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Outline

1 Motivation

2 Background: multivariate regular variation

3 The tail pairwise dependence matrix and the max-linear model

4 Decomposing the tail pairwise dependence matrix

5 Application: extreme wind gusts



Failure probabilities for multivariate extremes

Goal: estimating the failure probability P[X ∈ C ]

for X ∈ [0,∞)d with d “large”;

C a so-called failure region;

based on n iid observations;

using the framework of multivariate regular variation.
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Example: weighted sums of components

For example,
Csum = {y ∈ [0,∞)d : vTy > x}

for x > 0 large and v = (v1, . . . , vd) > 0 a vector of weights such
that v1 + . . .+ vd = 1.

Failure probability P[X ∈ C ] = P[vTX > x ].

I Finance: Value-at-Risk or Expected Shortfall of a portfolio loss
representing aggregated stock returns.

I Flood risk management: aggregated precipitation (spatially and/or
temporally) to estimate the risk of a flood occurring because of
prolonged extreme rain.

Here, it is not possible to separate marginal and dependence structure
modeling.
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Multivariate regular variation framework (Resnick, 2007)

Suppose that X is multivariate regularly varying; there exists a
sequence bn →∞ and a limit measure νX such that

n P
[
b−1n X ∈ ·

] v→ νX ( · ), as n→∞,

where
v→ denotes vague convergence on E0 = [0,∞]d \ {0}.

The limit measure νX is the exponent measure.

Homogeneity: there exists an α > 0, the tail index of X , such that

νX (tC ) = t−ανX (C ), t > 0,C ⊂ E0.

For large n,

P [X ∈ C ] =
1

n

{
n P
[
b−1n X ∈ b−1n C

]}
≈ 1

n
νX
(
b−1n C

)
.
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Multivariate regular variation framework (Resnick, 2007)

Let ‖ · ‖ denote a norm on Rd and consider

(R,W ) =

(
‖X‖, X

‖X‖

)
.

Multivariate regular variation is equivalent to

nP
[(
b−1n R,W

)
∈ ·
] v→ µα × HX ( · ), as n→∞,

The measure HX on Sd−1 := {w ∈ E0 : ‖w‖ = 1} is called the
angular measure and µα is given by µα ((x ,∞]) = x−α for x > 0.

We have, for B ⊂ Sd−1,

νX ({x ∈ E0 : ‖x‖ > s, x/‖x‖ ∈ B}) = s−αHX (B)

and
νX ( dr × dw) = αr−α−1 dr dHX (w)
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Pairwise tail dependence measures

Parametric models for νX or HX are numerous.

Model fit is often assessed by checking if the model-implied pairwise
dependence matches the non-parametrically estimated pairwise
dependence.

Goal: build a parametric model by directly matching a pairwise
dependence measure.

The marginal variable Xj satisfies (j = 1, . . . , d)

lim
n→∞

n P [Xj > bnx ] = x−α
∫
Sd−1

wα
j dHX (w) =: x−ασjj .

If we consider
√
XjXk (for j , k = 1, . . . , d),

lim
n→∞

n P[
√

XjXk > bnx ] = x−α
∫
Sd−1

w
α/2
j w

α/2
k dHX (w) =: x−ασjk .
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Tail pairwise dependence matrix

Larsson and Resnick (2012) introduced the tail pairwise dependence
matrix (TPDM) ΣX of X ,

ΣX = (σjk)j ,k=1,...,d , with σjk =

∫
Sd−1

w
α/2
j w

α/2
k dHX (w).

The TPDM has positive entries only and is positive semi-definite
(Cooley and Thibaud, 2019).

Two variables Xj ,Xk are tail dependent if and only if σjk > 0.

Let ‖ · ‖ denote the Lα norm. Then the total mass of the spectral
measure equals

HX (Sd−1) =
d∑

j=1

σjj = tr(ΣX ).
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The max-linear model

In a max-linear model, each component of a d-dimensional vector Y
can be interpreted as the maximum shock among a set of q
independent heavy-tailed factors.

I Let A = (ail) denote a d × q matrix with non-negative entries
I Let Z1, . . . ,Zq be independent Fréchet(α) random variables,

Y := A×max Z :=

(
max

l=1,...,q
a1lZl , . . . , max

l=1,...,q
adlZl

)T

.

