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Problem Statement

Pre-election polling has had some negative press lately. . .
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Problem Statement

The Problem with Pre-Election Polls

2020 U.S. presidential polls had highest error in 40 years – a “failure”

Many issues from 2016 do not appear to be the problem
I Late deciders / Changes in voting intention – not an issue in 2020

(early voting helped)
I Failing to account for educational differences when reweighting for

nonresponse/noncoverage – done for most state-level 2020 polls

Typical polls, though probability samples, have very low response rates
(e.g., 4.5-6.5%)

Weighting adjustments assume selection/response is at random,
conditional on the variables used to compute the weights

But. . . in 2020 might Trump supporters have been likely to answer a
pre-election poll, even conditional on demographic characteristics?
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Problem Statement

The Problem with Pre-Election Polls

AAPOR Task Force report on 2020 Pre-Election Polling conclusion:
“The Democrats/Republicans who responded had different opinions than
those who did not (within-party nonresponse)” (AAPOR 2020, p.71)

Non-ignorable missing data / sample selection!
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Problem Statement

Problem Statement

Goal: Estimate population proportion from non-probability sample
(or probability sample with low response rate)
→ Proportion voting for Trump

Problem: Potential for selection bias due to non-ignorable
selection/nonresponse mechanisms

Ignorable: probability of selection depends on
observed characteristics
Non-ignorable: probability of selection depends on
unobserved characteristics

→ Response to poll might depend on candidate preference

Approach: Use a model-based index of selection bias, MUBP (φ),
that allows assessment of potential selection bias in
proportion estimates (Andridge et al. 2019)

→ Sensitivity analysis allowing non-ignorable selection
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Problem Statement

Definitions/Notation

Notation:

Y = (y1, . . . , yN ) = survey data for each unit in pop. i = 1, . . . , N
I Y = (Yinc, Yexc) for units included, excluded from sample

Z = set of fully observed auxiliary or design variables
(known for units both in and out of the sample)

S = (S1, . . . , SN ) = selection indicator

Joint distribution:

fY,S(Y, S|Z, θ, ξ) =

inference target︷ ︸︸ ︷
fY (Y |Z, θ) fS|Y (S|Y,Z, ξ)︸ ︷︷ ︸

selection mechanism
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Problem Statement

Definitions/Notation

Probability sampling = “extremely” ignorable selection

Selection may depend on Z but not Y (Yinc or Yexc)

Inclusion in sample is independent of Y and any unobserved variables

fS|Y (S|Y,Z, ξ) = fS|Y (S|Z) (no ξ!)

Thus inference for θ can ignore distribution of S. . .

if there is no nonresponse!

Non-probability sampling1 = might be non-ignorable selection

Selection may depend on Yexc, i.e., something unobserved

fS|Y (S|Y,Z, ξ) necessary for inference about θ

Hard (impossible?) to model S – can we quantify the potential
selection bias arising from ignoring the selection mechanism?

1or probability sample with nonresponse
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Problem Statement

Previous Work

Some methods exist for attempting to assess a sample’s representativeness
(and thus hint at selection bias)

R-indicator – function of response propensities; agnostic about the
survey variables of interest (Schouten et al. 2009)

H1 indicator – based on survey variables of interest, but assumes
ignorable selection mechanism (Särndal and Lundstrom 2010)

I Assumes fS|Y (S|Y,Z, ξ) = fS|Y (S|Yinc, Z, ξ)
I Not as “extremely” ignorable as probability sampling, but still ignorable
I Do not need to specify distribution for S for inference about θ

SMUB(φ) – newly proposed index allowing for non-ignorable
selection; provides range of potential selection bias for estimating
means (continuous Y ) (Little et al. 2020)

SMUB(φ) close to what we want – but for proportions
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Illustrative Example: NSFG “Population”

Illustrative Example: National Survey of Family Growth

(Fake) Population = entire NSFG sample (N = 19, 800)

Selected sample = all smartphone users (n = 15, 923)
I Note high selection fraction (≈80%) – atypical for non-prob sample

Outcome of interest = Never married (by gender2)

We know the true selection bias in this artificial example

Females Males
Population proportion 0.468 0.566
Selected sample proportion 0.466 0.555
True bias −0.002 −0.011

Manski bounds∗ of bias (−0.098, 0.085) (−0.094, 0.118)
*assume all non-selected are 1s, all non-selected are 0s

Can we do better than the Manski bounds?

