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Background
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Motivation

Recent developments in quantitative methods

All promise to fundamentally improve how we learn

Examples: causal inference, machine learning, big data

However, study design remains the foundation
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Definitions of Fusion Study Designs

Combine heterogeneous data sources to answer a question that
could not be answered (as well) by any subset2

Meta-analysis: combine ’similar’ studies to reduce random
error

Fusion: combine (possibly dissimilar) studies to reduce
systematic and random error

2Cole et al. Am J Epi (In-press)
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A Visual Analogy
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A Visual Analogy
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A Visual Analogy
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A Didactic Example
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Motivating Question

A collaborator asks us to help them estimate the mean of some
variable (Y ) for a defined population (S = 1). However, Y was
not measured in the target population.3

However, several sources of partially overlapping information are
available

So, under what assumptions could µ = E[Y |S = 1] be estimated?4

3This problem is a simplified version of transportability
4A variation of this is presented in Cole et al. (in-press) Am J Epidemiol
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Available Information
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Approach 1

Single data source: sample of S = 1

Y not measured

So can make no further progress

µ̂1 = ∅
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Approach 2

Single data source: sample of S = 2

Y not measured

Mismeasured Y , Y ∗, is available

Assumptions5

Y = Y ∗

E[Y |S = 1] = E[Y |S = 2]

µ̂2 = n−1
2

∑
i

I(Si = 2)Y ∗
i

5Webster-Clark & Breskin (2021) Am J Epidemiol
Paul Zivich Data Fusion 13



Approach 3

Single data source: sample of S = 3

Y and Y ∗ were measured

Assumptions

E[Y |S = 1] = E[Y |S = 3]

µ̂3 = n−1
3

∑
i

I(Si = 3)Yi
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Fusion (Approach 4)

All data sources

Sample of S = 1

Contribute W

Sample of S = 2

Contribute W,Y ∗

Measure of Y conditional on W

Sample of S = 3

Contribute Y, Y ∗

Account for measurement error

Not enough

Need to combine data sources
correctly
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Fusion: Identification

Link S = 1 and S = 2:

Conditional transportability assumptions6

E[Y |W,S = 1] = E[Y |W,S = 2]

Pr(S = 2|W = w) > 0 where Pr(S = 1|W = w) > 0

Link S = 2 and S = 3:

Non-differential measurement error

Pr(Y ∗ = y|Y = y) = Pr(Y ∗ = y|Y = y,W = w)

6Westreich et al. (2017) Am J Epidemiol
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Fusion: Estimation

M-estimator:7

n∑
i=1

ψ(Oi; θ̂) = 0

where Oi = {Si,Wi, Yi, Y
∗
i } and θ = (µ, η)

7See Stefanski & Boos (2002) Am Stat for an introduction
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Fusion: Estimation

Stacked estimating equation8

ψ(Oi; θ) =


I(Si = 3) Yi (Y

∗
i − η1)

I(Si = 3)(1− Yi) ((1− Y ∗
i )− η2)

I(Si 6= 3) (I(Si = 1)− expit(Wiβ))Wi

I(Si = 2)(Y ∗
i − η3)

1−expit(Wiβ)
expit(Wiβ)

µ(η1 + η2 − 1)− (η3 + η2 − 1)


Sandwich variance estimator to estimate the variance.

Automated computation9

8Measurement correction from Rogan & Gladen (1978) Am J Epidemiol
9Python: delicatessen (Zivich et al. (2022) arXiv), R: geex (Saul &

Hudgens (2020) J Stat Softw), SAS: PROC IML.
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Example
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Bridged Comparisons
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A Case Study

What is the risk difference at one-year of follow-up for AIDS,
death, or more than a 50% decline in CD4 count if everyone had
been assigned triple ART versus mono ART?

Data sources:

ACTG 320

Randomized trial comparing triple to dual ART

ACTG 175

Randomized trial comparing dual to mono ART

Target population: ACTG 320
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Default Approach

Transitive Comparison

Triple > Dual

Dual > Mono

∴ Triple > Mono

Appealing argument

Fundamentally underlies many comparisons

Often left implicit

Example: FDA approval following non-inferiority trial

Formalization

Network meta-analysis, counterfactual placebos
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Problem with Transitive Comparisons

Assumes ”similar” target populations

Marginal exchangeability between populations

Highly suspect assumption

Sample from different populations

Define endpoints differently

Different rates of loss to follow-up or adherence

How can we relax this assumption?
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Notation

Ai = {1, 2, 3}: ART regimens

T ai : potential time of the event under treatment a
Ti: time of the event under assigned Ai
Ci: time of censoring
T ∗
i = min(Ti, Ci), δi = I(Ti = T ∗

i )

Wi: set of baseline covariates
Vi: distinct set of baseline covariates
Si: population membership, {0, 1}

F as (t) = Pr(T a < t|S = s)
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Bridged Treatment Comparisons

Make the indirect comparisons explicit via fusion10

Estimand

ψ(t) = F 3
1 (t)− F 1

1 (t)

