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Paradata

Paradata are the records tracking the collection process of survey data
(Couper, 1998).

Table 1: Data structure of a sampling survey
Frame/Questionnaire data Paradata
ID X1 · · · Xp Process of data collection
1 x11 · · · x1p date, time, length,
2 x21 · · · x2p mode of communication,
: : : : attitude of the respondent,
: : : : record of contacts,
n xn1 · · · xnp gender of interviewer

Survey data

Paradata are widely available in modern surveys, e.g., U.S. National Health
Interview Survey (NHIS), British Survey of Social Attitudes (BSSA), and
the European Social Survey (ESS).
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Missing data and callback data

Callback data: a traditional form of paradata.

The frame data are often prone to missingness.

In many surveys interviewers continue to contact nonrespondents and
the contact attempts are recorded. Sometimes called level-of-effort data
(Biemer et al., 2013).

Table 2: Data structure of a sampling survey with callbacks
Frame/Questionnaire data Contact attempts
ID X Y R R1 R2 . . . RK

1 x1 y1 1 1 1 · · · 1
2 x2 y2 1 0 1 · · · 1
: : NA 0 0 0 · · · 0
: : NA 0 0 0 · · · 0
n xn yn 1 0 0 · · · 1
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Use of callback data in social sciences

Appropriate use of callback data can improve survey quality and compen-
sate for deficiencies in surveys.

▶ Callbacks have routinely been used to monitor response rates and to
study how design features affect contact and cooperation in the course
of data collection (Bates, 2003; Groves & Couper, 1998); e.g., calls
made during weekday evenings and on weekends are more likely to be
responded.

▶ Kreuter (2013) provides a comprehensive literature review on the use
of paradata in analyses of survey data.

▶ Olson (2013) reviewed categories of paradata and challenges and op-
portunities in using paradata for nonresponse adjustment.
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Missing data analysis

Missingness mechanisms (Rubin, 1976; Little & Rubin, 2002)

▶ Missing at random (MAR) R⊥⊥ Y | X;

▶ Missing not at random (MNAR) R ⊥̸⊥ Y | X;

A large body of the missing data analysis literature rests on missingness at
random (MAR) or ignorability. Parametric approaches: Likelihood-based
inference; Imputation. Semiparametric approaches: Regression-based es-
timation (REG); Inverse probability weighting (IPW); Doubly robust esti-
mation (DR).

The biggest challenge for MNAR is identification: the joint distribution is
not uniquely determined from the observed data distribution.
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Missing data analysis
Strategies to achieve identification:

▶ restrictive parametric models, e.g., Heckman (1979)’s selection model;
counterexamples, the normal-logistic model (Wang et al., 2014; Miao
et al., 2016);

▶ instrumental variable approach (Manski, 1985; Newey, 2009; Das et al.,
2003; Sun et al., 2018; Liu et al., 2020; Tchetgen Tchetgen & Wirth,
2017),

▶ shadow variable approach (Miao & Tchetgen Tchetgen, 2016; D’Haultfœuille,
2010; Wang et al., 2014; Zhao & Shao, 2015; Kott, 2014).
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▶ Sensitivity analysis (Robins et al., 2000) and graph models (Fay, 1986;
Sadinle & Reiter, 2017; Malinsky et al., 2020). 8



Missing data analysis

Researchers have traditionally sought auxiliary variables from the sampling
frame, but it is surprisingly difficult for practitioners and the difficulty
is amplified in multipurpose studies where multiple survey variables are
concerned and multiple auxiliary variables are necessitated.

Moreover, instrumental and shadow variable approaches invoke additional
no interaction or completeness conditions that further limit their use.

Lastly, they break down if the auxiliary variables also have missing values,
e.g., due to failure of contact in surveys.

In contrast, callback data offer an important source of auxiliary information
for nonresponse adjustment. Follow ups are commonly made in many
surveys to increase the response rate, the contact process are recorded by
interviewers and are often kept for all units.
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Using callback data for missing data analysis
Callback data had not been used widely in statistical analysis until recently.

▶ The early idea of Politz & Simmons (1949): use the number of nights
that a respondent had been at home during the past week to account
for the “not at homes”by weighting;

▶ The “continuum of resistance” model: nonrespondents are more sim-
ilar to delayed respondents than they are to early respondents, so that
the most reluctant respondents can be used to approximate the nonre-
spondents. (Lin & Schaeffer, 1995; Groves & Couper, 1998; Kreuter
et al., 2010; Little, 1982).