2
Note: NSFG only captures gender as a binary variable
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Illustrative Example: NSFG “Population”

Available Data

Assume we have microdata for selected cases:
I Y = binary variable of interest = never married
I Z = auxiliary variables = age, race, education, etc.

Assume we have summary statistics on Z for non-selected cases
I Mean (vector) and Variance (matrix) of Z
I In practice, could come from Census, large probability sample, etc.
I If instead we have summary statistics of Z for population, could

“back-out” the non-selected mean/variance
I If we don’t have variance, could assume it’s the same as among

selected cases
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Measure of Unadjusted Bias for Proportions, MUBP(φ)

Index of Selection Bias: MUBP (φ)

Measure of Unadjusted Bias for a Proportion, MUBP(φ)

Extension of SMUB(φ) of Little et al. (2020) (for means)
to binary Y (proportions) (Andridge et al. 2019)

I Based on pattern-mixture models
I Makes explicit assumption(s) about distribution of S
I Provides sensitivity analysis to assess range of bias under different

assumptions about S

Basic idea:
I We can measure the degree of selection bias present in Z
I If Y is correlated with Z, then this tells you something about the

potential selection bias in Y
I Use pattern-mixture models to explicitly model non-ignorable selection

(i.e., selection dependent on Y )
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Measure of Unadjusted Bias for Proportions, MUBP(φ)

MUBP (φ): Theory

Y = binary variable of interest, only available for selected sample
I Woman (Man) has never been married

Z = auxiliary variables, available for selected cases and in aggregate
for non-selected sample

I Age, race, education, marital status, region, income, kids in HH

U = underlying normally distributed unobserved latent variable
I Y = 1 when U > 0

X = “proxy” for Y
I Constructed from probit regression of Y on Z for selected cases

(linear predictor from the regression)
I Available for selected cases and in aggregate for non-selected sample

S = selection indicator (i.e., S = 1 for smartphone users)

V = other covariates, independent of Y and X (may be related to S)
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Measure of Unadjusted Bias for Proportions, MUBP(φ)

MUBP (φ): Theory

Assume a proxy pattern-mixture model 3 for U and X given S:

(U,X|S = j) ∼ N2

[µ(j)u
µ
(j)
x

]
,

 σ
(j)
uu ρ

(j)
ux

√
σ
(j)
uuσ

(j)
xx

ρ
(j)
ux

√
σ
(j)
uuσ

(j)
xx σ

(j)
xx


S ∼ Bernoulli(π)

To identify this model, assume selection into the sample
is a function of V and a linear combination of X and U :

Pr(S = 1|U,X, V ) = f((1− φ)X∗ + φU, V )

I φ ∈ [0, 1] is a sensitivity parameter (no info in data about it)

I X∗ = X

√
σ
(1)
uu /σ

(1)
xx = rescaled proxy X

3
Andridge and Little 2011,2020
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MUBP (φ): Theory
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S ∼ Bernoulli(π)

WLOG set σ
(1)
uu = 1 (latent variable scale)

Marginal mean of Y is target of inference:

µy = Pr(Y = 1) = Pr(U > 0) = πΦ
(
µ(1)u

)
︸ ︷︷ ︸

sel. prop.

+(1− π) Φ

(
µ(0)u

/√
σ
(0)
uu

)
︸ ︷︷ ︸

non-sel. prop.

Key parameter: ρ
(j)
ux = biserial correlation of binary Y and X

I Quantifies how related Y and X (Z) are
I Can estimate ρ

(1)
ux using selected sample
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µy = Pr(Y = 1) = Pr(U > 0) = πΦ
(
µ(1)u

)
︸ ︷︷ ︸

sel. prop.

