi, m(x, y)\phi + 1 \}$$

$$\frac{1}{(x, y)};$$

$$\frac{\phi}{\phi} - 1$$

Parametric Model on W

Proposition 1.

Assume that $W^{-1} | (x, y) \sim \text{Beta}(m(x, y))$ Then, $W - 1 =: O | (x, y) \sim \text{Beta'}(\{1 - x, y\}) > W - 1 =: O | (x, y) > W - 1 =: O |$ $O \mid (x, y, \delta = 1) \sim \text{Beta'}(\{1 - 1\}) = 0$

- The assumption is essentially same as the beta regression model (Ferrari and Chibari-Neto, 2004, J. Appl. Stat.)
- By using the properties of beta prime distribution, we have $E_1(W \mid x, y) = 1 + E_1(O \mid x, y) =$ m(x, y)
 - $E(W \mid x, y) = 1 + E(O \mid x, y) = \frac{\phi}{m(x, y)\phi}$

$$E(W^{-1} | x, y) = m(x, y), V(W^{-1} | x, y) = \frac{m(x, y)\{1 + m(x, y)\}}{1 + \phi}$$

$$(y)\phi, \{1 - m(x, y)\}\phi, (x, y)\phi\}, (x, y)\phi, (x, y)\phi\}$$

$$\frac{-}{1}$$

Proposed Adaptive Estimator for (c) $f(y \mid x; \theta)$

- 1. Assume a parametric model on m(x, y), e $m(x, y; \beta) = \frac{\exp(\beta_0 + \beta_1 x + \beta_2)}{1 + \exp(\beta_0 + \beta_1 x + \beta_2)}$

3. Let
$$\bar{\pi}(x, y; \hat{\beta}, \hat{\phi}) = \frac{m(x, y; \hat{\beta})\hat{\phi} - 1}{\hat{\phi} - 1}$$

Solve the following estimating equation w.r.t.
$$\theta$$
 (say, $\hat{\theta}_{eff}$):
 $S_{eff}(\theta, \hat{\alpha}) := \frac{1}{n} \sum_{i=1}^{n} \left\{ \delta_i W_i \hat{D}_{eff}^*(X_i, Y_i; \theta, \hat{\alpha}) + (1 - \delta_i W_i) \hat{c}_{eff}^*(\hat{\alpha}) \right\},$

estimated ones.

e.g.

$$W^{-1} \mid (x, y) \sim \text{Beta}(m\phi, (1 - m\phi)) = \beta_2 y$$

2. Estimate (ϕ, β) by ML based on the likelihood on $f_1(o \mid x, y)$ (beta prime distribution)

where $\hat{\alpha} = (\hat{\beta}^{\top}, \hat{\phi}, \hat{\theta}_{HT}^{\top})^{\top}$ and $\hat{D}_{eff}^{*}(\theta, \hat{\alpha})$ and $\hat{c}_{eff}^{*}(\hat{\alpha})$ are obtained by replacing the unknown functions with the

Efficient Score When N is Unknown

- The efficient score when N is unknown is obtained by letting c_{eff}^* be 0
- For example, if the regression model is of our interest,
 - $S_{\text{eff}} = \delta W D_{\text{eff}}^* + (1 \delta W) \times 0,$
 - where $D_{\text{eff}}^* = A_{\text{eff}}^*(X) \{ Y \mu(X; \theta) \}$ and $A_{\text{eff}}^*(x) = \frac{1}{E(W\varepsilon^2 \mid x)} \frac{\partial}{\partial \theta} \mu(x; \theta)$

This is exactly same as the result of Kim and Skinner (2013, Biometrika)

Information					
N	N X		Regression	Outcome	- I focused on this in this talk
Known	Partial	✓	\checkmark	✓	$\rightarrow c_{\text{eff}}^*$: constan
Unknown	Partial	✓	Kim and Skinner (2013, Biometrika)		$\rightarrow c_{\text{eff}}^* \equiv 0$
Known	Complete				$\rightarrow c^*_{\text{eff}}$: function

Summary of Efficient Score

$S_{\text{eff}} = \delta W D_{\text{eff}}^* + (1 - \delta W) c_{\text{eff}}^*$

Extension to Strata Mixed Model

- If the sampling mechanism is stratified sampling, it would be stratum *h*, e.g.
 - $W^{-1} | (x, y, H = h) \sim \text{Beta}(m_h(x = h))$
- multinomial logit model
 - The parameters are computable by the EM algorithm
- We can compute $E(W \mid x, y)$ and $E_1(W \mid x, y)$ analogously

reasonable to assume that W^{-1} follows a beta distribution in each

$$(x, y)\phi_h, \{1 - m_h(x, y)\}\phi_h\}$$

• However, we need an additional model on $P(H = h \mid x, y)$ such as the

Large Sample Property of Proposed Estimator

Theorem 2.