▶ Model the joint likelihood of the callbacks and the frame variables;
require untenable assumptions to achieve identification, e.g., assume
the response probabilities are equal across different attempts or levels
of the frame variables (Biemer et al., 2013; Drew & Fuller, 1980).

▶ Chen et al. (2018); Zhang et al. (2018) generalize the Heckman (1979)
Selection model to incorporate callbacks to improve efficiency.

▶ Daniels et al. (2015) advocate the use of pattern mixture models for
sensitivity analysis. 10



Using callback data for missing data analysis

Most notably, Alho (1990); Kim & Im (2014); Qin & Follmann (2014);
Guan et al. (2018) employ propensity score models to make nonresponse
adjustment with callbacks and propose inverse probability weighted and
empirical likelihood-based estimators.

Their model:

logit f(Rk = 1 | Rk−1 = 0, X, Y ) = αk0 + αk1X + γkY

with αk1 = α1, γk = γ for k = 1, 2,

So far, identification of semiparametric and nonparametric propensity score
models with callbacks is not available.
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Using callback data for missing data analysis

In contrast, we consider a fundamentally nonparametric identification strat-
egy:

▶ we propose an identifying assumption that allows for nonparametric
and nonlinear propensity score models,

▶ establish the semiparametric theory

▶ and propose a suite of semiparametric estimators including doubly
robust ones.
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Identification
Notation: Frame variables (X,Y ), X fully observed covariates, Y the
outcome prone to missing values, µ = E(Y ).

Callback data Rk, k = 1, 2 the response state of Y with Rk = 1 if Y is
available in the kth call and Rk = 0 otherwise. ⇒ R2 ≥ R1.

Define the odds ratio functions for the response propensity in the first and
second calls as follows,

Γ1(X,Y ) = log f(R1 = 1 | X,Y )f(R1 = 0 | X,Y = 0)

f(R1 = 0 | X,Y )f(R1 = 1 | X,Y = 0)
,

Γ2(X,Y ) = log f(R2 = 1 | R1 = 0, X, Y )f(R2 = 0 | R1 = 0, X, Y = 0)

f(R2 = 0 | R1 = 0, X, Y )f(R2 = 1 | R1 = 0, X, Y = 0)
.

Γk measures the impact of the missing outcome on the response propensity,
the degree of nonignorable missingness, the resistance to respond caused
by the outcome.
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Identification

Assumption 1.
(i) Callback: R2 ≥ R1;

(ii) Positivity: 0 < f(R1 = 1 | X,Y ) < 1 and 0 < f(R2 = 1 | R1 =
0, X, Y ) < 1 for all (X,Y );

(iii) Stableness of resistance: Γ1(X,Y ) = Γ2(X,Y ) = Γ(X,Y ).

Theorem 1. Under Assumption 1, f(X,Y,R1, R2) is identified.

No parametric models for the propensity scores or restrictions on the effects
of covariates are imposed.
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Identification

An immediate application to the linear logistic model.

Proposition 1. Assuming that logit πk(X,Y ) = logit f(Rk = 1 |
Rk−1 = 0, X, Y ) = αk0+αk1X+γY , then αk0, αk1, and γ are identified.

Alho (1990); Kim & Im (2014); Guan et al. (2018) have to assume that
αk1 = α1.
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Semiparametric efficiency theory

The stableness of resistance assumption defines the model

Mnpr =

{
f(X,Y,R1, R2) :

Assumption 1 holds;
A1, A2,Γ, f2 are unrestricted.

}

Theorem 2. The efficient influence function for µ in the nonparametric
model Mnpr is

IF(O;µ) =

{
R1

π1
− R1

π2

1− π1

π1
+

R2 −R1

π2
2

}
Y

−
{
R1

π1
− R1

π2

1− π1

π1
+

R2 −R1

π2
2

− 1

}
E(Y /π2 | X,R2 = 0)

E(1/π2 | X,R2 = 0)

−µ.
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Parameterization

We focus on estimation of the outcome mean µ = E(Y ).

f(Y,R1, R2 | X) = c1(X) · f(R1 | X,Y = 0) · exp{(R1 − 1)Γ(X,Y )}
·f(Y | R2 = 1, R1 = 0, X)

·f(R2 | R1 = 0, X, Y )1−R1f(R2 = 0 | R1 = 0, X, Y )
−1

The baseline propensity scores
A1(X) = f(R1 = 1 | X,Y = 0),
A2(X) = f(R2 = 1 | R1 = 0, X, Y = 0),
the odds ratio function Γ(X,Y ),
and the second-call outcome distribution
f(Y | R2 = 1, R1 = 0, X).