+(1− π) Φ

(
µ(0)u

/√
σ
(0)
uu

)
︸ ︷︷ ︸

non-sel. prop.

Key parameter: ρ
(j)
ux = biserial correlation of binary Y and X

I Quantifies how related Y and X (Z) are
I Can estimate ρ

(1)
ux using selected sample
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Measure of Unadjusted Bias for Proportions, MUBP(φ)

MUBP (φ): Theory

Non-identifiable parameters of pattern-mixture model
{
µ
(0)
u ,σ

(0)
uu ,ρ

(0)
ux

}
are just identified by selection mechanism assumption

Pr(S = 1|U,X, V ) = f((1− φ)X∗ + φU, V )

Selected value of sensitivity parameter φ determines selection
mechanism:

I φ = 0→ Pr(S = 1|U,X, V ) = f(X∗, V )
F Ignorable selection
F Only depends on observed X and V (not U or Y )

I φ = 1→ Pr(S = 1|U,X, V ) = f(U, V )
F “Extremely” Non-ignorable selection
F Depends entirely on unobserved U (and thus Y ) and V (not X)

I 0 < φ < 1→ Pr(S = 1|U,X, V ) = f((1− φ)X∗ + φU, V )
F Non-ignorable selection
F Depends (at least) partially on unobserved U (and thus Y ) and V
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Measure of Unadjusted Bias for Proportions, MUBP(φ)

MUBP (φ): Theory

For a specified φ we can estimate µy and compare to

selected sample proportion µ̂
(1)
y to obtain a

Measure of Unadjusted Selection Bias for a Proportion:

MUBP (φ) = µ̂(1)y − µ̂(φ)y

where µ̂y depends on chosen φ

In a nutshell:
1 Choose a selection mechanism by specifying φ
2 Estimate overall proportion µ̂

(φ)
y based on pattern-mixture model

3 Estimate selection bias (MUBP) as difference between this and the
selected sample proportion
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Measure of Unadjusted Bias for Proportions, MUBP(φ)

MUBP (φ): Theory

Formula is messy, but gives insight into how the MUBP (φ) index works:

MUBP (φ) = µ̂(1)y −
[
π̂Φ
(
µ̂(1)u

)
+ (1− π̂)Φ

(
µ̂(0)u

/√
σ̂
(0)
uu

)]
where

µ̂(0)u = µ̂(1)u +

(
φ+ (1− φ)ρ̂

(1)
ux

φρ̂
(1)
ux + (1− φ)

) µ̂(0)x − µ̂(1)x√
σ̂
(1)
xx


σ̂(0)uu = 1 +

(
φ+ (1− φ)ρ̂

(1)
ux

φρ̂
(1)
ux + (1− φ)

)2(
σ̂
(0)
xx − σ̂(1)xx

σ̂
(1)
xx

)
π̂ = estimated selection fraction

Biserial correlation in selected sample (ρ̂
(1)
ux ) a very important component
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Measure of Unadjusted Bias for Proportions, MUBP(φ)

Estimation

“Modified” Maximum Likelihood (MML) estimation:

π̂ = selection fraction{
µ̂
(1)
x , σ̂

(1)
xx , µ̂

(0)
x , σ̂

(0)
xx

}
= standard ML estimates (e.g., µ̂

(1)
x = x̄inc)

ρ̂
(1)
ux = biserial correlation estimated via two-step method (Olsson et al. 1982)

µ̂
(1)
u = Φ−1(µ̂

(1)
y ) = Φ−1(ȳinc) = from two-step method

Suggested sensitivity analysis: φ = {0, 0.5, 1}

Bayesian approach:

Non-informative priors for identified parameters

Incorporates uncertainty in the probit regression model for Y |Z
that creates X

No info in data about φ, so take φ ∼ Uniform(0, 1)
(other priors are possible)
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Back to the NSFG Illustrative Example

Outline

1 Problem Statement

2 Illustrative Example: NSFG “Population”

3 Measure of Unadjusted Bias for Proportions, MUBP(φ)

4 Back to the NSFG Illustrative Example

5 Application to Pre-Election Presidential Polls

6 Summary and Related/Future Work
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Back to the NSFG Illustrative Example