Fougeres et al. (2013) showed that the max-linear model is dense in
the class of d-dimensional multivariate extreme-value distributions.

The max-linear model is used in Gissibl and Klüppelberg (2018), Cui
and Zhang (2018), Einmahl et al. (2018) and Janßen and Wan
(2020), among others.
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The TPDM of a max-linear model

The spectral measure of Y is (under the Lα norm)

HY ( · ) =

q∑
l=1

‖al‖α δal/‖al‖( · ),

where al is the l-th column of A.

As noticed in Cooley and Thibaud (2019), the TPDM of Y has
elements

σjk =

q∑
l=1

a
α/2
jl a

α/2
kl

In other words,

ΣY = A∗A
T
∗ , where A∗ :=

(
a
α/2
jk

)
j ,k=1,...,d
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Max-linear model and failure probabilities

The failure region

Cmax(x) = {y ∈ E0 : y1 > x1 or . . . or yd > xd}

has exponent measure

ν(Cmax(x)) =

q∑
l=1

max
j=1,...,d

(
ajl
xj

)α
.

The failure region

Csum(v , x) = {y ∈ E0 : v1y1 + . . .+ vdyd > x}.

has exponent measure

ν(Csum(v , x)) = x−α
q∑

l=1

(
vTal

)α
.
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The max-linear model and the TPDM

Can we construct a max-linear model Y such that ΣY matches the
(estimated) ΣX ?

Cooley and Thibaud (2019) show that
I As q →∞, the class of max-linear angular measures is dense in the

class of possible angular measures.
I If attention is restricted to the TPDM, a max-linear model with finite q

is sufficient to exactly match ΣX .

For any (estimated) TPDM, we could construct a max-linear model
with the same TPDM.

The coefficient matrix of the max-linear model is obtained through a
completely positive decomposition of ΣX .

I A matrix Σ is completely positive if it can be decomposed as
Σ = AAT , where the matrix A has non-negative entries.

The algorithm to find completely positive decompositions is
complicated; theoretically, q ≤ d(d + 1)/2 + 4.
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An alternative goal: finding an approximate decomposition

Any symmetric positive semi-definite matrix can be decomposed as
Σ = AAT through the Cholesky decomposition:

I the matrix A may contain negative elements;
I A is a d × d lower-triangular matrix;
I the decomposition is not unique.

We search for an approximate completely positive decomposition
I with q = d ;
I not necessarily matching all elements in Σ;
I target: a lower-triangular matrix A.

For this presentation, consider α = 2; then A = A∗.

Write

A =

(
a11 0T

a−1 A(−1,−1)

)
,

where A(−1,−1) is a (d − 1)× (d − 1) lower-triangular matrix with
non-negative elements.
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Matching AAT and ΣX

We can calculate the TPDM ΣX as

AAT =

(
a211 a11(a−1)T

a11(a−1) a−1aT
−1 + A(−1,−1)(A(−1,−1))T

)
= (σjk)

Hence, we obtain
I a11 as

√
σ11;

I a−1 from σj1/
√
σ11 for j = 2, · · · , d ;

I the TPDM of the other (d − 1) dimensions by taking Σ
(−1,−1)
X and

subtracting a−1(a−1)T

Can we do that?
I A(−1,−1)(A(−1,−1))T is also a completely positive matrix;
I It implies that for j , k 6= 1

σjk ≥ aj1ak1 ⇒ σjkσ11 ≥ σj1σk1.

I This is a necessary condition to perform the above “algorithm”.
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A criterion for the reverse algorithm

The reverse algorithm works only if for all j , k ∈ {2, . . . , d},

σj1σk1
σjkσ11

≤ 1

What if this does not hold for some TPDM ΣX ?

Define

D1(ΣX ) := max

{
j , k ∈ {2, . . . , d} :

σj1σk1
σjkσ11

}
.

I If D1(ΣX ) ≤ 1 the algorithm works;
I If D1(ΣX ) > 1 we still have

σjkσ11 ≥
σj1σk1
D1(ΣX )

.

We can take a11 =
√

D1(ΣX )σ11 and do the algorithm, at the cost
that a211 > σ11.
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An approximate decomposition algorithm
Define for any i ∈ {1, . . . , d},

Di (ΣX ) := max

{
j , k ∈ {1, . . . , d} \ {i} :

σjiσki
σjkσii

}
.