Under some regularity conditions, $\hat{\theta}_{eff}$ has the following two properties:

(ii) even if all the working models are misspecified, $\hat{ heta}_{
m eff}$ has consistency and asymptotic normality. Let α be the parameter of the working models and $\tilde{\alpha}$ be the probability limit of α . Then, the asymptotic variance of $\hat{ heta}_{
m eff}$ is given by

$$V(\hat{\theta}_{\text{eff}}) = E\left\{\frac{\partial S_{\text{eff}}(\tilde{\alpha}, \theta^*)}{\partial \theta^{\top}}\right\}^{-1} E(S_{\text{eff}}^{\otimes 2}(\tilde{\alpha}, \theta^*))E\left\{\frac{\partial S_{\text{eff}}(\tilde{\alpha}, \theta^*)}{\partial \theta^{\top}}\right\}^{-1}$$

- Property (ii) insists robustness of $\hat{\theta}_{\mathrm{eff}}$ for model misspecification
- The asymptotic variance is independent of that of $\tilde{\alpha}$
- Model on m(x, y) can be nonparametric

- (i) if all the working models are correct, $\hat{\theta}_{eff}$ attains the semiparametric efficiency bound;

Semi- and Non-parametric Working Model

- Semparametric working model
- Nonparametric working model
 - By nonparametrically estimating $E_1(W \mid x, y)$ and $E_1(W^2 \mid x, y)$, we can estimate

$$\bar{\pi}(x,y) = \frac{1}{E(W \mid x, y)} = \frac{E_1(W \mid x, y)}{E_1(W^2 \mid x, y)}.$$

• We believe that we can show that estimators with above working models are also valid, but we have not finished to prove yet.

• We may keep assuming a beta regression, but with a nonparametric model on m(x, y)

Introduction

Proposed Estimator

Simulation

Real Data Analysis

Contents

- Setup:
 - $X \sim N\left[0, \frac{1}{\sqrt{2}^2}\right], Z \sim N\left[0, \frac{1}{\sqrt{2}^2}\right], Y \mid (x, z) \sim N\left[x z, \frac{1}{\sqrt{2}^2}\right]$
 - $W^{-1} \sim \text{Beta}(m(x, y)\phi, \{1 m(x, y)\}\phi) \text{ and } \phi = 2,500$
 - $\delta \mid w \sim \operatorname{Binom}(w^{-1})$
 - N = 5,000: size of a population
 - B = 1,000: number of iteration
- Model: $Y \mid x \sim N(a + bx, \sigma^2)$

Target parameter $\theta = (a, b, \sigma^2)^{\mathsf{T}}$; True value $\theta^* = (0, 1, 1)^{\mathsf{T}}$

- Scenarios for $\mu(x, y)$: $n \approx 200$ in all cases S1. (No dependency) $logit{m(x, y)} = -3.2$ S2. (Dependency) $logit{m(x, y)} = -3.4 + 0.3x + 0.5y$ $logit{m(x, y)} = -3.4 + 0.25x + 0.25z + 0.1y^{2}$ S3. (Misspecified)
- Parametric model on m(x, y): logit{m(x, y)} = $\alpha_0 + \alpha_1 x + \alpha_2 y$
- Methods:
 - CC: complete case analysis ($w_i \equiv 1$)
 - HT: Horvitz-Thompson type estimator CML: Conditional Maximum Likelihood

 - Eff_{reg}, Eff_{out}: Proposed estimator
 - reg: adaptive estimator for **reg**ression model
 - out: adaptive estimator for **out**come model

Boxplot for \hat{b} **in Scenario S1**

Scenario S1

Eff^{ij}

- *i*: *N* is known? (1/0)
- *j*: *X* is completely observed?(1/0)

Boxplot for \hat{b} **in Scenario S2**

Scenario S2

Estimates

Eff^{ij}

- *i*: *N* is known? (1/0)
- *j*: *X* is completely observed?(1/0)

Boxplot for \hat{b} **in Scenario S3**

Scenario S3

Eff^{ij}

- *i*: *N* is known? (1/0)
- *j*: *X* is completely observed?(1/0)

Introduction

Proposed Estimator

Simulation

Real Data Analysis

Contents

Example: The Canadian Workplace and Employee Survey

- We want to know the relationship between Payroll (Y) and total Employment (X)
- Size of population (*N*): 2029 workplaces
- Sampled size (*n*): 142 workplaces
 - Stratified sampling (3 strata) + simple random sampling with nonresponse adjustment
- Model:

 $Y \mid X = x \sim N(a + bx, \sigma^2), \quad \theta = (a, b, \sigma^2)$

Working model

• Mean function of $W^{-1} \mid (x, y, H = h)$: $m_h(x, y) = \beta_h \ (h = 1, 2, 3), \text{ where } 0 < \beta_h < 1$

• Mixture probability of strata:

$$P(H = h \mid x, y; \gamma)$$

=
$$\frac{I(h = 1) + I(h = 2)\exp(\gamma_0^{(1)} + \gamma_1^{(1)})}{1 + \exp(\gamma_0^{(1)} + \gamma_1^{(1)})}$$

 $\gamma_1^{(1)}y) + I(h = 3)\exp(\gamma_0^{(2)} + \gamma_1^{(2)}y)$ $y) + \exp(\gamma_0^{(2)} + \gamma_1^{(2)}y)$

Estimates for The Canadian Workplace and Employee Survey

Paramotor	Methods				
I arameter	$\mathbf{C}\mathbf{C}$	HT	$\mathrm{Eff}_{\mathrm{out}}^{11}$	-	
â	13.082	12.889	12.898	- ←	estimate
a	(0.0477)	(0.1140)	(0.0671)		estimated SE
î	0.907	0.931	0.931		
0	(0.0327)	(0.0532)	(0.0370)		
ĉ 2	0.316	0.299	0.295		
0	(0.0428)	(0.2030)	(0.0666)	_	

- Estimates of HT and Eff are very similar
- However, the standard error of Eff is much smaller than HT

Conclusion and Future Works

 In survey sampling, weights are known, but the information had NOT been fully utilized

- Our proposed estimator...
 - attains the semiparametric efficiency bound if the working models are correctly specified
 - is robust for misspecification of working models.
- Extension to nonparametric models of the working model

Shank YOU