Proportion Never Married

True bias shown as black dot; MUBP (0.5) shown as colored diamond

Bayes 95% credible intervals longer than MML – but still short!
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Back to the NSFG Illustrative Example

Proportion Never Married - with Manski Bounds

Good predictors of Y : ρ̂
(1)
ux = 0.73 (females), 0.82 (males)

Much tighter bounds than Manski bounds (all 0s or all 1s)
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Back to the NSFG Illustrative Example

Low Income - with Manski Bounds

Weak predictors of Y : ρ̂
(1)
ux = 0.17 (females)

Very wide bounds → MUBP(1) = Manski bound (all 0s)
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Application to Pre-Election Presidential Polls

Outline

1 Problem Statement

2 Illustrative Example: NSFG “Population”

3 Measure of Unadjusted Bias for Proportions, MUBP(φ)

4 Back to the NSFG Illustrative Example

5 Application to Pre-Election Presidential Polls

6 Summary and Related/Future Work
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Application to Pre-Election Presidential Polls

Reminder: “Failure” of Political Polling

Recent high-profile “failure” of pre-election polls in the U.S.

Polls are probability samples – but with low response rates

Weighting adjustments assume selection is at random, conditional on
the variables used to compute the weights

But. . . might Trump supporters be less likely to answer a pre-election
poll, even conditional on demographic characteristics?

MUBP (φ) could be used to adjust poll estimates to account for
possible non-ignorable selection bias!
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Application to Pre-Election Presidential Polls

Data Source(s)

Proportion: Percentage voting for Trump

Sample: Publicly available data from seven different pre-election polls
conducted in seven different states by ABC/Washington Post
in 2020

Random-digit dialing survey with low response rates
(4.5-6.5%)
Weighting adjustments to Census margins for age,
gender (binary), education, race/ethnicity, party id

Truth: Official election outcomes in each state

Population: Likely voters

Tricky challenge: Finding population-level summary of “likely voter”
characteristics (for non-selected cases)
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Application to Pre-Election Presidential Polls

Data Source for Non-Selected Sample (Likely Voters)

Data sources considered:
I 2020 Current Population Survey (CPS) voter supplement
I 2020 American National Election Studies (ANES) pre-election survey
I AP/NORC VoteCast 2020 data

Ultimately, none were optimal
I CPS, ANES – didn’t have highly-relevant ideology/party preference
I AP/NORC VoteCast – not actually available pre-election

Decided to use AP/NORC VoteCast
I Effectively doing a “post-mortem” on the poll results
I Might non-ignorable selection/non-response (partially) explain the poor

performance of the polls?
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Application to Pre-Election Presidential Polls

Data for MUBP Framework

Y = indicator for voting for Trump

Z = auxiliary data (Z) available in ABC/WP poll data:
(binary) gender, age, education, race/ethnicity, political ideation,
party identification

I Strong predictors of Y – biserial correlations 0.80 to 0.86 among
selected sample (poll respondents)

Population-level estimates of mean Z from AP/NORC VoteCast data
I Not without error – but we treat as if they were the “truth” (another paper!)

Use unweighted ABC sample as the selected sample4 and estimate
MUBP (φ) with φ ∼ Uniform(0,1)

Produce MUBP-Adjusted estimates using MUBP (φ) to shift sample
proportion

Polls’ selection fractions are teeny (n ≈ 1, 000 but N = millions!)
– Manski bounds are useless

4ignoring sampling weights – treating as a non-probability sample
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Application to Pre-Election Presidential Polls

True Bias and MUBP Bayes intervals
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Application to Pre-Election Presidential Polls

Comparison with ABC Poll Estimates

AZ FL NC MI MN PA WI
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Application to Pre-Election Presidential Polls

Results Summary

MUBP correctly detected evidence of negative selection bias in MN
and WI

MUBP suggested negative bias in some other states (NC, MI),
though 0 also in interval