Can be parameterized separately without hindering congeniality.

Hereafter, let π1(X,Y ) = f(R1 = 1 | X,Y ), π2(X,Y ) = f(R2 = 1 |
R1 = 0, X, Y ), f2(Y | X) = f(Y | R2 = 1, R1 = 0, X).
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Doubly robust estimation

An estimator of µ motivated by the efficient influence function is

µ̂dr = Ê

[{
R1

π̂1
− R1

π̂2

1− π̂1

π̂1
+

R2 −R1

π̂2
2

}
Y

]
−Ê

[{
R1

π̂1
− R1

π̂2

1− π̂1

π̂1
+

R2 −R1

π̂2
2

− 1

}
E(Y /π̂2 | X,R2 = 0; β̂dr, γdr)

E(1/π̂2 | X,R2 = 0; β̂dr, γdr)

]
.

where the nuisance parameters (α̂1,dr, α̂2,dr, β̂, γ̂dr) are obtained by solving

0 = Ê

{
R2(1−R1) ·

∂ log f2(Y | X;β)

∂β

}
,

0 = Ê

[{
R1

π1(α1, γ)
− 1

}
· V1(X)

]
,

0 = Ê

[{
R2 −R1

π2(α2, γ)
− (1−R1)

}
· V2(X)

]
,

0 = Ê

[{
R2 −R1

π2(α2, γ)
−

1− π1(α1, γ)

π1(α1, γ)
R1

}
· {U(X,Y )− E(U(X,Y ) | X,R2 = 0;β, γ)}

]
,
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Doubly robust estimation

Theorem 3. Under Assumption 1 and certain regularity conditions,
(α̂1,dr, γ̂dr, µ̂dr) are consistent and asymptotically normal provided one of
the following conditions holds:
▶ A1(X;α1),Γ(X,Y ; γ) and A2(X;α2) are correctly specified; or

▶ A1(X;α1),Γ(X,Y ; γ) and f2(Y | X;β) are correctly specified.
Furthermore, µ̂dr attains the semiparametric efficiency
bound for the nonparametric model Mnpr when all models
{A1(X;α1), A2(X;α2),Γ(X,Y ; γ), f2(Y | X;β)} are correct.

(α̂1,dr, γ̂dr, µ̂dr) are doubly robust against misspecification of A2(X;α2)
and f2(Y | X;β), provided that the first-call propensity score π1(X,Y ;α1, γ)
(i.e., A1(X;α1),Γ(X,Y ; γ)) is correctly specified.
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Estimation of a general smooth functional

Consider estimation of θ defined by the solution to a given estimating
equation E{m(X,Y ; θ)} = 0. Assuming ∂E{m(θ)}/∂θ is non-singular,
IPW, outcome regression-based, and doubly robust estimation of θ can be
obtained simply by replacing Y −µ with m in the corresponding estimating
equations of µ.

The efficient influence function for δ in the nonprametric model M is
IF(O; θ) = −[∂E{m(θ)}/∂θ]−1ϕ(O), where

ϕ(O) =

{
R1

π1
− R1

π2

1− π1

π1
+

R2 −R1

π2
2

− 1

}{
E(m/π2 | X,R2 = 0)

E(1/π2 | X,R2 = 0)
−m

}
+m.
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Takeaway points

▶ We propose the stableness of resistance assumption for identification,
which is so far the most parsimonious condition characterizing the
most flexible model for nonresponse adjustment with callbacks;

▶ we establish identification and develop IPW, outcome-regression based,
and doubly robust estimation methods;

▶ we establish the semiparametric efficiency theory for using callbacks.