= F 3
1 (t)− F 1

1 (t) +
(
F 2
1 (t)− F 2

1 (t)
)

=
(
F 3
1 (t)− F 2

1 (t)
)
+
(
F 2
1 (t)− F 1

1 (t)
)

10See Breskin et al. (2021) SIM for details
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Identification: Triple vs Dual

F 3
1 (t)− F 2

1 (t)

Treatment
Ti = T ai for a = Ai

Pr(T a < t|S = 1) = Pr(T a < t|A = a, S = 1) for a ∈ {2, 3}

Pr(A = a|S = 1) > 0 for a ∈ {2, 3}

Censoring

Pr(T < t|A,W,S = 1) = Pr(T < t|C > t,A,W, S = 1)

Pr(C > T |A = a,W = w, S = 1) > 0 ∀ Pr(A = a,W = w|S = 1) > 0
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Estimation: Triple vs Dual

Inverse probability weighting estimator11

F̂ a320(t) = n−1
320

n∑
i=1

I(Ai = a)I(Si = 1)I(T ∗
i ≤ t)δi

Pr(Ai = a|Si = 1)πC(Wi, Ai, Si; α̂)

for a ∈ {2, 3}, where

n320 =

n∑
i=1

I(Si = 1)

πC(Wi, Ai, Si; α̂) = Pr(Ci > t|Wi, Ai, Si; α̂)

11Identification implies estimation hereafter following stability from
parametric or semiparametric restrictions. Estimation also requires correct
model specification
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Identification: Dual vs Mono

F 2
1 (t)− F 1

1 (t)

Similar identification assumption for treatment and censoring

Unwilling to assume trials are random samples of same
population

Transport12

Pr(T a < t|V, S = 1) = Pr(T a < t|V, S = 0)

Pr(S = 0|V = v) > 0 for all v where Pr(S = 1|V = v) > 0

12Simple transitivity arguments are the special case where V = ∅
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Estimation: Dual vs Mono

F̂ a175(t) = n̂−1
175

n∑
i=1

I(Ai = a)I(Si = 1)I(T ∗
i ≤ t)δi

Pr(Ai = a|Si = 1)πC(Wi, Ai, Si; α̂)
×1− πS(Vi; β̂)

πS(Vi; β̂)

for a ∈ {1, 2}, where

n̂175 =

n∑
i=1

I(Si = 0)
1− πS(Vi; β̂)
πS(Vi; β̂)

πS(Vi; β̂) = Pr(Si = 1|Vi; β̂)
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Application to ACTG

Implemented in Python 3.6+13

πC(Wi, Ai, Si; α̂)

Stratified Cox PH model & Breslow estimator

Stratified by trial and ART

W : age, gender, race, injection drug use, Karnofsky score

πS(Vi; β̂)

Logistic regression

V =W

13Using NumPy, SciPy, statsmodels
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A Testable Implication

Identification strategy for ψ required

F 2
1 (t)− F 2

1 (t) = 0

which implies

E
[
F̂ 2
320(t)

]
− E

[
F̂ 2
175(t)

]
= 0

Therefore, can compare the shared arms

If non-zero then at least one assumption is wrong

Ways to assess

Graphically14

Numerically via a permutation test based on area between the
risk functions

14Twister plot as described in Zivich et al. (2021) Am J Epidemiol
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Testable Implication: Naive

Paul Zivich Data Fusion 32



Testable Implication: transported
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The Distinction

ACTG 175

ACTG 320
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Baseline CD4 counts
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Testable Implication: transported and CD4 restricted
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Estimation: Triple vs Mono

Estimator for parameter of interest15

ψ̂(t) =
(
F̂ 3
320(t)− F̂ 2

320(t)
)
+
(
F̂ 2
175(t)− F̂ 1

175(t)
)

15Variance estimator proposed in Breskin et al. (2021) SIM
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Comparison of interest
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Summary

Bridged comparisons offer

Comparisons across trials

Analytical corrections for differences

A testable condition

Paul Zivich Data Fusion 39



Future Work and Extensions
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Ongoing Applications

Pre-exposure prophylaxis for the prevention of HIV

TAF/FTC vs Placebo

Alternative tenofovir pro-drug
Comparison

DISCOVER (TAF/FTC vs. TDF/FTC)
iPrEx (TDF/FTC vs. Placebo)

LA-CAB vs Placebo

Long-acting injectible
Comparison

HPTN-083 (LA-CAB vs. TDF/FTC)
iPrEx (TDF/FTC vs. Placebo)
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Statistical Models
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Other Extensions

Nested studies

Measurement error

Other corrective approaches

Diverse data sources

Subject-matter knowledge

Semi-Bayes

Pharmacokinetic data
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Questions
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Supplement
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Didactic Simulation: Setup

Pr(Y |W,V ) = logit(−0.5 + 2W − V − 2WV + ε)

Pr(Y ∗|Y ) = 0.80X + (1− 0.95)(1−X)
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Didactic Simulation: Results
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