Huge polling miss in WI, and MUBP moved estimate in correct
direction

MUBP-adjustment often closer to truth than weighted estimate

Credible intervals for MUBP-adjusted narrower than weighted

MUBP did not suggest bias in PA, but there was negative bias

Key message: Need quality information on population margins for Z!
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Summary and Related/Future Work

Outline

1 Problem Statement

2 Illustrative Example: NSFG “Population”

3 Measure of Unadjusted Bias for Proportions, MUBP(φ)

4 Back to the NSFG Illustrative Example

5 Application to Pre-Election Presidential Polls

6 Summary and Related/Future Work
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Summary and Related/Future Work

Summary and Related/Future Work

MUBP(φ) provides a sensitivity analysis to assess the potential for
non-ignorable selection bias

I MUBP(0) – ignorable – could be “adjusted away”
I MUBP(1) – non-ignorable – selection depends only on Y (through U)
I MUBP(0.5) – could be used as a compromise “estimate” of the bias

Tailored to binary outcomes, an improvement over the normal-based
(S)MUB of Little et al.

Only requires summary statistics for covariates Z for non-selected

With weak predictive information, will return the natural Manski
upper/lower bound

Related work: Extension to estimation of selection bias for linear
regression coefficients and probit regression coefficients (West et al., 2021)

Future work: Extension to generalizability of randomized trials in the
presence of unmeasured effect modifiers
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Summary and Related/Future Work

Questions?

Thank you!
andridge.1@osu.edu
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Summary and Related/Future Work
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Comparison to SMUB(φ)

Does Normal-based SMUB Work Well-Enough?

SMUB(φ) much simpler than MUBP(φ)
I Directly apply the proxy pattern-mixture model to Y and X instead of

latent U and X
I Relies on pearson correlation instead of biserial correlation
I Unlike MUBP(φ), only need means from unselected cases

(not variance)

SMUB(φ) =

(
φ+ (1− φ)r

(1)
ux

φr
(1)
yx + (1− φ)

) x̄(1) − x̄√
s
(1)
xx


Is there an advantage to proportion-based MUBP(φ) over
means-based MUB(φ)?

I To compare to MUBP(φ), we consider the unstandardized version,
MUB(φ):

MUB(φ) =

(
φ+ (1− φ)r

(1)
ux

φr
(1)
yx + (1− φ)

)√
s
(1)
yy√
s
(1)
xx

(
x̄(1) − x̄

)
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Comparison to SMUB(φ)

Simulation Set-Up

Population Design

Auxiliary variable: zi ∼ N(0, 1) for population size N = 10, 000

Latent variable: ui|zi ∼ N
(
α0 + ρux√

(1−ρ2ux)
zi, 1

)
I ρux = biserial correlation for whole population (not selected sample)
I α0 chosen to obtain E(Y ) = µY

Binary outcome: yi = 1 if ui > 0 (and 0 otherwise)

Varied ρux = {0.2, 0.5, 0.8}, µY = {0.1, 0.3, 0.5}

Selection Mechanisms

Selection indicator Si from logistic model:

logit{Pr(si = 1|zi, ui)} = β0 + βZzi + βUui

βU = 0: Ignorable selection; βU > 0: Non-ignorable

β0 chosen to give 5% selection fraction
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I ρux = biserial correlation for whole population (not selected sample)
I α0 chosen to obtain E(Y ) = µY

Binary outcome: yi = 1 if ui > 0 (and 0 otherwise)

Varied ρux = {0.2, 0.5, 0.8}, µY = {0.1, 0.3, 0.5}
Selection Mechanisms

Selection indicator Si from logistic model:

logit{Pr(si = 1|zi, ui)} = β0 + βZzi + βUui

βU = 0: Ignorable selection; βU > 0: Non-ignorable

β0 chosen to give 5% selection fraction
37 / 37



Comparison to SMUB(φ)

Simulation: One Replicate (µY = 0.3)
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Comparison to SMUB(φ)

Simulation: One Replicate - w/Manski Bounds
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Comparison to SMUB(φ)

Simulation: MUBP and MUB vs. True Estimated Bias
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Comparison to SMUB(φ)

Simulation: Correlation of MUBP and MUB with Truth
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