23



Outline

1 Paradata, callback data, and missing data

2 Identification with callback data

3 Semiparametric inference

4 Simulations and applications to CES, Card data, and ANES NRFU

5 Discussion

24



Simulations
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Figure 1: Bias for estimators of µ.
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Figure 2: Bias for estimators of γ.
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Simulations

Table 3: Coverage rate of 95% confidence interval
µ γ

Scenarios IPW REG DR IPW REG DR
TT 0.953 0.949 0.948 0.963 0.962 0.948
FT 0.705 0.957 0.950 0.349 0.959 0.954
TF 0.954 0.341 0.949 0.947 0.744 0.954
FF 0.528 0.631 0.479 0.682 0.722 0.768
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Application to the Consumer Expenditure Surveys

The Consumer Expenditure Survey (CES; National Research Council, 2013)
is a nationwide survey conducted by the U.S. Bureau of Labor Statistics
to find out how American households make and spend money. The sur-
vey data are annually released since 1980, which contain detailed paradata
including the callback history.

We use the public-use microdata collected in the fourth quarter of 2018
for illustration.

Outcomes: Y1 and Y2 are the log of last quarter’s expenditures on housing
and on utilities, fuels, and public services, respectively.
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Application to the Consumer Expenditure Surveys

9709 households with 27 contacts, 1992 responded in the early contact
(1–2 calls), 3287 late contact (3+ calls), and 4430 never responded.

●

●

●

●

●

●

●

●

●
●

number of contacts

re
sp

on
se

 r
at

e

1 2 3 4 5 6 7

0

0.05

0.1

0.15
8−

12
13

−1
6

17
+

(a) Response rates

●

● ●

●
●

● ●
●

●

●

number of contacts

m
ea

n 
of

 Y
1

1 2 3 4 5 6 7

7.5

7.7

7.9

8.1

8−
12

13
−1

6
17

+

(b) Outcomes mean

●

●

●
●

●

●

●

●

●

●

number of contacts

m
ea

n 
of

 Y
2

1 2 3 4 5 6 7

6.1

6.2

6.3

6.4

8−
12

13
−1

6
17

+

(c) Outcomes mean

Figure 3: Response rates and outcomes mean for respondents for the CES
application.
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Application to the Consumer Expenditure Surveys
We use logistic propensity score models and a bivariate normal baseline
outcome model.

Table 4: Point estimate, 95% confidence interval, and p-value for the CE
application

µ1 γ1
IPW REG DR CC IPW REG DR

Estimate 7.850 7.859 7.842 7.756 -0.265 -0.252 -0.238
CI or p-value (7.769, 7.931) (7.808, 7.910) (7.800, 7.884) (7.734, 7.778) 0.008 0.002 0

µ2 γ2
IPW REG DR CC IPW REG DR

Estimate 6.339 6.352 6.345 6.285 -0.030 -0.048 -0.056
CI or p-value (6.257, 6.422) (6.299, 6.405) (6.296, 6.393) (6.264, 6.306) 0.806 0.615 0.521

The IPW and REG produce estimates close to DR; however, the CC es-
timate of the outcomes mean, in particular of µ1, is well below the DR
estimate. The odds ratios estimates obtained by IPW, REG, and DR are
all negative, suggesting that high-spending people are more reluctant to
the survey or more difficult to contact. The expenditure on housing play
a more important role in the response process, this may be because the
survey takes personal home visit as one of the main modes of interview
and people with high expenditure on housing are more difficult to reach.
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Reanalysis of Card (1995)’s dataset
3613 observations on the log of hourly wage in 1976 and 1978, years of
schooling (educ), and a vector of fully-observed covariates including exper,
exper2, black, south, smsa, nearc4.

The wages for only 3010 units were recorded in 1976, and previous authors
(e.g., Card, 1995; Okui et al., 2012; Wang & Tchetgen Tchetgen, 2018)
have used this subsample to estimate the effect of education on wage.

Among the 603 nonrespondents to the call in 1976, 201 units were recorded
in the follow up in 1978, which can be viewed as a second-call sample.

Let Y denote the log of hourly wage in 1976, W = (educ, CT), Z =
(nearc4, CT)T, and X = (educ, nearc4, CT)T with
C = (1, exper, exper2, black, south, smsa)T.