Let τi = (τ1,i , . . . , τd ,i )
T with

τj ,i =

{
σji (σii max(Di , 1))−1/2 if j 6= i ,

(σii max(Di , 1))1/2 if j = i .

Let τ−i := (τ1,i , . . . , τi−1,i , τi+1,i , . . . , τd ,i )
T ∈ Rd−1 and

Σ
(i)
X := Σ

(−i ,−i)
X − τ−iτ

T
−i ∈ R(d−1)×(d−1).

Proposition

For all i ∈ {1, . . . , d}, the matrix Σ
(i)
X is a TPDM since

1 Σ
(i)
X ≥ 0 component-wise;

2 Σ
(i)
X is positive semi-definite.
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An approximate decomposition algorithm

The proposition holds for all TPDMs, not only those obtained
through a triangular matrix.

Let ΣX be an (estimated) TPDM and let i1 7→ i2 7→ . . . 7→ id denote
a path, where (i1, . . . , id) is a permutation of (1, . . . , d).

I determines which column will be treated first.

The iterative algorithm:
I Obtain the vector τi1 by taking i = i1 and fill in the first column of the

matrix A with τi1 .
I The targeted TPDM is then reduced to a (d − 1)× (d − 1) matrix.
I In step j , fill the j-th column of A by applying the algorithm to the

targeted (d − j + 1)× (d − j + 1) TPDM matrix.
F Set the elements in the i1, i2, · · · , ij−1-th row to zero.
F Fill in the other (d − j + 1) elements by the (d − j + 1)-dimensional τ

vector obtained in this step.
F The dimension of the targeted TPDM is reduced by one.

Then A satisfies σXjk
= [AAT ]jk for j 6= k and σXjj

≤ [AAT ]jj .
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Choosing an optimal path

If X follows a max-linear model constructed from a lower-triangular
parameter matrix A, by choosing the path 1 7→ 2 7→ . . . 7→ d , the
exact max-linear model is recovered.

In general, smart path choices can lead to exact decompositions!
I A simple approach: pick the lowest value of Di in each step;
I An exhaustive approach: build a “tree” of possibilities;
I A pragmatic approach: in each step, pick a random “branch” in the

tree, until an end “leaf”. If the procedure stops with less than d steps,
restart the entire procedure from the beginning.

In practice:
I For small d (d ≤ 20), we can obtain thousands of exact

decompositions in half an hour.
I For moderate d (d ≤ 40), we still find a moderate to large number of

exact decompositions.
I For high d (e.g. d = 150), it is rare to find exact decompositions, but

approximate ones may be quite satisfactory.
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Estimation of the TPDM

Suppose (i.i.d.) data Xi are available, for i = 1, 2, . . . , n.

We first need to estimate:
I the tail index α;
I the mass of the angular measure m = HX (Sd−1).

For i = 1, . . . , n, let Ri = ‖Xi‖ and Wi = Xi/Ri .

Let r0 be a high quantile of the empirical distribution of R1, . . . ,Rn.

Write nexc =
∑n

i=1 1 {Ri > r0}.
Then σjk can be estimated by

σ̂jk =
m̂

nexc

n∑
i=1

W
α̂/2
ij W

α̂/2
ik 1 {Ri > r0}
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Example: daily maximum speeds of wind gusts

Daily maximal speeds of wind gusts, measured in km/h, observed at
35 weather stations in the Netherlands during extended winter
(October–March), n = 3827.

I here, focus on inland stations only (d = 18)

Marginal analysis: α̂ ≈ 9.3 falls in the 95% confidence intervals of all
marginals

d = 35 stations
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Wind gusts: pairwise dependence coefficients
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Failure region Cmax

Let X = (X1, . . . ,X18) represent the maximum wind gusts at the 18
inland stations.

As an example, let’s calculate the probability that the maximum wind
gust exceeds x at at least one station,

pmax(x) = P[max(X ) > x ],

The KNMI issues an alarm for wind gusts exceeding 120 km/h.

In February 2022, storm Eunice caused massive damage in Europe.
The maximum wind gust measured in the Netherlands was 144 km/h
(setting the record for harshest inland wind ever measured).

We calculate 10 000 exact decompositions of Σ̂X (computing
time: ∼ 15 minutes).
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Results: estimations of pmax

Empirical estimates in blue; 5 exceedances (left) and 1 exceedance (right).
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