The instrumental variable estimand defined by E{Z(Y − θTW )} = 0,
particularly the coefficient of educ (θeduc), is of interest for evaluation of
the causal effect of education on wage.
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Reanalysis of Card (1995)’s dataset

Table 5: Point estimate, 95% confidence interval, and p-value for the NLSYM
application

θeduc
IPW REG DR CC

Estimate 0.111 0.107 0.102 0.132
CI (0.006, 0.216) (-0.015, 0.228) (-0.016, 0.220) (0.033, 0.231)

γ α1,educ
IPW REG DR IPW REG DR

Estimate 1.651 2.249 2.199 -0.097 -0.107 -0.108
P-value 0 0.001 0 0.010 0.044 0.003
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Reanalysis of Card (1995)’s dataset
The complete-case estimate is quite close to previous analysis results (Card,
1995; Okui et al., 2012) and suggests a significant return to schooling
among respondents to the call in 1976.

Adjustment for nonresponse shows a significant return to schooling among
the population consisting of both the respondents and the nonrespondents.
but attenuates the estimates of θeduc.

This result shows potential heterogeneity of the effects of education on
wage: the effect in the nonrespondents to the call in 1976 is smaller than
in the respondents.

This is supported by the estimation results for the propensity score model.
Wage and education both have significant impacts (γ and α1,educ) on
nonresponse to the call in 1976.

Besides, the results suggest that men with higher wage and lower education
are more likely to respond, and therefore, the missingness mechanism is
likely nonignorable.
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ANES NRFU Survey on 2020 U.S. presidential election
For decades, overestimation of turnout has been an issue in election sur-
veys, and researchers have struggled with how to adjust for turnout bias
(Enamorado & Imai, 2019). Since its beginning in the late 1940s, the
American National Election Study (ANES) estimates of voter turnout are
well known to be substantially higher than official turnouts.

The NRFU study uses mailed questionnaires to gather self-report data:

▶ began on January 28, 2021 with a randomized advance postcard;

▶ the first class invitation was mailed on February 1;

▶ followed by replacement questionnaires on March 2 and March 30;

▶ Completed questionnaires 3,779, the response rate 48.3%.

▶ The voting-eligible population (VEP) turnout for the 2020 presidential
election is 66.2%. The weighted voter turnout based on the respon-
dents is over 85%, indicating a severe overestimation bias.
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Application to the ANES NRFU Survey

Table 6: Estimates of voter turnout
turnout rate odds ratio parameter γ

method estimate 95% confidence interval estimate p-value
CC 0.870 (0.853,0.886) — —
MAR 0.809 (0.783, 0.835) — —
COR 0.857 (0.837,0.876) — —
IPW 0.662 (0.544,0.780) 1.561 0.0086
REG 0.623 (0.428,0.817) 1.866 0.0497
DR 0.666 (0.523,0.808) 1.486 0.0124

▶ The DR estimate of the turnout is close to 0.662—the VEP voter
turnout.

▶ Significant selection bias。

▶ Who did not vote is more hesitant to respond or more difficult to
contact.
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Application to the ANES NRFU Survey
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Figure 4: Turnout at each response stage.

Significant difference in the turnout between nonrespondents and respon-
dents.
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Application to the ANES NRFU Survey
Table 7: The coefficients of covariates in propensity score models

The first contact stage The second contact stage
variable estimate p-value estimate p-value
intercept -2.356 <0.0001** -2.563 <0.0001**
m1sent: advance postcard -0.200 0.1771 -0.281 0.3137
version: on page 1 0.197 0.1779 0.227 0.3434
title: long -0.130 0.3817 -0.392 0.1709
incvis: visible 0.105 0.4700 0.178 0.4788
race: black -0.296 0.1734 -0.130 0.6891
gender: male -0.398 0.0055** -0.606 0.0306**
age2: 30-59 0.671 0. 0012** 0.574 0.0521*
age3: 60+ 1.487 <0.0001** 1.797 <0.0001**
education: some college 0.318 0.2850 0.387 0.3654

▶ Short title, political content on the first page, and a visible cash in-
centive may yield a higher response rate.

▶ Mailed advance postcards could be skipped, as it has no substantial
response promotion. This is also discovered by DeBell (2022).

▶ Female and senior people are more likely to respond in both contacts.

▶ Educated people tend to respond.
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Some extensions

With the assist of callback data one can test MAR because it is a special
case of our stableness of resistance assumption.

We focused on nonresponse adjustment, but callback data are also useful
to inform the design and organization of surveys, e.g., allocation of time
and staff resources.

We proposed doubly robust estimation, and it is of interest to construct
multiply robust estimation in the sense of (Vansteelandt et al., 2007).

Explore the idea of the stableness resistance in causal inference, case-
control studies, and longitudinal studies.
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Thanks!
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